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Encryption System

K e K the key
x € P the plaintext
y € C  the ciphertext

Encryption system is a family { Ex} of transformations
Ex:P—C

parametrised using the key K such that, for each encryption
transformation Ek, there is a decryption transformation

Dg:C—P

such that
Dk(Ek(x))) = x, forall x € P.
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Block Cipher

P=C=F}

K =T}

The data to be encrypted is split into blocks
Xi, =1,...,N

of fixed length n.

Typically n= 128 and ¢ = 128

Still today designed as proposed by Claude Shannon 1949:
alternating layers of diffusions and confusions.
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Block Cipher Building Blocks
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Linear Approximation of Block Cipher

Reed Muller Workshop
May 26, 2011

niversity

33
£2

<»

7/32



Trail Correlation
Piling-up lemma: The strength of a linear approximation trail is
measured as the product of building block correlations.

Building block correlation is taken between & of all input bits
and & of all output bits involved in the approximation.

Linear building block: correlation = 1

Nonlinear building block: | correlation | < 1

Linear trails are said to exist only if correlation # 0
Also correlations = 0 can be meaningful

Xl X3 correlation
between
and
Y, Y,
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Correlation over Block Cipher

» Correlation of linear approximation over block cipher is
taken between

@ of all plaintext bits and @ of all ciphertext bits

involved in the approximation.

» Typically there exist many approximation trails involving the
same plaintext bits and ciphertext bits.

» One trail correlation dominates: Correlation computed as
trail correlation.

» Several trails with large correlations (Linear hull):
Correlation (squared) is computed as the sum of all
significant trail correlations (squared) [KN 1994]
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Block Cipher PRESENT

» Recent design targeted for lightweight applications

» Abundant in single-bit strong linear approximation trails
» Best known attack (other than exhaustive key search) due
to Joo Cho [2010]
» breaks 26 out of 31 rounds
» exploits linear hulls and multidimensional linear
cryptanalysis developed by us
» The effect of linear hulls underestimated by the designers
of PRESENT [Gregor Leander, Eurocrypt 2011]
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Highly Nonlinear Boolean Functions
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Binary Vector Space

» I3 the space of n-dimensional binary vectors
> & sum modulo 2
» Given two vectors

a= (a17"'7an)7 b= (bh---:bn) EFQ
the inner product (dot product) is defined as

a-b=aby®---®anbp.
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Boolean Function

» f: 3 — IF, Boolean function.

» Linear Boolean function is of the form f(x) = u - x, where
u € FJ is called a linear mask.

» f:F5 — FJ with f = (f,...,fn), where f; are Boolean
functions, is called a vector Boolean function.
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Correlation

» The correlation between Boolean functions f : F; — F, and
Fg — F,, x — u- x is defined as

(1) = o (HX € BB £(3) = - X} — #{x € B £(x) # u - x})

» Linear cryptanalysis makes use of large correlations
between Boolean functions and linear approximations
derived from cipher constructions.
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Parseval’s Theorem and Bent Functions
» Parseval’s Theorem

> c(f,u)p =1.

UEF]
» A Boolean function is called bent if
lc(f,u)| =272, forall u € F3.
[Rothaus1976][Dillon1978]

» Theorem. If f : F] — [ is bent then nis even.

» Meier and Staffelbach [1988] introduced the notion of
perfect nonlinearity of Boolean functions as an important
cryptographic criterion, and later observed that it is
equivalent to bentness.
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Vectorial Bent Functions

Let 7 : F; — 7' be a vector Boolean function. Then the
following are equivalent [KN1991]

» fis bent, thatis, w - f is bent, for all w # 0;
» fis perfect nonlinear (PN), that is,

f(x®a)® f(x)

is uniformly distributed as x varies, for all fixed o € 5\ {0}.

Theorem [KN1991]. If f : F — F7' is bent then n > 2m.
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APN S-Boxes

Let f: F; — FJ be an S-box. Then f is said to be almost perfect
nonlinear (APN) if f(x @ o)) @ f(x) is as uniformly distributed as
possible, as x varies, for all fixed a € 7 \ {0}.

» The function \
f:F] —F3, f(x)=x211,

with multiplication in Fon is APN.

» This function is bijective only for odd n [KN1993]
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Highly Nonlinear S-Boxes

f:F) — T3 f(x)=x"",f0)=0
with multiplication in Fan is bijective.

» For odd n, it is APN, and for even n,
#{x|f(x©a) @ f(x)=p} <4,
for all « # 0 and 3.

» In addition, all correlations |c(w - f(x) & u - x)| are upperbounded
by 2—2+1 [KN1993].

» Was adapted as the core of the S-box for the Rijndael block
cipher in 1998 to become the AES in 2001.
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Discrete Logarithm
The n-bit discrete logarithm S-box f : F — F7 is defined as

[ log,(x), forx #0
f(x)_{(171,...,1,) for x = 0.

where « is a generator of (Fan, x), X is considered as an element in
F2n, and n-bit integers log,, (x) and 27 — 1 are considered as elements
in 7.
For any single bit of f, its correlation with any linear function is
upperbounded by

O(n2-"2),
For multiple-bit maskings no useful upperbound known.
The best known bounds for the inverse of f

1 [ oY, fory#(1,1,...,1)
f (Y)_{Q fory =(1,1,...,1).

is O(n'/42-"/8) [Shparlinski and Winterhof, 2006]
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Generalized Linearity
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SAFER Block Cipher

% H % b % b b — K
) o o e e e
| !
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Non-binary mod 256 Diffusion

[2-PHTI(x,y) = (X + ¥, X +y), X,y € Zzse

8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 211 2 2 11
M = 4 2 4 2 2 1 2 1
21 21 2 1 2 1
2 2 2 21111
11111111
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Generalized Bent Functions
Let g > 2 be integer and denote

271'XI

€q(x)=ea".
f:FJ — Ty is bent if and only if

1) ex(f(x) @ u- x)| =22, forall u € F3.

xeFy

Kumar-Scholtz-Welch [1985]:
f: 74— Zqis generalized bent if

1> eq(f(x) — ux)| = g2, forall u e Z{,

X€EZg
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Existence

» Theorem. For all odd primes p and all positive n, there
exist generalized bent functions f : Zj — Zp.
» Example. f: Zp — Zp, f(x) = Xx2.

1Y e —w) = (Y e~ w))(Y & — )

XEZp XEZp YEZLp

> ep(x® —ux) Y epl((x — y)2 —u(x — y)))
x y

= Z:ep(x2 —ux—(x—y)P+u(x—y))
Xy

- Sl w) Y eew)
y X
= p

» This function is not bijective.
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Generalized Correlation

» Baignéres, Vaudenay, Stern [2007]: Additive groups
» Drakakis, Requena, McGuire [2010]: Z, and Zp_+
» Feng, Zhou, Wu, Feng [2011]: Subsets of Zn

» For any positive integers gand pand f : A — Zp, where A
is a subset of Zq, we define

c(wf(x), ux) |Zep (wf(x))eq(ux)

XEA
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8 x 8-bit S-boxes of SAFER

f(X) = (45X mod 257) —1, X € Zosg

and its inverse

= (y) =logs(y + 1), ¥ € Zose

Nonlinearity?
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Welch-Costas Functions
p odd prime
g generator of the multiplicative group in Fp

Exponential Welch-Costas function
f(x)=(9*modp) —1, x € Zp_1

and its inverse, namely, logarithmic Welch-Costas function
1 (y) =logy(y + 1), ¥ € Zp_

are bijections in Z,_.

Drakakis, Requena, McGuire [2010] conjectured asymptotic
upperbound for absolute values of correlations.
Hakala [2011] proved even a stronger upperbound

O(p~2 log p).
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Almost Linear Embedding Z, \ {0} — Z,_4

» Lemma [Hakala2011]. Let ¢ : Z, \ {0} — Zp_1 be defined as
¢(y)=y—1.Thenforallve Z,and w € Z,_4, w # 0, we have

> le(woly),w)l < Clogp.

=

» Proof based on an idea of L. J. Mordell [1972].
» For any function f : Z, — Z,
1< 3 Je(f(x), v)| < p2,
VEZLp

where the equality on the left hand side is obtained by linear
functions of the form f(x) = vx, and on the right hand side by
bent functions.

» The embedding ¢ : Z, \ {0} — Z,_1 is hence closer to the linear
side. Is it the most linear in this sense?
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Exponentiation Z,_y — Z, Perfect Nonlinear

» Exponentiation Z,_1 — Zp \ {0} is perfect nonlinear, that
is,
X gt —gt=9g"(g" 1)
is bijective for all o # 0.
> It follows:

Theorem [Drakakis-Requena-McGuire 2011].

p‘%, foru#0
—1

X _
|c(vg™ mod p,ux)|_{ bt foru—o.
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Bounds for Correlations of Exponential Costas-Welch

» Compute the correlation of the composition

f: x — g — gr—1
Zp-1 — Zp — Zp-

» Then

lc(wh(x),ux)| < > |c(wé(z), vz)|lc(vg”, ux)|

VEZp

P2 > le(we(2), vz)|

VEZp

Cp_% log p.

IN

IN
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Open Problems
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Logarithm and Exponent Functions in I/

> ¢ : Zp — Zp_1 almost linear

» Problem: Can this approach be applied to the exponent
function in F7 where exponentiation is taken in Fon?

o, fory#(1,1,...,1)
f(y){o, fory=(1,1,...,1)

» Similar perfect nonlinearity as in modp case
» Natural embeddings

]Fg\{(1717"'71)}_>22n71 or ]Fg_>22n

not very linear, indeed, addition mod 2" and addition
mod 2"~ are commonly used nonlinear components in
cipher constructs.
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