
Computing Upper Bounds on Lengths of Transition Sequences

Jussi Rintanen∗
Department of Information and Computer Science

Aalto University, Finland

Charles Orgill Gretton†
Optimisation Research Group

NICTA, Australia

Abstract
We describe an approach to computing upper
bounds on the lengths of solutions to reachability
problems in transition systems. It is based on a
decomposition of state-variable dependency graphs
(causal graphs). Our approach is able to find prac-
tical upper bounds in a number of planning bench-
marks. Computing the bounds is computationally
cheap in practice, and in a number of benchmarks
our algorithm runs in polynomial time in the num-
ber of actions and propositional variables that char-
acterize the problem.

1 Introduction
Lower bounds on lengths of action sequences have been stud-
ied extensively in the AI literature [Culberson and Schaef-
fer, 1996; Korf, 1997; Haslum and Geffner, 2000; Bonet and
Geffner, 2001; Dräger et al., 2009], in connection with opti-
mal search algorithms such as A? [Hart et al., 1968]. Studies
of upper bounds are less common and more limited. In this
work, by upper bound N we mean that, if a solution to the
problem exists, the length of an optimal solution is no greater
than N . An exponential upper bound for a planning prob-
lem described using N Boolean state variables is 2N − 1.
Tighter bounds are known for restricted cases. For example,
if actions only have positive preconditions and effects, no ac-
tion ever needs to be taken more than once. In that case the
number of actions is an upper bound on the shortest plan [By-
lander, 1994]. Despite this and other important insights about
restricted classes of actions [Brafman and Domshlak, 2003;
Giménez and Jonsson, 2012], a procedure for inferring upper
bounds for a broad range of problems has remained elusive.
∗Also affiliated with the Institute for Integrated and Intelligent

Systems, Griffith University, Australia, and the Helsinki Institute of
Information Technology, Finland. This work was funded by the
Academy of Finland (Finnish Centre of Excellence in Computa-
tional Inference Research COIN, 251170).
†Also affiliated with the Artificial Intelligence Group, Australian

National University, and the Institute for Integrated and Intelligent
Systems, Griffith University, Australia. NICTA is funded by the
Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

There are several uses for upper bounds in solving reacha-
bility problems. First, there is the detection of (sub)problems
that have no solution. In explicit state-space search, if for a
state s the distance from s to a goal state has a lower bound
l and an upper bound u with u < l, then the goal state is not
reachable from s, and s can be pruned from the search. In
the case of the planning as satisfiability approach [Kautz and
Selman, 1996], a sequence of satisfiability tests, for example
testing the existence of plans of lengths 1,≤ 2,≤ 3, and so
on, is performed. Tight upper bounds yield a practical termi-
nation test for this procedure, because once we have tested at
the upper bound, if no solution was found, then none exists.

A second application is limiting the search effort in ap-
proaches that reduce the overall reachability problem to a se-
quence of fixed-length reachability problems, as in planning-
as-SAT and related approaches. The efficiency of this type of
plan search lies in the strategy used to focus search effort on
different horizon lengths [Rintanen, 2004; Streeter and Smith,
2007]. These strategies benefit from having tight upper and
lower plan length bounds. The Streeter and Smith procedure
performs a binary search over horizon lengths, and relies on
tight initial bounds. The algorithms by Rintanen do not re-
quire tight upper bounds, however they can avoid a great deal
of unnecessary search where a tight upper bound is given.

In this paper we have taken the first step towards a gen-
eral approach to computing such upper bounds. Section 2
formally defines the succinct reachability problem. In Sec-
tion 3, we recall the simplest and best known exponential up-
per bounds obtained from the cardinality of the state space,
discuss exponential upper bounds obtained from the cardi-
nality of the action set, and discuss how invariants can inform
better bounds. In Section 4 we propose a decomposition of
the set of state variables according to a dependency graph.
We describe an approach which analyzes that graph to com-
pute plan length bounds. In Section 5 we evaluate that proce-
dure with a number of planning benchmarks used in the In-
ternational Planning Competitions (IPC) from 1998 to 2011.
Finally, in Section 6 we conclude the paper by pointing to
future research directions.

2 Preliminaries
We formalize the planning problem as a 4-tuple Π =
〈X, I,A,G〉 where X is a finite set of Boolean state vari-
ables, which induces a state space S(X) consisting of all

states s : X → {0, 1} that are total functions from the state
variables to 0 and 1, I : X → {0, 1} is the initial state, A
is a finite set of actions (p, e) where the precondition p and
the effects e are consistent sets of literals over X , and G, the
goal, is a set of literals over X .

Given a state s, its successor s′ = execa(s) with re-
spect to action a = (p, e) ∈ A is the state that sat-
isfies s′ |= e and s′(x) = s(x) for all x ∈ X
such that x does not occur in e. This is defined iff
s |= p. An action sequence a1, . . . , an is executable
(in state s) if execan(execan−1(· · · execa2(execa1(s))))
is defined. A plan for Π = 〈X, I,A,G〉 is
a sequence a1, . . . , an of actions from A such that
execan(execan−1

(· · · execa2(execa1(I)) · · ·)) |= G.
We can project a planning problem Π = 〈X, I,A,G〉 to

a subset X ′ ⊆ X of state variables, obtaining Π ↓ X ′ =
〈X ′, I ↓ X ′, {a ↓ X ′|a ∈ A}, G ↓ X ′〉, where I ↓ X ′ =
{(x, v)|(x, v) ∈ I, x ∈ X ′} by limiting the state to variables
in X ′, (p, e) ↓ X ′ = (p′, e′) obtained from (p, e) ∈ A by
removing all literals with a state variable in X\X ′ from both
p and e. Finally G ↓ X ′ is obtained from G by deleting
literals with variables not in X ′.

Further, we can project an action sequence a1, . . . , an to
a set X ′ ⊆ X of state variables by projecting the actions to
X ′, obtaining an ↓ X ′, . . . , an ↓ X ′ and then deleting those
projected actions that have empty effects (that is, the actions
that do not have any effect on variables in X ′).

Our method for deriving upper bounds is based on a de-
composition of a directed graph into its strongly connected
components (SCC). An SCC of a directed graph is a sub-
graph in which there is a directed path from each vertex to
every other vertex. A successor of an SCC S is an SCC S′ so
that, in the underlying graph, there is an arc from a vertex in
S to a vertex in S′. A predecessor of S is a component which
has S as a successor. The ancestors of S are the SCCs, other
than S, for which there is a directed path in the underlying
graph from a vertex in the component to one in S. In this
work we shall often identify an SCC with the set of vertices
in that subgraph.

3 Plan Length Upper Bounds
A plan length upper bound can be obtained from the cardi-
nality of the state space by observing that a shortest path in
the transition graph never visits any state twice: if a state is
visited twice, all the actions between these two occurrences
of the state could be removed to obtain a shorter plan.

Lemma 1 For a problem over Boolean variablesX s.t. N =
|X|, the shortest plan cannot be longer than 2N − 1. That
bound is tight: one can give a problem with N actions which
increment anN -bit counter by one, depending on the number
of least significant bits that are 1.

Another upper bound can be obtained from the number of
actions. It may be useful when |X| is large relative to |A|,
which is the situation when actions have preconditions and
effects that refer to a high number of state variables.

Lemma 2 If there are m = |A| actions and a plan exists,
then the length of the shortest plan is at most

∑m
i=0

m!
(m−i)! −

1. This bound is tight.

Proof: Any state reached by a (finite or infinite) sequence of
actions from A is uniquely determined by the order of the
last occurrences of each of the m actions. The truth value
of any state variable, after taking a sequence of actions in
the initial state, is the last value assigned to it, or if no ac-
tion has affected it, its initial value. In other words, I and
the order of last occurrence of each action determines the
reached state uniquely. As there are at most m! relevant
action sequences, there can be at most m! different states.
When any i of the m actions are used, there are m!

(m−i)! dif-
ferent action sequences, and we of course have to consider
all i between 0 and m to account for all states reachable
by plans that contain at most m different actions. For tight-
ness, the reader can verify that, in the following example the
bound equates to the number of reachable states, and that a
plan in this example might be equal in length to the number
of reachable states minus one. Take A = {a1, .., am} and
X = {x1, .., xm} ∪ {yi,j |1 ≤ i < j ≤ m}. Actions are
aj = (∅, {xj , yj,j+1, .., yj,m,¬y1,j , ..,¬yj−1,j}) so that each
action j sets xj = yj,k = 1 ∀k ∈ {j+ 1, ...,m} and yk,j = 0
∀k ∈ {1, ..., j − 1}. �

Further assumptions about the properties of individual ac-
tions or their interrelations are needed to derive tighter upper
bounds. We shall not explicitly consider actions with condi-
tional (state-dependent) effects. Bounds based on the prop-
erties of state variables remain valid in that case, but those
based on action set cardinality do not. With conditional ef-
fects it is possible to represent an increment action, which
can be repeated 2N − 1 times to increase an N -bit counter
from 0 to 2N − 1. Hence a small number of actions does not
necessarily yield practically significant upper bounds.

3.1 Invariants
Invariants [Gerevini and Schubert, 1998; Rintanen, 2008]
represent dependencies between state variables in the reach-
able state space. They characterize unreachable states, and
have been used to derive compact state representations for ex-
plicit state-space search. Most invariants used in practice can
be expressed as clauses with one or two literals (unit clauses
l and binary clauses l ∨ l′). We employ 2-literal invariants to
derive tighter plan length bounds.

Lemma 3 Let 〈X, I,A,G〉 be a problem instance so that
¬x∨¬x′ is an invariant for all {x, x′} ⊆ X such that x 6= x′.
A shortest plan has at most n actions, where n = |X|.

Proof: The invariants imply that one state variable can be true
at any state reachable from I . The number of reachable states
is at most |X|+ 1 (including the state in which all of the state
variables are false). A plan visiting a subset of these states,
with no state visited twice, has at most |X| actions.1 �

1In many problems arising in practice there is a guarantee that
at least one of the state variables is true, for example because any

The structure of the set of invariants in the above lemma is
specific. For arbitrary sets of invariants, each taking the form
of a 2-literal clause, looser upper bounds hold. Tractable ex-
act model-counting is possible for sets of 2-literal clauses sat-
isfying certain graph-theoretic properties [Luna et al., 2007],
but these properties do not seem to be of practical relevance
to 2-literal invariants arising in typical planning problems. In
any case, we can employ general model-counting for Boolean
2SAT—i.e. clauses have at most 2 literals— to obtain upper
bounds based on the cardinality of the state space by leverag-
ing problem invariants.

4 Bounding via Dependency Graph Analysis
For many problems that occur in practice, the discussed
bounds are impractically loose. We now describe how depen-
dencies between problem variables can be expressed using
a graph, and leverage problem decompositions suggested by
that graph in order to obtain tight bounds. In particular, we
shall describe and analyse a type of dependency graph that
suggests a decomposition of the problem into subproblems.
The concept of a dependency (often termed causal) graph
was first described by [Knoblock, 1994] and [Williams and
Nayak, 1997], and has since found myriad uses in both the-
oretical and practical works. Intuitively, dependency graphs
express dependencies between state variables in terms of the
ability of one variable to impact the value of another. For
some classes of problems such graphs expose small subprob-
lems with few interconnections, with the subproblems’ size
independent of parameters determining the overall problem
size. We shall explore how upper bounds on the lengths of
solutions to subproblems yield a bound for the underlying
problem.

Definition 1 The dependency graph of a planning problem
is the directed graph G = (V,E) that satisfies the following.
The vertices V are the set of state variables. There is an arc
(v, v′) ∈ E iff either

1. there is an action whose effect is described using a literal
over v′ (i.e. using either v′ or ¬v′), and a literal over v
is a precondition of that action; or

2. literals over v′ and v occur together in the description
of an action effect, and v occurs both positively and neg-
atively in the effects of problem actions.

Definition 1 departs from a number of other definitions of
dependency graphs. In particular, the classical causal graph
includes the arc (v, v′) if v′ and v occur together in the de-
scription of an action effect.

We illustrate Definition 1 in Figure 1, which depicts the de-
pendency graph for a simple instance of the logistics bench-
mark from the IPC in 2000. The problem we consider has
one package, p, one aeroplane, ap, three trucks, t1, t2, and
t3, and three cities. Each city contains one of the airport lo-
cations, a1, a2, and a3, and one of the corresponding inner-
city locations c1, c2, and c3. The aeroplane can visit every

action making a state variable false also makes another variable true.
Hence the state with all variables in X false is not reachable, and the
upper bound on actions is |X| − 1 instead of |X|.

1 AT(p,a1)

5 AT(ap,a3)

5 AT(ap,a1) 5 AT(ap,a2)

1 AT(p,c1) 1 AT(p,c3)

1 AT(p,a3)

AT(t1,a1)2 4 AT(t3,a3)

4 AT(t3,c3)2 AT(t1,c1)

Key:

: directed arc

N

: bi−directed arc

BooleanVariable

of the SCC associated

with the variable.

’N’ is the integer label

1 AT(p,c2)

3 AT(t2,a2)

3 AT(t2,c2)

1 AT(p,a2)

1

1

1 IN(p,ap)

IN(p,t2)

1 IN(p,t3)IN(p,t1)

Figure 1: Dependency graph for a logistics problem. The
graph has five SCC, one component for each of the four
vehicles—three trucks and one aeroplane—and one compo-
nent for the package.

airport location. The fact that ap is visiting a1 is expressed
by the Boolean variable At(ap, a1) begin true. Each truck can
visit the airport and downtown locations of its home city. For
example, the truck t1 can be visiting either c1 or a1. The
package can be transported between locations with the ap-
propriate vehicles. For example, ap can transport p between
any two airports, and trucks can transport p between an air-
port and its corresponding inner-city location. The edges of
the dependency graph in Figure 1 capture the conditions for
moving vehicles, and those for loading/unloading the pack-
age. For example, to move from location c1 to the airport a1,
the truck t1 must be visiting c1. For package p to be loaded
into a vehicle, to achieve In(p, t1) for example, both the vehi-
cle and p have to be at the same location. Similarly, to unload
p to a location, p must of be inside the vehicle we intend to
unload, and that vehicle must be visiting the location.

We can decompose a dependency graph into its strongly
connected components (SCC) in linear time [Tarjan, 1972].2
An SCC with no outgoing arcs induces an abstract planning
problem with actions that change the state variables in that

2Assuming that a symbol table for node names with linear-time
access has been built, a O(n logn) computation.

SCC only. Considering SCCs in a planning context more gen-
erally, exactly those actions belong to an SCC that change at
least one variable in the SCC, and which add/delete only vari-
ables in the SCC and its successors.

Continuing with our logistics example, in Figure 1 we have
labeled each vertex with its corresponding variable, and also
with a number that indicates the SCC that vertex participates
in. For example, variables At(p,ap) and In(p,c1) participate
in an SCC labeled 1, while At(t1,c1) and At(t1,a1) participate
in 2. Taking i, j ∈ {2..5} and i 6= j, the reader can ob-
serve that for SCCs labeled i and j respectively, there are no
directed paths between vertices in i and j. In other words,
any action that alters the location of a vehicle cannot interfere
with an action that alters the location of a different vehicle.
If the problem goal is to rearrange the vehicles, then we can
plan independently for each vehicle. The overall plan for our
logistics problem in that case need not be longer than 5 steps.

A less contrived example of such independence occurs in
the rovers benchmark from the IPC in 2006. Here, an au-
tonomous planetary rover must acquire and transmit scientific
data which can be acquired by visual analysis (image data),
or otherwise by analysis of soil and rock. Acquisition of the
former is independent of the latter, and in the SCC decom-
positions of graphs associated with rovers instances, there is
one component with actions for soil/rock analysis, and an-
other for image analysis. A plan for such problems can be
the composition of a plan for acquisition and transmission of
image data followed by a plan for the soil/rock task. In our
work we exploit such independence to obtain upper bounds
on the lengths of plans in rovers, and similar domains.

We must also consider the case where variables in an SCC
are dependent on those from a different SCC. We shall pro-
ceed with the example in Figure 1 for the moment. Taking
a conventional logistics goal, of delivering p to a particular
location, we are left to address dependencies between the lo-
cations of vehicles and our ability to alter the location of p.
In order to derive upper bounds for this case, we appeal to an
abstraction refinement scheme suggested by the dependency
graph, which was previously reported in [Knoblock, 1994].
Observe that there are no directed paths from a vertex in SCC
labeled 1 to any vertex with SCC i 6= 1. Let S1 be the set of
variables associated with vertices with SCC label 1. If a plan
for the logistics problem exists, then a plan shall correspond
to a refinement of an abstract plan for the problem Π ↓ S1.

Definition 2 Given a problem Π, let π be an abstract plan for
Π ↓ Z, and Z ′ a set of problem variables satisfying Z ⊂ Z ′.
A plan π′ for Π ↓ Z ′ is a refinement of π iff there exists a
correspondence function c mapping each action in π to one
in π′, satisfying:

1. ∀a ∈ π, both c(a) and a are projections of the same
action in Π.

2. If a1 precedes a2 in π, then c(a1) precedes c(a2) in π′.

3. ∀a3 ∈ π′ where @a1 ∈ π s.t. c(a1) = a3, we have
∃a2 ∈ π, (p, e) = c(a2), a3 precedes c(a2) in π′, there
is a precondition literal x ∈ p whose subject is a vari-
able from Z ′\Z, and in every deordering of the serial π′

into a valid partially ordered plan, there is a causal chain
from a3 to the precondition x.

Generally, where Z are the variables/vertices in an SCC, a
plan for the abstract problem Π ↓ Z can be, by a process of
iterative refinement, extended into progressively less abstract
plans. A bound on the length of the abstract plan for Π ↓ Z
can be obtained using the insights of Section 3.1. Each step
of iterative refinement adds actions from, and only from, the
predecessor SCCs. Repeating the bounding exercise that we
did for Π ↓ Z, we can calculate a bound on the length of such
a refinement, and by induction a bound on the length of the
plan refined to the point that it is part of a solution to Π.

In later sections we shall develop these ideas formally
and algorithmically. For now we further illustrate the above
scheme, to show more concretely how counting according to
the variable dependencies of a problem can give significantly
tighter bounds compared to those of Section 3.1. A package
can only be at one place at a time, therefore by Lemma 3 an
abstract plan for S1 in our logistics example has upper bound
9.3 An abstract plan will be of the form a1, a2, .., a9 where
each ai is a load/unload action. We must now consider insert-
ing additional transportation actions into that abstract plan. A
refinement will have the form σ1, a1, σ2, a2, .., σ9, a9, where
σi terms are sequences of actions from SCCs with indices in
2..5, for example drive and fly actions. We have already seen
that each σi is of length at most 5, therefore a plan length
upper bound for our logistics example is 54.

4.1 Formalization
Where Π is a problem, we write `(Π) for the length of the
longest optimal execution in Π, that is, the maximum possi-
ble length of a shortest possible action sequence in Π from the
initial state to another state in Π. Notice that `(Π) is indepen-
dent of the goals. Writing π(s) for the set of all executions
in Π from the initial state I to s and |π| for the length of the
plan π,

`(Π) = max
s∈S(X)

min
π∈π(s)

|π|.

Lemmas 1, 2 and 3 provide bounds on `(Π). For the longest
plan, written `(Π;G), we have

`(Π;G) = max
s|=G

min
π∈π(s)

|π|.

Note that `(Π;G) ≤ `(Π). Given a strongly connect com-
ponent S, we write P(S) for the set of all vertices in the an-
cestors of S. Where S is an SCC with vertices Y , we write
Π ↓ S to denote the underlying problem projected to Y .

Theorem 4 Let S be the set of components in the depen-
dency graph for Π which have no successors. Then we have

`(Π) ≤ ΣS∈S`(Π ↓ S ∪ P(S)).

Moreover, for each S ∈ S we have

`(Π ↓ S ∪ P(S)) ≤ (`(Π ↓ S)+1)`(Π ↓ P(S))+`(Π ↓ S).

3A tighter bound of 6 might be observed, however that requires
inference beyond the simple counting of Section 3.1.

Proof: A sketch of our proof follows. First, consider the sit-
uation where the dependency graph corresponds to a classi-
cal causal graph. In that case there is always an edge (v, v′)
whenever literals over v and v′ occur in the same action ef-
fect. Every refinement of a plan π ↓ Z is an ordered refine-
ment (see [Knoblock, 1994, Definition 4]) provided there is
no directed path in that graph from a variable in Z to any
variables added by that refinement. In this case our result
follows from the fact that layered plan refinement prescribed
by [Knoblock, 1994] never adds or deletes variables that oc-
cur in the abstract plan being refined. We are left to examine
the following situation. Take an abstract plan π ↓ Z, and a
refinement π ↓ Z ∪ Y so there is no directed path in the de-
pendency graph from a variable in Z to any variable in Y .
For some v ∈ Z, v′ ∈ Y we suppose: (a) both those variables
occur together in one or more action effects, and (b) v occurs
uniformly positive (negative) in action effects. By definition,
the actions added by a legal refinement π ↓ Z ∪ Y of π ↓ Z
cannot have a precondition that mentions v – otherwise there
would be a precondition-effect edge from v to v′ violating our
stated path condition. In the refinement problem the variable
v cannot be a goal (because v ∈ Z) or precondition. There-
fore, if there is a refinement π ↓ Z ∪ Y to π ↓ Z, it must be
equal to a refinement π ↓ Z ∪ Y \v to π ↓ Z\v in terms of
the actions and their ordering. Our result follows, because
in bounding the number of actions added during a refinement
from π ↓ Z to π ↓ Z ∪ Y , v need not be considered. �

Theorem 4 informs how we can obtain sub-exponential up-
per bounds in practice. The term `(Π ↓ S) can be approx-
imated using the insights presented in Section 3.1. We can
approximate `(Π ↓ P(S)) terms by examining the subgraph
defined for vertices P(S). In particular, we can recursively
use the above bounding expressions for the smaller problem
Π ↓ P(S), and so on. The recursion terminates when the sub-
graph over P(S) has only one SCC S′, in which case we ap-
proximate `(Π ↓ P(S)) again following Section 3.1.4

We have excluded some inter-effect arcs used in earlier def-
initions of causal graphs. This poses the question: Can we ex-
clude all arcs that are purely inter-effect, in the sense that they
are solely included in the graph due to Condition 2 of Defi-
nition 1, and still have Theorem 4? The following example
shows that at least some of those arcs are required.

Example 1 Consider the actions below, described using the
variables x0, .., xn−1, γ and y0, .., yn−1, ψ, ψ′.

For k ∈ {1, .., n− 1}
({¬ψ′,¬yk, yk−1, .., y0}, {yk,¬yk−1, ..,¬y0}),
({¬ψ,¬yk, yk−1, .., y0}, {yk,¬yk−1, ..,¬y0}), and
({¬γ,¬xk, xk−1, .., x0}, {xk,¬xk−1, ..,¬x0, γ}).
(∅, {¬γ, ψ}), (∅, {x0, ψ′}),
({¬ψ, yn, .., y0}, {¬yn, ..,¬y0,¬ψ′}), and
({¬ψ′, yn, .., y0}, {¬yn, ..,¬y0,¬ψ}).

The actions defined over x1, .., xn−1 count (in binary) from
0 to 2n − 1. Setting the least significant bit of the counter

4If the ancestors of S do not mention goal propositions we have
`(Π ↓ S ∪ P(S);G) ≤ `(Π ↓ S)`(Π ↓ P(S)) + `(Π ↓ S).

to 0 has the effect γ = 1, requiring (if the goal is to be
achieved) setting ψ to true with the action (∅, {¬γ, ψ}) before
further such increments are possible. Setting the least signif-
icant bit of the counter to 1 sets the variable ψ′ true. Suppose
¬ψ,¬ψ′ ∈ G, and notice that one of those literals must be
false so that the plan can affect any of y0, .., yn−1. No plan
prefix can include a state s s.t. s |= ψ ∧ ψ′. Whenever ψ = 1
(resp. ψ′ = 1), it can only be made false by counting from 0
to 2n − 1 using the bits y0, .., yn−1. In other words, each in-
crement of 1 in x0, .., xn−1 is followed by 2n − 1 increments
in y0, .., yn−1. Hence every change in the first counter forces
counting through all values of the second counter, inducing a
shortest plan of length 2n − 1 + (2n − 1)2n = 22n − 1 for
the problem with all variables false in the initial state and all
variables except ψ and ψ′ true in the goal state. Without pure
inter-effect arcs we would get two unconnected SCCs and a
too low upper bound, which is the sum of the upper bounds
for the two SCCs, and not their product as it should be. �

4.2 Algorithm
Our bounding procedure can be outlined as follows.

1. Let a vertex v be the subject of a goal literal l ∈ G iff
l = v or l = ¬v. If v is not the subject of a goal literal,
and if there is no directed path from v to a vertex which
is the subject of a goal literal, then we remove v from
the dependency graph. It is straightforward to see that
any minimal length plan in the underlying problem Π is
a minimal length plan in Π ↓ X\v and vice versa.

2. We associate with each SCC S a positive integer value
vS . Intuitively, vS is equal the maximum length of a
shortest (abstract) execution which only changes the val-
ues of state variables in S. For vS we take the minimum
bound provided by Lemmas 1, 2 and 3 where applicable,
and in situations where some (not all) of the variables in
S are mutex, we use model-counting to derive a bound
based on the cardinality of that abstract state space.

3. Topologically sort the SCCs and go through them so that
the calculations related to an SCC S (summarized as val-
ues vS and below tS) is carried out after the calculations
for all its ancestors have been completed.

4. We associate with each SCC S a positive integer value
tS . Intuitively, tS is an upper bound on the length of an
(abstract) action sequence that affects variables in S and
its ancestors, with the purpose of achieving a given val-
uation (which may be determined by the top-level goal
G, or by preconditions in the top-level plan with occur-
rences of variables in S).
An upper bound is obtained from vS by assuming that a
maximal number of actions are needed between any two
actions in π ↓ S. That is, before and after every action in
π ↓ S, we may need tS′ actions from every predecessor
SCC S′ of S. Hence,

tS = vS + (1 + vS)
∑
S′≺S

tS′

Above, we multiply the sum by vS (not 1 + vS) if no
ancestor of S includes a goal variable. Note that actions

affecting both S and its ancestor S′ are counted multiple
times.

5. The final step sums the tS terms for all SCCs S that have
no successors. Let S1, .., Sm be all such SCCs, then a
plan length upper bound is tS1

+ ..+ tSm
.

5 Experimental Evaluation
We have implemented our algorithm as a program that takes a
planning problem as input, constructs the dependency graph,
and then derives an upper bound on the length of a plan. All
experiments were performed using a compute cluster of 2
GHz Intel Xeon E6540 nodes. In cases where good bounds
according to our decomposition are only available by model-
counting, we have used CACHET [Sang et al., 2005] to bound
the length of plans for the abstract problems induced by
SCCs. Deriving the upper bounds is computationally cheap,
whether we use Lemmas 1, 2 or 3, or in situations where we
resort to model-counting. In the case of all reported results,
the only costly calculation associated with our approach is the
detection of 2-literal invariants (taking some dozens of sec-
onds for the largest instances), which is required by Lemma 3.
Because that computation is standard in all competitive plan-
ners, it is not an additional overhead.

As test material, we used the benchmark sets from the plan-
ning competitions. Plan lengths typically vary from some
tens to some hundreds of steps. Humans can typically de-
rive relatively tight upper bounds on plan lengths in these do-
mains. The results we obtained with automated bounding are
reported in Table 1. We have presented data for the 8 domains
where an upper bound can be ≤ 2.5k, a horizon at which the
state-of-the-art SAT-based planner MP [Rintanen, 2012] can
routinely solve problems in under 30 minutes. That ≤ 2.5k
condition is met for 69 instances, 18 of which are from logis-
tics, and another 30 from the trivial domain movie. In Fig-
ure 5 we explore the relationship between the upper bounds
we are able to derive and the number of problem variables.
The figure highlights our key claim: Our decomposition can
yield sub-exponential growth in upper bounds as the number
of variables increases, into the hundreds, and even into the
thousands. This is particularly evident in domains satellite
and logistics, where no model-counting is necessary, 5 and in
zeno.

It is worth understanding why our approach works so ef-
fectively in logistics. There are no capacity constraints on
the transports. The location of a package does not alter the
possibility of moving transports, and there is no dependence
between any two transport’s actions either. Also, package
movements are mutually independent. A consequence of all
this independence is that the number of SCCs in the depen-
dency graph is equal to the number of transports and pack-
ages. The number of variables in the SCC associated with a
package is equal to the number of places the package can be.
Moreover, Lemma 3 applies to every SCC. Each package and
each transport can only be in one place at a time.

The benefit of omitting some of the inter-effect arcs in the
dependency graph in Definition 1, though broadly important,

5i.e. our approach is tractable in both those domains.

can be more concretely understood by examining rovers. The
graph associated with the second problem in that benchmark
has 7 SCC if all inter-effect arcs are included. A graph ex-
cluding those arcs has 10 SCC, with additional components
of size 1 for each of the propositions have rock analysis,
have soil analysis and have image, that is, all facts that can
only become true once, and then remain true. Bounding with
all inter-effect arcs yields 235 steps, and 122 steps according
to Definition 1. The difference occurs because using the for-
mer we are bounding abstract plans that achieve facts, such
as have image, multiple times. These facts cannot be made
false and hence need only be achieved once, a constraint that
cannot be expressed using invariants.

Domain year ≤ Upper Bound Statistics
2.5k 1M minimum maximum

#SCC |SCC| #SCC |SCC|
logistics∗ 00 18 38 48 1728

7 7 28 23
logistics∗ 98 0 30 NA NA

NA NA NA NA
movie∗ 98 30 8 8

8 1 8 1
psr 04 3 20 1023 2159

4 10 5 14
rovers 06 3 11 122 1562

10 4 14 8
satellite∗ 04 2 20 171 1285

6 7 9 8
storage 06 1 4 255 255

5 10 5 10
tpp 06 4 10 129 516

4 6 27 16
zeno 02 7 20 254 1990

3 10 7 11

Table 1: Columns 1, 2 and 3 give the domain, the year it first
featured at an IPC, and the number of instances where our
procedure yields a bound ≤ 2.5k in the left cell and ≤ 1M
in the right. We annotate the domain name with ‘∗’ if all
the bounds are calculated without model-counting. The cells
in Column 4 list: (above) the shortest bound computed for a
domain instance, (below, left) the number of SCC in the graph
associated with that instance, and (below, right) the size of the
biggest SCC in the graph for that instance. Column 5 follows
the format of Column 4, reporting data regarding the longest
bound found that was ≤ 2.5k.

We can leverage upper bounds in SAT-based planning to
prove that a problem admits no solution. We experimented
using a version of rovers with qualitative preferences (QP)
from the IPC in 2006. Haslum (2007) proposed an optimal
QP solution procedure that operates by solving open sets,
which are sets of classical goal-oriented STRIPS problems.
Whether or not these problems admit solutions allows us
to infer plan-cost bounds about the underlying QP problem.
We obtained “open sets”—each of which is a set of STRIPS
problems—for each of the unsolved QP rovers problems from
the competition. Specifically, QP rovers problems 06 to 19.
Each of the sets contains at least one STRIPS problem for
which it was not known whether it admits solutions. In total,
we have a corpus of 1440 STRIPS problems.Of those, Mp
cannot easily find a plan in 86 problems.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
p

p
e

r
B

o
u

n
d

 /
 |
X

|

Number of Problem Variables (i.e. |X|)

Upper Bounds at |X|

logistics
PSR

rovers
Satellite

TPP
zeno

Figure 2: For problems in logistics, psr, rovers, satellite,
tpp, and zeno we examine the upper bounds as the number
of problem variables increases. Here, logistics instances are
from the 1998 and 2000 IPCs.

Problem 06 in the QP series has remained open since 2006,
i.e. it was not known whether a candidate plan was optimal.
In this case, the most challenging STRIPS problem which
does not admit a solution has a bound of 3486 steps. In con-
junction with our upper bounds, given a 1 GB memory limit
and 2 hour time limit MP is able to close rovers 06. Our
approach is to remove all easily solvable instances from the
open sets, and for the remaining instances (none admitting
solutions), in each case we prove that no plan exists for a
subset of the goals. Adding 1 goal literal at a time, in each
iteration choosing to add the literal that minimises the upper
bound of the resulting instance, MP quickly proves there is
no solution. Our approach mitigates upper bound bloat. For
example, rather than producing a proof for 3486 steps, which
takes days, we produce a proof in hours for 730 steps and 4
(of a possible 11) goal facts. It is worth noting that breadth-
first search is ineffective in solving problems from these open
sets, and that recent admissible landmark-based heuristics of-
fer no guidance here.

Considering planning by forward search of the state space
more generally, admissible pattern database (PDB) heuristics
can be leveraged to prove that no plan exists. First, it is worth
noting that given a 4 GB memory limit the state-of-the-art
PDB approach by Haslum et al. (2007) cannot solve the chal-
lenging instances that admit no solutions, including those as-
sociated with rovers QP problem 06.6 The allocated memory
is quickly exhausted during search. We find that PDB ap-
proach can benefit from the iterative goal inclusion procedure
outlined above. We prove that 34 of the 86 problems have no
solution. Of those 34 problems, 4 are very hard, and cannot
be solved using the PDB approach alone due to memory (4
GB) being exhausted. Addressing computation time in this
setting, we can report a very significant savings also. Using
iterative goal selection, in the 30 STRIPS problems with no
plans which can be solved by both our approach and a generic

6We used the PDB implementation by Sievers et al. (2012).

PDB search, we save a total of 646 CPU-seconds. Putting that
in perspective, refutation guided by our upper bounds in those
problems takes less than 5% of the time taken by a vanilla
PDB search.

6 Conclusions and Related Work
Treating a classical (deterministic perfect information) plan-
ning setting, we developed an approach to computing up-
per bounds on the lengths of solutions in transition system
problems. This is achieved by first constructing a depen-
dency graph, which expresses dependencies between state
variables, and then decomposing that graph into SCCs. A
number of earlier works have leveraged dependency graph
structures with the motivation of delimiting the boundary be-
tween tractable and intractable planning with single-effect ac-
tions [Williams and Nayak, 1997; Brafman and Domshlak,
2003; Jonsson and Bäckström, 1998]; a motivation that is or-
thogonal to ours, of computing upper bounds. In our work,
variable independence exhibited by the graphical decompo-
sition is used to obtain an additive expression for an upper
bound on the solution length. Factors in that expression are
upper bounds on the lengths of solutions to abstract subprob-
lems, obtained in this work according to state space cardinal-
ity arguments. We considered two techniques for bounding
in subproblems. The first is a polynomial time procedure that
appeals to problem invariants and a small fixed set of bound-
ing expressions. The second poses some cardinality questions
as 2SAT model-counting problems. Model-counting here, al-
though not tractable, is very efficient. In our experience so
far, we have not found that 2SAT model-counting is a bottle
neck. In a number of domains where problem variables can
be partitioned into components representing physical or vir-
tual objects, the decomposition to SCCs yields several small
SCCs, often with a size that is independent of the number of
objects and size of the underlying problem. For these types
of problems our decomposition method can yield polynomial
upper bounds of practical importance. For example, we were
able to close an open plan existence problem.

It is also worth noting a previous study related to our
own, which developed a different upper bound concept
for cost-optimal planning using constraint satisfaction tech-
niques [Cooper et al., 2011]. Those authors addressed the
situation where a (suboptimal) plan is already known, and
describe how one can then tractably answer the question:
Assuming a better (lower cost) plan exists, what is an up-
per bound on the length of such a plan? Unlike our ap-
proach, Cooper et al. assume the question of plan existence
is a priori answered positively. An interesting direction for
future work is to use dependency graph decompositions to
obtain tighter bounding expressions in that setting.

Wrapping up, there are a few considerations for future re-
search worth highlighting. Numerous planning benchmarks
admit well-known tight upper bounds, and yet our proce-
dure is unable to derive them. For example, IPC benchmarks
blocksworld and gripper admit well known linear bounds.
An interesting avenue of research is to explore in what sit-
uations dependency graph derived bounds can offer tight ap-
proximations of the lengths of optimal plans. Also, an im-

portant direction for future research is to derive additional
problem constraints with the properties: (a) a solution ex-
ists iff a solution to the over-constrained problem exists, and
(b) the over-constrained problem yields tight bounds (e.g. via
2SAT model counting with strong invariant conditions in the
over-constrained problem). Constraints on the order in which
objects/resources can be used (e.g. lex-leader) will likely be
fruitful here. Future extensions of our framework should also
study upper bounds for parallel plans.

References
[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.

Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001.

[Brafman and Domshlak, 2003] R. I. Brafman and
C. Domshlak. Structure and complexity in planning
with unary operators. J. Artif. Intell. Res. (JAIR),
18:315–349, 2003.

[Bylander, 1994] T. Bylander. The computational complex-
ity of propositional strips planning. Artif. Intell., 69(1-
2):165–204, 1994.

[Cooper et al., 2011] M. C. Cooper, M. de Roquemaurel,
and P. Régnier. A weighted CSP approach to cost-optimal
planning. AI Commun., 24(1):1–9, 2011.

[Culberson and Schaeffer, 1996] J. C. Culberson and
J. Schaeffer. Searching with pattern databases. In
Canadian Conf. on AI, pages 402–416. Springer-Verlag,
1996.

[Dräger et al., 2009] K. Dräger, B. Finkbeiner, and A. Podel-
ski. Directed model checking with distance-preserving ab-
stractions. STTT, 11(1):27–37, 2009.

[Gerevini and Schubert, 1998] A. Gerevini and L. K. Schu-
bert. Inferring state constraints for domain-independent
planning. In Proc. 15th National Conf. on Artificial Intel-
ligence, pages 905–912. AAAI Press, 1998.

[Giménez and Jonsson, 2012] O. Giménez and A. Jonsson.
The influence of k-dependence on the complexity of plan-
ning. Artif. Intell., 177-179:25–45, 2012.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael.
A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Systems Science and Cybernetics,
4(2):100–107, 1968.

[Haslum and Geffner, 2000] P. Haslum and H. Geffner. Ad-
missible heuristics for optimal planning. In Proc. Int. Conf.
on AI Planning Systems, pages 140–149, 2000.

[Haslum et al., 2007] P. Haslum, A. Botea, M. Helmert,
B. Bonet, and S. Koenig. Domain-independent construc-
tion of pattern database heuristics for cost-optimal plan-
ning. In Proc 22nd AAAI Conf. on Artificial Intelligence,
pages 1007–1012. AAAI Press, 2007.

[Haslum, 2007] P. Haslum. Quality of solutions to IPC5
benchmark problems: Preliminary results. In ICAPS work-
shop on the International Planning Competition: Past,
Present and Future, 2007.

[Jonsson and Bäckström, 1998] P. Jonsson and
C. Bäckström. Tractable plan existence does not
imply tractable plan generation. Ann. Math. Artif. Intell.,
22(3-4):281–296, 1998.

[Kautz and Selman, 1996] H. A. Kautz and B. Selman.
Pushing the envelope: Planning, propositional logic and
stochastic search. In Proc. 13th National Conf. on Artifi-
cial Intelligence, pages 1194–1201. AAAI Press, 1996.

[Knoblock, 1994] C. A. Knoblock. Automatically generat-
ing abstractions for planning. Artif. Intell., 68(2):243–302,
1994.

[Korf, 1997] R. E. Korf. Finding optimal solutions to Ru-
bik’s cube using pattern databases. In Proc. 14th National
Conf. on Artificial Intelligence, pages 700–705. AAAI
Press, 1997.

[Luna et al., 2007] G. Luna, P. Bello López, and M. C.
González. New polynomial classes for #2SAT estab-
lished via graph-topological structure. Engineering Let-
ters, 15(2):250–258, 2007.

[Rintanen, 2004] J. Rintanen. Evaluation strategies for plan-
ning as satisfiability. In Proc. 16th European Conf. on Ar-
tificial Intelligence, pages 682–687. IOS Press, 2004.

[Rintanen, 2008] J. Rintanen. Regression for classical and
nondeterministic planning. In Proc. 18th European Conf.
on AI, pages 568–571. IOS Press, 2008.

[Rintanen, 2012] J. Rintanen. Planning as satisfiability:
Heuristics. Artif. Intell., 193:45–86, 2012.

[Sang et al., 2005] T. Sang, P. Beame, and H. A. Kautz.
Heuristics for fast exact model counting. In Proc. 8th Intnl.
Conf. on Theory and Applications of Satisfiability Testing,
pages 226–240. Springer-Verlag, 2005.

[Sievers et al., 2012] S. Sievers, M. Ortlieb, and M. Helmert.
Efficient implementation of pattern database heuristics for
classical planning. In Proc. 5th Annual Symposium on
Combinatorial Search, 2012.

[Streeter and Smith, 2007] M. J. Streeter and S. F. Smith.
Using decision procedures efficiently for optimization. In
Proc. 17th Intnl. Conference on Automated Planning and
Scheduling, pages 312–319. AAAI Press, 2007.

[Tarjan, 1972] R. E. Tarjan. Depth-first search and linear
graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.

[Williams and Nayak, 1997] Brian C. Williams and P. Pan-
durang Nayak. A reactive planner for a model-based ex-
ecutive. In Proc. 15th Intnl. Joint Conference on Artificial
Intelligence, pages 1178–1185. Morgan Kaufmann Pub-
lishers, 1997.

