
Thèse de doctorat de l’université Pierre et Marie Curie

Spécialité Informatique

edite de Paris

présentée par

Céline Blondeau

pour obtenir le grade de

Docteur de l’université Pierre et Marie Curie

La cryptanalyse différentielle et ses généralisations

soutenue le 7 novembre 2011,

devant le jury composé de

Directeur de thèse
Pascale Charpin INRIA Paris-Rocquencourt

Rapporteurs
Kaisa Nyberg Aalto University, Finlande
Henri Gilbert ANSSI

Examinateurs
Thierry Berger Université de Limoges
Anne Canteaut INRIA Paris-Rocquencourt
Gohar Kyureghyan Otto-von-Guericke University of Magdeburg, Allemagne
Michèle Soria Université Pierre et Marie Curie
Jean-Pierre Tillich INRIA Paris-Rocquencourt





Céline Blondeau

La cryptanalyse différentielle et ses généralisations

INRIA équipe-projet SECRET
Domaine de Voluceau
78153 Le Chesnay





Remerciements

Je voudrais d’abord exprimer toute ma gratitude à Pascale Charpin, ma directrice de
thèse, qui m’a accompagnée pendant les trois ans et demi que j’ai passés au sein de l’équipe
SECRET qui a d’abord accepté, de diriger mon stage de master, puis, d’encadrer ma thèse
qui sans elle, j’en suis persuadée ne serait pas ce qu’elle est. Je tiens à la remercier pour
toutes ces heures pendant lesquelles nous avons travaillé ensemble, pour tous les conseils
qu’elle m’a prodigués et le temps qu’elle a bien voulu consacrer à la relecture du manuscrit
de ma thèse.

Je suis aussi très sincèrement reconnaissante à Henri Gilbert et Kaisa Nyberg qui
ont accepté de rapporter cette thèse. Merci à Kaisa de l’avoir relue alors que celle-ci
est en français. Merci à Henri pour ses commentaires détaillés et judicieux qui m’ont
permis d’améliorer le rendu du manuscrit. Merci à Kaisa qui m’a accueillie au sein de
son laboratoire en mai de cette année pour deux semaines qui m’ont en outre permis de
découvrir ce magnifique pays qu’est la Finlande et qui maintenant m’a intégré dans son
équipe. Puisse la Finlande encore me plaire après deux hivers !

Je tiens à remercier les autres membres du jury, Thierry Berger, Anne Canteaut, Gohar
Kyureghyan, Michèle Soria et Jean-Pierre Tillich. Un grand merci à Anne, la directrice
de l’équipe SECRET, qui m’a admise au sein de son équipe avec laquelle j’ai partagé de
nombreuses discussions, scientifiques ou non, qui s’est toujours montrée disponible et dont
les conseils m’ont été précieux lors de rédaction d’articles.

Merci à Jean-Pierre pour ses recommandations et ses lumières scientifiques.
Cette thèse n’aurait pas vu le jour, si je n’avais pas auparavant effectué mon master à

l’université de Limoges. Aussi je tiens à remercier les professeurs qui m’ont suivie pendant
cette année d’étude, en particulier Thierry qui de plus a accepté de faire partie du jury.

Merci à Gohar membre de ce jury, alors que la thèse et sa soutenance sont en français,
ainsi qu’à Michèle qui a eu de même la gentillesse d’y participer.

Durant ces trois années, j’ai eu l’occasion d’échanger avec Nicolas Sendrier et Daniel
Augot les autres permanents de l’équipe (Daniel au début). Merci aussi à eux.

Toute ma gratitude à ceux qui m’ont permis d’enseigner, Julien Brajard, Louis Goubin
et Christophe Vermaelen et à Matthieu Finiasz qui a toujours été de bon conseils.

Je voudrais, dire un grand merci aussi aux personnes avec lesquelles j’ai eu l’occasion de
travailler : Benoît Gérard pour nos nombreuses collaborations ainsi que Pascale, Anne et
Jean-Pierre une nouvelle fois, mais aussi Mohammed Ahmed Abdelraheem, Maria Naya-
Plasencia, Marion Videau et Erik Zenner.

Alors que je préparais cette thèse, j’ai eu l’opportunité de croiser beaucoup de monde
au sein de l’équipe : des stagiaires, des doctorants, des post-doctorants et des visiteurs.
Tous ont contribué à la dynamique du projet. En espérant n’oublier personne, je remer-
cie par ordre alphabétique : Alexander, Andrea, Anne C, Anne M., Assia, Ayca, Ayoub,



ii

Baudoin, Bhaskar, Benoît, Cédric F., Cédric L., Claire, Chrysanthi, Christina, Christelle,
Christophe, Denise, Daniel, Grégory, Jean-Christophe,Jean-Pierre, Mamdouh, Maria, Ma-
rion, Mathieu, Matthieu, Maxime, Nicolas, Pascale, Rafael, Stéphane J., Stéphane M.,
Sumanta, Sunandan, Valentin, Valérie, Vincent et Yann.

Je tiens aussi à faire des dédicaces particulières aux personnes qui ont fait que ces
trois années ont été agréables et sont passées relativement vite.

Je remercie tout particulièrement Benoît, avec qui j’ai toujours vécu de bons moments
lors des conférences, ou dans la salle café quand nous discutions de nos articles. Je garde
un vif souvenir de nos collaborations qui, je le souhaite, se renouvelleront dans l’avenir.

Je tiens à faire une dédicace spéciale à tous les membres du bureau 1 avec qui j’ai passé
de longues heures : Ayoub, Christina, Grégory, Maria. Merci à Ayoub pour son écoute,
à Grégory qui a toujours pris le temps de répondre à mes questions “informatique” et à
Christina pour sa présence et sa générosité.

Je remercie Andrea, qui a facilité mon installation en Finlande en me cédant son
appartement et dont les conseils m’ont été très utiles. Merci à Maria pour m’avoir hébergé
alors que je n’habitais déjà plus à Paris.

De ces trois années, je retiens aussi le voyage au Texas avec Christina et la visite
divertissante de ses villes. Ce voyage qui était un préliminaire à la conférence ISIT me
laisse d’heureux souvenirs en compagnie de Alexander, Antonia, Christina, Jean-Pierre,
Matthieu et Stéphane.

Une petite dédicace aussi aux nouveaux arrivants dans l’équipe SECRET, Marion et
Valentin avec qui j’aurais aimé passer plus de temps. Bonne chance à eux.

J’ai de même une petite pensée pour toutes les personnes avec qui j’ai eu l’occasion de
courir : Alexandre, Ayoub, Baudoin, Cécilia, Christina, Marion, Mathieu, Julien, Phillipe
et Stéphane.

Je tiens aussi à remercier, l’équipe Lospumas, en particulier, Andrea, Fab, Gaetan,
Lore, Maria, Stéphane et Yann. Les soirées passées ensemble aux blindtests, nos diffé-
rents week end à Helsinki, Zurick, Luxembourg et nos vacances à Grenoble sont autant
d’agréables souvenirs.

Cela fait deux mois maintenant que j’habite en Finlande, je tiens donc aussi à remercier
les membres de l’équipe cryptographie : Billy, Hadi, Kaisa, Kimmo, Risto ainsi que les
camarades de la salle café Siert, Tero, Roland et les autres.

Avant de conclure ces remerciements par mes proches, je tenais à faire une dédicace
spéciale à Grace qui m’a beaucoup appris et qui a toujours été là dans les moments
difficiles. Merci pour tous les moments passés ensemble en cours, en vacances, en soirées,
ou même au téléphone ! Merci aussi à Florine et Stéphane pour mon premier voyage aux
USA.

Enfin, j’ai une pensée émue pour ma famille, mes grand parents, mes parents Christine
et Régis, qui sont toujours à mon écoute et m’encouragent de leur confiance. Merci à mon
frère Mathieu et à ma sœur Juliette qui m’ont depuis le début soutenue dans mon projet.



Overview

In this document, I present my work in the field of symmetric cryptography done during
the period 2008-2011, where I did my research as Phd-student in the team Secret at
INRIA.

Our results have mainly concern with the analysis and the design of block ciphers.
Since the beginning of 90’s, there exist a lot of statistical attacks against block ciphers.
In the first part of our work, we focus on the generalizations of the so-called differential
cryptanalysis. The second part is devoted to some design criteria for block ciphers.

In the first part, our main interest was the determination of the complexity of statistical
attacks. We notably made an extensive study on the data complexity and the success pro-
bability of most of the statistical attacks on block ciphers. Our results have been presented
in a poster session at EUROCRYPT 2009 [BG09a] and in the international conference
Workshop on coding and cryptography [BG09b]. A complete version was published in the
journal Designs, Codes and Cryptography [BGT11]. Among the statistical attacks, the
differential cryptanalysis and its generalizations have a crucial role because of their impor-
tance for the security of block ciphers. During our cryptanalysis of PRESENT we checked
the hypotheses which are currently done in a differential cryptanalysis. The results and
observations stemming from our experiments have been published in the Workshop on
Tools for cryptanalysis [BG10]. Most recently, we proposed to use “many differentials” in
such a cryptanalysis. We then described more carefully the so-called multiple differential
cryptanalysis and began an overall study of its complexity. A part of our results has been
presented at the international conference Fast Software Encryption-FSE-2011 [BG11].
Our results in this context have been obtained in collaboration with Benoît Gérard and
Jean-Pierre Tillich.

The second part is dedicated to the study of the S-boxes of block ciphers. The most
important criterion concerning the resistance of a block cipher against differential attacks
is called the differential uniformity of its S-boxes. In this part, we introduce the notion
of differential spectrum of power functions over a finite field and we explain why we have
here a more general criterion which may be of great interest. Some of the results in
this second part have been presented in IEEE International Symposium on Information
Theory- ISIT-2010 [BCC10a] and in The 10th International Conference on Finite Fields
and their Applications Fq10-2011 [BCC11a] and published in the International Journal
of Information and Coding Theory [BCC10b] and in IEEE Transactions on Information
Theory [BCC11b]. In these papers, written with Anne Canteaut and Pascale Charpin, we
notably describe the differential spectra of several classes of power functions.



iv

Part I

Statistical attacks are the most important attacks against block ciphers. The aim, of
such an attack is to recover information on the secret key. There exist a lot of statistical
attacks. In Chapter 1 we recall the basic knowledge concerning statistical attacks against
block ciphers. Chapters 2 and 3 form a survey of the main statistical attacks on block
ciphers.

Differential cryptanalysis was introduced in the 90’s. This statistical attack exploits
a non-uniform distribution of some differential to recover information on the key. There
exists a lot of generalizations of this attack, namely truncated differential cryptanalysis,
impossible differential cryptanalysis, higher-order differential cryptanalysis, for instance.
Chapter 2 is a survey of the generalizations of differential cryptanalysis.

There are statistical attacks which are more or less related to differential cryptanalysis.
In Chapter 3, we present some of these attacks that can be used against block ciphers. We
describe, in particular, linear cryptanalysis and its generalizations, integral cryptanalysis,
boomerang attack or related-key attack.
In Chapters 2 and 3, we explain the connections between the different attacks. For each
attack, we describe the corresponding algorithm and study the distribution of the random
variables involved in the attack.

In this thesis, we concentrate our attention on differential cryptanalysis. To analyze the
security of a block cipher against differential attack, we need to be able to compute the
probabilities of the best differentials. We present here our algorithm to find the best diffe-
rential trails. Using the best differential trails we obtain an estimation of the probabilities
of the differentials. Generally, this computation is done under some general assumptions
like the wrong-key randomization hypothesis. In Chapter 4, we present our experiments
on the lightweight block cipher PRESENT, to verify some of the current hypotheses for
differential cryptanalysis. Our results, from these experimentations, show that classical
assumptions are not far to be true in the case of reduced version of PRESENT. This
analysis have been taken into account when computing in Section 5.5 the formula of the
success probability for differential cryptanalysis.

The complexities of a statistical attack rely on the data complexity, the success pro-
bability, the time complexity and the memory complexity. In order to study the data
complexity and the success probability of a statistical attack, we need to know the dis-
tributions of the random variables involved in the attack. Actually, in a lot of statistical
attacks against block ciphers, as presented in Chapters 2 and 3, the variables follow a
binomial distribution. In Chapter 5, we use a general framework to analyze the data com-
plexity and the success probability of all attacks presented in Chapter 2 and 3. We recall
previous works concerning differential cryptanalysis and linear cryptanalysis. We explain
why they cannot be applied for all statistical attacks. In Section 5.3.2, we present an algo-
rithm which uses a dichotomic search in order to find the data complexity of a statistical
attack for a fixed success probability. This algorithm gives an exact value of the data
complexity, but finding a general formula for the data complexity is more complicated
as the binomial distribution is hard to invert. In Section 5.3, by using an approximation



v

of the binomial distribution, we propose a formula of the data complexity of statistical
attacks when the random variables follow a binomial distribution. In [Sel08], a formula
for the success probability is given. This formula uses a normal approximation of the
binomial distribution. In Section 5.4, we present a formula for the success probability of
a statistical attack which does not involve any approximation of binomial distribution.

The so-called truncated differential cryptanalysis uses a set of differentials which are
related through certain properties, to find information of the key of a given block cipher.
On the contrary, for some attacks, we need some differentials that are not necessary re-
lated. We call this attack multiple differential cryptanalysis. When computing the data
complexity and the success probability of multiple differential cryptanalysis we have been
confronted to the fact that the random variables do not follow a binomial distribution any-
more. Therefore, after studying the distributions of the random variables (in Section 6.2),
we derive (in Section 6.3) a formula for the data complexity and the success probability
of multiple differential cryptanalysis. Our results, presented in this chapter, are valida-
ted by our experimentations on SMALLPRESENT (Section 6.4). Using this framework,
in Section 6.5 we propose an attack on PRESENT which improves the best differential
attack on this block cipher.

Part II

For block ciphers, the resistance to differential cryptanalysis is quantified by the so-
called differential uniformity of the Substitution-box (S-box) used in the cipher [NK92].

Most notably, finding appropriate S-boxes which guarantee that the cipher using them
resists differential attacks is a major topic for the last twenty years. Power functions, i.e.,
monomial functions, form a class of suitable candidates since they usually have a lower
implementation cost in hardware. Also, their particular algebraic structure makes the
determination of their differential properties easier. However, there are only few power
functions for which we can prove that they have a low differential uniformity.
Chapter 7 is dedicated to the presentation of some known results for Boolean functions,
vectorial functions (especially power functions) and almost perfect non-linear (APN) func-
tions.

In Chapter 8, we introduce the notion of the differential spectrum of power function
that measures the resistance of the cipher to differential cryptanalysis.

The differential spectrum is the same for all APN functions. For non-APN functions,
we can have a large deviation between the differential spectrum of two functions with
same differential uniformity. We begin by explaining our motivation for the study of the
full differential spectra of power permutations (in Section 8.1.2). Further, we study power
functions differentially 4- and 6-uniform. We have done an exhaustive search, for fields
with reasonable size, for all power functions differentially 4- and 6-uniform. The main
results of our experiments are presented, and discussed, in Section 8.2. They indicate that
the number of families which are differentially 4- and 6-uniform is relatively small.



vi

In Section 8.3, we study the differential spectrum of the function

x 7→ x22k+2k+1 on the field F24k .

Carl Bracken and Gregor Leander proved in [BL10] that these power functions are all
differentially 4-uniform. We provide here the whole differential spectrum of these functions
Other classes of power functions are sometimes differentially 4-uniform. In Section 8.4, we
study the differential spectrum of power functions with a quadratic or a Kasami exponent.
These families of functions have the particularity that the differential uniformity is always
a power of 2 and that the differential spectrum is two-valued.
Another class of differentially 4-uniform functions is the class of inverse functions on the
fields F2n with n even. Our experiments lead us to the conjecture that, up to equivalence,
all differentially 4-uniform power functions F (x) = xd on F2n belong to one of the classes :

– d = 22k + 2k + 1 and n = 4k,
– d = 2t+1, gcd(t, n) = 2 and gcd(2t, n) = 2,
– d = 22t − 2t + 1, n 6= 3t, gcd(t, n) = 2, and n ≡ 2 mod 4,
– d = 2n − 2 and n even.

If this conjecture is true, we have determined in this thesis the differential spectra of all
differentially 4-uniform power functions.

Our study of differentially 6-uniform power functions, led us to the following observa-
tion : almost all these functions are of the form Gt = x 7→ x2t−1. In Section 8.6, we present
an extensive study of the differential spectrum of this family of functions. In particular,
in Section 8.6.3, we point out a link between the differential spectra of Gt and Gs where
s = n− t+ 1.

In Section 8.6.5, we give the differential spectrum of G3(x) = x7 which is differentially
6-uniform. The last section in this chapter is dedicated to the study of the differential
spectra of other particular exponents in this family.



Introduction générale

Le travail de recherche présenté dans cette thèse se situe en cryptographie symétrique.
En particulier, nous nous intéressons à l’analyse et à la conception des systèmes de chif-
frement par blocs.

Le début des années 1990 a vu l’avènement d’un certain nombre d’attaques statistiques
pour les systèmes de chiffrement par bloc. Durant cette thèse, je me suis intéressée aux
généralisations de la cryptanalyse différentielle.

La première partie de ce manuscrit est dédiée à la présentation d’un certain nombre
d’attaques statistiques sur les systèmes de chiffrement par bloc. Dans le chapitre 5, nous
proposons une étude générale qui permet de calculer la complexité en donnée et la proba-
bilité de succès d’un certain nombre d’attaques statistiques des systèmes de chiffrements
par bloc. Ces résultats ont été présentés lors d’une session poster à EUROCRYPT-2009
[BG09a] et dans la conférence internationale Workshop on coding and cryptography WCC-
2009 [BG09b]. Une version complète de ces résultats comprenant l’analyse de la probabilité
de succès a été publiée dans le journal Designs Codes and Cryptography [BGT11]. Le fil
conducteur de cette partie reste l’analyse de la cryptanalyse différentielle et de ses généra-
lisations. Des travaux plus récents nous ont permis en utilisant plusieurs différentielles de
généraliser la cryptanalyse différentielle et la cryptanalyse différentielle tronquée. Dans
ces travaux, nous étudions la complexité d’une attaque différentielle multiple. La ma-
jeure partie de ces résultats a été présenté dans la conférence internationale Fast sofware
encryption-FSE-2011 [BG11]. Ces travaux sur la cryptanalyse différentielle n’auraient pas
été complets sans une analyse des hypothèses communément utilisées pour calculer la com-
plexité d’une attaque différentielle multiple. Les résultats expérimentaux concernant ces
travaux ont été quant à eux présentés au “Workshop on Tools for Cryptanalysis” [BG10].
Les résultats obtenus dans ce domaine sont le travail d’une collaboration avec Benoît
Gérard et Jean-Pierre Tillich.

La seconde partie de cette thèse est dédiée à l’étude des critères sur les boîtes-S qui
permettent de prémunir les systèmes de chiffrement par bloc contre les attaques différen-
tielles. À la suite d’une étude approfondie de la résistance des boîtes-S de ces systèmes de
chiffrement par bloc, nous avons introduit un nouveau critère, plus précis que l’uniformité
différentielle, nous permettant de mesurer la vulnérabilité des boîtes-S aux attaques diffé-
rentielles. Ainsi, avec Anne Canteaut et Pascale Charpin, nous avons introduit la notion de
spectre différentiel et étudié le spectre différentiel de différentes classes de fonctions puis-
sances. La plupart des résultats présentés dans cette section ont été soit présentés dans
les conférences internationales IEEE International Symposium on Information Theory-
ISIT-2010 [BCC10a] et The 10th International Conference on Finite Fields and their



viii BIBLIOGRAPHIE

Applications Fq10-2011 [BCC11a] ou publiés dans les journaux International Journal of
Information and Coding Theory [BCC10b] et IEEE Transactions on Information Theory
[BCC11b].

Bibliographie

[ABNP+11] Mohamed Ahmed Abdelraheem, Céline Blondeau, María Naya-Plasencia,
Marion Videau, and Erik Zenner. Cryptanalysis of ARMADILLO2. In D.H.
Lee and X. Wang, editors, Asiacrypt 2011, volume 7073 of Lecture Notes in
Computer Science, pages 308–326. Springer, 2011.

[BCC10a] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Pro-
perties of Power Functions. In Proceedings of the 2010 IEEE International
Symposium on Information Theory, ISIT 10, 2010.

[BCC10b] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Proper-
ties of Power Functions. Int. J. Inform. and Coding Theory, 1(2) :149–170,
2010.

[BCC11a] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Proper-
ties of x 7→ x2t−1, July 2011. The 10th International Conference on Finite
Fields and Applications - Fq10.

[BCC11b] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Proper-
ties of x 7→ x2t−1. IEEE Trans. Inform. Theory, 2011. In press.

[BG09a] Céline Blondeau and Benoît Gérard. On the Data Complexity of Statisti-
cal Attacks Against Block Ciphers, 2009. EUROCRYPT 2009 POSTER-
SESSION.

[BG09b] Céline Blondeau and Benoît Gérard. On the Data Complexity of Statistical
Attacks Against Block Ciphers. In Alexander Kholosha, Eirik Rosnes, and
Matthew G. Parker, editors, Workshop on Coding and Cryptography - WCC
2009, pages 469–488, 2009.

[BG10] Céline Blondeau and Benoît Gérard. Links Between Theoretical and Effective
Differential Probabilities : Experiments on PRESENT. In TOOLS’10, 2010.
http: // eprint. iacr. org/ 2010/ 261 .

[BG11] Céline Blondeau and Benoît Gérard. Multiple Differential Cryptanalysis :
Theory and Practice. In Antoine Joux, editor, Fast Software Encryption,
FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 35–54.
Springer, 2011.

[BGT11] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. Des.
Codes Cryptography, 59(1-3) :3–34, 2011.

[Blo08] Céline Blondeau. La cryptanalyse différentielle tronquée. Rapport de stage
de master, Université de Limoges, september 2008.

http://eprint.iacr.org/2010/261


Première partie

Les attaques différentielles





Chapitre 1

Introduction

La cryptographie est traditionnellement utilisée pour dissimuler des messages aux yeux
de certains utilisateurs. Cette utilisation a aujourd’hui un intérêt d’autant plus grand que
les communications via internet circulent dans des réseaux dont on ne peut garantir la
fiabilité et la confidentialité. Désormais, la cryptographie sert non seulement à préserver
la confidentialité des données mais aussi à garantir leur intégrité et leur authenticité.

Soit Alice et Bob, deux interlocuteurs qui veulent s’échanger des messages chiffrés. Il
existe deux grandes familles de cryptographie, la cryptographie asymétrique et la crypto-
graphie symétrique.

La cryptographie asymétrique est aussi appelée cryptographie à clé publique. Dans ce
modèle, Alice choisit une clé publique et la clé privée correspondante et diffuse la clé
publique. Bob peut alors, à l’aide de cette clé publique, chiffrer les messages de son choix
et les envoyer à Alice qui est la seule à pouvoir les déchiffrer (car elle est la seule à posséder
la clé privée).

La cryptographie à clé publique consiste alors à construire un système de chiffrement
pour lequel il est “dur” en connaissant la clé publique de retrouver la clé privée.

A l’opposé de la cryptographie asymétrique, il y a la cryptographie symétrique. Celle-ci
est aussi appelée cryptographie à clé secrète. Dans ce modèle, Alice et Bob partagent la
même clé. C’est-à-dire que la même clé est utilisée pour le chiffrement et le déchiffrement.
Dans ce modèle, chaque couple d’interlocuteurs a alors besoin de posséder son propre jeu
de clé pour pouvoir s’échanger des messages chiffrés.

Dans cette thèse, nous nous intéressons uniquement à la cryptographie symétrique.
Dans cette famille, nous pouvons distinguer plusieurs constructions différentes.

1.1 La cryptographie symétrique

Dans la famille de la cryptographie symétrique, nous pouvons distinguer plusieurs
méthodes de chiffrement, d’intégrité ou d’authentification. Nous détaillons ici brièvement
certaines de ces constructions.



4 1.1 La cryptographie symétrique

Les systèmes de chiffrement à flot

Les systèmes de chiffrement à flot sont aussi appelés chiffrement à la volée. Dans un
système de chiffrement à flot, la clé utilisée est une suite chiffrante que l’on additionne
bit à bit au message clair. La sécurité des systèmes de chiffrement à flot repose alors sur
le comportement aléatoire de la suite chiffrante. Les systèmes de chiffrement à flot sont
des systèmes de chiffrement rapides et bien adaptés pour les implémentations matérielles
courantes.

Les systèmes de chiffrement par bloc

Parallèlement aux systèmes de chiffrement à flot, où le chiffrement se fait à la volée,
on définit ce que l’on appelle système de chiffrement par bloc.

Pour chiffrer un message en utilisant un système de chiffrement par bloc, on découpe
ce message en blocs 1 et on applique une fonction de chiffrement E à chacun de ces blocs.
Cette fonction de chiffrement est paramétrée par une clé secrète K. Un mode opératoire
nous permet alors de définir le lien entre le clair et le chiffré d’un bloc avec ceux des
autres blocs. Dans la suite de cette thèse, on étudie plus particulièrement cette famille
de systèmes de chiffrement symétrique. Ainsi une étude plus détaillée sur les systèmes de
chiffrement par bloc est donnée dans les chapitres suivants.

Les fonctions de hachage

Une fonction de hachage est une fonction qui prend en entrée une chaîne de longueur
arbitraire finie et qui retourne un haché de longueur fixe 2. Soit h une fonction de hachage :

h : {0, 1}∗ → {0, 1}m où m est la taille du haché et {0, 1}∗ signifie ensemble des
chaînes binaires de taille quelconque.

Les fonctions de hachage ne sont pas des systèmes de chiffrement puisqu’elles ne néces-
sitent pas l’utilisation d’une clé. Et pourtant, on les classe naturellement dans la famille
des algorithmes symétriques car la plupart du temps, elles sont construites à partir de
primitives dérivées de systèmes de chiffrement par bloc ou de systèmes de chiffrement à
flot.

Code d’authentification de message

Ce type d’application cryptographique est plus connue sous le nom anglais "message
authentification code" ou encore sous l’abréviation MAC. Les codes d’authentification
permettent d’assurer l’intégrité du message ainsi que de l’authentifier. Lors de l’envoi du
message on y ajoute un code d’authentification qui est l’empreinte du message obtenue
grâce à un haché paramétré par une clé.

Dans cette thèse on s’intéresse plus particulièrement aux systèmes de chiffrement par
bloc, et en particulier à la primitive utilisée pour chiffrer un bloc.

1. Dans la pratique, les blocs sont de taille comprise entre 64 et 256 bits.
2. Pour les fonctions de hachage classiques le haché est compris entre 128 et 512 bits



Introduction 5

1.2 Les systèmes de chiffrement par bloc

1.2.1 Définition

Chiffrement par bloc

Définition 1.1. Soit X un message clair de taille m. Soit K la clé utilisée pour chiffrer
ce message. Nous notons Ω le nombre de bits de cette clé. Un système de chiffrement
par bloc E est une fonction qui dépend de la clé et du message :

E : FΩ
2 × Fm2 → Fm2
(K,X) 7→ Y = E(K,X).

La clé K utilisée pour chiffrer les messages est appelée clé maître. Lorsque celle-ci
est fixée, on note EK le système de chiffrement paramétré par la clé K :

EK : Fm2 → Fm2
X 7→ EK(X)

def
= E(K,X)

Afin de pouvoir déchiffrer de façon unique les messages chiffrés obtenus, on demande
à la fonction de chiffrement EK d’être une bijection de l’espace Fm2 .

Définition 1.2. Soit K une clé maître. Soit EK un système de chiffrement paramétré par
K. La fonction de déchiffrement notée DK est la fonction réciproque de EK :

DK : Fm2 → Fm2
Y 7→ DK(Y )

Par la définition même de la fonction de déchiffrement, si X est un message de Fm2
et DK est la fonction de déchiffrement associée à la fonction de chiffrement EK , on a la
propriété suivante :

DK(EK(X)) = X.

Système de chiffrement itératif

Les systèmes de chiffrement par bloc actuels sont itératifs. C’est-à-dire qu’une même
fonction est utilisée plusieurs fois de façon itérative avec une clé différente à chaque tour.
Chaque clé est appelée clé de tour. Il est courant d’utiliser un algorithme de cadencement
de clé pour dériver les clés de tour à partir de la clé maître.

Définition 1.3. Un algorithme de cadencement de clé relié au système de chiffre-
ment itératif est une fonction qui permet à partir d’une clé maître K de dériver des clés
de taille égale ou inférieure. Ces clés sont appelées clés de tours. On note par Ki la clé
du tour numéro i.

La structure de l’algorithme de cadencement de clé est détaillée dans la section 1.3.3.
Les fonctions que l’on appelle fonctions de tour sont des fonctions paramétrées par les
clés de tour Ki (et donc indirectement par la clé maître K).



6 1.2 Les systèmes de chiffrement par bloc

Définition 1.4. Soit m le nombre de bits du message clair. Soit Ki une clé de tour dérivée
d’une clé maître K. Une fonction de tour au tour i (1 ≤ i ≤ r) paramétrée par la clé de
tour Ki est une fonction définie de la façon suivante :

FKi : Fm2 → Fm2
X 7→ FKi(X).

Un système de chiffrement itératif est alors la composition de ses fonctions de tour.

Définition 1.5. Soit K une clé maître. Soient (K1, · · ·Kr) les clés de tour dérivées de
la clé maître par un algorithme de cadencement de clés. Soient (FKi)i les fonctions de
tour paramétrées par les clés de tour. Le système de chiffrement itératif EK utilisant la
fonction de tour F est défini par

EK = FKr ◦ FKr−1 ◦ · · · ◦ FK2 ◦ FK1 .

Dans les cryptanalyses, nous avons besoin d’étudier un nombre réduit de tours du
système de chiffrement. Par abus de notation, nous notons par F j

K la composition de j
tours de la fonction de tour. On a

F j
K = FKj ◦ · · · ◦ FK1 ,

où (Kj, · · ·K1) sont les clés de tour dérivées de la clé maître K.
Dans les systèmes de chiffrement par bloc itératifs, les deux principales familles sont :

les primitives utilisant les schémas de type Feistel et les primitives utilisant les schémas
de type substitution-permutation. La suite de cette section est dédiée à la présentation de
ces deux types de systèmes de chiffrement.

1.2.2 Chiffrement de type Feistel et ses généralisations

Les schémas de Feistel ont été introduits par Horst Feistel au début des années 70,
pour la conception de système de chiffrement LUCIFER. Ce système de chiffrement a servi
de base à la conception du système de chiffrement très connu "data encryption standard"
(DES) [DES77] qui a été standardisé en 1977. Par la suite de nombreux algorithmes ont
repris cette structure qui a pris le nom de son auteur.
Dans un schéma de Feistel simple, le message de taille m (m pair), est divisé en deux
parties de taille m/2. Nous notons par X(g)

0 et X(d)
0 les deux parties du message clair. Le

message clair est alors la concaténation de X(g)
0 et X(d)

0
3 :

X = X
(g)
0 ||X

(d)
0 .

De la même façon, nous notons X(g)
i et X(d)

i les deux parties de l’état interne après i tours
du système de chiffrement. La fonction de tour d’un schéma de Feistel classique (voir
figure 1.1) est alors définie de la façon suivante :

3. les notations (g) et (d) sont utilisées pour symboliser les parties gauche et droite.



Introduction 7

Définition 1.6. Un chiffrement de Feistel est un système de chiffrement par bloc
itératif opérant sur des bloc de taille m, m pair. Au tour i, la fonction de tour, paramétrée
par la clé Ki, est définie par

FKi : Fm/22 × Fm/22 → Fm/22 × Fm/22

(X
(g)
i−1, X

(d)
i−1) 7→ (X

(g)
i , X

(d)
i )

où
X

(g)
i = X

(d)
i−1,

X
(d)
i = X

(g)
i−1 ⊕ f(X

(d)
i−1, Ki)

et f est une fonction interne non nécessairement inversible.

Dans un schéma de Feistel pour déchiffrer il suffit d’utiliser le même processus en
inversant l’ordre des clés de tour. En effet pour les schémas de Feistel sur r tours, on a la
propriété simple que X(d)

i−1 = X
(g)
i et X(g)

i−1 = X
(d)
i ⊕ f(X

(g)
i , Ki).

Ainsi dans un schéma de Feistel on ne demande pas nécessairement à la fonction
interne f d’être une permutation.

X
(g)
i−1 X

(d)
i−1

X
(g)
i X

(d)
i

Ki

f

Figure 1.1 – Fonction de tour d’un schéma de Feistel

Il y a de nombreuses généralisations des schémas de Feistel.
Le schéma de Feistel généralisé introduit par Kaisa Nyberg en 1994 [Nyb94]("Generalized

Feistel Network") fait partie de cette grande famille. Il divise le message en parties plus
petites. Chaque partie du message constitue une branche de la fonction de tour du Feistel.

Définition 1.7. Soit m = 2λs. Soit X l’état interne du système de chiffrement. On note
par X = (x(1), · · · , x(2λ)), le découpage de X en mots de taille s. Soit λ fonctions internes
définies par fj : Fs2 → Fs2 pour (1 ≤ j ≤ λ). Soit X l’entrée de taille 2sλ divisée en 2λ
blocs de s bits. La sortie de la fonction de tour d’un schéma de Feistel généralisé
est notée Y et est définie pour j = 1 · · · 2λ par

z(j) = X(j) ⊕ fj(X(2s−j) ⊕Ki
(j)) pour j = 1 · · ·λ

z(j) = X(j) pour j = λ+ 1, ..., 2λ

Y (j) = z(j−1) pour j = 2, ..., 2λ

Y (1) = z(2λ)

Le cas particulier d’un schéma de Feistel généralisé divisé en 8 branches est décrit dans
la figure 1.2.

Un autre exemple de généralisation des schémas de Feistel consiste à utiliser des
branches de tailles différentes. C’est le cas par exemple du système de chiffrement Misty



8 1.2 Les systèmes de chiffrement par bloc

y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8)

z(1) z(2) z(3) z(4) z(5) z(6) z(7) z(8)

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

f1

f2

f3

f4

K1

K2

K3

K4

Figure 1.2 – Fonction de tour d’un schéma de Feistel généralisé comme introduit par
Kaisa Nyberg [Nyb94] (cas particulier où le message est divisé en 8)

[Mat97] qui comporte un schéma de Feistel interne de taille 16 bits divisé en 7+9 bits et
une fonction interne différente suivant le nombre de bits.

Il existe de nombreuses autres généralisations des schémas de Feistel. Ceux-ci com-
portent principalement l’avantage d’utiliser une primitive similaire pour le chiffrement et
le déchiffrement.

1.2.3 Chiffrement de type substitution-permutation

Une autre grande famille de systèmes de chiffrement itératif que nous allons étudier
sont les schémas de type substitution-permutation (SPN :"Substitution Permutation Net-
work").

Définition 1.8. Un système de chiffrement par bloc itératif est dit de type substitution-
permutation si la fonction de tour peut se décomposer en trois grandes étapes : une
étape dite d’ajout de clé, une étape de substitution qui est non-linéaire et une étape de
permutation qui est linéaire.

Afin de permettre le déchiffrement la fonction de tour doit être une bijection.

La figure 1.3 représente les trois étapes importantes de la fonction de tour d’un système
de chiffrement de type substitution-permutation.

Cette définition très large nous permet de faire rentrer un grand nombre de systèmes
de chiffrement dans la catégorie des SPN.

L’exemple le plus connu de système de chiffrement de ce type est “Rijndael”. Plusieurs
versions ont été standardisées par le NIST en 2000 [DR99] sous le nom de "Advanced
encryption standard" (AES). Une description de cet algorithme est donnée dans la sec-
tion 1.4.2.

Outre l’AES, dans cette thèse nous nous sommes particulièrement intéressés au sys-
tème de chiffrement PRESENT [BKL+07]. Tout au long de ce manuscrit nous faisons
référence à ce système de chiffrement de type substitution-permutation. Une description
de cet algorithme est faite dans la section 1.4.1.



Introduction 9

Ajout de clé

Substitution

Permutation

Figure 1.3 – Fonction de tour d’un SPN

1.3 Les différentes primitives

Les systèmes de chiffrements par bloc comportent en général deux parties. Une partie
de confusion et une partie de diffusion.

1.3.1 La partie de confusion

La partie de confusion du système de chiffrement est la seule partie non-linéaire du
système de chiffrement par bloc. Dans un système de chiffrement de type substitution-
permutation elle correspond à la partie de substitution. Dans cette thèse on s’intéresse
aux systèmes de chiffrement pour lesquels l’état interne de la partie de substitution est
divisé en mots de petite taille 4. Une application non-linéaire est appliquée en parallèle à
chacun de ces mots. Cette application non-linéaire qui peut être la même ou être différente
pour chacun des mots du système de chiffrement est appelée boîte-S. Dans les systèmes
de chiffrement de type substitution-permutation la fonction de tour doit être bijective
afin de pouvoir déchiffrer. Ainsi les boîtes-S qui composent ce système de chiffrement sont
toujours bijectives. Dans les systèmes de chiffrement de type Feistel nous n’avons pas
besoin de cette contrainte de bijectivité. Pour le DES par exemple les boîtes-S sont de 6
bits vers 4. Mais pour des soucis d’implémentation la plupart des systèmes de chiffrement
comportent des boîtes-S inversibles.

Il existe plusieurs façons de définir les boîtes-S. On peut, par exemple, comme dans
le cas de l’AES (section 1.4.2), la définir en identifiant l’espace vectoriel Fn2 au corps fini
F2n et définir une permutation sur ce corps fini. L’autre méthode tout aussi utilisée pour
définir une boîte-S est de donner l’image point par point de la fonction (c’est le cas par
exemple de la définition de la boîte-S de PRESENT donnée dans le tableau 1.1).

Dans la première partie de cette thèse on s’intéresse très peu à la façon dont sont
construites les boîtes-S. On admettra donc que l’on possède une table avec les correspon-
dances entre les entrées et les sorties. La deuxième partie de cette thèse est entièrement
consacrée à l’étude de certaines propriétés de ces fonctions (voir partie II).

4. de l’ordre de 4 ou 8 bits pour les systèmes de chiffrement actuels.



10 1.4 Quelques systèmes de chiffrements par bloc

1.3.2 La partie de diffusion

Dans un système de chiffrement de type substitution-permutation cette partie de dif-
fusion correspond à la permutation. Il existe plusieurs manières de diffuser l’information
entre les tours.

Dans le système de chiffrement PRESENT (voir la description de PRESENT dans la
section 1.4.1), la permutation effectuée est une permutation dite “bit à bit”.

Un autre exemple de permutation que l’on peut citer est la permutation dite “mot à
mot” qui mélange des ensembles de bits de taille fixe. C’est ce type de permutation qui
est faite dans la fonction “ShiftRows” et “MixColumns” de l’AES (voir la description de
l’AES dans la section 1.4.2).

Pour les schémas de Feistel, les deux types de permutations citées précédemment sont
utilisés dans la partie linéaire de la fonction interne.

1.3.3 Le cadencement de clé

Dans les systèmes de chiffrement par bloc itératifs, pour chaque tour, la fonction de
tour F est paramétrée par une clé de tour Ki (1 ≤ i ≤ r). Les concepteurs des systèmes
de chiffrement actuels aimeraient que les clés de tours soient indépendantes entre elles
pour pouvoir obtenir des critères de sécurité pour leur système de chiffrement contre les
attaques connues. Or cela nécessiterait que la clé maître soit la concaténation de toutes
les clés de tours. En pratique cela n’est pas possible car la taille de la clé maître serait
alors beaucoup trop grande. Dans les algorithmes de chiffrement par bloc la taille actuelle
des clés maîtres ne dépasse pas 256 bits 5. Les clés de tour sont alors dérivées de la clé
maître par un algorithme de cadencement de clé.

Dans cette thèse on ne s’intéresse qu’aux systèmes de chiffrements par bloc où la clé
de tour est ajoutée par un “ou” exclusif. Ce type de système de chiffrement est appelé
"key-alternating cipher" [DR05].

1.4 Quelques systèmes de chiffrements par bloc

A l’heure actuelle, il existe une grande variété de systèmes de chiffrement par bloc.
Mon attention durant cette thèse s’est porté plus particulierement sur deux systèmes de
chiffrement de type substitution-permutation.
Le premier est l’AES, puisque c’est le standard du NIST actuellement très répandu et
très utilisé.

Le second est l’algorithme de chiffrement PRESENT. En effet grâce à sa structure simple
à comprendre et les différentes versions réduites existantes, nous avons pu mener un certain
nombre d’expérimentations sur ce système de chiffrement. Ce système de chiffrement est
très étudié à l’heure actuelle.

5. Les critères de sécurité actuels recommandent des clés de taille supérieure à 80 bits



Introduction 11

1.4.1 PRESENT et SMALLPRESENT-[s]

Le système de chiffrement PRESENT

Le système de chiffrement PRESENT [BKL+07] a été introduit à la conférence CHES 6

en 2007. Ce système de chiffrement fait partie de la nouvelle génération des systèmes de
chiffrement par bloc qui sont dits à bas coût ("lightweight block cipher"). Il chiffre des blocs
de 64 bits au moyen d’un algorithme qui suit le modèle d’un schéma de type substitution-
permutation. Il existe deux versions qui dépendent de la taille de la clé maître (80 bits ou
128 bits). Ce système de chiffrement qui utilise 32 clés de tours se décompose en 31 tours
avec un ajout de clé supplémentaire à la fin du dernier tour. La fonction de tour FKi au
tour i (1 ≤ i ≤ 31) se décompose de la façon suivante :

Ajout de la clé de tour : Cette étape consiste en l’addition bit à bit de la clé de tour et de
l’état interne.

La substitution : Pour cette partie de substitution, l’état interne de 64 bits est divisé en
mots de 4 bits. Les 16 mots sont modifiés par passage dans une petite boîte-S. La
boîte-S de PRESENT, qui est la même pour les 16 mots, effectue une bijection de
F4

2. Dans la suite de cette thèse on utilise le préfixe 0x pour indiquer une notation
hexadécimale (notation en base 16). Par exemple le chiffre 13 est représenté par Oxd
et le chiffre 52 = 3 · 16 + 4 est représenté par 0x34. La boîte-S de PRESENT, notée
S, est définie dans le tableau 1.1.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

S(x) 0xc 0x5 0x6 0xb 0x9 0x0 0xa 0xd 0x3 0xe 0xf 0x8 0x4 0x7 0x1 0x2

Table 1.1 – La boîte-S de PRESENT

La permutation : La permutation est une permutation bit à bit. Elle consiste à changer
la place des bits de l’état interne. Dans le tableau 1.2 décrivant la permutation, la
valeur i correspond à la position du bit et P (i) correspond à sa position après la
permutation (0 ≤ i ≤ 63).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 1.2 – La permutation de PRESENT

La fonction de tour de PRESENT est représentée sur la figure 1.4.

6. CHES : "Cryptographic Hardware and Embedded Systems"



12 1.4 Quelques systèmes de chiffrements par bloc

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

Figure 1.4 – Fonction de tour de PRESENT

Soit X l’état interne après i− 1 tours du système de chiffrement. Soit Ki la clé du tour
i. Les différentes étapes de la fonction de tour s’enchaînent de la façon suivante :

– Addition de la clé de tour : Y = X ⊕Ki.
– Substitution : Soit Y = (Y (63), · · · , Y (0)) le découpage bit à bit de Y. On applique

la boîte-S à chacun des mots de 4 bits. Pour 0 ≤ j ≤ 15 on a :

[Z(4∗j+3), Z(4∗j+2), Z(4∗j+1), Z(4∗j)] = S[Y (4∗j+3), Y (4∗j+2), Y (4∗j+1), Y (4∗j)].

– Permutation : l’état à la sortie de la fonction de tour est alors P (Z) où P est la
permutation définie dans le tableau 1.2.

Les versions réduites : SMALLPRESENT-[s]

Les systèmes de chiffrement SMALLPRESENT-[s] (0 < s ≤ 16) sont des versions
réduites de PRESENT. Les spécifications sont données dans [Lea10]. La boîte-S utilisée
pour le système de chiffrement est la même que celle de PRESENT (tableau 1.1). La
valeur de s nous donne le nombre de boîtes-S utilisées pour le chiffrement. Ainsi comme la
boîte-S transforme des mots de 4 bits, la taille du message clair est 4s bits. La permutation
utilisée est une mise à l’échelle de celle utilisée pour PRESENT. Les fonctions de tour
de SMALLPRESENT-[4] et SMALLPRESENT-[8] sont représentées sur la figure 1.5. Ces
deux versions sont utilisées dans les chapitres suivants pour mener des expérimentations.
SMALLPRESENT-[4] chiffre des message de 16 bits et SMALLPRESENT-[8] chiffre des
messages de 32 bits.

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

Figure 1.5 – Fonction de tour de SMALLPRESENT-[4] et SMALLPRESENT-[8].



Introduction 13

Les algorithmes de cadencement de clé

Comme nous l’avons défini dans la définition 1.3, un algorithme de cadencement de clé
sert à dériver des clés de tours à partir d’une clé maître K. Dans la version de PRESENT
présentée en 2007, deux algorithmes de cadencement de clé sont décrits. Un pour des clés
de 80 bits et un pour des clés de 128 bits. Nous décrivons ici l’algorithme de cadencement
de clé pour une clé maître de 80 bits.

Le registre de clé K est représenté bit à bit par K(79)K(78) · · ·K(0). Au tour i, les 64
bits de la clé de tour Ki = Ki

(63)Ki
(62) · · ·Ki

(0) correspondent aux 64 bits les plus à gauche
du registre K. Ainsi au tour i nous avons Ki = Ki

(63)Ki
(62) · · ·Ki

(0) = K(79)K(78) · · ·K(16).
Par la suite le registre est mis à jour de la façon suivante :

1. [K(79)K(78) · · ·K(61)K(60) · · ·K(0)] = [K(18)K(17) · · ·K(0)K(79) · · ·K(20)K(19)] (ro-
tation de 19 bits),

2. [K(79)K(78)K(77)K(76)] = S[K(79)K(78)K(77)K(76)] (passage des 4 bits de poids fort
dans la boîte-S),

3. [K(19)K(18)K(17)K(16)K(15)] = [K(19)K(18)K(17)K(16)K(15)]⊕compteur (ajout d’un
compteur).

La valeur de compteur est donnée par le numéro du tour.
L’algorithme de cadencement de clé pour la clé de 128 bits est décrit dans [BKL+07].
Lorsqu’il introduit SMALLPRESENT-[s], Gregor Leander propose d’utiliser les clés

de 80 bits pour toutes les versions réduites. Pour nos expérimentations (voir chapitre 4,
chapitre 5 et chapitre 6) nous avons trouvé intéressant de mettre aussi à l’échelle la
clé maître et l’algorithme de cadencement de clé, c’est-à-dire d’avoir des tailles de clé
maître du même ordre de grandeur que le nombre de bits du message. Durant cette
thèse on s’est intéressé plus particulièrement à deux des versions réduites de PRESENT :
SMALLPRESENT-[4] et SMALLPRESENT-[8]. Pour cette raison dans le tableau 1.3
nous décrivons l’algorithme de cadencement de clé que nous avons utilisé pour des clés
maîtres de 20 bits et 40 bits.

Clé de 20 bits :

[K(19)K(18) · · ·K(1)K(0)] = [K(6)K(5) · · ·K(8)K(7)] rotation de 7 bits
[K(19)K(18)K(17)K(16)] = S[K(19)K(18)K(17)K(16)] passage dans la boîte-S

[K(7)K(6)K(5)K(4)K(3)] = [K(7)K(6)K(5)K(4)K(3)]⊕ compteur ajout du compteur

Clé de 40 bits :

[K(39)K(38) · · ·K(1)K(0)] = [K(10)K(9) . . . K(12)K(11)] rotation de 11 bits
[K(39)K(38)K(37)K(36)] = S[K(39)K(38)K(37)K(36)] passage dans la boîte-S

[K(11)K(10)K(9)K(8)K(7)] = [K(11)K(10)K(9)K(8)K(7)]⊕ compteur ajout du compteur

Table 1.3 – Algorithmes de cadencement de clé pour SMALLPRESENT-[4] et
SMALLPRESENT-[8].



14 1.4 Quelques systèmes de chiffrements par bloc

1.4.2 Rijndael

Rijndael est un standard de chiffrement par bloc. Il a été inventé par Vincent Rijmen
et Joan Daemen. En 2000 certaines versions ont été choisies par le NIST pour devenir
l’"Advanced Encryption Standard" (AES). Dans la norme NIST FIPS 197 il permet de
chiffrer des blocs de 128 bits au moyen d’une clé maître de taille variable : 128, 192 ou
256 bits. Le nombre d’itérations de la fonction de tour dépend de la taille de la clé : le
standard précise que pour la clé de 128 bits on applique 10 fois la fonction de tour (sans
le dernier “MixColumns”), alors qu’il faut 14 tours si on utilise la clé de 256 bits Un mot
de 128 bits est découpé en 16 mots de 8 bits et est représenté sous forme d’une matrice
4× 4 d’octets.

La fonction de tour est décomposée en 4 opérations simples sur la matrice :

SubBytes : C’est une opération de substitution qui consiste à appliquer parallèlement à
chaque octet de l’entrée une boîte-S. Ici la boîte-S est une permutation de l’espace
vectoriel F8

2. Elle identifie chaque mot de 8 bits à un élément du corps

F28 = F2 [X]/〈X8 +X4 +X3 +X + 1〉

par l’isomorphisme suivant :

(x0, x1, ..., x7) ∈ F8
2 7→

7⊕
i=0

xiX
i.

Les opérations effectuées sur les polynômes sont définies modulo le polynôme irré-
ductible X8 +X4 +X3 +X + 1. Cette boite S est composée de la fonction inverse
dans le corps fini F28 :

x ∈ F28 7→ x254

avec la fonction affine dans l’espace vectoriel F8
2 (bijective) décrite ci dessous :

y0

y1

y2

y3

y4

y5

y6

y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7


⊕



1
1
0
0
0
1
1
0



x3,0 x3,1 x3,2 x3,3

x2,0 x2,1 x2,2 x2,3

x1,0 x1,1 x1,2 x1,3

x0,0 x0,1 x0,2 x0,3

boîte S :

inversion
+

fonction
affine

Figure 1.6 – Fonction SubBytes



Introduction 15

ShiftRows : C’est une rotation des lignes de la matrice : la ligne i,
0 ≤ i ≤ 3 est décalée de i octets vers la gauche.

x3,0 x3,1 x3,2 x3,3

x2,0 x2,1 x2,2 x2,3

x1,0 x1,1 x1,2 x1,3

x0,0 x0,1 x0,2 x0,3

de 2 octets
décalage

x2,2 x2,3 x2,0 x2,1

Figure 1.7 – Fonction ShiftRows

MixColumns : C’est une transformation linéaire appliquée en parallèle aux 4 colonnes de
la matrice. Chaque colonne subit alors la transformation suivante :

y0

y1

y2

y3

 =


α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α



x0

x1

x2

x3


où α est racine de X8 + X4 + X3 + X + 1 et x0, ..., x3, y0, ..., y3 sont des octets en
entrée et en sortie respectivement.

x3,0 x3,1 x3,2 x3,3

x2,0 x2,1 x2,2 x2,3

x1,0 x1,1 x1,2 x1,3

x0,0 x0,1 x0,2 x0,3

mélange
des octets

Figure 1.8 – Fonction MixColumns

AddRoundKey : C’est l’insertion de la clé de tour par un ou exclusif bit à bit.

1.5 Les attaques statistiques

1.5.1 Introduction

Attaquer un système de chiffrement par bloc consiste en général à retrouver de l’infor-
mation sur la clé ayant servi à chiffrer. Si nous excluons les attaques physiques, il existe
deux grandes familles d’attaques structurelles sur les systèmes de chiffrement par bloc :
les attaques algébriques et les attaques statistiques.

L’approche algébrique consiste à essayer de reconstruire le système de chiffrement
comme un polynôme qui dépend de la clé. On peut aussi décrire l’algorithme par un
système d’équations qui dépend du message clair, du chiffré correspondant ainsi que des



16 1.5 Les attaques statistiques

bits de la clé. Cette méthode qui n’est pas très efficace pour les systèmes de chiffrement
par bloc actuels peut être alliée à d’autres méthodes pour retrouver de l’information sur la
clé d’un système de chiffrement comportant plus de tours. Un mélange entre l’observation
d’un phénomène statistique combiné avec une attaque algébrique peut être utilisé. On
obtient alors des équations algébriques probabilistes. Si on prend l’exemple de l’attaque
différentielle 7 qui sera décrite dans la section 2.1 on peut la combiner avec une attaque
algébrique. C’est le cas par exemple de l’attaque différentielle algébrique introduite à FSE
en 2009 par Martin Albrecht et Carlos Cid [AC09].

L’approche statistique consiste, à partir de l’observation d’un comportement non-aléatoire
du système de chiffrement par bloc, à retrouver de l’information sur la clé. C’est ce type
d’attaque qui est détaillé dans les parties suivantes.

Dans un premier temps avant de chercher à retrouver de l’information sur la clé nous
avons besoin de définir la notion de distingueur.

Définition 1.9. On appelle distingueur un algorithme qui cherche par un jeu de ques-
tions/réponses à distinguer un système de chiffrement particulier d’une permutation idéale
c’est à dire ayant le comportement d’une permutation tirée au hasard selon la distribution
uniforme.

Les attaques statistiques peuvent alors être divisées en deux parties. Les attaques dites
“faibles” qui consistent à observer un comportement non-aléatoire d’un système de chiffre-
ment sans donner d’information sur la clé utilisée (ces attaques sont appelées "distingui-
shing attacks"). Et les attaques plus “fortes” qui consistent à retrouver de l’information
sur la clé utilisée pour chiffrer. Dans beaucoup d’attaques statistiques la première étape
consiste à construire un distingueur avant de pouvoir récupérer de l’information sur la clé.

Afin de pouvoir distinguer le système de chiffrement d’une permutation aléatoire nous
récupérons de l’information venant de différents couples de messages clairs/chiffrés obte-
nus avec la même clé. La manière dont ces couples sont obtenus détermine le contexte
dans lequel les attaques peuvent s’appliquer. Ainsi on distingue différents types d’at-
taques. On peut citer, par exemple les attaques à clairs connus et les attaques à clairs
choisis. Le premier type d’attaque nécessite juste de pouvoir récupérer les messages clairs
avec les chiffrés correspondants. Dans les attaques à clairs choisis l’attaquant doit pouvoir
demander les chiffrés correspondant aux messages clairs de son choix.

1.5.2 Les attaques statistiques

Il existe un grand nombre d’attaques statistiques. Les chapitres 2 et 3 détaillent cer-
taines de ces attaques sur les systèmes de chiffrement par bloc. La présentation qui est
faite ici se veut générale.

Supposons que nous avons réussi à extraire une propriété particulière P pour le système
de chiffrement que nous sommes en train d’étudier. Une attaque statistique que j’appelle
“classique” consiste à tester une partie des clés pour savoir laquelle est la bonne 8.

7. La cryptanalyse différentielle fait partie de la famille des attaques statistiques
8. La plupart des attaques statistiques que nous nous présentons dans cette thèse peuvent être qua-

lifiées de ce que j’appelle “classique”. La seule qui ne l’est pas est l’attaque linéaire de type 1 (voir
section 3.2)



Introduction 17

Dans cette thèse on se limite aux attaques statistiques qui consistent à faire la dis-
tinction entre deux types de clés : on suppose en effet que la propriété étudiée a un
comportement non-idéal pour la clé testée correspondant à la clé utilisée pour chiffrer
et qu’elle a un comportement idéal si la clé testée n’est pas celle qui a été utilisée pour
chiffrer. Cette hypothèse est appelée hypothèse de répartition aléatoire par fausse clé 9.

Nous allons donc faire la distinction entre les clés utilisées.

Notation 1.1. Dans le contexte où la clé maître est fixée mais inconnue de l’attaquant,
nous notons par K∗ la clé maître utilisée pour chiffrer. On appelle sous-clé ou clé candidate
un ensemble de bits de taille n que nous testons. Une clé candidate est notée k. Si cette
clé candidate est celle qui correspond à la clé maître K∗, nous la notons k∗. Dans le cas
contraire nous gardons la notation k.

Dans les cryptanalyses statistiques usuelles on se limite à l’étude d’un test d’hypothèses
binaire. Les deux hypothèses sont les suivantes :{

H∗ : Le candidat testé correspond à la clé maître K∗.
H : Le candidat testé ne correspond pas à la clé maître. (1.1)

Ainsi dans les attaques statistiques de ce type nous devons comparer deux distributions
de probabilités : si le candidat testé correspond la bonne sous clé, le système de chiffrement
présente un biais statistique par rapport à une permutation idéale. Nous noterons par p∗
la probabilité de l’événement correspondant à la bonne clé.

On suppose que pour toutes les autres sous clés testées la propriété P étudiée sur
le système de chiffrement a un comportement idéal. Nous notons par p la probabilité de
l’événement pour toutes les autres clés. Cette seconde probabilité est égale à la probabilité
que la propriété apparaisse dans le cas idéal.

Cette modélisation qui consiste à dire que “toutes les variables aléatoires correspon-
dantes aux mauvais candidats ont le même comportement” repose sur l’hypothèse de
répartition aléatoire par fausse clé.

Dans une attaque statistique classique, afin de distinguer le bon candidat des autres
l’attaquant a à sa disposition des couples clairs/chiffrés. Un échantillon est alors composé
d’un certain nombre de ces couples clairs/chiffrés. La taille de l’échantillon dépend du type
de cryptanalyse. Nous la détaillons dans les chapitres suivants. On peut toutefois retenir
qu’un échantillon peut être égal à un couple clair/chiffré (voir le cas de la cryptanalyse
linéaire dans la section 3.2), peut être égal à deux couples clairs/chiffrés (voir le cas de
la cryptanalyse différentielle dans la section 2.1) ou encore bien plus (voir par exemple le
cas de la cryptanalyse différentielle tronquée dans la section 2.2).

Nous notons par N le nombre d’échantillons dont l’attaquant dispose. À partir de ces
échantillons, l’attaquant est capable de générerN variables aléatoires binairesX1;X2; · · · ;XN

qui sont définies par

Xi =

{
1 si la propriété P est observée pour l’échantillon i ;
0 sinon. (1.2)

Pour résumer nous avons les notations suivantes :

9. ou "Wrong-key randomisation hypothesis" en anglais



18 1.5 Les attaques statistiques

Notation 1.2. Soit H et H∗ les hypothèses définies en (1.1). Soit Xi la variable aléatoire
correspondant à l’échantillon numéro i. Les probabilités étudiées sont les suivantes :

– Si la clé testée est celle utilisée pour chiffrer, le phénomène apparaît avec probabilité
p∗. Ainsi

p∗
def
= P [Xi = 1|H∗] .

– Si la clé testée n’est pas celle utilisée pour chiffrer, le phénomène apparaît avec
probabilité p. Ainsi

p
def
= P [Xi = 1|H] .

Supposons que nous ayons à notre disposition un certain nombre de couples de mes-
sages clairs/chiffrés. Ce nombre de messages noté NDC est proportionnel au nombre
d’échantillons N . Soit EK∗ le système de chiffrement par bloc sur lequel on a observé
un biais statistique.

Une attaque statistique se décompose alors en les trois phases suivantes :
Distillation : Dans un premier temps, à partir des N échantillons à disposition,

on extrait de l’information sur les clés candidates k que l’on teste.
Analyse : À partir de cette observation, on calcule la chance de chaque clé can-

didate k et on génère la liste L des ` candidats les plus probables.
Recherche exhaustive : Pour chaque sous clé dans la liste ordonnée L on teste

toutes les clés maîtres correspondantes jusqu’à ce que la bonne soit trouvée.
Ces trois phases, communes à toutes les attaques statistiques, sont légèrement diffé-

rentes selon le type d’attaque statistique. Une description plus précise de ces phases est
faite lors de la présentation de chaque attaque statistique dans les chapitres suivants. On
peut cependant décrire plus en détail les attaques statistiques appelées attaques sur le
dernier tour.

1.5.3 Les attaques sur le dernier tour

Dans les attaques statistiques sur le dernier tour on retrouve en général de l’informa-
tion sur certaines des clés de tour. Ces clés de tour sont en général des clés du ou des
derniers tours du système de chiffrement. Pour simplifier les explications nous supposons
ici que l’on cherche à retrouver de l’information sur la clé du dernier tour. On note par
k∗ la clé candidate correspondant à la clé maître K∗ et par k toutes les autres clés (ceci
conformément aux notations de la section précédente). En général on n’attaque pas l’algo-
rithme de chiffrement en entier mais une version réduite de celui-ci. Supposons que nous
ayons une propriété particulière P sur r tours du système de chiffrement qui arrive avec
probabilité p∗. Alors on peut en général attaquer r + 1 tours de la façon suivante :

1. On récupère les messages chiffrés que l’on obtient après r + 1 tours du
système de chiffrement.

2. Pour chaque sous-clé candidate, on déchiffre partiellement le dernier tour.
3. Si la clé utilisée pour déchiffrer est la même que celle utilisée pour chiffrer

on retrouve le distingueur observé sur r tours du système de chiffrement.
Dans le cas contraire, c’est-à-dire si la clé utilisée pour déchiffrer est diffé-
rente de celle utilisée pour chiffrer, on peut supposer que l’on observe un
comportement tout autre, proche de l’aléatoire.



Introduction 19

Il semble raisonnable de supposer que pour les mauvais candidats les variables aléatoires
correspondantes ont un comportement presque idéal. Puisque dans le cas contraire cela
pourrait signifier que l’on peut faire une attaque sur plus de tours.

Ce type d’attaque est résumé dans la figure 1.9.

FKr ◦ · · · ◦ FK1
FKr+1

FKr ◦ · · · ◦ FK1
FKr+1

FKr ◦ · · · ◦ FK1
FKr+1

X

X ′

X ′′

Y

Y ′

Y ′′

Échantillon

F−1
k

Figure 1.9 – Attaque sur le dernier tour

1.5.4 Complexité d’une attaque statistique

Certaines quantités ont besoin d’être calculées afin de pouvoir déterminer la puissance
d’une attaque statistique. Dans cette section, nous présentons les principaux outils d’ana-
lyse des attaques statistiques. Nous utilisons les mêmes notations que dans les sections
précédentes.

Définition 1.10. Dans les attaques statistiques, nous avons besoin de définir les quantités
suivantes :

La complexité en données : C’est le nombre de couples de messages
clairs/chiffrés dont on a besoin pour obtenir de l’information sur la clé.
Ce nombre de messages est noté NDC.

La probabilité de succès : C’est la probabilité que la clé candidate k∗ soit dans
la liste L des sous clés que l’on garde lors de la phase d’analyse. On note
PS la probabilité de succès de l’attaque.

PS = P [k∗ ∈ L] .

La complexité en temps : C’est le nombre d’opérations effectuées par l’algo-
rithme pour retrouver de l’information sur la clé.

La complexité en mémoire : C’est la place mémoire dont a besoin l’algo-
rithme pour stocker les quantités nécessaires à l’attaque.

Il existe plusieurs façons de définir la taille de la liste des clés gardées. Dans cette
thèse, on en utilise deux. La première façon consiste à fixer un seuil et à accepter tous les



20 1.5 Les attaques statistiques

candidats dont la statistique étudiée a une valeur supérieure au seuil. La seconde consiste
pour une taille de liste fixée `, à accepter les ` clés candidates les plus probables. Dans la
première méthode nous n’avons pas un contrôle direct sur la taille de la liste contrairement
à la seconde méthode. Dans le chapitre 5, les deux méthodes sont utilisées afin de calculer
la complexité en données et la probabilité de succès d’une attaque statistique.

Les trois premières quantités de la définition précédente sont reliées entre elles. Par
exemple il est assez facile de voir que pour une complexité en données fixée, si on augmente
la taille de la liste alors la probabilité que la clé candidate k∗ soit dans la liste augmente
et ainsi la probabilité de succès augmente.

Dans la plupart de ces attaques afin de déterminer les candidats les plus probables on
utilise souvent un compteur pour chaque sous clé testée. Ainsi la complexité en mémoire
d’une attaque statistique est souvent reliée au stockage de ces compteurs. Pour l’étude de
la complexité en temps des attaques statistiques, la phase d’analyse est souvent négligeable
par rapport aux deux autres phases. La taille de la liste L détermine en général laquelle
des deux étapes parmi la phase d’analyse ou la phase de recherche exhaustive est la plus
coûteuse.

Dans les chapitres 2 et 3 nous décrivons un grand nombre d’attaques statistiques
connues des systèmes de chiffrement par bloc. Une étude détaillée des complexités sera
faite pour certaines cryptanalyses statistiques dans les chapitres suivants. Avec Benoît
Gérard et Jean-Pierre Tillich, nous nous sommes intéressés à la complexité d’un certain
nombre d’attaques statistiques. Ce travail détaillé dans le chapitre 5 nous a permis de
trouver une formule générale de la complexité en données et de la probabilité de succès
d’une certaine classe d’attaques statistiques.
Dans le chapitre 6 nous présentons une autre attaque statistique appelée cryptanalyse
différentielle multiple. Avec Benoît Gérard nous avons étudié le cas particulier de cette
attaque, et nous avons notamment extrait une formule pour la complexité en temps,
en données, en mémoire ainsi qu’une formule pour calculer la probabilité de succès de
l’attaque.

1.5.5 Les variables aléatoires étudiées

Pour chacune des attaques statistiques que nous présentons dans cette thèse (voir cha-
pitre 2 et chapitre 3), nous avons besoin d’étudier la distribution d’un certain nombre de
variables aléatoires afin d’obtenir un distingueur optimal pour chaque type d’attaque mais
aussi dans le but d’étudier la complexité en données et la probabilité de succès 10. Dans
cette section nous faisons une description préliminaire générale des variables aléatoires
que nous utilisons par la suite.

Supposons que l’attaquant ait en sa possession N échantillons composés d’un certain
nombre de couples clair/chiffré. Suivant le type d’attaque statistique, la propriété P est ob-
servée pour un échantillon composé de un ou plusieurs couples clair/chiffré. Pour l’échan-
tillon numéro i, dans la section précédente nous avons défini la variable aléatoire Xi qui
prend les valeurs 0 ou 1 selon que la propriété est observée pour l’échantillon en question

10. Le calcul de la complexité en données et de la probabilité de succès de ces attaques est fait dans le
chapitre 5.



Introduction 21

ou pas. Dans la réalité, pour des attaques sur le dernier tour 11 pour chaque échantillon on
inverse le dernier tour avec toutes les clés candidates possibles et pour chaque échantillon
on regarde si la propriété P est vérifiée. Les variables aléatoires simples que nous étudions
dépendent alors des clés candidates. Nous notons par Ci,k les variables aléatoires simples
que nous étudions. Elles sont définies par

Ci,k =

 1
si la propriété P est observée pour l’échantillon

numéro i et pour la clé candidate k ;
0 sinon.

(1.3)

Dans les cryptanalyses statistiques sur les derniers (ou premiers) tours on veut distinguer
le candidat correspondant à la clé maître des autres. La manière la plus classique consiste
alors, pour une clé candidate fixée, à sommer les variables aléatoires simples. Les variables
aléatoires que l’on obtient sont notées Ck et sont définies par

Ck
def
=

N∑
i=1

Ci,k. (1.4)

Dans la plupart des attaques statistiques c’est la distribution de ces variables aléatoires
qui est étudiée afin de déterminer la complexité en données et la probabilité de succès de
l’attaque. Le chapitre 5 est dédié à l’étude de ces quantités dans le cas particulier où les
variables Ck suivent des lois binomiales.
L’étude de la distribution de ces variables aléatoires dans le cas d’une généralisation de
la cryptanalyse différentielle que nous avons appelée “cryptanalyse différentielle multiple”
(dans ce cas les variables aléatoires Ck ne suivent pas une loi binomiale) conduit à une
formule de la complexité en données et de la probabilité de succès (voir chapitre 6) pour
cette attaque.

11. Cela marche de la même façon pour des attaques sur le premier tour





Chapitre 2

La cryptanalyse différentielle et ses
généralisations

Depuis l’avènement de la cryptanalyse différentielle au début des années 90 beaucoup
de variantes de cette cryptanalyse ont été introduites. La cryptanalyse différentielle, la
cryptanalyse différentielle tronquée, la cryptanalyse différentielle impossible et la crypta-
nalyse différentielle d’ordre supérieur font partie de ces généralisations. Dans ce chapitre
nous présentons ces attaques. Nous détaillons les faiblesses des algorithmes de chiffrement
par bloc contre ces différents types d’attaques ainsi que le lien entre ces attaques.

2.1 La cryptanalyse différentielle

2.1.1 Définition d’une attaque différentielle

La cryptanalyse différentielle est une des premières attaques statistiques. Elle a été
introduite en 1990 par Eli Biham et Adi Shamir dans le but de casser le DES [BS90, BS91].
Cette attaque statistique sur les systèmes de chiffrement par bloc exploite la mauvaise
propagation des différences à l’intérieur du système de chiffrement.

Définition 2.1. Soit F r
K : Fm2 → Fm2 r tours d’un système de chiffrement itératif para-

métré par une clé K. Une différentielle sur r tours de ce système de chiffrement est un
couple (a0, ar) ∈ Fm2 × Fm2 de différence en entrée et de différence en sortie après r tours.

Définition 2.2. Soit F r
K : Fm2 → Fm2 r tours d’un système de chiffrement itératif paramé-

tré par une clé K. Soit (a0, ar) une différentielle sur r tours du système de chiffrement.
On définit la probabilité d’une différentielle (a0, ar) par :

P [a0 → ar]
def
= PX,K [F r

K(X)⊕ F r
K(X ⊕ a0) = ar] ,

où PX,K [·] signifie que la probabilité est calculée en moyenne sur tous les messages en
entrée et sur toutes les clés possibles.

Il existe plusieurs façons de passer de la différence en entrée à la différence en sortie.
On appelle chemin différentiel la suite des différences intermédiaires.

Définition 2.3. Un chemin différentiel sur r tours d’un système de chiffrement itératif
avec fonction de tour FK : Fm2 → Fm2 est un (r+ 1)-uplet (β0, β1, · · · , βr−1, βr) ∈ (Fm2 )(r+1)

de différences intermédiaires à chaque tour.



24 2.1 La cryptanalyse différentielle

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
S3 S2 S1 S0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
S3 S2 S1 S0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
S3 S2 S1 S0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

Figure 2.1 – Exemple de chemin différentiel sur 3 tours de SMALLPRESENT-[4]

La probabilité d’un chemin différentiel est définie de la façon suivante :

Définition 2.4. En utilisant les notations de la définition 2.3 on définit la probabilité
d’un chemin différentiel β = (β0, β1, · · · , βr−1, βr) ∈ (Fm2 )(r+1) par :

P [β]
def
= PX,K

[
F i
K(X)⊕ F i

K(X ⊕ β0) = βi ∀i
]
.

Exemple 2.1. La figure 2.1 nous donne l’exemple d’un chemin différentiel sur 3 tours
de SMALLPRESENT-[4]. Comme la boîte-S est de taille 4, il est pratique d’utiliser la
notation hexadécimale pour décrire un message ou une différence. Un nombre en hexa-
décimal est représenté par la notation 0x. La figure 2.1 représente le chemin différentiel
(0x1101, 0x00dd, 0x0030, 0x0220), c’est-à-dire qu’en entrée du premier tour, les boîtes-S
S0, S2, S3 sont actives 1 avec différence en entrée 0x1. Nous supposons ici que la diffé-
rence en sortie après passage dans les boîtes-S est 0x3. Au second tour, les boîtes actives
sont S0 et S1 avec différence en entrée 0xd, et ainsi de suite.

2.1.2 Les primitives utilisées pour résister aux attaques différen-
tielles

Dans un système de chiffrement par bloc itératif, c’est la partie de confusion de la
fonction de tour qui joue le plus grand rôle dans la résistance du système de chiffrement
contre les attaques différentielles. Cette partie de substitution est composée de boîtes-S
qui sont appliquées en parallèle au message divisé en petits blocs.

Dans le contexte de la cryptanalyse différentielle on dit qu’une boîte-S est active si les
deux messages en entrée de la boîte-S étudiée possèdent une différence non-nulle.

Dans les attaques différentielles classiques la partie de diffusion joue un rôle dans la
diffusion des différences. Cette partie a pour but de toujours garder un nombre suffisant de
boîtes-S actives sur plusieurs tours. En revanche cette partie de diffusion ne joue aucun rôle
dans le calcul des probabilités du chemin différentiel. C’est-à-dire que pour une différence
donnée celle-ci passe cette partie de diffusion avec probabilité 1.

La probabilité d’une différentielle sur un tour du système de chiffrement est donc
déterminée par les propriétés des boîtes-S. Afin de prémunir le système de chiffrement

1. On dit qu’une boîte-S est active s’il y a une différence non-nulle en entrée de la boîte-S.



La cryptanalyse différentielle et ses généralisations 25

contre les attaques différentielles on demande aux boîtes-S d’être différentiellement λ-
uniforme avec λ petit.

Définition 2.5. Soit f : Fs2 → Ft2 une fonction. On note par δ(a, b) le nombre de x tels
que f(x) + f(x+ a) = b. C’est-à-dire

δ(a, b)
def
= #{x|f(x) + f(x+ a) = b}

pour (a, b) un couple de différences dans Fs2\{0} × Ft2 . Soit λ la valeur maximale des
δ(a, b) :

λ = max
a6=0, b

δ(a, b).

On dit alors que f est différentiellement λ-uniforme.

Il est facile de voir que δ(a, b) est toujours pair et donc que la valeur minimale de
λ est 2. Les fonctions qui sont différentiellement 2-uniformes sont dites "almost perfect
non-linear"(APN). Le but de cette partie n’est pas de rentrer en détail dans l’étude des
propriétés de ces boîtes-S. Une étude plus détaillée sera faite dans la seconde partie de
ce manuscrit (voir partie II). Ce qu’il faut retenir pour le moment c’est que pour une
boîte-S donnée on s’intéresse aux valeurs δ(a, b) afin de déterminer la probabilité d’une
différentielle d’un système de chiffrement. On appelle alors table des différences le tableau
à deux dimensions qui nous donne les valeurs δ(a, b) pour toutes les différences en entrée
et en sortie de la boîte-S. On obtient alors par exemple le tableau 2.1 pour la boîte-S
du système de chiffrement PRESENT (section 1.4.1). On peut y lire par exemple que
δ(0x1, 0x3) = 4.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 - - - - - - - - - - - - - - -
0x1 - - - 4 - - - 4 - 4 - - - 4 - -
0x2 - - - 2 - 4 2 - - - 2 - 2 2 2 -
0x3 - 2 - 2 2 - 4 2 - - 2 2 - - - -
0x4 - - - - - 4 2 2 - 2 2 - 2 - 2 -
0x5 - 2 - - 2 - - - - 2 2 2 4 2 - -
0x6 - - 2 - - - 2 - 2 - - 4 2 - - 4
0x7 - 4 2 - - - 2 - 2 - - - 2 - - 4
0x8 - - - 2 - - - 2 - 2 - 4 - 2 - 4
0x9 - - 2 - 4 - 2 - 2 - - - 2 - 4 -
0xa - - 2 2 - 4 - - 2 - 2 - - 2 2 -
0xb - 2 - - 2 - - - 4 2 2 2 - 2 - -
0xc - - 2 - - 4 - 2 2 2 2 - - - 2 -
0xd - 2 4 2 2 - - 2 - - 2 2 - - - -
0xe - - 2 2 - - 2 2 2 2 - - 2 2 - -
0xf - 4 - - 4 - - - - - - - - - 4 4

Table 2.1 – Table des différences de la boîte-S de PRESENT.

La probabilité d’une différentielle (a, b) pour une boîte-S est alors donnée par la valeur
δ(a, b)

2s
si la boîte-S est une permutation de Fs2.



26 2.1 La cryptanalyse différentielle

2.1.3 Calcul théorique des probabilités d’une différentielle

Dans la pratique il n’est pas facile de calculer la probabilité exacte d’une différentielle.
Dans cette thèse nous faisons la distinction entre la valeur calculée de la probabilité
d’une différentielle et la vraie valeur de cette probabilité en moyenne sur les clés et sur
les messages. Cette section est dédiée à la présentation des hypothèses communément
admises pour calculer la probabilité d’un chemin différentiel puis d’une différentielle.

Pour cela nous définissons les notations suivantes permettant de distinguer les proba-
bilités calculées théoriquement, les probabilités expérimentales et les probabilités exactes
ou réelles d’un chemin différentiel et d’une différentielle.

Notation 2.1. Soit un chemin différentiel β = (β0, · · · , βr) la probabilité théorique de ce
chemin est notée P t [β] et la probabilité réelle est notée P r [β]. La probabilité dite réelle
correspond à la probabilité obtenue en moyenne sur les messages et les clés.

Sous certaines hypothèses que nous détaillons ci dessous on peut estimer la probabilité
d’un chemin différentiel. Pour cela nous avons besoin de définir la notion de chiffrement
de Markov qui a été introduite par Xuejia Lai et James Massey dans [LM91].

Définition 2.6. [LM91] Un système de chiffrement itératif avec fonction de tour F est
de Markov relativement à la cryptanalyse différentielle si la probabilité de la différence en
sortie connaissant la différence en entrée est indépendante de la clé utilisée pour chiffrer.

Proposition 2.1. [LM91] Supposons que le système de chiffrement E est de Markov.
Supposons aussi que les clés de tours sont indépendantes et uniformément distribuées.
Alors la séquence des différences β0, · · · , βr forme une chaîne de Markov. Dans ce cas
particulier la probabilité du chemin différentiel β = (β0, · · · , βr) se calcule de la façon
suivante :

P t [β] =
r∏
i=1

PX,K [F (X)⊕ F (X ⊕ βi−1) = βi, ∀i] .

Hypothèse 2.1. Pour récapituler, les hypothèses communément utilisées pour calculer la
probabilité théorique d’un chemin différentiel sont

– Le système de chiffrement est de Markov pour la cryptanalyse différentielle.
– Les clés de tour sont indépendantes.
– Les clés de tour sont uniformément distribuées dans l’espace des clés.

Ces hypothèses ne sont pas toujours vérifiées ; ainsi, la probabilité théorique d’un che-
min différentiel est souvent différente de sa probabilité réelle en moyenne sur les messages
et sur les clés. Dans le chapitre 4 nous détaillons la validité de ces hypothèses.

Connaissant tous les chemins qui composent une différentielle ainsi que leur proba-
bilité, il est assez facile de passer de la probabilité des chemins à la probabilité d’une
différentielle, puisque cette probabilité est égale à la somme des probabilités des chemins
qui la composent.

Proposition 2.2. La probabilité d’une différentielle est égale à la somme des probabilités
des chemins qui la composent.

P [a0 → ar] =
∑

β=(a0,β1,··· ,βr−1,ar)

P [β] .



La cryptanalyse différentielle et ses généralisations 27

Preuve : À clé fixée, ce résultat provient du fait que si les messages X et X ⊕ a0 suivent
un chemin différentiel, ils ne peuvent pas suivre un autre chemin différentiel. Ainsi les
événements étudiés sont disjoints.

Exemple 2.2. Nous reprenons les notations de l’exemple 2.1. Dans cet exemple nous
étudions la différentielle (0x1101, 0x00dd) sur 3 tours de SMALLPRESENT-[4].

Un des chemins composant la différentielle est donné dans l’exemple 2.1. Le calcul de
la probabilité théorique de ce chemin sous les hypothèses décrites précédemment se fait de
la façon suivante :

– Au tour 1 nous avons 3 boîtes-S avec différence en entrée 0x1 et différence en sortie
0x3.

– Au tour 2 nous avons 2 boîtes-S avec différence en entrée 0xd et différence en sortie
0x2.

– Au tour 3 nous avons 1 boîte-S avec différence en entrée 0x3 et différence en sortie
0x6.

D’après la table des différences de PRESENT (tableau 2.1) nous avons que la probabilité
pour une boîte-S de passer d’une différence en entrée 0x1 à une différence en sortie 0x3

est 4
24 = 2−2. Au total nous avons 6 boîtes-S actives (différence en entrée non nulle) avec

probabilité de transition 4
24 = 2−2 (voir tableau 2.1) donc la probabilité théorique de ce

chemin différentiel est

P t [(0x1101, 0x00dd, 0x0030, 0x220)] = (2−2)6 = 2−12.

Pour calculer la probabilité de la différentielle, nous avons besoin de calculer la pro-
babilité théorique de tous les chemins la composant (en utilisant la même méthode que
celle expliquée ci-dessus). La probabilité de chacun de ces chemins est résumée dans le
tableau 2.2.

β0 β1 β2 β3 P t [(β0, β1, β2, β3)]

0x1101 0x00dd 0x0030 0x220 2−12

0x1101 0x0cdd 0x0070 0x220 2−16

0x1101 0x09dd 0x0070 0x220 2−16

0x1101 0x0ddd 0x0070 0x220 2−15

0x1101 0xd00d 0x0090 0x220 2−13

Table 2.2 – Chemins différentiels composant la différentielle (0x1101, 0x00dd) pour le
système de chiffrement SMALLPRESENT-[4]

Compte tenu des probabilités théoriques des chemins composant la différentielle

(0x1101, 0x00dd)

la probabilité théorique de cette différentielle est

2−12 + 2−13 + 2−15 + 2 · 2−16 = 2−11,1926.

Une étude approfondie du calcul de ces probabilités est détaillée dans le chapitre 4.
On verra qu’il est assez compliqué voir impossible en général de trouver tous les chemins



28 2.1 La cryptanalyse différentielle

qui composent une différentielle. En déterminant la probabilité de certains chemins nous
avons une borne inférieure sur la probabilité de la différentielle. Dans le chapitre 4 nous
décrivons aussi un algorithme pour trouver les chemins qui composent une différentielle
ainsi que leur probabilité.

2.1.4 Comment retrouver de l’information sur la clé

Une attaque différentielle se comporte différemment suivant le type de système de chif-
frement par bloc. En effet dans un chiffrement de type substitution-permutation c’est une
cryptanalyse de type attaque sur le dernier tour, alors que dans un système de chiffrement
de type Feistel, l’attaque est sensiblement différente et les quantités que l’on regarde aussi.
Comme la première attaque différentielle a été faite sur le DES qui est un chiffrement de
Feistel de 16 tours, nous allons dans un premier temps détailler les attaques différentielles
sur ce type de système de chiffrement.

Attaque différentielle sur les systèmes de chiffrement de type Feistel

Dans cette partie nous expliquons le principe de l’attaque différentielle pour les sché-
mas de Feistel classiques (ceux définis dans la section 1.2.2). Le principe de l’attaque pour
les généralisations du schéma de Feistel reste sensiblement le même.

f

f

f

a0
(g) a0

(d)

a
(g)
r a

(d)
r

a
(g)
r+1 a

(d)
r

Figure 2.2 – Attaque différentielle d’un schéma de Feistel.



La cryptanalyse différentielle et ses généralisations 29

Supposons que nous avons une différentielle sur r tours(
(a0

(g), a0
(d)), (a(g)

r , a(d)
r )
)

(voir figure 2.2). Dans une attaque différentielle sur un schéma de Feistel, on récupère les
messages chiffrés sur r + 1 tours. Dans ce type de système de chiffrement on connaît la
différence a(d)

r en entrée de la fonction interne f du tour r ainsi que la valeur du message
avant ajout de la clé. Si la caractéristique différentielle est bien celle espérée alors on
connaît aussi la différence à la sortie de la fonction f . Cette différence est a(g)

r+1 ⊕ a
(g)
r . Le

détail des valeurs connues par l’attaquant est donné dans la figure 2.3.

k

k

f

f

x

x+ δx

? δx δx

Figure 2.3 – Détails de l’étape de recherche de clé pour une différentielle sur un schéma
de Feistel. (Les valeurs connues sont en gris)

Dans le cas d’un schéma de Feistel on peut utiliser un crible au tour r + 1 pour
supprimer des mauvaises paires. Ce crible est défini pour une différentielle(

(a0
(g), a0

(d)), (a(g)
r , a(d)

r )
)

de la façon suivante :

∆sieve =

{
(a(g)||a(d)

r )
∣∣∣ P [a(d)

r →
f
a(g) ⊕ a(g)

r

]
6= 0

}
. (2.1)

C’est-à-dire ∆sieve correspond à toutes les différences possibles après un tour de chiffrement
quand la différence en entrée de ce tour est (a

(g)
r , a

(d)
r ). Il est d’usage dans les systèmes de

type Feistel d’enlever la permutation finale.
Le principe de l’attaque qui consiste à retrouver la clé du dernier tour d’un schéma de

Feistel classique est résumé dans l’algorithme 1.

Attaque différentielle sur les systèmes de chiffrement de type substitution-
permutation

Les attaques différentielles sur les schémas de type substitution-permutation sont des
attaques sur le dernier tour (ou les derniers tours). Elles prennent en compte une caracté-
ristique différentielle sur r tours pour faire une attaque sur r + 1 tours et ainsi retrouver
une partie de la clé du (r + 1)ème tour.

À la différence des attaques sur les schémas de Feistel on ne connaît pas la valeur du
message avant l’entrée dans les boîtes-S mais seulement la valeur du message en sortie.

Dans le cas d’un système de type substitution-permutation un crible est aussi utilisé
pour supprimer un certain nombre de mauvaises paires. Ce crible est défini pour une
différentielle (a0, ar) de la façon suivante :



30 2.1 La cryptanalyse différentielle

Algorithme 1 : Cryptanalyse différentielle d’un système de type Feistel (attaque
sur le dernier tour).
Entrée : N couples (X,X ′ = X ⊕ a0) et les chiffrés correspondants

(Y = EK∗(X), Y ′ = EK∗(X
′))

Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C de 2n compteurs à 0 ;
Pour chaque couple (X,X ′) tel que X ⊕X ′ = a0 faire

Si EK∗(X)⊕ EK∗(X ⊕ a0) ∈ ∆sieve alors
Pour chaque sous clé candidate k faire

Calculer d = f(Y (r) ⊕ k)⊕ f(Y ′(r) ⊕ k);
Si d⊕ a(l)

r+1 = a
(l)
r alors C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

∆sieve =
{
a | P

[
ar →

F
a
]
6= 0
}
. (2.2)

L’algorithme 2 résume cette attaque.

Algorithme 2 : Cryptanalyse différentielle d’un système de type substitution-
permutation (attaque sur le dernier tour).
Entrée : N couples (X,X ′ = X ⊕ a0) et les chiffrés correspondants

(Y = EK∗(X), Y ′ = EK∗(X
′))

Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C de 2n compteurs à 0 ;
Pour chaque couple (X,X ⊕ a0) faire

Si EK∗(X)⊕ EK∗(X ⊕ a0) ∈ ∆sieve alors
Pour chaque sous clé candidate k faire

Calculer d = F−1
k (EK∗(X))⊕ F−1

k (EK∗(X
′));

Si d = ar alors C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

2.1.5 Quantités importantes dans la cryptanalyse différentielle

Dans la cryptanalyse différentielle, un échantillon est composé de deux messages ayant
une différence fixée ainsi que des chiffrés correspondants. Nous rappelons les notations
communément utilisées dans cette thèse : la complexité en données de l’attaque est notée



La cryptanalyse différentielle et ses généralisations 31

par NDC alors que le nombre d’échantillons est noté par N . Ainsi dans le cas de la
cryptanalyse différentielle nous avons NDC = 2N .

Le rapport signal sur bruit Pour évaluer le nombre de couples clair/chiffré NDC dont
nous avons besoin pour une attaque différentielle, une quantité importante a été introduite
par Eli Biham et Adi Shamir [BS90]. Cette quantité s’appelle le rapport signal sur bruit.

Définition 2.7. Le rapport entre le nombre de bonnes paires et la moyenne du nombre
de clés cochées est appelé le rapport signal sur bruit. Cette quantité est notée S/N .

Cette quantité peut être calculée assez facilement si on introduit les définitions sui-
vantes. On suppose que l’on veut retrouver n bits de clés. Soit α le nombre moyen de
cases cochées pour les paires gardées (c’est-à-dire les paires qui passent le crible) et soit
β, le nombre moyen de cases cochées pour toutes les paires. Soit p∗ la probabilité de la
différentielle lorsque l’on déchiffre avec la bonne clé. Cette probabilité est différente sui-
vant le type de système de chiffrement. Avec ces notations la bonne clé est comptée p∗N
fois. Le rapport signal sur bruit devient alors

S/N =
N · p∗

N · α · β/2n
=
p∗ · 2n

α · β
.

L’étude basique du calcul de la complexité en données faite par Eli Biham et Adi Shamir
est directement reliée à la valeur du rapport signal sur bruit. Dans la plupart des attaques
existantes on suppose que si le rapport signal sur bruit est suffisamment grand (de l’ordre
de 13) alors la complexité en données est de 4

p∗
. Le détail de ce calcul est donné par

exemple dans la thèse de Henri Gilbert [Gil97] 2. Durant cette thèse, avec Benoît Gérard
[BG10] nous avons mené une étude complète de la complexité en données de certaines
attaques statistiques et en particulier celle de la cryptanalyse différentielle. Un autre
travail avec Jean-Pierre Tillich [BGT11], nous a permis de trouver une formule générale
pour la probabilité de succès d’une attaque statistique. Le détail de cette étude est donné
dans le chapitre 5.

2.1.6 Les probabilités utilisées

L’étude classique pour calculer la complexité en données d’une attaque différentielle
repose sur le calcul du rapport signal sur bruit [BS90, BS91].

Nous allons dans le chapitre 5 utiliser une autre méthode pour calculer la complexité en
données et la probabilité de succès d’une cryptanalyse différentielle. Pour cela nous avons
besoin d’étudier les valeurs des probabilités des compteurs définis dans les algorithmes 1
et 2 pour la bonne et les mauvaises sous-clés.

Distribution des variables aléatoires

Définition 2.8. Soit EK∗ un système de chiffrement par bloc itératif avec fonction de
tour F . Soit (a0, ar) la différentielle étudiée sur r tours du système de chiffrement. Sup-
posons que l’on cherche à retrouver de l’information sur la clé du tour r+1. Les variables

2. Cette étude repose sur une approximation de la distribution des variables aléatoires par une loi de
Poisson.



32 2.1 La cryptanalyse différentielle

aléatoires utilisées dans le cadre de la cryptanalyse différentielle pour un message fixé et
une clé fixée sont définis par

CX,k
def
=

{
1 si F−1

k (EK∗(X))⊕ F−1
k (EK∗(X ⊕ a0)) = ar,

0 sinon.

Ces variables aléatoires suivent des distributions différentes suivant la valeur de la clé.
L’hypothèse communément faite dans la cryptanalyse différentielle est que les variables

aléatoires correspondant aux mauvaises clés suivent toutes la même distribution. Cette
hypothèse est appelée hypothèse de répartition aléatoire par mauvaise clé

Hypothèse 2.2 (Hypothèse de répartition aléatoire par fausse clé). Soit EK∗ : Fm2 → Fm2
un système de chiffrement par bloc paramétré par la clé K∗ avec fonction de tour F .

PX

[
F−1
k (EK∗(X))⊕ F−1

k (EK∗(X ⊕ a0)) = ar
]

=

{
p∗ si k = k∗,
p = 1

2m−1
pour k 6= k∗.

Sous cette hypothèse on obtient que pour un message fixé les variables aléatoires CX,k
suivent une loi de Bernoulli avec probabilité p∗ dans le cas où la clé candidate correspond
à la bonne sous clé. Dans le cas contraire ces variables suivent une loi de Bernoulli avec
probabilité p =

1

2m − 1
.

Les compteurs étudiés dans le cas de la cryptanalyse différentielle correspondent à la
somme des CX,k :

Ck =
∑
X

CX,k.

Théoriquement le compteur Ck est incrémenté avec probabilité p∗ si k = k∗ et avec
probabilité p dans le cas contraire.

La probabilité p∗ correspondant au compteur relié à la bonne clé dépend quant à elle
de la valeur de la probabilité de la différentielle étudiée (P [a0 → ar]) mais est différente
suivant le type de système de chiffrement étudié. Par la suite nous détaillons la valeur de
cette probabilité dans le cas d’un système de chiffrement de type Feistel et d’un système
de chiffrement de type substitution-permutation.

Détail des probabilités dans le cas d’un chiffrement de Feistel Afin de com-
prendre le principe dans le cas d’un schéma de Feistel nous avons besoin de revenir sur la
description de l’attaque sur le dernier tour donnée dans la section 2.1.4. Pour une paire
de messages qui passe le crible l’attaquant fait une hypothèse sur la clé du dernier tour
utilisée pour chiffrer. Ainsi il connaît donc la valeur des messages en entrée de la fonction
interne et en sortie de cette fonction interne. Soit a = f(x⊕k)⊕f(x⊕a(d)

r ⊕k) la différence
en sortie de la fonction interne.

Le compteur est incrémenté si a⊕a(g)
r = a

(g)
r+1. Deux cas se présentent alors ; en effet la

valeur a(g)
r n’est pas connue par l’attaquant mais arrive avec une probabilité supérieure à

une autre valeur a(g)
r

′
. Donc en appliquant la fonction interne on peut obtenir a(g)

r+1

′
à partir

de a⊕ a(g)
r+1 mais aussi avec d’autres valeurs a′ ⊕ a(g)

r+1

′
Ainsi le compteur correspondant à

la bonne clé est incrémenté avec la probabilité suivante :

p∗ = P
[
a(d)
r →

F
a⊕ a(g)

r = a
(g)
r+1

]
+ P

[
a(d)
r →

F
a′ ⊕ a′(g)r = a

(g)
r+1

]
(2.3)



La cryptanalyse différentielle et ses généralisations 33

Proposition 2.3. Soit (a0, ar) la différentielle étudiée. On se place dans le contexte d’une
attaque sur le dernier tour d’un schéma de Feistel classique comme celle présentée dans
l’algorithme 1. Soit p la probabilité qu’un compteur correspondant à une mauvaise clé soit
incrémenté

p = P [CX,k = 1|k 6= k∗] ≈ 2−m.

La probabilité que le compteur correspondant à la bonne clé soit incrémenté est :

p∗ = P [a0 → ar] + p. (2.4)

Détail des probabilités dans le cas d’un chiffrement de type substitution-
permutation Dans un système de type substitution-permutation le compteur corres-
pondant à la bonne clé est incrémenté avec une probabilité différente de celle dans le
cas d’un système de type Feistel. Dans ce cas précis, pour une paire qui passe le crible,
on déchiffre en testant toutes les clés possibles. Pour la bonne sous-clé le compteur est
incrémenté si et seulement si on obtient la différence ar en déchiffrant. Ce phénomène
apparaît avec la même probabilité que la probabilité de la différentielle.

Proposition 2.4. Considérons une attaque sur le dernier tour d’un schéma de type
substitution-permutation comme présentée dans l’algorithme 2. Soit p la probabilité qu’un
compteur correspondant à une mauvaise clé soit incrémenté. La probabilité que le compteur
correspondant à la bonne clé soit incrémenté est égale à la probabilité de la différentielle.

p∗ = P [a0 → ar] . (2.5)

2.2 La cryptanalyse différentielle tronquée

La cryptanalyse différentielle tronquée [Knu95] est une généralisation de la cryptana-
lyse différentielle. Dans le cas de la cryptanalyse différentielle tronquée, on ne tire pas de
l’information à partir d’une seule différence mais d’un ensemble de différences. Soit A0

un ensemble de différences en entrée et Ar un ensemble de différences en sortie. Dans le
cas de la cryptanalyse différentielle tronquée l’attaquant s’intéresse à la probabilité pour
un couple de messages en entrée ayant une différence dans A0 d’obtenir une différence
entre les messages chiffrés dans Ar. La cryptanalyse différentielle tronquée a servi à casser
de nombreux systèmes de chiffrement par bloc. Dans la section 2.2.5, nous donnons des
exemples de systèmes de chiffrement ayant montré des faiblesses contre cette attaque.
Ces exemples tendent à montrer les différentes variantes de la cryptanalyse différentielle
tronquée et de la difficulté de trouver une formalisation générale pour définir cette cryp-
tanalyse. Une première formalisation a été faite dans [MSAK99]. Nous présentons ici une
généralisation de celle ci en utilisant les notations communément utilisées dans cette thèse.

2.2.1 Définition

Définition 2.9. Soit EK un système de chiffrement par bloc (E : Fm2 → Fm2 ). Une dif-
férentielle tronquée de ce système de chiffrement est un couple formé par un ensemble
de différences en entrée A0 ⊂ Fm2 et un ensemble de différences en sortie Ar ⊂ Fm2 .



34 2.2 La cryptanalyse différentielle tronquée

Définition 2.10. Soit EK un système de chiffrement par bloc itératif comprenant r tours.
Soit (A0, Ar) une différentielle tronquée de ce système de chiffrement. La probabilité de
cette différentielle tronquée est définie par

P [A0 → Ar]
def
= PX,K [EK(X) + EK(X ⊕ a) ∈ Ar|a ∈ A0] .

Comme dans le cas de la cryptanalyse différentielle où l’on définit un chemin différen-
tiel, on peut aussi dans le cas de la différentielle tronquée parler de chemin différentiel
tronqué.

Définition 2.11. Soit A0 et Ar un ensemble de différences en entrée et en sortie de r
tours d’un système de chiffrement par bloc itératif. Un chemin différentiel tronqué rela-
tif à (A0, Ar) est défini comme un ensemble d’ensembles de différence à chaque tour :
(B0, B1, · · · , Br) tel que B0 = A0 et Br = Ar

3.

De la même façon que dans le cas de la cryptanalyse différentielle on peut définir la
probabilité d’un chemin différentiel tronqué.

Définition 2.12. Soit E un système de chiffrement par bloc itératif avec fonction de tour
F . Soit B = (B0, B1, · · · , Br) un chemin différentiel tronqué. La probabilité de ce chemin
est

P [B = (B0, B1, · · · , Br)]
def
= PX,K

[
F i
K(X) + F i

K(X + a) ∈ Bi ∀i = 1 · · · r|a ∈ B0

]
.

où F i
K est la notation communément utilisée pour FKi ◦ · · · ◦ FK1 où K1 · · ·Kr sont les

clés de tours correspondant à la clé maître K.

2.2.2 L’attaque

Dans cette partie nous décrivons l’attaque différentielle tronquée d’un système de
chiffrement par bloc. Un certain nombre d’attaques différentielles tronquées ont été faites
sur des systèmes de chiffrement de type Feistel (comme par exemple l’attaque sur E2
[MSAK99]). Soit un système de chiffrement avec une différentielle tronquée (A0, Ar). Le
crible pour les schémas de Feistel classiques qui peut être appliqué afin de diminuer la
complexité en temps de l’attaque est défini de la façon suivante :

∆sieve =

{
(a(g)||a(d))|a(d) ∈ a(d)

r et P
[
a(d)
r →

f
γ ∈ a(g) ⊕ A(g)

r

]
6= 0

}
L’algorithme 3 décrit le principe de l’attaque différentielle tronquée pour les schémas

de Feistel classiques. Il peux être facilement adapté en fonction du système de chiffrement.
Pour les systèmes de chiffrement de type SPN l’algorithme est similaire à l’algorithme

utilisé pour la cryptanalyse différentielle.

2.2.3 Les variables aléatoires utilisées dans la cryptanalyse diffé-
rentielle tronquée

Définition 2.13. Soit EK∗ un système de chiffrement par bloc itératif avec fonction de
tour F . Soit (A0, Ar) la différentielle tronquée étudiée sur r tours du système de chiffre-
ment. Supposons que l’on cherche à retrouver de l’information sur la clé du tour r+1. Les

3. où B0 = A0 signifie que les ensembles étudiés sont égaux élément par élément.



La cryptanalyse différentielle et ses généralisations 35

Algorithme 3 : Cryptanalyse différentielle tronquée d’un schéma de Feistel
Entrée : NDC couples de messages clairs-chiffrés (X, Y ) avec Y = EK∗(X)
Sortie : La clé K∗ utilisée pour chiffrer les messages
Initialiser une table C de 2n compteurs à 0.
Pour chaque a0 ∈ A0 faire

Pour chaque couple (X,X ′) tel que X ⊕X ′ = a0 faire
Si EK∗(X)⊕ EK∗(X ⊕ a0) ∈ ∆sieve alors

Pour chaque sous clé candidate k faire
Calculer d = f(Y (d) ⊕ k)⊕ f(Y ′(d) ⊕ k);
Si d⊕ a(g)

r+1 ∈ A
(g)
r alors C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

variables aléatoires utilisées dans le cadre de la cryptanalyse différentielle tronquée pour
un message fixé et une clé fixée sont définies pour a0 ∈ A0 par

C
(a0)
X,k

def
=

{
1 si F−1

k (EK∗(X))⊕ F−1
k (EK∗(X ⊕ a0)) ∈ Ar,

0 sinon.

Puis on définit les variables
CX,k

def
=
∑
a0∈A0

C
(a0)
X,k .

Les variables aléatoires C(a0)
X,k suivent des distributions différentes suivant la valeur de

la clé. Comme dans la cryptanalyse différentielle, l’hypothèse communément faite dans la
cryptanalyse différentielle tronquée consiste à dire que les variables aléatoires correspon-
dant aux mauvaises clés suivent toutes la même distribution.

Hypothèse 2.3. Hypothèse de répartition aléatoire par fausse clé
Soit #Ar le cardinal de Ar. Soit EK∗ : Fm2 → Fm2 un système de chiffrement par bloc avec
fonction de tour F .

PX

[
F−1
k (EK∗(X))⊕ F−1

k (EK∗(X ⊕ a0)) ∈ Ar
]

=

{
p∗ si k = k∗,
p = #Ar

2m−1
pour k 6= k∗.

Sous cette hypothèse on obtient que pour un message fixé les variables aléatoires CX,k
suivent une loi de Bernoulli avec probabilité p∗ dans le cas où la clé candidate correspond
à la bonne sous clé. Dans le cas contraire ces variables suivent une loi de Bernoulli avec
probabilité p ≈ #Ar2

−m.
Les compteurs étudiés dans le cas de la cryptanalyse différentielle tronquée corres-

pondent à la somme des variables aléatoires CX,k :

Ck
def
=
∑
X

CX,k.



36 2.2 La cryptanalyse différentielle tronquée

Lemme 2.1. Soit les variables aléatoires définies dans la définition 2.13. Sous l’hypothèse
que les variables aléatoires C(a0)

X,k sont indépendantes les variables aléatoires Ck suivent des
lois binomiales de paramètres (N#A0, p∗) ou (N#A0, p).

Preuve : Nous allons faire la preuve dans le cas où la clé candidate n’est pas la bonne
clé. La preuve pour le compteur correspondant à la bonne clé se fait de la même fa-
çon. Nous avons que les variables aléatoires C(a0)

X,k suivent une distribution de Bernoulli
de paramètre p. Sous l’hypothèse d’indépendance de ces variables aléatoires, les variables
aléatoires CX,k suivent une loi binomiale de paramètres #A0 et p. Les variables aléa-
toires Ck sont la somme des variables aléatoires définies précédemment. Maintenant sous
l’hypothèse d’indépendance de ces variables aléatoires, comme elles ont toutes la même
probabilité, nous avons que les variables aléatoires Ck suivent des lois binomiales de pa-
ramètre (N#A0, p).

2.2.4 Calcul théorique des probabilités

Lien avec la probabilité d’une différentielle La probabilité d’une différentielle tron-
quée peut être calculée à partir des différentielles qui la composent. En effet elle correspond
à la somme des différentielles qui la composent divisée par le nombre de différences en
entrée.

Proposition 2.5. Sous l’hypothèse que toutes les différences en entrée sont uniformément
réparties dans l’espace A0, c’est-à-dire que P [a0|a0 ∈ A0] = P [a1|a1 ∈ A0]. On obtient
que la probabilité d’une différentielle tronquée est égale à la somme des probabilités des
différentielles qui la composent divisée par le cardinal de A0.

PX,K [E(X)⊕ E(X ⊕ a0) ∈ Ar|a0 ∈ A0] =
∑
ar∈Ar

PX,K [E(X)⊕ E(X ⊕ a0) = ar|a0 ∈ A0]

=
1

#A0

∑
a0∈A0

PX,K [E(X)⊕ E(X ⊕ a0) ∈ Ar]

=
1

#A0

∑
a0∈A0

∑
ar∈Ar

PX,K [E(X)⊕ E(X ⊕ a0) = ar] .

Preuve : Pour des raisons de simplicité nous allons démontrer cette proposition dans le
cas où les espaces de différences en entrée et en sortie sont réduits à deux éléments. Pour
cela nous notons A0 = {a0, a1} et Ar = {b0, b1}. Pour simplifier les écritures nous utilisons
la notation non standard suivante :

P [Ar|A0]
def
= PX,K [EK(X)⊕ EK(X ⊕ a0) ∈ Ar|a0 ∈ A0] .

La première égalité se montre facilement. En effet, comme pour un couple de message
fixé, la différence en sortie est unique les événements P [bi|A0] pour i = 0, 1 sont disjoints
donc :

P [Ar|A0] = P [b0 ∪ b1|A0]

= P [b0|A0] + P [b1|A0] .



La cryptanalyse différentielle et ses généralisations 37

La seconde égalité est un peu moins facile à prouver

P [Ar|A0] = P [Ar|a0 ∪ a1]

=
P [Ar ∩ (a0 ∪ a1)]

P [a0 ∪ a1]

=
P [(Ar ∩ a0) ∪ (Ar ∩ a1)]

P [a0] + P [a1]

=
P [Ar|a0]P [a0] + P [Ar|a1]P [a1]

P [a0] + P [a1]

=
P [Ar|a0] + P [Ar|a1]P [a1]

P [a0] + P [a1]

=
P [Ar|a0]P [a0] + P [Ar|a1]P [a0]

2P [a0]

=
1

2

∑
a={a0,a1}

P [Ar|a] .

La troisième égalité se déduit facilement à partir des deux premières.

Pour calculer la probabilité théorique d’une différentielle tronquée on n’est pas obligé
de passer par la probabilité théorique des différentielles qui la composent. En général on
préfère calculer la probabilité d’une différentielle tronquée quand on ne peut pas avoir
une bonne estimation de la probabilité des différentielles. En utilisant les propriétés des
chaînes de Markov pour la différentielle tronquée nous pouvons avoir une estimation de
la probabilité d’une différentielle tronquée.

Chiffrement de Markov
Si le système de chiffrement est de Markov pour la cryptanalyse différentielle (défi-

nition 4.2), la probabilité d’un chemin différentiel peut être obtenue en multipliant les
probabilités de transition de chaque tour (voir proposition 2.1). Dans ce paragraphe nous
allons montrer que même si le système de chiffrement est de Markov pour la cryptanalyse
différentielle il n’est pas toujours vrai qu’il soit de Markov pour la différentielle tronquée
c’est-à-dire que l’on ne peut pas toujours estimer la probabilité d’un chemin différentiel
tronqué en multipliant les probabilités de transition de chaque tour.
Si on reprend la définition d’un chiffrement de Markov donné dans le cas de la cryptanalyse
différentielle on obtient la définition suivante :

Définition 2.14. Un système de chiffrement itératif est de Markov relativement à la
cryptanalyse différentielle tronquée si la probabilité que la différence en sortie soit
dans un espace de sortie, connaissant la différence en entrée dans un espace de différence
en entrée, est indépendante de la clé utilisée.

Proposition 2.6. Soit E = F r un système de chiffrement par bloc itératif. Supposons que
E est un chiffrement de Markov pour la différentielle tronquée. Alors pour tout chemin
différentiel tronqué (B0, B1, · · · , Br) on a

PX,K

[
F i
K(X)⊕ F i

K(X ⊕ a) ∈ Bi|a ∈ B0

]
=

r∏
i=1

PX,K [FK(X) + FK(X ⊕ a) ∈ Bi|a ∈ Bi−1] .



38 2.2 La cryptanalyse différentielle tronquée

Remarque 2.1. Un système de chiffrement peut être de Markov pour la cryptanalyse
différentielle et ne pas l’être pour la cryptanalyse différentielle tronquée. Supposons que
nous ayons un chemin différentiel tronqué sur deux tours (B0, B1, B2) d’un système de
chiffrement avec fonction de tour F . On note par F 2

K la composition de deux fois la
fonction de tour. Soit les probabilités

p0 = PX,K

[
FK(X)⊕ FK(X ⊕ a) ∈ B1 et F 2

K(X)⊕ F 2
K(X ⊕ a) ∈ B2|a ∈ B0

]
p1 = PX,K [FK(X)⊕ FK(X ⊕ b) ∈ B2|b ∈ B1] · PX,K [FK(X)⊕ FK(X ⊕ a) ∈ B1|a ∈ B0]

p2 =
∑
b∈B1

PX,K [FK(X)⊕ FK(X ⊕ b) ∈ B2] · PX,K [FK(X)⊕ FK(X ⊕ a) = b|a ∈ B0] .

Alors on a que la probabilité du chemin différentiel tronqué est égale à p0. Si le système
de chiffrement est de Markov pour la cryptanalyse différentielle tronquée alors p1 = p0

et s’il est de Markov pour la cryptanalyse différentielle alors p2 = p0. En général p1 est
différent de p2. Ce qui est encore plus compliqué est que p1 n’est ni une majoration ni une
minoration de p2.

2.2.5 Attaques existantes

La plupart des attaques différentielles tronquées sont effectuées sur des systèmes de
chiffrement “orientés mot”.

Souvent les mots manipulés sont des mots de la taille des boîtes-S composant le sys-
tème de chiffrement (Par exemple l’AES est un système de chiffrement “orienté mot”
contrairement à PRESENT).

Dans ce type de chiffrement par bloc, il est facile de déterminer des chemins différentiels
tronqués. Contrairement à la cryptanalyse différentielle ces chemins différentiels dépendent
en général de la partie de diffusion de la fonction de tour. Les attaques différentielles
tronquées peuvent être très différentes suivant le système de chiffrement étudié.

Ainsi la première attaque différentielle tronquée faite par Lars R. Knudsen pour cryp-
tanalyser le DES [Knu95] prend en compte un chemin différentiel tronqué sur 4 tours du
DES avec probabilité 1. La sortie de ce chemin différentiel tronqué nous indique que pour
une différence en entrée fixée, 2 boîtes-S du dernier tour ne sont pas actives.

Dans E2 et Camellia [MSAK99, LHL+02], les attaques différentielles tronquées re-
posent quant à elles sur le fait qu’une boîte-S soit active ou non active. Ce type d’attaque
différentielle ne dépend pas de la boîte-S utilisée dans le système de chiffrement mais
plutôt d’une mauvaise diffusion des différences à travers les tours le composant. Ici cette
idée que les boîtes-S ne jouent pas un rôle important dans la cryptanalyse différentielle
tronquée est entretenue par le fait que la différence relative entre E2 et Camellia est dans
le nombre de couches non linéaires par tour. En effet, dans E2 la structure de la fonction
de tour est décomposée en 4 parties : 2 passages dans les boîtes-S, une partie linéaire
qui mixe les octets entre eux et une addition de clé. Dans Camellia la permutation est
sensiblement la même mais pour gagner en temps d’exécution les concepteurs ont choisi
d’enlever une des deux couches non-linéaires. La complexité des attaques différentielles
tronquées entre les deux systèmes de chiffrement reste la même.

Pour SKIPJACK [KRW99], les différentes attaques différentielles tronquées peuvent
casser jusqu’à 30 tours (des 32 tours) du système de chiffrement. Elles sont très différentes
de celle de E2 et CAMELLIA puisqu’elles étudient la propagation d’une différence à



La cryptanalyse différentielle et ses généralisations 39

travers les tours. C’est-à-dire que la différence en sortie est déterminée par la valeur
en entrée mais est valable quelle que soit cette valeur en entrée. L’attaque différentielle
tronquée sur SAFER [KB96] est sensiblement du même type que celle sur SKIPJACK.

La cryptanalyse “stochastique” de CRYPTON [MG00] peut elle aussi être vue comme
une cryptanalyse différentielle tronquée. La particularité ici est que la probabilité de la
différentielle tronquée est calculée à l’aide de matrices de transition et repose sur des
propriétés de chaîne de Markov pour la cryptanalyse différentielle tronquée. Cette dif-
férentielle tronquée a aussi la particularité que la troncature n’est pas faite sur tous les
mots de la taille des boîtes-S mais seulement sur une partie de ces mots. Ici l’ensemble
des différences en entrée et l’ensemble des différences en sortie sont composés seulement
de 16 éléments alors que les boîtes-S sont définies sur 8 bits (au lieu des 28 éléments que
comporte une boîte-S).

Il existe d’autres attaques différentielles tronquées. Certaines attaques dites différen-
tielles peuvent aussi se classer dans la catégorie des attaques différentielles tronquées.

2.2.6 Lien avec les autres cryptanalyses

Contrairement à ce que l’on peut penser il y a de grosses différences entre une cryp-
tanalyse différentielle et une cryptanalyse différentielle tronquée. Ainsi un système de
chiffrement peut résister à la cryptanalyse différentielle car les boîtes-S qui le composent
ont de bonnes propriétés différentielles. En revanche il peut comporter des faiblesses pour
la cryptanalyse différentielle tronquée si la permutation “orientée mot” possède de mau-
vaises propriétés de diffusion.

On peut remarquer que les systèmes de chiffrement sur lesquels il existe des attaques
différentielles tronquées sont aussi souvent vulnérables aux attaques différentielles im-
possibles (section 2.3). Par exemple il existe des attaque différentielles impossibles sur
SKIPJACK [BBS99], SAFER [BEA08], CRYPTON[CKK+01], et E2 [SKU+00]. La cryp-
tanalyse différentielle tronquée ne s’applique pas très bien aux systèmes de chiffrement
à flot. Il existe tout de même une différentielle tronquée sur le système de chiffrement à
flot SALSA [AFK+08] mais ce système de chiffrement à flot est proche d’un système de
chiffrement par bloc. Les attaques différentielles tronquées servent aussi faire des attaques
sur les fonctions de hachage basées sur des systèmes de chiffrement par bloc.

2.3 La cryptanalyse différentielle impossible

2.3.1 Définition

La cryptanalyse différentielle impossible à été introduite par Eli Biham, Alex Biryu-
kov et Adi Shamir en 1999 pour cryptanalyser Skipjack [BBS99]. L’idée principale de
la cryptanalyse différentielle impossible est de trouver une différentielle (a1, ar) qui ne
peut jamais arriver, c’est-à-dire une différentielle telle que P [a1 → ar] = 0. Plus généra-
lement on pourrait parler de chemin différentiel tronqué impossible puisque cette idée de
différentielle impossible s’applique souvent dans ce cas comme le montre l’exemple sui-
vant. On a alors une différentielle tronquée (A1, Ar) qui est impossible : c’est-à-dire que
P [A1 → Ar] = 0.

Pour la recherche de chemins différentiels impossibles l’attaquant cherche un chemin
différentiel tronqué avec probabilité 1 pour un certain nombre de tours du système de



40 2.3 La cryptanalyse différentielle impossible

chiffrement et un chemin différentiel tronqué avec probabilité 1 pour un certain nombre
de tours de l’inverse de la fonction qui n’est pas en adéquation avec la sortie de la première.

Exemple 2.3. L’attaque différentielle impossible peut s’effectuer sur un grand nombre
de systèmes de chiffrement par bloc itératif “orientés mots”. L’exemple le plus connu
d’attaque différentielle impossible est celui donné sur 4 tours de l’AES par [CKK+01]. Le
motif de cette attaque est représenté sur la figure 2.4.

?

?
?

0

?

0
?
?

?

?
0
?

?

?
?

0

0

0
0
0

?

?
?
?

?

?
?
?

?

?
?
?

0

0
0
0

?

?
?
?

?

?
?
?

?

?
?
?

?

?
?

0

0

?
?
?

?

0
?
?

?

?
0
?

?

?
?

0

0

?
?
?

?

0
?
?

?

?
0
?

ARSR−1

SB−1

AR

MC−1

SR−1

SB−1

· · · · · · Contradiction · · · · · ·

MC

AR

SB

SR

MC

AR

SB

SR
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0
0
0
X

X

0
0
0

0
X

0
0

0
0
X

0

X

X

X

X

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
X

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
X

0
0
0
0

0
0
0
0

0
0
0
0

Figure 2.4 – Différentielle impossible sur 4 tours de l’AES où X symbolise une différence
non nulle qui peut être différente et “?” n’importe quelle différence.

Ce motif a été utilisé par la suite dans de nombreuses attaques contre l’AES.

2.3.2 L’attaque en elle même

L’attaque différentielle impossible est différente de l’attaque différentielle dans le sens
où ce n’est pas une attaque sur le dernier tour. En effet dans la cryptanalyse différen-
tielle impossible la différentielle regardée se situe au milieu du système de chiffrement et
l’attaquant doit faire des suppositions sur la clé des premiers et derniers tours.

Dans cette section nous donnons l’exemple d’une attaque différentielle impossible d’un
système de chiffrement de type SPN ou l’on cherche à retrouver la clé du premier et du
dernier tour. Nous supposons que nous avons trouvé une différentielle impossible (A1, Ar)
où A1 et Ar sont des ensembles de différence après un tour du système de chiffrement
et après r tours 4. Afin de pouvoir détailler l’algorithme utilisé pour l’attaque nous in-
troduisons les notations suivantes pour la clé du premier tour : les clés du premier tour
sont notées par h et la clé du premier tour correspondant à la clé utilisée pour chiffrer
est notée h∗. Pour les clés du dernier tour on utilise les notations communément utilisées
jusque ici (c’est-à-dire k et k∗). On a besoin ici de définir l’ensemble des différences en
entrée que l’on doit utiliser pour obtenir une différence dans A1 après un tour ainsi que
le crible utilisé pour supprimer des paires de messages chiffrés :

A0 =
{
a
∣∣∣∃b ∈ A1;P

[
a→

F
b
]
6= 0

}
∆sieve =

{
b
∣∣∣∃a ∈ Ar;P [a→

F
b
]
6= 0

}
4. On suppose ici que c’est une différentielle tronquée. Ce qui est souvent le cas dans les attaques

impossibles.



La cryptanalyse différentielle et ses généralisations 41

L’attaque différentielle impossible sur un système de chiffrement de type substitution
permutation utilisant ce cadre est décrite dans l’algorithme 4.

Algorithme 4 : Cryptanalyse différentielle impossible d’un système de type
substitution-permutation.
Entrée : NDC couples de messages clairs-chiffrés (X, Y ) avec Y = EK∗(X).
Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons.
Pour chaque a0 ∈ A0 faire

Pour chaque couple (X,X ′) tel que X ⊕X ′ = a0 faire
Si EK∗(X)⊕ EK∗(X ⊕ a0) ∈ ∆sieve alors

Pour chaque sous clé du dernier tour k faire
Si F−1

k (Y )⊕ F−1
k (Y ′) ∈ Ar alors

Pour chaque sous clé du premier tour h faire
Si Fh(X)⊕ Fh(X ′) ∈ A1 alors

Rejeter la sous clé h pour la clé k.

Pour les clés (h, k) restant faire
Pour chaque clé maître K correspondant aux sous clés (h, k) faire

Si EK(X) = Y = EK∗(X) alors retourner K;

2.3.3 Les variables aléatoires utilisées dans les attaques différen-
tielles impossibles

Lors de l’attaque comme présentée dans l’algorithme 4, nous n’avons pas besoin de
stocker des compteurs pour chaque clé regardée. Il suffit d’avoir une liste de toutes les clés
et de les supprimer au fur et à mesure des tests effectués. Pour une étude classique de la
complexité en donnée (voir chapitre 5) des attaques statistique nous avons en revanche
besoin de connaître la distribution des variables aléatoires utilisées dans les attaques
différentielles impossibles.

Définition 2.15. Soit k une clé candidate pour le dernier tour et h une clé candidate
pour le premier tour. Dans le cas de la cryptanalyse différentielle impossible comme définie
dans la section 2.3.2, les variables aléatoires étudiées sont

CX,(h,k) =

 1 si Fh(X)⊕ Fh(X ′) ∈ A1

et F−1
k (Y )⊕ F−1

k (Y ′) ∈ Ar
0 sinon.

Les compteurs que nous regardons alors sont C(h,k) =
∑

X CX,(h,k). En utilisant cette
définition la liste des clés gardées pour la recherche exhaustive de la clé maître correspond
aux clés (h, k) telles que C(h,k) = 0.

2.3.4 Lien avec les autres cryptanalyses

Du point de vue de l’attaque en elle même la cryptanalyse différentielle impossible
est sensiblement différente d’une cryptanalyse différentielle classique par le fait que l’at-



42 2.4 La cryptanalyse différentielle d’ordre supérieur

taquant cherche en même temps à retrouver la clé des premier et dernier tours mais aussi
par le fait que dans l’attaque différentielle impossible usuelle les tests effectués sont là
non pas pour incrémenter le compteur correspondant à la bonne clé mais pour éliminer
les mauvaises clés.

En ce qui concerne la recherche de la caractéristique différentielle impossible il s’avère
que celle ci est assez proche de la recherche de chemin différentiel tronqué. D’ailleurs on
peut remarquer que les systèmes de chiffrement qui sont sensibles aux attaques différen-
tielles tronquées sont souvent sensibles aux attaques différentielles impossibles.

Dans la cryptanalyse différentielle impossible on cherche par le milieu deux chemins
qui arrivent avec probabilité 1. Or lors d’un passage d’une différence dans les boîtes--
S une probabilité arrive. Pour contourner cette probabilité reliée aux propriétés de la
boîte-S nous considérons des mots de la taille de la boîte-S. La méthode la plus classique
consiste à dire que s’il y a une différence non nulle en entrée d’une boîte-S alors celle ci
subsiste à la sortie. C’est une des raisons pour laquelle les systèmes de chiffrement qui
comportent des faiblesses contre les attaques différentielles tronquées comportent aussi des
faiblesses contre les attaques différentielles impossibles. Ces deux attaques reposent sur
des propriétés de mauvaise diffusion dans les systèmes de chiffrements par bloc “orientés
mots”.

2.4 La cryptanalyse différentielle d’ordre supérieur

2.4.1 Définition

La cryptanalyse différentielle d’ordre supérieur sur les systèmes de chiffrement par
bloc a été introduite par Xuejia Lai en 1994 [Lai94] puis par Lars R. Knudsen en 1995
dans le but de cryptanalyser le DES [Knu95].

Dans la cryptanalyse différentielle classique l’étude porte sur l’analyse de la différence
entre deux messages clairs et deux messages chiffrés. Pour la cryptanalyse différentielle
d’ordre supérieur le principe reste le même mais au lieu d’étudier la dérivée à l’ordre un
de la fonction, on s’intéresse aux dérivées d’ordre supérieur.

Définition 2.16. [Lai94] Soit f une fonction de Fw2 dans Fz2. Soit a1, a2, ..av des vecteurs
indépendants de Fw2 . La dérivée d’ordre v de f relativement à (a1, a2, · · · , av) est la fonction
définie par :

D〈a1,··· ,av〉f : Fw2 → Fz2
x 7→

∑
a∈〈a1···av〉 f(x+ a)

où 〈a1, · · · , av〉 symbolise le sous espace vectoriel engendré par les vecteurs a1, a2, · · · , av.

Par exemple la dérivée à l’ordre deux suivant les valeurs a et b d’une fonction f au
point x est notée DaDbf(x) et vaut :

DaDbf(x) = Da(f(x)⊕ f(x⊕ b))
= f(x)⊕ f(x⊕ b)⊕ f(x⊕ a)⊕ f(x⊕ a⊕ b).



La cryptanalyse différentielle et ses généralisations 43

Dans cet exemple on voit que l’on a besoin de connecter l’image par la fonction f aux
points x, x⊕ a, x⊕ b, x⊕ a⊕ b. Ainsi les messages clairs doivent former un espace affine
de taille 2v si on étudie une différentielle d’ordre v.

Comme pour l’étude de la cryptanalyse différentielle la dérivée d’ordre supérieur est
définie de façon probabiliste. Mais dans la plupart des attaques différentielles d’ordre su-
périeur existantes, les attaquants utilisent des différentielles d’ordre supérieur avec proba-
bilité égale à 1. On parle alors de cryptanalyse différentielle d’ordre supérieur déterministe.

Soit deg(f) le degré algébrique d’une fonction f . Le fait de dériver une fois la fonction
f fait baisser son degré d’au moins un. Ainsi on a la propriété suivante :

Proposition 2.7. Soit f une fonction de Fw2 dans Fz2. Soit V un sous espace de Fv2 de
dimension deg(f) + 1 on a

DV f(x) = 0 pour tout x ∈ Fv2.

L’étude de la résistance d’un système de chiffrement aux attaques différentielles d’ordre
supérieur est souvent directement reliée à l’étude du degré du système de chiffrement.

2.4.2 L’attaque

Les attaques différentielles d’ordre supérieur ont pour l’instant été principalement
appliquées sur des systèmes de chiffrement ayant une structure de schéma de Feistel
comme par exemple Misty [Mat97]. Pour cela l’algorithme 5 décrit l’attaque dans le but
de retrouver la clé des deux derniers tours d’un schéma de Feistel en supposant que l’on
ait trouvé une différentielle d’ordre supérieur sur les r tours précédents.

On verra dans le chapitre 5, que dans le cas général d’une attaque différentielle d’ordre
supérieur déterministe (c’est-à-dire qui arrive avec probabilité égale à 1) il suffit souvent
d’utiliser un seul échantillon.

2.4.3 Les variables aléatoires utilisées dans les attaques différen-
tielles d’ordre supérieur

Comme dans toutes attaques statistiques, afin d’évaluer la complexité en donnée nous
avons besoin de définir les variables aléatoires que nous étudions

Définition 2.17. Soit EK un système de chiffrement avec clé maître K et fonction de
tour F . Dans le cas de la cryptanalyse différentielle d’ordre supérieur comme définie dans
la partie précédente, les variables aléatoires étudiées sont :

CX,k =

{
1 si DV F

−1
k (EK(X)) = 0

0 sinon.

Les compteurs que nous regardons alors correspondent à la somme des variables aléa-
toires simples :

Ck =
∑
X

CX,k.



44 2.4 La cryptanalyse différentielle d’ordre supérieur

Algorithme 5 : Cryptanalyse différentielle d’ordre v sur r + 2 tours d’un schéma
de Feistel.
Entrée : NDC = 2vN . Les N échantillons sont composés de 2v messages clairs

Xi + V = (Xi,1, · · ·Xi,2v) où V est un espace vectoriel avec dim(V ) = v et
i correspond au numero de l’échantillon 1 ≤ i ≤ N et les messages chiffrés
correspondants : (Yi,1, · · ·Yi,2v)

Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C à 0. ;
Pour chaque structure faire

Pour chaque message dans une structure faire
Pour chaque sous clé du dernier tour kr+2 correspondant à Kr+2 faire

(z
(g)
i,j , z

(d)
i,j )← (Y

(d)
i,j ⊕ f(Y

(g)
i,j ⊕ kr+2), Y

(g)
i,j );

Pour chaque sous clé de l’avant dernier tour kr+1 correspondant à
Kr+1 faire

Calculer ti,j = f(z
(g)
i,j ⊕ kr+1) ;

Si
∑

j ti,j ⊕ z
(d)
i,j = 0 alors

C [kr+1||kr+2] + +;

Générer une liste L de ` candidats ayant les plus grandes valeurs de compteur
C [kr+1||kr+2];
Pour chaque candidat kr+1||kr+2 ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

2.4.4 Lien entre la cryptanalyse différentielle d’ordre supérieur
et d’autres attaques

Il existe différentes variantes de la cryptanalyse différentielle d’ordre supérieur. Dans la
section 3.4, nous détaillons le lien avec les attaques intégrales. Mais il existe aussi un lien
avec les “zero-sum” appliquées principalement aux fonctions de hachage. En 2009, Jean
Phillipe Aumasson et Willi Meier ont trouvés des distingueurs sur certaines fonctions
de hachage de la compétition SHA-3 [AM09]. Ces distingueurs, qu’ils ont appelés "zero-
sum distinguisher", utilisent des propriétés des dérivées d’ordre supérieur de la fonction
étudiée. Ce type d’attaque avait déjà été introduit en partie par Lars Knudsen et Vincent
Rijmen dans le cas des cryptanalyses à clés fixées [KR07]. La différence principale de
ces attaques avec les attaques différentielles d’ordre supérieur est qu’elles ne peuvent
être utilisées que dans le cas où la permutation ne dépend d’aucun paramètre secret car
dans ce cas précis on peut utiliser les propriétés des différentielles d’ordre supérieur en
commençant par le milieu du système de chiffrement (c’est-à-dire un état intermédiaire).
Une étude plus approfondie de ce type de distingueur a été faite par Christina Boura et
Anne Canteaut [BC10]. Ces travaux ont permis d’appliquer ce nouveau type d’attaque à
un certain nombre de fonctions de hachage.



Chapitre 3

Autres attaques statistiques

Dans le chapitre précédent, nous avons détaillé un certain nombre d’attaques statis-
tiques relatives à la cryptanalyse différentielle. Le nombre d’attaques statistiques sur les
systèmes de chiffrement par bloc est élevé ; nous avons présenté celles dont le nom com-
porte le mot “différentiel” dans le chapitre précédent. Dans ce chapitre nous présentons
d’autres attaques statistiques qui ont soit un lien avec la cryptanalyse différentielle, soit
un lien avec la cryptanalyse linéaire que nous détaillons ici.
La liste des attaques statistiques que nous présentons ici ne se veut pas exhaustive. Elle
illustre la quantité d’attaques qui sont utilisées sur les systèmes de chiffrement par bloc
et parfois sur des fonctions de hachage.

3.1 Les attaques “boomerang”

L’attaque boomerang a été introduite en 1999 par David Wagner [Wag99] et a été
utilisée par la suite pour attaquer un certain nombre de systèmes de chiffrement par bloc.
C’est une généralisation de la cryptanalyse différentielle mais qui ne s’applique pas tout à
fait au même contexte puisque l’attaque boomerang est une attaque à messages clairs et
chiffrés choisis. C’est-à-dire que l’attaquant doit pouvoir obtenir les chiffrés des messages
clairs de son choix mais il doit aussi pouvoir obtenir les messages clairs correspondant à
des chiffrés de son choix.

3.1.1 Description

Dans la plupart des attaques boomerang la sous clé que l’on cherche à retrouver est
celle du premier tour. Ainsi nous allons décrire l’attaque dans ce cas.

Soit E un système de chiffrement que l’on décompose en trois parties E0, E1 et la
fonction de tour F : E = E1 ◦ E0 ◦ F .

Supposons que l’on ait extrait une différentielle a → ã pour la fonction E0, et une
différentielle b→ b̃ pour la fonction E−1

1 avec les probabilités suivantes :

p∗ = P

[
a→
E0

ã

]
q∗ = P

[
b →
E−1

1

b̃

]



46 3.1 Les attaques “boomerang”

E1

E0

FK1

E1

E0

FK1

E1

E0

FK1

E1

E0

FK1

X

X ′

Z

Z ′

Y

Y ′

T

T ′

a

ã

a

ã

b̃

b̃

b

b

Figure 3.1 – Schéma descriptif de l’attaque boomerang

Pour attaquer le système de chiffrement, nous considerons un ensemble de quatre
messages clairs X,X ′, Z, Z ′ et leur messages chiffrés correspondant Y, Y ′, T, T ′. Dans une
attaque boomerang nous voulons que la paire (X,X ′) suive la différentielle a → ã sur la
partie E0 et que les couples X,Z et X ′, Z ′ suivent la différentielle b → b̃ sur E−1

1 . Alors
on espère que la paire (Z,Z ′) suive la différentielle ã→ a sur E−1

0 . Un schéma descriptif
est donné dans la figure 3.1.

Soit A0 l’ensemble défini par A0 = {a0

∣∣∣P [a0 →
F
a
]
6= 0}. L’attaque boomerang utili-

sant ces différences est résumée dans l’algorithme 6.

3.1.2 Les variables aléatoires étudiées

Soit CX,k et Ck les variables aléatoire définies dans la section 1.5.5. Dans le cas des
attaques boomerang les variables aléatoires simples CX,k valent :

CX,k =

 1 si Fk(X)⊕ Fk(X ′) = a et
Fk
(
E−1
K∗(EK∗(X)⊕ b)

)
⊕ Fk

(
E−1
K∗(EK∗(X

′)⊕ b)
)

= a
0 sinon.

Comme dans beaucoup d’attaques statistiques, les variables aléatoires Ck permettant de
générer la liste des clés gardées correspondent à la somme de ces variables aléatoires
simples.

Dans le cas où la clé candidate testée est égale à la bonne sous clé k∗, la variable
aléatoire Ck∗ suit une loi binomiale de paramètre N et p2

∗q
2
∗.

3.1.3 Lien avec les autres attaques

Naturellement l’attaque boomerang est une généralisation de la cryptanalyse différen-
tielle puisqu’elle utilise des propriétés différentielles sur des versions réduites du système
de chiffrement (E0) et (E1). L’attaque boomerang est aussi beaucoup utilisée pour les



Autres attaques statistiques 47

Algorithme 6 : Attaque boomerang
Entrée : N échantillons composés de deux messages clairs et de deux messages

chiffrés
Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C de 2n compteurs à 0 ;
Pour chaque a0 ∈ A0 faire

Pour chaque couple (X,X ′)avec X ′ = X ⊕ a0 faire
Récupérer les chiffrés correspondants Y = EK∗(X) et Y ′ = EK∗(X

′);
Soit T = Y ⊕ b et T ′ = Y ′ ⊕ b;
Récupérer les clairs correspondants Z = E−1

K∗(T ) et Z ′ = EK∗(T
′);

Si Z ⊕ Z ′ ∈ A0 alors
Pour chaque sous clé candidate k faire

Calculer d = Fk(X)⊕ Fk(X ′);
Calculer d′ = Fk(Z)⊕ Fk(Z ′);
Si d = a et d′ = a alors C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

fonctions de hachage : on peut citer par exemple l’attaque boomerang sur SHA-1 faite
par Antoine Joux et Thomas Perrin [JP07].

3.2 La cryptanalyse linéaire

La cryptanalyse linéaire qui fait partie de la famille des attaques statistiques est assez
différente des attaques vues jusqu’ici, puisque qu’elle relève de l’étude des propriétés de
non linéarité du système de chiffrement.

3.2.1 La cryptanalyse linéaire

La cryptanalyse linéaire a été introduite par Mitsuru Matsui à Eurocrypt en 1993
[Mat93].

Définition 3.1. Soit (π, κ, γ) ∈ Fm2 × FΩ
2 × Fm2 un triplet où π est appelé masque d’en-

trée, κ masque de clé et γ masque de sortie 1. Soit F la fonction de tour d’un
système de chiffrement par bloc paramétré par une clé K. Une approximation linéaire
sur r tours, relative à ce triplet, est

(X,K)→ 〈π,X〉 ⊕ 〈κ,K〉 = 〈γ, F r
K(X)〉,

où 〈a, b〉 désigne le produit scalaire dans les corps de caractéristique 2.

1. On rappelle que Ω désigne le nombre de bits de la clé maitre



48 3.2 La cryptanalyse linéaire

Définition 3.2. Soit (π, κ, γ), un triplet définissant une approximation linéaire. La pro-
babilité de cette approximation est :

PX,K [〈π,X〉 ⊕ 〈κ,K〉 = 〈γ, F r
K(X)〉] =

1

2
+ ε. (3.1)

La variable ε est appelé le biais de l’approximation linéaire. C’est un réel positif ou négatif
de valeur absolue plus petite que 0.5

Il est bien évident que les approximations linéaires avec un biais nul ne sont pas
intéressantes pour une cryptanalyse linéaire classique car cela correspond au cas de la
distribution uniforme 2.

C’est la connaissance de l’évaluation de l’équation linéaire en certains points qui va
nous permettre de tirer de l’information sur la clé utilisée pour chiffrer. Dans les attaques
linéaires on n’a pas besoin de choisir les couples clair/chiffré utilisés pour récupérer cette
information. On dit alors que la cryptanalyse linéaire est une attaque à clairs connus 3.
Dans la pratique, lorsque l’on effectue une cryptanalyse linéaire, la clé que l’on cherche à
retrouver est fixée. Ainsi si on se place à clé fixée la probabilité est

PX [〈π,X〉 ⊕ 〈κ,K〉 = 〈γ, F r
K(X)〉] =

1

2
+ εK . (3.2)

Dans la pratique le biais peut être différent suivant la clé utilisée pour chiffrer. En théorie
on fait l’hypothèse que le biais est le même pour toutes les clés. Cette hypothèse est appelé
hypothèse d’indépendance à clé fixée.

Hypothèse 3.1. Hypothèse d’indépendance à clé fixée Soit (π, κ, γ) un triplet
définissant une approximation linéaire. Dans les attaques linéaires classiques on suppose
que toutes les clés possèdent le même biais pour une approximation linéaire donnée, c’est-
à-dire :

PX [〈π,X〉 ⊕ 〈κ,K〉 = 〈γ,EK(X)〉] = PX,K [〈π,X〉 ⊕ 〈κ,K〉 = 〈γ,EK(X)〉]

3.2.2 Attaque linéaire de type 1 et de type 2

Dans son premier papier, Mitsuru Matsui présente plusieurs méthodes pour effectuer
des cryptanalyses linéaires. Ses méthodes sont décrites dans les algorithmes 1 et 2 de
[Mat93]. Par la suite dans la littérature les cryptographes ont repris ces attaques en les
nommant attaque de type 1 et de type 2 pour faire référence aux deux premiers algorithmes
proposés par Mitsuru Matsui. L’attaque de type 3 que nous ne présenterons pas ici est
une combinaison des deux précédentes attaques.

Attaque de type 1

Dans cette attaque on cherche à tirer de l’information à partir des chiffrés directement
(c’est-à-dire EK = F r

K). Cette attaque retrouve en général la valeur de 1 bit de la clé
maître. Le reste de l’attaque se fait par une recherche exhaustive des bits de la clé.

2. On peut quand même en tirer certaine informations. Cela a fait l’objet de travaux récents.
3. Contrairement à la cryptanalyse différentielle et ses généralisations qui sont des attaques à clairs

choisis



Autres attaques statistiques 49

Pour une clé maître K∗ fixée, dans une attaque de type 1 on s’intéresse à la valeur
suivante :

PX [〈π,X〉 ⊕ 〈γ,EK∗(X)〉] =
1

2
+ (−1)〈κ,K

∗〉ε

Supposons que l’on ait à notre disposition N couples clairs chiffrés (Xi, Yi) avec Y =
EK∗(X), dans une attaque de type 1 on compte le nombre de paires (X, Y ) qui vérifient
l’équation 〈π,X〉 ⊕ 〈γ, Y 〉 = 0. Nous notons par C la variable aléatoire correspondant à
la somme des variables aléatoire simple CX :

CX
def
=

{
1 si 〈π,X〉 ⊕ 〈γ, Y 〉 = 0
0 sinon. et C =

∑
X

CX .

Contrairement aux attaques que nous avons présentées jusqu’ici, dans la cryptanalyse
linéaire de type 1, on ne cherche pas à retrouver la clé du dernier tour mais de l’information
sur un bit de la clé maître. Ainsi comme on étudie la distribution d’un compteur pour une
clé fixée, on n’utilise pas la notation classique Ck définie dans la section 1.5.5. Cependant
l’analyse de la complexité en donnée faite dans le chapitre 5 reste valable.

À partir de ces compteurs on définit le biais empirique d’une approximation linéaire
pour la clé utilisée pour chiffrer par ε̂ = C

N
− 1

2
. On s’intéresse alors aux signes du biais

empirique ε̂ et du biais théorique ε : si les deux biais ont le même signe alors 〈κ,K∗〉 = 0
sinon 〈κ,K∗〉 = 1. L’algorithme 7 décrit cette attaque.

Algorithme 7 : Cryptanalyse linéaire de type 1 pour un triplet (π, κ, γ)

Entrée : N couples clair/chiffré (X, Y ) avec y = E∗K(xi).
Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser un compteur C à 0;
Pour chaque message clair X faire

Si 〈π,X〉 ⊕ 〈γ, Y 〉 alors C ← C + 1;
Si εε̂ > 0 alors
〈κ,K∗〉 = 1.

Sinon
〈κ,K∗〉 = 0.

Faire une recherche exhaustive de la clé maître.

Attaque de type 2

L’attaque de type 2, porte aussi le nom d’attaque linéaire sur le dernier tour. En effet
dans cette attaque on va chercher à retrouver de l’information non pas sur la clé maître
directement mais sur la clé du dernier tour 4. On rappelle les notations qui sont utilisées
dans les chapitres précédents. Soit K∗ la clé utilisée pour chiffrer. La clé du dernier tour
correspondant à la clé maître est notée k∗ alors que toutes les autres clés candidates sont
notées k. Soit un système de chiffrement E comportant r + 1 tours EK = F r+1

K . Soit ε le
biais théorique d’une approximation linéaire sur r tours du système de chiffrement :

PX,K [〈π,X〉 ⊕ 〈κ,K〉 = 〈γ, F r
K(X)〉] =

1

2
+ ε.

4. La même méthode peut être appliquée pour retrouver la clé des premiers tours et des derniers tours
combinés



50 3.2 La cryptanalyse linéaire

Supposons que nous ayons N couples de messages clairs, messages chiffrés (X, Y =
E∗K(X)). Pour chaque clé du dernier tour on calcule les compteurs

Ck =
N∑
i=1

〈π,Xi〉 ⊕ 〈γ, F−1(Yi)〉 ⊕ 1.

Afin de distinguer la bonne sous clé des autres on fait l’hypothèse que la valeur
∣∣Ck
N
− 1

2

∣∣
pour k 6= k∗ est proche de 0. Cette hypothèse est appelée hypothèse de répartition aléatoire
par fausse clé.

Hypothèse 3.2. Répartition aléatoire par fausse clé Soit K∗ la clé maître utilisée
pour chiffrer. Pour toutes les sous clés k ne correspondant pas à la clé maître on a

PX

[
〈π,X〉 ⊕ 〈κ,K〉 = 〈γ, F−1

k (E∗K(X))〉
]

=
1

2
.

La bonne sous clé se distingue alors par le fait que
∣∣Ck∗
N
− 1

2

∣∣ ≈ ε.
L’algorithme 8 décrit cette attaque.

Algorithme 8 : Cryptanalyse linéaire de type 2 pour un triplet (π, κ, γ) définissant
une approximation linéaire sur r tours. Cas où EK∗ = F r+1

K∗

Entrée : N clairs X et les chiffrés correspondant Y = E∗K(X)
Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C[k] à 0;
Pour chaque message clair X faire

Pour chaque sous clé k faire
Si 〈π,X〉 ⊕ 〈γ, F−1

k (Yi)〉 = 0 alors
C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

3.2.3 Distribution des variables aléatoires

La complexité en données, la probabilité de succès et le gain d’une attaque ont été
beaucoup étudiés dans le cas de la cryptanalyse linéaire, en particulier par Pascal Junod
[Jun01] et par Ali Aydin Selçuk [Sel08]. Ces résultats reposent sur l’étude de la distribution
des compteurs utilisés dans ces cryptanalyses.
Si on reprend le cas particulier de la cryptanalyse linéaire de type 2, l’attaque consiste
alors à distinguer deux distributions. Dans le cas de la bonne sous clé la variable aléatoire
Ck∗ suit une loi binomiale de paramètres N et p∗ avec p∗ = 1

2
+ ε alors que pour toutes les

autres clés les variables aléatoires Ck suivent une loi binomiale de paramètres N et p avec
p = 1

2
. Contrairement au cas de la cryptanalyse différentielle où l’étude de la complexité

en données et de la probabilité de succès peut être difficile, ici cette étude est simplifiée



Autres attaques statistiques 51

par l’utilisation d’une approximation gaussienne de la loi binomiale. Cette approximation
gaussienne peut se faire grâce au jeu de paramètres que l’on manipule ici. Ainsi dans
[Jun01], une étude du gain est donnée en utilisant cette approximation gaussienne et dans
[Sel08] une formule de la probabilité de succès est aussi extraite de cette approximation.

3.2.4 La cryptanalyse linéaire multiple et multidimensionnelle

Les attaques linéaires ont été améliorées suivant deux directions. Ainsi on peut distin-
guer la cryptanalyse linéaire multiple de la cryptanalyse linéaire multidimensionnelle.

La cryptanalyse linéaire multiple a été introduite dans un second article de Mitsuru
Matsui [Mat94] qui utilisait deux approximations linéaires sur le DES puis a été reprise
dans de nombreux articles notament [JR94, JV03, BCQ04]. Dans l’analyse de la distri-
bution des variables aléatoires on considère que les approximations sont statistiquement
indépendantes 5. Les complexités de ce type d’attaque ont déjà été beaucoup étudiées
en particulier par Pascal Junod et Serge Vaudenay dans [JV03] et par Alex Biryukov,
Christophe de Cannière et Mickaël Quisquater dans [BCQ04].

L’introduction de la cryptanalyse différentielle multidimensionnelle est quant à elle
plus récente puisqu’elle a été introduite dans de nombreux articles écrits par Joo Yeon
Cho, Miia Hermelin et Kaisa Nyberg [CHN08, HCN09, HN10]. L’objectif principal de cette
approche est de s’affranchir de l’hypothèse faite dans la cryptanalyse linéaire multiple que
les approximations linéaires sont indépendantes. Ainsi dans le cas de la cryptanalyse
linéaire multidimensionnelle, les compteurs sont définis pour chaque approximation. On
obtient alors des vecteurs de 0 et de 1 selon que ’approximation est vérifiée pour une clé
ou pas. L’étude théorique repose alors sur la distribution de ces vecteurs.

3.3 La cryptanalyse différentielle-linéaire

3.3.1 Définition

La cryptanalyse “différentielle-linéaire” a été introduite en 1994 par Susan K. Lang-
ford et Martin E. Hellman dans [LH94] dans le but de monter une attaque sur 8 tours
du DES qui améliore la meilleure attaque différentielle et la meilleure attaque linéaire.
Cette attaque comme son nom l’indique est un mélange de l’attaque linéaire et de l’at-
taque différentielle classique. Les différentes attaques différentielles-linéaires combinent la
connaissance d’une différentielle sur les premiers tours du système de chiffrement avec une
approximation linéaire sur la fin du système de chiffrement.

Afin de décrire cette attaque nous reprenons les notations définies dans la section 2.1
et la section 3.2 concernant la cryptanalyse différentielle et la cryptanalyse linéaire.

Définition 3.3. Soit (a0, κ, γ) ∈ Fm2 × FΩ
2 × Fm2 un triplet, où a0 est une différence

entre deux messages clairs, γ est un masque en sortie et κ un masque sur la clé. Soit
F la fonction de tour d’un système de chiffrement par bloc paramétré par la clé K. Une

5. Ce qui n’est pas le cas dans la pratique.



52 3.3 La cryptanalyse différentielle-linéaire

approximation différentielle-linéaire sur r tours est alors définie par

X → 〈γ, F r
K(X)〉 ⊕ 〈γ, F r

K(X ⊕ a0)〉 = 〈κ,K〉.

Pour une clé fixée, la probabilité d’une approximation différentielle-linéaire est alors défi-
nie par

PX [〈γ, F r
K(X)〉 ⊕ 〈κ,K〉 = 〈γ, F r

K(X ⊕ a0)〉] =
1

2
+ εK ,

où sous l’hypothèse d’indépendance à clé fixée (voir hypothèse 3.1) le biais εK est le même
pour toutes les clés.

3.3.2 L’attaque

L’attaque en elle même étant assez simple à comprendre puisque c’est une combinaison
d’attaques déjà connues, nous allons juste donner l’algorithme la décrivant (voir l’algo-
rithme 9) dans le cas d’une attaque sur le dernier tour (c’est-à-dire le cas où EK∗ = F r+1

K∗ ).

Algorithme 9 : Cryptanalyse “différentielle-linéaire” sur le dernier tour utilisant
le triplet (a0, κ, γ) définissant une approximation différentielle-linéaire sur r tours.
(EK∗ = F r+1

K∗ )

Entrée : N couples (X,X ′ = X ⊕ a0) et les chiffrés correspondants
(Y = EK∗(X), Y ′ = EK∗(X ⊕ a0))

Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C[k] à 0;
Pour chaque couple (X,X ⊕ a0) faire

Pour chaque sous clé k faire
Si 〈γ, F−1

k (Y )〉 ⊕ 〈γ, F−1
k (Y ′)〉 = 0 alors

C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de
∣∣C[k]− N

2

∣∣ ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

Dans le cas de la cryptanalyse “différentielle-linéaire”, on ne peut pas utiliser de crible
pour supprimer un certain nombre de paires car la caractéristique différentielle n’apparaît
que sur les premiers tours du système de chiffrement. De la même façon on ne peut pas
utiliser un masque sur l’entrée car la caractéristique linéaire n’apparaît que sur la seconde
partie du système de chiffrement.

3.3.3 Les variables aléatoires

Les variables aléatoires simples (voir section 1.5.5) utilisées pour les attaques différentielles-
linéaires sont définies par

CX,k =

{
1 si

〈
γ, F−1

k

(
EK∗(X)

)〉
⊕
〈
γ, F−1

k

(
EK∗(X ⊕ a0)

)〉
= 0 ;

0 sinon .



Autres attaques statistiques 53

SB

SR

MC

AR

SB

SR

MC

AR

SB

SR

MC

AR

y S(y) z1

z2

z3

z4

S

Figure 3.2 – Distingueur pour une attaque intégrale sur 3 tours de l’AES

Les variables aléatoire étudiées Ck correspondent à la somme de ces variables aléatoires
simples et suivent une loi binomiale de paramètre (N, 1

2
+ ε) dans le cas où k = k∗ ou

une loi binomiale de paramètre (N, 1
2
) dans les autres cas. Comme pour la cryptanalyse

linéaire de type 2, on obtient alors que la distribution de ces variables aléatoires peut être
approchée par une loi gaussienne.

3.4 L’attaque par saturation ou attaque intégrale

La cryptanalyse intégrale a été introduite par Joan Daemen, Vincent Rijmen et Lars
R. Knudsen dans [DKR97] 6. Suite au papier de Stefan Lucks en 2001 [Luc01] elle prend
le nom d’attaque par saturation. Puis, à FSE en 2002, Lars R. Knudsen et David Wagner
[KW02] la renomment attaque intégrale.

3.4.1 Description

L’attaque intégrale s’applique relativement bien aux systèmes de chiffrement “orientés
mots“. Il s’agit de “saturer” un ou plusieurs mots, c’est-à -dire de faire prendre à une partie
du message toutes les valeurs possibles et d’utiliser les propriétés induites par la fonction
itérée pour créer un distingueur sur la sortie.

De façon générale, soit Λ l’espace des différences en entrée que l’on veut saturer (c’est-
à-dire faire prendre toutes les valeurs). Pour un message fixé en entrée, on fait varier tous
les bits correspondant à Λ. Dans une attaque intégrale on s’attend à ce que la somme de
tous les chiffrés correspondant à ces #Λ messages clairs soit égale à 0 sur un sous espace.

Exemple 3.1. Dans cet exemple nous présentons un distingueur bien connu sur 3 tours de
l’AES. Ce distingueur permet de monter une attaque sur 6 tours de l’AES. Le distingueur
est représenté sur la figure 3.2. Soit un ensemble Λ qui contient 256 mots à chiffrer, où
les mots sont tous égaux sur 120 bits et prennent toutes les valeurs possibles sur l’octet en
haut à droite. Si on regarde l’évolution des octets actifs après 3 tours on observe que la
somme des 256 sorties est égale à 0 sur un octet. Ce distingueur s’applique à toutes les

6. Cette attaque a été mise en place sur les système de chiffrement SQUARE. En référence à ce papier
certains la nomment “square attaque”.



54 3.4 L’attaque par saturation ou attaque intégrale

boîtes-S en entrée.

Pour simplifier la compréhension de l’attaque qui permet de retrouver une partie de
la clé d’un système de chiffrement dans le cadre d’une attaque intégrale, l’algorithme 10
se restreint à la recherche de la clé du dernier tour. Cet algorithme peut évidemment se
généraliser facilement pour retrouver la clé du premier ou des premiers tours et/ou la clé
des derniers tours.

Algorithme 10 : Attaque intégrale (attaque sur le dernier tour).
Entrée : N échantillons où un échantillon est composé de #Λ messages X ⊕ a avec

a parcourant Λ et les chiffrés correspondants Ya = EK∗(X ⊕ a).
Sortie : La clé maître K∗ utilisée pour chiffrer les échantillons
Initialiser une table C de 2n compteurs à 0 ;
Pour chaque échantillon faire

Pour chaque sous clé candidate k faire
d = 0;
Pour chaque a ∈ Λ faire

Calculer d = d⊕ F−1
k (Ya);

Si d est égal à 0 sur la partie étudiée alors C[k]← C[k] + 1;

Générer une liste L de ` candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître K correspondant à la clé k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

3.4.2 Les variables aléatoires

Soit Λ un espace de différences en entrée que l’on fait varier et M la fonction qui
permet de tronquer la sortie sur les bits qui nous intéressent. Les variables aléatoires
utilisées dans une cryptanalyse intégrales sont définies par

CX,k =

 1 si
⊕
a∈Λ

M
(
F−1
k (EK∗(X ⊕ a)

)
= 0,

0 sinon.

Comme pour la cryptanalyse différentielle d’ordre supérieur déterministe, les variables
aléatoires CX,k∗ suivent des lois de Bernoulli avec probabilité 1 alors que pour les autres
candidats les variables aléatoires CX,k suivent des lois de Bernoulli de paramètre 1

2m−#M où
#M est la taille de la troncature. Les variables aléatoires qui nous intéressent pour former
la liste des clés gardées correspondent à la somme de ces variables aléatoires simples :

Ck =
∑
X

CX,k.

3.4.3 Lien avec les autres cryptanalyses

Lien avec la cryptanalyse différentielle d’ordre supérieur La cryptanalyse inté-
grale peut être vue comme une attaque différentielle d’ordre supérieur (voir section 2.4).



Autres attaques statistiques 55

La différence entre ces deux types d’attaques vient principalement de la manière de trou-
ver un distingueur sur la fonction.
Dans la cryptanalyse d’ordre supérieur on s’intéresse au degré algébrique du système de
chiffrement. Cette propriété est directement reliée au degré algébrique des boîtes-S com-
posant le système de chiffrement.
Dans la cryptanalyse intégrale des systèmes de chiffrement orientés mot on s’intéresse
plus aux propriétés de diffusion du système de chiffrement, puisque quand on sature une
boîte-S en entrée alors la sortie est aussi saturée (si la boîte-S est une permutation).

Lien avec la cryptanalyse linéaire multiple La cryptanalyse intégrale a aussi été
appliquée sur des systèmes de chiffrement qui n’étaient pas orientés mots. On peut ci-
ter par exemple l’attaque par saturation sur PRESENT faite par Baudoin Collard et
François-Xavier Standaert [CS09]. La meilleure attaque linéaire multiple sur PRESENT
peut cryptanalyser 26 tours ([Cho10]) et l’attaque par saturation [CS09] est assez proche
puisque elle permet de retrouver de l’information sur la clé si le système de chiffrement
est réduit à 24 tours 7. La question s’est alors posée de savoir pourquoi PRESENT était
vulnérable “autant” à l’attaque par saturation qu’a l’attaque linéaire multiple. Une étude
faite par Gregor Leander en 2011 [Lea11] montre le lien entre ces deux types d’attaques.
L’auteur introduit alors une nouvelle famille d’attaques incluant la cryptanalyse linéaire
multiple et les attaques par saturation.

3.5 Les attaques à clés liées

Je ne pouvais pas faire une étude des attaques statiques sans parler rapidement des
attaques à clés liées 8. Ces attaques sont moins puissantes que les attaques précédentes
car elle supposent que l’on a en sa possession un certain nombre de messages clairs et les
chiffrés correspondants pour différentes clés.
La famille des attaques à clés liées est très large. L’idée est, connaissant le lien entre
plusieurs clés de retrouver une de ces clés. Les plus connues sont les attaques différentielles
à clés liées [Bih94]. Dans les attaques différentielles à clés liées, on suppose que l’on a en
possession d’un certain nombre de paires de messages clairs avec une différence donnée
a0 et les chiffrés correspondants par deux clés différentes liées, K et K + γ0. Dans cette
section nous détaillons le principe de l’attaque différentielle à clés liées.

3.5.1 Attaque différentielle à clés liées

L’attaque différentielle à clés liées a été introduite par Eli Biham [Bih94]. Elle est
utilisée pour montrer des faiblesses d’un certain nombre de systèmes de chiffrement et est
relativement efficace sur certaines des versions de l’AES. La dernière attaque différentielle
à clés liées peut casser 10 des 14 tours de l’AES avec clés de 256 bits [BDK+10].

Définition 3.4. Soit EK un système de chiffrement par bloc qui chiffre des messages de m
bits avec un clé maître K de taille Ω. On appelle caractéristique différentielle à clés
liées le triplet (a0, ar, γ0) où a0 ∈ Fm2 correspond à une différence entre deux messages en

7. Au lieu des 31 de la description de PRESENT
8. "related key differential attacks"



56 3.5 Les attaques à clés liées

entrée, ar ∈ Fm2 correspond à une différence entre les deux messages chiffrés avec des clés
différentes et γ0 ∈ FΩ

2 correspond à la différence entre les deux clés que l’on utilise.

L’algorithme 11 décrit cette attaque dans le cas où l’on a trouvé une caractéristique
différentielle à clés liées de la forme (a0, arγ0).

Algorithme 11 : Cryptanalyse différentielle à clés liées.
Entrée : N couples (X,X ′ = X ⊕ a0) et les chiffrés correspondants respectivement

par les clés K et K ′ = K ⊕ γ0 : Y = EK(X) et Y ′ = EK′(X
′)

Sortie : La clé maître K
Initialiser une table C de 22n compteurs à 0 ;
Pour chaque couple (X,X ⊕ a0) faire

Pour chaque couple de sous clés candidates (k, k′) faire
Calculer d = F−1

k (Y )⊕ F−1
k′ (Y ′);

Si d = ar alors C[(k, k′)]← C[(k, k′)] + 1;

Générer une liste L des ` candidats ayant les plus grandes valeurs de C[(k, k′)] ;
Pour chaque (k, k′) ∈ L faire

Rechercher la clé maître correspondante.

3.5.2 Les variables aléatoires

Dans une attaque différentielle à clés liées avec paramètres (a0, ar, γ0), les variables
aléatoires simples que nous étudions sont les suivantes :

CX,(k,k′) =

{
1 si F−1

k (EK(X))⊕ F−1
k′ (EK⊕γ0(X ⊕ a0)) = ar

0 sinon. (3.3)

Les variables aléatoires qui nous intéressent dans les attaques différentielles à clés liées
correspondent à la somme des variables aléatoires simples :

C(k,k′) =
∑
X

CX,(k,k′).

Ces variables aléatoires suivent des lois binomiales avec des paramètres différents si les
candidats (k, k′) correspondent aux clés maîtres (K,K ′) ou non. L’ordre de grandeur des
paramètres étudiés est le même que dans les attaques différentielles classiques.

3.5.3 Lien avec d’autres attaques

Il existe d’autres versions des attaques à clés liées. On peut citer par exemple les
attaques boomerang à clés liées. Le principe est alors un mélange entre les attaques
différentielles à clés liées et les attaques boomerang (voir section 3.1).



Autres attaques statistiques 57

Application aux fonctions de hachage

Ehi−1 hi

xi

Figure 3.3 – Construction Davis-Meyer

Les attaques différentielles à clés liées sur les systèmes de chiffrement par bloc peuvent
aussi être utilisées sur les fonctions de hachage utilisant des systèmes de chiffrement
par bloc comme primitives. Par exemple dans le cas des fonctions de hachage utilisant le
construction Davis-Meyer la fonction de compression prend en entrée la valeur de chaînage
et la clé du système de chiffrement par bloc est alors composée d’un bloc de message que
l’on veut hacher (voir figure 3.3).

Dans les attaques par collision, on cherche alors deux valeurs de chaînages h et h′ =
h+ a0 et deux messages X et X ′ = X + γ0 qui donnent une différence nulle après passage
dans la fonction de compression c’est-à-dire une différence ar = a0 à la sortie du système
de chiffrement par bloc.





Chapitre 4

Hypothèses utilisées dans la
cryptanalyse différentielle

Dans le chapitre 2, nous avons détaillé les attaques différentielles et leurs générali-
sations. En particulier nous avons expliqué que la probabilité de succès d’une attaque
différentielle repose sur la probabilité de la différentielle utilisée pour attaquer le système
de chiffrement. L’attaquant doit trouver une bonne estimation de cette probabilité.

Afin de calculer la probabilité d’un chemin différentiel ou d’une différentielle, beaucoup
d’hypothèses sont communément utilisées. L’idée de ce chapitre est de vérifier la validité
de ces hypothèses sur des versions réduites du système de chiffrement PRESENT (voir
section 1.4.1) appelées SMALLPRESENT. Les expérimentations que nous faisons dans ce
chapitre sont faites sur SMALLPRESENT-[4] 1 et sur SMALLPRESENT-[8] 2.

4.1 Les chemins différentiels
Nous allons d’abord vérifier les hypothèses sur les chemins composant les différentielles.

Définition 4.1. Un chemin différentiel sur r tours d’un système de chiffrement itératif
avec fonction de tour FK : Fm2 → Fm2 est un (r+1)-uplet, (β0, β1, · · · , βr−1, βr) ∈ (Fm2 )(r+1),
de différences intermédiaires à chaque tour.

La probabilité d’un chemin différentiel β = (β0, β1, · · · , βr−1, βr) ∈ (Fm2 )(r+1) est :

P [β]
def
= PX,K

[
F i
K(X)⊕ F i

K(X ⊕ β0) = βi, ∀i
]
.

Calculer la valeur exacte de la probabilité d’un chemin différentiel n’est pas possible
pour un système de chiffrement par bloc. En effet, ce calcul nécessite de chiffrer tous les
messages avec toutes les cléé. Par exemple on aurait une complexité de O (2128+128) dans
le cas de l’AES avec une clé de 128 bits ou encore une complexité de O (264+80) dans le
cas de PRESENT.

Dans ce chapitre, on note par P t [β] la probabilité théorique d’un chemin différentiel et
par P r [β] la probabilité réelle obtenue par une moyenne sur les messages et sur les clés.

1. SMALLPRESENT-[4] permet de chiffrer des messages de 16 bits.
2. SMALLPRESENT-[8] permet de chiffrer des messages de 32 bits.



60 4.1 Les chemins différentiels

4.1.1 Chiffrement de Markov

Pour calculer la probabilité théorique d’un chemin différentiel, une des hypothèses
communément utilisée est que le système de chiffrement est de Markov (voir définition 4.2).
Cette hypothèse consiste à dire que les différences à chaque tour sont indépendantes. La
probabilité d’un chemin différentiel s’obtient en multipliant les probabilités de chaque
tour.

Définition 4.2. [LM91] Un système de chiffrement itératif avec fonction de tour F est
de Markov relativement à la cryptanalyse différentielle si la probabilité de la différence en
sortie, connaissant la différence en entrée, est indépendante de la clé utilisée pour chiffrer.

Soit β = (β0, β1, · · · , βr) un chemin différentiel. Sous l’hypothèse que le système de
chiffrement est de Markov, la probabilité théorique du chemin différentiel se calcule de la
façon suivante :

Proposition 4.1. [LM91] Supposons que le système de chiffrement itératif avec fonction
de tour F est de Markov. Supposons aussi que les clés de tours sont indépendantes et
uniformément distribuées. Alors la séquence des différences β0, · · · , βr forme une chaîne
de Markov. Dans ce cas particulier la probabilité du chemin différentiel β = (β0, · · · , βr)
se calcule de la façon suivante :

P t [β] =
r∏
i=1

PX,K [FK(X)⊕ FK(X ⊕ βi−1) = βi, ∀i] .

L’hypothèse que le système de chiffrement est de Markov n’est pas vraie en général (les
expérimentations que nous avons faites sur SMALLPRESENT-[4] et que nous détaillons
ci-après le montrent). En effet, lors de nos expérimentations sur SMALLPRESENT-[4]
nous avons remarqué une dépendance des clés pour certains des chemins.

La probabilité d’un chemin différentiel peut être influencée par la clé utilisée pour
chiffrer. Pour illustrer ce phénomène, étant donné un chemin différentiel, nous introduisons
des compteurs pour chaque clé :

TK
def
=

1

2
#{X ∈ Fm2 |F i

K(X)⊕ F i
K(X + β0) = βi ∀ 1 ≤ i ≤ r},

T [j]
def
= #{K|TK = j}. (4.1)

Soit Ω le nombre de bits de la clé maître. La valeur exacte de la probabilité réelle d’un
chemin différentiel est alors :

P r [β] = 2−m−1−Ω
∑
K∈FΩ

2

TK = 2−m−1−Ω
∑
j

T [j] · j.

Nous donnons ici un exemple de chemin différentiel sur SMALLPRESENT-[4] où l’on
observe une dépendance de la clé qui fait que P t [β] 6= P r [β].

Exemple 4.1. Nous avons trouvé un chemin différentiel sur 3 tours de SMALLPRESENT-
[4] tel que la probabilité théorique est différente de la probabilité réelle.
Soit β = (0x1101, 0xdd, 0x30, 0x220) ce chemin différentiel. Ce chemin différentiel était



Hypothèses utilisées dans la cryptanalyse différentielle 61

déjà étudié dans la section 2.1. Ainsi la figure 2.1 représentait ce chemin et l’exemple 2.2
donnait le calcul de la probabilité théorique de ce chemin qui est de P t [β] = 2−12. Nous
nous sommes intéressés à la probabilité du chemin différentiel pour une clé fixée. Le ta-
bleau 4.1 nous donne le nombre de couples de messages clairs qui suivent ce chemin pour
une clé fixée. On observe alors sur cet exemple que la probabilité de ce chemin différentiel
j

216
n’est pas la même pour toutes les clés. Comme cet exemple est petit nous ne distin-

guons que 3 classes de clés mais dans la réalité ce nombre de classes peut être beaucoup
plus important. En utilisant les résultats du tableau 4.1 nous pouvons calculer la probabilité

j 0 8 16
T [j] 131072 524288 393216

Les valeurs T [j] pour le chemin
β = (0x1101, 0xdd, 0x30, 0x220)

T [j] = #{K|TK = j}

Table 4.1 – Expérimentations sur SMALLPRESENT-[4]

expérimentale de ce chemin différentiel :

0× 131072 + 8× 524288 + 16× 393216

220 × 216
= 2−12.68.

Ce résultat illustre que la probabilité théorique d’un chemin différentiel peut être diffé-
rente de la probabilité expérimentale pour une clé ou en moyenne sur les clés. Le problème
est que pour un système de chiffrement classique nous ne pouvons pas faire une recherche
exhaustive pour trouver la probabilité exacte d’un chemin différentiel. Quand il construit
une attaque différentielle, l’attaquant ne connaît pas la clé maître utilisée pour chiffrer
donc il ne peut pas non plus connaître la probabilité exacte d’un chemin différentiel.
Une autre remarque que l’on peut faire sur cet exemple est que le chemin étudié est impos-
sible pour certaines clés. L’existence de chemins différentiels impossibles est assez classique
pour les systèmes de chiffrement par bloc itératifs . L’existence de chemins impossibles sur
un petit nombre de tours induit forcément des chemins impossibles sur plus que 3 tours
du système de chiffrement. Si le nombre de tours n’est pas trop grand on peut trouver ces
chemins impossibles en écrivant les équations dépendant des bits des messages clairs, de
la clé et des chiffrés. Malheureusement la complexité de ce système, qui est non linéaire
après passage dans les boîtes-S, explose très vite.

4.1.2 L’algorithme “branch and bound” pour trouver les chemins
différentiels

Dans le but de trouver les meilleurs chemins différentiels, nous utilisons un algorithme
récursif. Cet algorithme connu dans le cas de la cryptanalyse linéaire [BCQ04] peut s’ap-
pliquer de la même façon pour la cryptanalyse différentielle. Soit Bproba−chemin une borne
sur la probabilité des chemins que nous voulons garder. L’algorithme consiste à construire
un arbre de toutes les différences possibles et à couper les branches pour lesquelles on sait
que la probabilité après r tours sera plus grande que la borne donnée. Les algorithmes de
ce type sont appelés algorithmes “branch and bound”.

La racine de l’arbre que l’on construit est la différence en entrée et les feuilles sont les
différences après r tours. Au niveau i, chaque noeud contient la différence après i tours



62 4.1 Les chemins différentiels

ainsi que la probabilité du chemin différentiel défini à partir de la racine de l’arbre. Dans
la réalité on ne peut pas stocker tous les chemins différentiels. L’astuce consiste alors, à
couper les branches de l’arbre avant la fin, si l’on sait que la probabilité du chemin sera
supérieure à la borne que l’on s’est fixée. Pour faire cela nous construisons une table des
meilleures probabilités pour chaque tour : [q1, q2, · · · , qr]. (qi est la probabilité du meilleur
chemin sur i tours). Imaginons que nous voulons trouver les chemins sur r tours tels que
la probabilité de ces chemins soit supérieure à Bproba−chemin. Au niveau i nous gardons
seulement les chemins avec probabilité p∗ tele que p∗ · qr−i ≥ Bproba−chemin. L’algorithme
12 résume ce principe.

Algorithme 12 : Recherche automatique de chemins différentiels
Entrée : Un système de chiffrement, une différence en entrée δ0, une borne

Bproba−chemin sur la probabilité d’un chemin
Sortie : Chemins avec différence en entrée δ0, avec probabilité plus grande que

Bproba−chemin, et leurs probabilités
Add-Trail(T , i)
Si i = ROUND alors

Si Pβ ≤ Bproba−chemin alors
afficher β

fin si
fin si
Sinon

Pour chaque bi+1 faire
Si Pr(bi 7→ bi+1) 6= 0 and P i

T · Pr(bi 7→ bi+1) ≤ Bproba−chemin alors
bi+1(T )← bi+1

PT = PT · Pr(δi 7→ bi+1)
Add-Trail(T = (δ0, b1, · · · , bi+1, 0, · · · ),i+ 1)

fin si
fin pour

fin si
Add-Trail(T = (δ0, 0, · · · , 0),0)

Cet algorithme simple peut être adapté suivant les usages que l’on veut en faire.
Pour augmenter la rapidité de la recherche de chemin on peut par exemple imposer des
contraintes sur la recherche. Les meilleurs chemins différentiels étant souvent ceux avec
peu de boîtes-S actives, on peut, par exemple, limiter le nombre de boîtes-S actives par
tour.

Cet algorithme peut aussi être adapté pour trouver des différentielles tronquées (voir
section 2.2) ou encore d’autres types de chemins pour d’autres types d’attaques statis-
tiques.

4.1.3 Expériences

Nos expériences sur SMALLPRESENT-[4] nous ont permis d’observer qu’en général la
probabilité théorique des chemins différentiels correspondait à la probabilité des chemins



Hypothèses utilisées dans la cryptanalyse différentielle 63

différentiels prise en moyenne sur les clés. Pour cela nous avons fait des expérimentations
en utilisant différents algorithmes de cadencement de clé.

Dans les figures 4.1, 4.2 et 4.3, nous avons calculé les différences entre log(P t [β]) et
log(P r [β]) pour 500 chemins différentiels aléatoires pour 5 tours de SMALLPRESENT-[4].

– Dans la figure 4.1, nous supposons que les clés de tour sont obtenues par l’algorithme
de cadencement de clés défini dans la section 1.4.1 à partir d’une clé maître de 20
bits. Pour nos expérimentations, nous avons calculé les probabilités moyennes à
partir des 220 clés maîtres possibles.

– Dans la figure 4.2, nous supposons que toutes les clés de tour sont identiques, c’est-
à-dire égales à la clé maître. Nous avons calculé la moyenne des probabilités en
utilisant toutes les 216 clés possibles afin d’obtenir la valeur P r [β].

– Dans la figure 4.3, nous supposons que les clés de tour sont obtenues à partir d’une
clé maître de 80 bits en utilisant l’algorithme de cadencement de clé défini dans la
section 1.4.1. Dans ce cas précis, nous ne pouvons pas calculer la moyenne sur les
280 clés possibles. La valeur obtenue pour P r [β] est calculée à partir d’une moyenne
sur 220 clés.

0
50
100
150
200
250
300
350
400

-0.4 -0.2 0 0.2 0.4

no
m
br
e
de

ch
em

in
s

log(P r [β])− log(P t [β])

P t [β] = 2−17

P t [β] = 2−20

P t [β] = 2−23

P t [β] = 2−26

Figure 4.1 – Nombre de chemins en fonction du log(P r [β]) − log(P t [β]) : cas de la clé
maître de 20 bits.

On remarque ici, au travers de ces expériences, que le phénomène de dépendance d’un
chemin différentiel vis à vis des clés n’est pas le même suivant l’algorithme de cadencement
de clé. En effet dans la figure 4.2 quand la clé maître est utilisée comme clé de tour pour les
5 tours, la dépendance de la clé est plus importante que dans la figure 4.3 où l’algorithme
de cadencement de clé avec une clé maître de 80-bit est utilisé. Nous pouvons remarquer
que sur 5 tours de SMALLPRESENT-[4] seulement 16∗6 = 96 bits de clés sont utilisés ce
qui fait que les bits de la clé maître sont utilisés en moyenne un peu plus d’une fois. Dans
ce cas on est proche d’avoir des clés indépendantes (condition nécessaire pour l’utilisation
des chaînes de Markov).

L’algorithme de cadencement de clé pour une clé maître de 20 bits semble le plus



64 4.2 Les différentielles : somme de chemins

0

50

100

150

200

250

300

-0.4 -0.2 0 0.2 0.4

no
m
br
e
de

ch
em

in
s

log(P r [β])− log(P t [β])

P t [β] = 2−17

P t [β] = 2−20

P t [β] = 2−23

P t [β] = 2−26

Figure 4.2 – Nombre de chemins en fonction de log(P r [β])− log(P t [β]) : cas où toutes
les clés sont identiques.

approprié ici (voir section 1.4.1). En effet on rappelle que PRESENT est un système de
chiffrement qui chiffre des messages de 64 bits avec une clé maître de 80, c’est-à-dire que
64
80

= 4
5
des bits de la clé maître sont utilisés à chaque tour. Le rapport est le même si on

prend une clé maître de 20 bits pour un système de chiffrement de 16 bits.
Pour cet algorithme de cadencement de clé, les expériences montrent qu’en moyenne

le nombre de paires de messages qui satisfont un chemin différentiel est proche de la pro-
babilité théorique.
Nous pouvons observer que ce comportement est de plus en plus mauvais quand la pro-
babilité du chemin diminue

4.2 Les différentielles : somme de chemins

4.2.1 Théorie

Les meilleures différentielles (celles avec grandes probabilités) comportent des chemins
avec de grandes probabilités. La probabilité d’une différentielle se calcule aisément à partir
de la probabilité des chemins qui la composent.

Lemme 4.1. Soit (a0, ar) une différentielle sur r tours d’un système de chiffrement. Soit
p∗ la probabilité de la différentielle

p∗ = P
[
a0 →

F r
ar

]
.

La probabilité de la différentielle est égale à la somme des probabilités des chemins qui
la composent.

p∗ =
∑

β=(δ0,β1,...,βr−1,δr)

pβ.



Hypothèses utilisées dans la cryptanalyse différentielle 65

0

100

200

300

400

500

-0.4 -0.2 0 0.2 0.4

no
m
br
e
de

ch
em

in
s

log(P r [β])− log(P t [β])

P t [β] = 2−17

P t [β] = 2−20

P t [β] = 2−23

P t [β] = 2−26

Figure 4.3 – Nombre de chemins en fonction de log(P r [β]) − log(P t [β]) : cas de la clé
maître de 80-bits.

Dans la section 4.1.1, nous avons montré que dans certains cas la probabilité d’un che-
min différentiel pouvait en pratique être différente de la probabilité théorique. Cependant,
il semble (dans le cas de PRESENT) y avoir certaines symétries qui font qu’en général
il n’y pas de grande différence entre la probabilité théorique d’une différentielle (obtenue
en sommant tous les chemins) et la probabilité estimée de celle-ci en prenant la moyenne
sur toutes les clés.

Malheureusement, pour certains systèmes de chiffrement où le nombre de chemins est
important, plus le nombre de tours augmente moins il est facile de trouver tous les chemins
différentiels et donc il devient impossible de calculer la probabilité d’une différentielle.
Dans les cryptanalyses courantes, on utilise souvent une borne inférieure de la probabilité
d’une différentielle. Cette borne est obtenue en considérant les chemins différentiels les
plus probables ou les plus facilement calculables.

4.2.2 Expériences

Puis illustrer la section précédente, nous avons fait des expériences sur 9 tours de
SMALLPRESENT-[8] .

Pour une différentielle (a0, ar), nous avons calculé la somme de la probabilité théorique
d’un certain nombre de chemins composant la différentielle (a0, ar). Dans nos expériences
sur SMALLPRESENT-[8], nous avons calculé la probabilité effective d’une différentielle
en effectuant une moyenne sur 250 clés et sur tous les messages clairs. Sur la figure 4.4
nous avons dessiné la différence entre la valeur théorique et la valeur expérimentale pour
4 différentielles. Nous remarquons que, naturellement, plus on prend de chemins plus la
probabilité obtenue est proche de celle de la différentielle.

En regardant les résultats de la figure 4.4, nous pouvons nous demander à partir de
combien de chemins, nous avons une bonne estimation de la probabilité de la différentielle.



66 4.3 Les différentielles : dépendance de la clé

-3

-2.5

-2

-1.5

-1

-0.5

0

32 34 36 38 40 42 44 46 48

lo
g
(P

t
[a

0
→

a
r
])
−
lo
g
(∑ β

P
t
[β

])

− log(P t [β])

0xa0a0000
0x11110000
0x22220000

Figure 4.4 – Convergence de la somme des chemins vers la différentielle

Dans le cadre de nos expérimentations sur SMALLPRESENT-[4] (voir [BG10]), il avait
suffi de prendre des chemins avec probabilité supérieure à 2−24 pour avoir une bonne
estimation de la probabilité de la différentielle. Ici sur SMALLPRESENT-[8] on voit que
prendre tous les chemins différentiels avec probabilité supérieure à 2−48 nous donne une
erreur de 0.2 dans le logarithme de la probabilité de la différentielle.
Dans le chapitre 6, nous faisons une attaque sur PRESENT. Afin d’estimer la probabilité
de nos différentielles nous avons cherché avec l’algorithme de “branch and bound” tous
les chemins différentiels avec probabilité supérieure à 2−90 ayant 3 boîtes-S actives. Nous
savons très bien que prendre seulement ces chemins ne donne pas une bonne estimation
de la probabilité de la différentielle mais un calcul exact demanderait beaucoup trop de
ressources.

4.3 Les différentielles : dépendance de la clé

Dans la section 4.1.1, nous avons vu que la probabilité d’un chemin différentiel pouvait
être dépendante de la clé. Suivant cette remarque il est logique de dire que la probabilité
d’une différentielle est elle aussi dépendante de la clé. Dans leur article en 2005, Vincent
Rijmen et Joan Daemen [DR05] ont dit qu’en règle générale, pour une différentielle fixée,
le nombre de clés pour lesquelles la différentielle avait une certaine probabilité suivait une
répartition binomiale.
Dans cette section nous avons voulu vérifier expérimentalement dans le cas de PRESENT
si cette hypothèse était vérifiée.

Nous considérons ici une différentielle fixée (a0, ar). Pour une clé fixée K nous notons
par DK le nombre de paires de messages clairs avec différence a0 qui ont une différence



Hypothèses utilisées dans la cryptanalyse différentielle 67

ar entre leur chiffrés.

DK
def
=

1

2
#{X|F r

K(X) + F r
K(X + a0) = ar}.

Nous nous intéressons à la distribution des

D[j]
def
= #{K|DK = j}.

Vincent Rijmen et Joan Daemen ont montré que :

La distribution des variables D[j]
def
= #{K|DK = j} est proche d’une loi binomiale.

Ce résultat vient d’une approximation de la loi hypergéométrique de la distribution des
variables D[j] par une loi binomiale. Dans le chapitre 5, nous avons utilisé ce résultat afin
d’avoir une bonne approximation de la probabilité de succès dans le cas de la cryptanalyse
différentielle.

Cependant nous avons voulu vérifier si, dans le cas de PRESENT, les variables aléatoires
D[j] suivent bien une distribution binomiale.

4.3.1 Expérimentation

Nous avons fait des expérimentations sur 5 tours de SMALLPRESENT-[4] pour vérifier
si les variables D[j] ont bien une distribution binomiale. Ces expérimentations ont été
faites à l’aide de l’algorithme de cadencement de clé pour une clé maître de 20 bits. Dans
ces expérimentations nous avons calculé la répartition des variables DK . Sur la figure 4.5
nous remarquons que les variables DK suivent bien une distribution binomiale.

0

50000

100000

150000

200000

0 5 10 15 20

D
[j

]

j

Figure 4.5 – Distribution des variables D[j] pour 8 différentielles sur 5 tours de
SMALLPRESENT-[4]



68 4.4 L’hypothèse de répartition aléatoire par fausse clé

Cette observation pourra être prise en compte au moment de calculer la probabilité de
succès d’une attaque différentielle. Dans le chapitre 5, nous donnons une formule générale
de la probabilité de succès d’une attaque statistique simple. La dernière section de ce
chapitre (voir section 5.5) est dédiée à la présentation de la formule de la probabilité
de succès d’une attaque différentielle. Cette formule tient compte du fait que pour une
différentielle fixée, cette différentielle n’a pas la même probabilité suivant la clé maître
utilisée.

4.4 L’hypothèse de répartition aléatoire par fausse clé

4.4.1 Théorie

Dans beaucoup d’attaques statistiques, afin d’étudier la complexité de l’attaque, il est
souvent supposé que le phénomène observé a un comportement uniforme pour toutes les
clés candidates qui ne correspondent pas à la clé maître. Dans la section 2.1, nous avons
écrit cette hypothèse pour le cas de la cryptanalyse différentielle. Nous rappelons ici cette
hypothèse.

Hypothèse 4.1 (Hypothèse de répartition aléatoire par mauvaise clé). Soit EK∗ : Fm2 →
Fm2 un système de chiffrement par bloc paramétré par la clé K∗ avec fonction de tour F .
On suppose que

PX

[
F−1
k (EK∗(X))⊕ F−1

k (EK∗(X ⊕ a0)) = ar
]

=

{
p∗ si k = k∗,
p = 1

2m−1
pour k 6= k∗.

4.4.2 Expériences

Pour faire ces expériences, nous avons monté des attaques sur différents nombres de
tours de SMALLPRESENT-[8]. Dans chacune de nos expériences nous avons utilisé la
différentielle

(a0, ar) = (0x7, 0x0a0a0000).

Cette différentielle est celle avec la meilleure probabilité sur 7 tours. Pour toutes les paires
qui passent le crible, nous avons déchiffré sur un tour et regardé le nombre de messages
pour lesquels le compteur CX,k est incrémenté. Ici nous définissons le compteur suivant :

Wk =
1

2
#{F−1

k (EK∗(X))⊕ F−1
k (EK∗(X ⊕ a0)) = ar}.

Pour une différentielle et une clé maître fixée, nous nous sommes intéressésx aux valeurs

W [j] = #{k|Wk = j}.

Nous avons mené des expérimentations pour différentes clés maîtres aléatoires et pour un
nombre de tours variable. D’après nos expérimentations, la clé maître influence peu le
résultat. Le résultat de nos expérimentations est représenté sur la figure 4.6.

On peut y voir qu’au bout de 7 tours la distribution des mauvaises clés est plus éparse
que lorsque l’on regarde sur plus de tours. De plus lorsque que l’on regarde la probabilité
moyenne de la différentielle pour les mauvaises clés, on se rend compte qu’au bout de 7
tours celle-ci n’est pas uniforme. Par contre pour plus de tours on retrouve qu’en moyenne,
pour les mauvaises clés la probabilité de la différentielle est proche de 2−m = 2−32.



Hypothèses utilisées dans la cryptanalyse différentielle 69

0

10000

20000

30000

40000

50000

0 1 2 3 4 5

W
[j

]

j

6+1 tours
7+1 tours
8+1 tours
9+1 tours

Figure 4.6 – Répartition des mauvais candidats. Expérimentation sur
SMALLPRESENT-[8]

Le fait que pour les mauvaises clés la distributions des W [j] semble être binomiale,
n’influence pas vraiment la probabilité de succès de l’attaque puisque dans chaque attaque
on teste toutes les clés candidates. Ce qui est important ici c’est que si on effectue la
moyenne sur les clés, la probabilité de la différentielle pour les mauvais candidats est
proche de la valeur théorique 2−m.

Les résultats des expérimentations que nous avons présentées dans ce chapitre montrent
que les hypothèses faites jusqu’à présent dans les attaques différentielles sont pas tout à
fait vérifiées (au moins dans le cas de PRESENT). Toutefois, le fait de faire ses hypothèses
n’influence pas vraiment les compléxités des attaques.





Chapitre 5

Complexité en données et probabilité
de succès des attaques statistiques
simples

Dans les chapitres 2 et 3 nous avons détaillé un certain nombre de cryptanalyses sta-
tistiques. Pour évaluer la puissance d’une attaque statistique nous avons besoin d’étudier
les complexités en temps, en mémoire, en données ainsi que la probabilité de succès. Il est
facile à partir des algorithmes donnés dans les chapitres 2 et 3, d’en déduire la complexité
en temps et en mémoire de chacune des attaques statistiques présentées. Ce chapitre est
donc dédié à l’étude de la complexité en données et de la probabilité de succès d’un
certain nombre d’attaques statistiques comme la cryptanalyse linéaire, la cryptanalyse
différentielle, la cryptanalyse différentielle tronquée, la cryptanalyse différentielle d’ordre
supérieur et les autres attaques présentées dans les chapitres 2 et 3.

5.1 Introduction

5.1.1 Les variables aléatoires étudiées

Les attaques statistiques sur les systèmes de chiffrement par bloc sont des attaques
qui consistent à distinguer plusieurs distributions de probabilités. Dans la plupart des
attaques actuelles 1 on se limite à distinguer deux distributions. Les attaques statistiques
que nous avons présentées dans les chapitres 2 et 3 comportent un certain nombre de
similitudes. En effet le calcul de la complexité de l’étape de distillation (qui consiste à
extraire de l’information pour chaque échantillon et pour chaque candidat k testé) se
résume souvent à étudier la distribution des variables aléatoires 2. Nous notons par CX,k
la variable aléatoire pour la clé k et le message X. Dans les attaques décrites dans les
chapitres 2 et 3 nous avons décrit le cas particulier des variables aléatoires pour chaque
type d’attaque.

Par exemple dans le cas de la cryptanalyse différentielle classique (voir section 2.1) les

1. En tout cas celles présentées dans les chapitres 2 et 3
2. Par abus de langage on identifie les termes compteur et variable aléatoire.



72 5.1 Introduction

variables aléatoires simples sont définies par

CX,k =

{
1 si F−1

k (E∗K(X))⊕ F−1
k (E∗K(X ⊕ a0)) = ar,

0 sinon.

Dans les attaques étudiées ici ces variable aléatoires suivent des lois de Bernoulli de
paramètre p∗ si k = k∗ et p sinon.

Afin de déterminer les candidats les plus probables, nous étudions la distribution de
la somme de ces variables aléatoires simples.

Ck =
∑
X

CX,k et Ck∗ =
∑
X

CX,k∗ (5.1)

Définition 5.1. Nous appelons attaque statistique simple les attaques statistiques
où les compteurs étudiés afin de déterminer les clés les plus probables suivent des lois
binomiales avec seulement deux distributions de probabilités.

– On note par Ck∗ la variable aléatoire correspondant à la bonne sous clé. Soit N le
nombre d’échantillons utilisés pour faire une attaque, cette variable aléatoire suit
une loi binomiale de paramètre (N, p∗).

– On note par Ck (k 6= k∗) les variables aléatoires qui correspondent aux candidats
qui ne sont pas la bonne sous clé. Ces variables aléatoires suivent une loi binomiale
de paramètre (N, p).

Remarque 5.1. Les attaques présentées dans les chapitres 2 et 3 sont des attaques statis-
tiques simples. On verra plus en détail dans le chapitre 6 un exemple d’attaque statistique
(la cryptanalyse différentielle multiple) qui ne fait pas partie des attaques statistiques
simples. L’étude de la complexité en données et de la probabilité de succès de cette attaque
est alors différente et demande une analyse différente.

5.1.2 Complexité des attaques statistiques simples

Dans ce chapitre nous voulons introduire une étude générale de la complexité en don-
nées et de la probabilité de succès des attaques statistiques simples. Des travaux ont
déjà été menés pour des cas particulier comme la cryptanalyse linéaire. L’étude générale
de la complexité en données et de la probabilité de succès pour l’ensemble des attaques
statistiques simples est quant à elle compliquée car les probabilités étudiées sont très dif-
férentes suivant le type d’attaque. En effet dans le cas de la cryptanalyse linéaire nous
avons p = 1/2 et p∗ = p + ε. Ainsi l’étude classique de la complexité en données relève
d’une approximation gaussienne de la loi binomiale. Malheureusement cette approxima-
tion ne peut pas être utilisée dans le cas de la cryptanalyse différentielle car dans ce cas
les probabilités étudiées sont de l’ordre de grandeur suivant : p = 2m et p∗ est beaucoup
plus grand que p. Dans ce cas là on sait qu’une approximation par la loi de Poisson de
la loi binomiale peut être utilisée [Gil97]. L’ordre de grandeur des paramètres pour un
certain nombre d’attaques statistiques simples est donné dans le tableau 5.1. Ce tableau
illustre bien la variabilité des paramètres étudiés en fonction du type d’attaque.

5.1.3 Les travaux déjà effectués

Comme dit précédemment, des travaux portant sur l’étude de la complexité en données
notamment de la cryptanalyse linéaire et différentielle ont déjà été effectués auparavant.



Analyse des attaques statistiques 73

Type de cryptanalyse p p∗
Cryptanalyse différentielle 2−m λp avec λ grand

Cryptanalyse différentielle tronquée 2−t λp avec λ petit
Cryptanalyse différentielle impossible 2−t 0

Cryptanalyse différentielle d’ordre supérieure(déterministe) 2−t 1
Cryptanalyse linéaire 1/2 1/2 + ε

Cryptanalyse différentielle-linéaire 1/2 1/2 + ε

Table 5.1 – Ordre de grandeur des probabilités pour certaines cryptanalyses statistiques.

Ces travaux reposent essentiellement sur l’utilisation d’une approximation de la loi bi-
nomiale par une loi de Poisson pour la cryptanalyse différentielle [BS90] ou par une loi
normale pour la cryptanalyse linéaire [Jun01, BJV04, Sel08]. Les sections 5.3.3 et 5.3.4
détaillent le cas particulier de ces deux cryptanalyses. Dans ce chapitre pour calculer la
complexité en données dans le cas général d’une attaque statistique simple nous avons
besoin d’utiliser une approximation de la loi binomiale qui marche quels que soit les
paramètres de la cryptanalyse.

5.2 Estimation de la loi binomiale
Les variables aléatoires utilisées dans la plupart des attaques statistiques présentées

dans les chapitres 2 et 3 suivent des lois binomiales. Comme la complexité en données des
attaques statistiques est souvent très grande, cette loi est souvent difficile à manipuler.
En conséquence, le calcul de la complexité en données et de la probabilité de succès de
nombreuses attaques statistiques se base souvent sur une approximation de celle-ci par
une loi normale ou de Poisson. Cette section est donc consacrée à la présentation d’une
autre estimation des queues de la loi binomiale.

Définition 5.2. Soit X, une variable aléatoire qui suit une loi binomiale de paramètres
N et p. La fonction densité est définie par

P [X = bτNc] =

(
N

bτNc

)
pbτNc(1− p)N−bτNc,

où 0 ≤ τ ≤ 1.

5.2.1 Estimation

Une quantité, nommé divergence de Kullback-Leibler, joue un rôle important dans
notre approximation des queues de la loi binomiale.

Définition 5.3. La divergence de Kullback-Leibler [CT91]
Soit P et Q deux distributions de probabilités qui suivent une loi de Bernoulli avec para-
mètres respectifs p et q. La divergence de Kullback-Leibler entre ces deux distributions est
définie par

D (p||q) def
= p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
. (5.2)

Nous utilisons la convention 0 ln 0
p

= 0 et p ln p
0

=∞.



74 5.2 Estimation de la loi binomiale

À partir de cette définition, nous obtenons une approximation de la fonction densité de
la loi binomiale, en utilisant l’approximation de Stirling pour les coefficients binomiaux :

Lemme 5.1. Approximation de Stirling appliquée aux coefficients binomiaux
[AS64] Soit N un nombre entier. Soit T un nombre entier compris entre 0 et N/2. Une
bonne approximation du coefficient binomial entre N et T est :(

N

T

)
=

√
N

2πT (1− T )

(
N

N − T

)(N−T )(
T

N

)T [
1− 1

12T
+O

(
1

N
+

1

T 2

)]
.

Cette approximation des coefficients binomiaux nous permet de donner une bonne
approximation de la fonction de densité de la loi binomiale.

Lemme 5.2. Soit Ck une variable aléatoire qui suit une loi binomiale de paramètre (N, p).
Soit τ un nombre réel tel que 0 ≤ τ ≤ 1 (τ est appelé le seuil relatif). Nous avons :

P [Ck = bτNc] =

√
1

2πN(1− τ)τ
e−ND(τ ||p)

[
1 +O

(
1

τN

)]
. (5.3)

où D (τ ||p) est la divergence de Kullback-Leibler définie en (5.2)

Preuve : Nous rappelons que la fonction densité de la loi binomiale est :

P (Ck = bτNc) =

(
N

bτNc

)
pbτNc(1− p)N−bτNc.

Nous écrivons
pτN(1− p)N−τN = eτN ln(p)+(N−τN) ln(1−p).

Nous utilisons l’approximation de Stirling donnée dans le lemme 5.1 pour T = bNτc :(
N

bNτc

)
=

√
1

2πNτ(1− τ)
e−Nτ ln(τ)−(1−τ) ln(1−τ)

[
1 +O

(
1

τN

)]
En combinant ces résultats nous obtenons

P (Ck = bτNc) =

√
1

2πτ(1− τ)
· e−N[τ ln( τp)+(1−τ) ln( 1−τ

1−pN)]
[
1 +O

(
1

τN

)]
.

À partir de notre approximation de la fonction densité de la loi binomiale, nous en dédui-
sons une approximation de la fonction de répartition. Tout d’abord nous introduisons un
nouveau lemme qui nous donne un encadrement de la somme de termes consécutifs de la
densité de la loi binomiale.

Lemme 5.3. Soit Ck une variable aléatoire qui suit une loi binomiale de paramètres N
et p. Soit A et B deux entiers tels que 0 ≤ A ≤ B ≤ N . Soit γ+ et γ− deux réels définis
par

γ+
def
=

1− p
p

max

(
B

N −B + 1
,
A+ 1

N − A

)
,

γ−
def
=

1− p
p

min

(
B

N −B + 1
,
A+ 1

N − A

)
.



Analyse des attaques statistiques 75

Nous avons :

P [Ck = B]
1− γB−A+1

−
1− γ−

≤
B∑
i=A

P [Ck = i] ≤ P [Ck = B]
1− γB−A+1

+

1− γ+

, (5.4)

P [Ck = A]
1− 1/γB−A+1

+

1− 1/γ+

≤
B∑
i=A

P [Ck = i] ≤ P [Ck = A]
1− 1/γB−A+1

−
1− 1/γ−

. (5.5)

Preuve : Le lien entre deux valeurs consécutives de la fonction de densité de la loi binomiale
est le suivant :

P [Ck = i− 1] =
1− p
p

i

N − i+ 1
P [Ck = i], pour 0 < i ≤ N .

Ce qui conduit à :

B∑
i=A

P [Ck = i] = P [Ck = B]

[
1 +

(1− p)B
p(N −B + 1)

+ · · ·+ (1− p)B−AB · · · (A+ 1)

pB−A(N −B + 1) · · · (N − A)

]
.

Chaque terme de la somme est majoré par γi+ et est minoré par γi−. Nous en déduisons
que :

P [Ck = B]
B−A∑
i=0

γi− ≤
B∑
i=A

P [Ck = i] ≤ P [Ck = B]
B−A∑
i=0

γi+.

Ceci prouve (5.4). Les mêmes arguments sont utilisés pour prouver (5.5).

À partir de cette approximation de la fonction densité de la loi binomiale nous pouvons
déduire une approximation de la fonction de répartition de cette loi. Le théorème suivant
est connu dans un autre contexte [AG89]. Sa preuve découle des deux lemmes précédents.

Théorème 5.1. Soit p∗ et p deux nombres réels tel que 0 < p < p∗ < 1 et soit τ un seuil
relatif tel que p < τ < p∗. Soit Ck et Ck∗ deux variables aléatoires qui suivent une loi
binomiale avec paramètres respectifs (N, p) et (N, p∗). Alors,

P [Ck ≥ τN ] ∼
N→∞

(1− p)
√
τ

(τ − p)
√

2πN(1− τ)
e−ND(τ ||p), (5.6)

et

P [Ck∗ ≤ τN ] ∼
N→∞

p∗
√

1− τ
(p∗ − τ)

√
2πNτ

e−ND(τ ||p∗). (5.7)

Preuve : Ce théorème se prouve facilement à partir des lemmes 5.2 et 5.3. Nous nous
concentrons sur la preuve de (5.6), l’assertion (5.7) se prouve de la même façon. Dans un
premier temps, remplaçons le A du lemme 5.3 par dτNe de telle sorte que

P [Ck ≥ τN ] =
N∑
i=A

P [Ck = i] =
B∑
i=A

P [Ck = i]︸ ︷︷ ︸
(1)

+
N∑

i=B+1

P [Ck = i]︸ ︷︷ ︸
(2)

.

Nous appliquons le lemme 5.3 à la somme (1) en choisissant B tel que :



76 5.2 Estimation de la loi binomiale

– la somme (2) est négligeable par rapport à (1),
– et γ+ et γ− soient proches.

Dans ce cas particulier nous avons

B∑
i=A

P [Ck = i] ∼ P [Ck = dNτe] 1

1− 1/γ−
. (5.8)

Sous l’hypothèse que γ− est proche de γ+ nous pouvons prendre γ− =
1− p
p

A+ 1

N − A
(dans

le cas contraire il suffit de faire l’analyse avec γ+). Dans ce cas particulier nous avons

1

1− 1/γ−
=

(1− p)(A+ 1)

(1− p)− p(N − A)
=

(1− p)(A+ 1)

N(τ − p)
[
1 + 1−p

N

]
∼ (1− p)τ

(τ − p)
.

L’équation (5.6) se déduit donc à partir de cette observation conjuguée avec les résultats
de (5.8) et du lemme 5.2. Une étude similaire peux être effectuée pour prouver l’expression
(5.7).

5.2.2 Comparaison avec les autres approximations

Afin d’illustrer les résultats donnés dans le théorème 5.1, avec Benoît Gérard, nous
avons fait des expérimentations pour un grand nombre de paramètres. Nous avons pu
observer que cette approximation est assez précise pour des valeurs de paramètre vrai-
ment très différentes, que p soit petit ou non ou que τ soit proche de p ou non. Cette
approximation de la fonction de répartition comporte alors une grosse différence avec les
approximations précédentes de la loi binomiale. En effet l’approximation de Poisson ou
l’approximation gaussienne ne sont valables que pour certaines tranches de paramètre.
Par exemple dans le cas de la cryptanalyse différentielle la probabilité p est vraiment
petite. Dans le cas de la cryptanalyse différentielle, l’approximation de Poisson est juste
mais elle n’est plus valide dans le cas de la cryptanalyse linéaire où p est égal à 1/2.
Dans le cas de la cryptanalyse linéaire, l’approximation gaussienne est bonne. Elle a été
utilisée dans beaucoup d’études sur la complexité en données ou la probabilité de succès
d’une cryptanalyse linéaire ([Jun01, Jun03, JV03, BJV04, BV08, Sel08]). Cependant cette
approximation gaussienne n’est pas bonne dans le cas de la cryptanalyse différentielle.
Explication du tableau 5.2
Pour illustrer les propos du paragraphe précédent, nous avons fait des expérimentations
afin de comparer les différentes approximations des queues de binomiale. Nous avons
choisi de prendre un nombre d’échantillons assez petit (N = 223) afin de pouvoir calculer
les valeurs exactes des queues de la loi binomiale. Puis nous avons comparé ce résultat
avec les approximations de Gauss, de Poisson et avec notre approximation donnée par le
théorème 5.1. Nous avons fait ces calculs pour différentes valeurs de p et p∗. Comme le
nombre d’échantillons n’est pas très grand, nous n’avons pas pu prendre des paramètres
de cryptanalyses réelles mais nous avons essayé d’avoir des paramètres du même ordre
de grandeur que ceux utilisés dans les attaques différentielles, linéaires ou différentielles



Analyse des attaques statistiques 77

tronquées. L’idée principale qui ressort de ces expérimentations est celle décrite ci-dessus,
c’est-à-dire que pour la cryptanalyse linéaire l’approximation gaussienne est bonne, que
dans le cas de la cryptanalyse différentielle l’approximation de Poisson est bonne mais
que dans d’autres cas on ne sait pas quelle approximation utiliser. Notre approximation
quant à elle est valable pour un grand nombre de valeurs pour les paramètres p∗ et p.

Binomiale Poisson Gauss Théorème 5.1

Crypt. Linéaire :
p = 0.5

p∗ = 0.5 + 2−10

P [Ck ≥ τN ]
P [Ck ≤ τN ]

8.12 · 10−5

2.97 · 10−2
3.84 · 10−3

9.14 · 10−2
8.12 · 10−5

2.97 · 10−2
8.62 · 10−5

3.58 · 10−2

Crypt. Différentielle :
p = 2−27

p∗ = 2−20

P [Ck ≥ τN ]
P [Ck ≤ τN ]

2.03 · 10−3

3.27 · 10−3
2.03 · 10−3

3.27 · 10−3
8.84 · 10−5

6.66 · 10−3
1.97 · 10−3

3.33 · 10−3

Crypt. Diff. Tronquée(1) :
p = 2−4

p∗ = 1.01 · 2−4

P [Ck ≥ τN ]
P [Ck ≤ τN ]

9.29 · 10−5

9.80 · 10−5
1.46 · 10−4

1.55 · 10−4
9.23 · 10−5

9.89 · 10−5
9.90 · 10−5

1.04 · 10−4

Crypt. Diff. Tronquée(2) :
p = 2−15

p∗ = 1.5 · 2−15

P [Ck ≥ τN ]
P [Ck ≤ τN ]

5.05 · 10−5

4.37 · 10−4
5.06 · 10−5

4.38 · 10−4
3.17 · 10−5

5.45 · 10−4
5.34 · 10−5

4.67 · 10−4

Table 5.2 – Comparaison entre les différentes approximations des queues de binomiales.
Ces valeurs ont été calculées pour N = 223 et τ =

p∗ + p

2
. Les paramètres utilisés ici sont

ceux d’une attaque linéaire, d’une attaque différentielle, ou encore deux cas particuliers
d’attaque différentielle tronquée

5.3 Complexité en données
Afin de calculer la complexité en données nous avons besoin de définir le contexte dans

lequel nous allons nous placer.

5.3.1 Le test d’hypothèses

Pour calculer la complexité en données d’une attaque statistique simple nous avons
utilisé un test d’hypothèses statistiques. La problématique dans les attaques statistiques
simples est de pouvoir distinguer les compteurs Ck correspondant aux mauvaises clés du
compteur Ck∗ correspondant à la bonne clé dans le cas où les compteurs suivent des lois
binomiales. Dans le contexte du test d’hypothèses consistant à distinguer entre les deux
distributions il nous faut donc définir un seuil T et comparer les compteurs à ce seuil.
Ainsi si Ck ≥ T alors on ajoute la clé k à la liste L des clés admissibles ; dans le cas
contraire on rejette le candidat :

Si Ck ≥ T alors k ∈ L sinon k /∈ L.



78 5.3 Complexité en données

Les hypothèses que l’on regarde alors sont
– H∗ : Le candidat suggéré correspond à la bonne sous clé k∗ ;
– H : Le candidat suggéré n’est pas la bonne sous clé, k 6= k∗.

Supposons que nous avons une attaque qui utilise N échantillons. L’attaquant cherche à
savoir si la clé qu’il a sélectionnée est la bonne ou pas. Dans ce contexte l’attaquant peut
faire deux types d’erreur. Il peut accepter une mauvaise clé ou rejeter la bonne clé. Ces
deux types d’erreurs sont communément appelées erreur de première espèce et erreur de
seconde espèce ou encore erreur de non détection et de fausse alarme.

Définition 5.4. Dans le contexte d’un test d’hypothèses comme défini précédemment, les
probabilités d’erreurs étudiées sont :
La probabilité de non-détection : Comme son nom l’indique cette erreur correspond

au cas où l’attaquant décide de rejeter la bonne clé. On note par α la probabilité de
non-détection.

α = P [k∗ /∈ L] .

La probabilité de fausse alarme : Cette erreur correspond au cas où l’attaquant dé-
cide d’accepter un mauvais candidat. On note par β la probabilité de fausse alarme.

β = P [k ∈ L|k 6= k∗] .

Pour l’instant dans la description du test d’hypothèses nous avons supposé que la
statistique étudiée correspondait à la somme de variables aléatoires suivant une loi de
Bernoulli (ce qui est le cas des attaques présentées dans les chapitres 2 et 3). Nous allons
justifier l’utilisation de cette statistique.

Justification de l’utilisation de cette statistique

Un résultat bien connu permettant de distinguer les deux distributions regardées est
le test de Neyman-Pearson.

Lemme 5.4. [CT91]Test de Neyman-Pearson :
Supposons que le but de notre analyse consiste à distinguer entre deux hypothèses k = k∗

et k 6= k∗ à l’aide de N variables aléatoires (CX,k)X . Si nous utilisons un test de la forme

P [CX1k, . . . , CXN ,k|k = k∗]

P [CX1k, . . . , CXN ,k|k 6= k∗]
≥ t

qui nous donne des probabilités d’erreur α et β, alors aucun autre test ne peut améliorer
en même temps la probabilité de non-détection et de fausse alarme.

Il est bien connu en théorie des probabilités que la statistique Ck qui consiste à prendre
la somme des variables aléatoires qui suivent des lois de Bernoulli indépendantes de pa-
ramètre p est une statistique exhaustive 3. Ainsi utiliser le test de Neyman-Pearson pour
distinguer les deux hypothèses est équivalent à comparer la somme des variables aléatoires
regardées à un seuil fixé. Les variables aléatoires regardées sont alors définies par :

Ck =
∑
X

CX,k. (5.9)

3. Le terme statistique exhaustive intuitivement signifie que la statistique contient l’ensemble de l’in-
formation sur les paramètres de la loi de probabilité.



Analyse des attaques statistiques 79

Nous allons donc par la suite utiliser cette statistique pour calculer la complexité en
données des attaques statistiques. La liste des clés gardées par l’attaquant est alors définie
de la façon suivante :

L def
= {k , Ck ≥ T} .

5.3.2 Méthode générale pour calculer la complexité en données
d’une attaque statistique

Les probabilités de non-détection et de fausse alarme (voir définition 5.4) jouent un
rôle important dans la complexité d’une cryptanalyse statistique.

– Pour une cryptanalyse, la taille ` de la liste L des clés gardées augmente si on
diminue le seuil T puisque l’on accepte plus de candidats. La complexité en temps
de l’attaque étant souvent reliée à la taille de la liste L, celle-ci varie sensiblement
en fonction de β.

– De la même façon si on augmente la valeur du seuil, on accepte moins de candidats.
On a alors un plus grand risque de passer à côté de la bonne clé (dans ce cas
l’attaque échoue). La probabilité de non-détection α est alors directement reliée à
la probabilité de succès de l’attaque.

D’où l’intérêt pour le cryptanalyste de fixer la probabilité de non-détection et de fausse
alarme pour étudier les complexités d’une attaque donnée.

Étant données des probabilités d’erreurs fixées, cette section est dédiée au calcul du
nombre d’échantillons nécessaire à la cryptanalyse. Le contexte dans lequel nous nous
plaçons dans cette section est le suivant :

Contexte. Soit Ck (resp. Ck∗) une variable aléatoire qui suit une loi binomiale avec
paramètres N et p (resp. p∗). Dans le contexte du test d’hypothèses défini précédemment,
les probabilités de non-détection et de fausse alarme, pour un seuil donné T , sont définies
par P (Ck∗ < T ) et P (Ck ≥ T ).

Soit bnd et bfa 4 deux nombres réels donnés (0 < bnd, bfa < 1). Le problème consiste à
trouver un nombre d’échantillons N et un seuil T tels que les probabilités d’erreurs soientt
plus petites que les bornes données bnd et bfa. Ceci est équivalent à trouver une solution
(N, T ) au système d’inéquations suivant :{

P [Ck∗ < T ] ≤ bnd,
P [Ck ≥ T ] ≤ bfa.

(5.10)

En pratique, résoudre ce système d’inéquations est assez compliqué.

La continuité, approximation de la loi binomiale

Les quantités regardées ne sont pas continues puisque la loi binomiale est discrète.
Donc, nous avons besoin de trouver une approximation des probabilités d’erreurs qui
prennent en entrée des paramètresN et τ où le seuil relatif τ est la quantité égale à T

N
(nous

avons 0 ≤ τ ≤ 1). Une bonne approximation des probabilités d’erreur peut être donnée
par exemple par les formules du théorème 5.1. Comme il existe d’autres approximations

4. bnd correspond à une borne pour la probabilité de non détection et bfa à une borne pour la probabilité
de fausse alarme



80 5.3 Complexité en données

de la loi binomiale, nous allons dans un cas général définir deux fonctions Gnd(N, τ) et
Gfa(N, τ) qui sont des estimations des probabilités de non-détection et de fausse alarme.
Dans le but de trouver une solution au système (5.10), on demande à ces estimations
des probabilités de non-détection et de fausse alarme d’être des fonctions décroissantes
en fonction des deux variables N et τ . De cette façon, le problème consistant à trouver le
nombre d’échantillons nécessaires à la cryptanalyse pour des probabilités d’erreur fixées
se résume à trouver N et τ tels que{

Gnd(N, τ) ≤ bnd,
Gfa(N, τ) ≤ bfa.

(5.11)

Description de l’algorithme

Pour un seuil relatif τ donné, nous définissons les quantités Nnd(τ) et Nfa(τ) comme
les valeurs vérifiant les équations :

Gnd(Nnd(τ), τ) = bnd et Gfa(Nfa(τ), τ) = bfa. (5.12)

Dans le cas où l’une des valeurs Nnd(τ) ou Nfa(τ) est plus grande que l’autre, nous devons
changer la valeur du seuil relatif dans le but de rapprocher les quantités Nnd(τ) et Nfa(τ)
l’une de l’autre. D’un autre côté, pour un nombre d’échantillons fixé, si on diminue la
valeur du seuil relatif τ alors on accepte plus de candidats. Dans ce cas la probabilité de
non-détection diminue alors que la probabilité de fausse alarme augmente. La méthode
que nous avons utilisée pour calculer la complexité en données d’une attaque statistique
est basée sur l’observation faite dans le lemme suivant.

Lemme 5.5. Soit Gnd(N, τ) et Gfa(N, τ) deux fonctions qui dépendent des paramètres N
et τ , définies sur [0,+∞[ × [p, p∗], avec les propriétés suivantes :

– pour un seuil τ , ces deux fonctions sont décroissantes en N ,

– pour N fixé, Gnd(N, τ) est croissante en τ ,

– pour N fixé, Gfa(N, τ) est décroissante en τ ,

– lim
N→0

Gnd(N, τ) ≥ 1 , lim
N→0

Gfa(N, τ) ≥ 1,

– lim
N→∞

Gnd(N, τ) = lim
N→∞

Gfa(N, τ) = 0.

Soient bnd et bfa les bornes sur les probabilités d’erreurs 0 ≤ bnd, bfa ≤ 1. Soit le seuil
relatif τ compris entre p et p∗. Soient les quantités Nnd(τ) et Nfa(τ) définies par (5.12)
telles que

Gnd(Nnd(τ), τ) = bnd et Gfa(Nfa(τ), τ) = bfa.

Nous introduisons une nouvelle quantité N(τ) qui est égale au maximum de Nnd(τ) et de
Nfa(τ) :

N(τ) = max(Nnd(τ), Nfa(τ)).

Cette quantité représente la valeur minimale de N telles que le couple (N, τ) soit solution
de (5.11). Alors, pour p ≤ m ≤ p∗,



Analyse des attaques statistiques 81

(i) si Nnd(m) > Nfa(m), alors, pour tout τ > m, N(τ) > N(m),

(ii) si Nnd(m) < Nfa(m), alors, pour tout τ < m, N(τ) > N(m).

Preuve : Nous allons prouver la propriété (i). La propriété (ii) se montre de la même façon.
Nous voulons prouver que si Nnd(m) > Nfa(m), alors, pour tout τ > m, N(τ) > N(m).
Puisque Nnd(m) > Nfa(m), nous avons Gnd(N(m),m) = bnd et Gfa(N(m),m) < bfa. En
utilisant les propriétés de croissance et de décroissance des fonctions Gnd et Gfa, nous pou-
vons dire que pour τ > m, nous avons Gnd(N(τ), τ) > bnd et Gfa(N(m), τ) < bfa. Puisque
les fonctions étudiées sont décroissantes en N , nous en déduisons que N(τ) > N(m).

À partir de ces observations nous en déduisons l’algorithme 13, ci après, qui est basé
sur une recherche dichotomique en τ .

Algorithme 13 : Calcul de la valeur exacte du nombre d’échantillons nécessaire à
une cryptanalyse statistique simple et du seuil relatif correspondant.
Entrée : Des probabilités d’erreurs (bnd, bfa) et les probabilités (p∗, p) relatives à

notre attaque.
Sortie : N et τ : le nombre minimum d’échantillons et le seuil relatif

correspondant nécessaire pour atteindre des probabilités d’erreur plus
petites ou égales à (bnd, bfa).

Initialiser τmin à p et τmax à p∗;
Faire

Changer la valeur de τ à
τmin + τmax

2
;

Calculer Nnd(τ) vérifiant ∀N > Nnd(τ), Gnd(N, τ) ≤ bnd;
Calculer Nfa(τ) vérifiant ∀N > Nfa(τ), Gfa(N, τ) ≤ bfa;
Si Nnd(τ) > Nfa(τ) alors

τmax = τ ;
Sinon

τmin = τ ;
tant que Nnd(τ) 6= Nfa(τ) ;
Retourner N = Nnd(τ) = Nfa(τ) et τ

Détail d’implémentation

Supposons que nous ayons choisi d’utiliser pour Gfa et Gnd les approximations définies
dans le théorème 5.1. Un moyen simple de calculer les valeurs de Nfa(τ) et Nnd(τ) à
chaque étape de l’algorithme 13 consiste à faire une recherche dichotomique sur N . Cette
méthode peut être améliorée en fixant certaines quantités. En effet si on fixe la probabilité
de non-détection à bnd, l’équation (5.7) peut se récrire :

N ∼ 1

D (τ ||p∗)
ln

(
p∗
√

1− τ
bnd(p∗ − τ)

√
2πNτ

)
.

Nous pouvons utiliser une méthode du point fixe pour calculer N . Le détail des conditions
d’utilisation de cette méthode est présenté dans la section 5.3.5. Cette méthode peut être



82 5.3 Complexité en données

utilisée en commençant l’itération au point 1
D(τ ||p∗) . La même méthode peut être utilisée

pour le calcul de Nfa(τ) en prenant la fonction (provenant de l’équation (5.7))

f(N) =
1

D (τ ||p)
ln

(
(1− p)

√
τ

bfa(τ − p)
√

2πN(1− τ)

)

et en partant du point 1
D(τ ||p) .

Il est aussi possible de calculer N en partant de la loi binomiale directement ou d’une
approximation assez fidèle de celle-ci. La loi binomiale n’étant pas continue, elle ne satisfait
pas les conditions du lemme 5.5 et donc une solution peut ou ne peut pas exister. Donc
si on utilise la loi binomiale elle même on autorise une certaine marge d’erreur sur les
probabilités de non détection et de fausse alarme que l’on veut atteindre. L’autre problème
soulevé par cette méthode est le temps mis par l’algorithme pour calculer les valeurs
intermédiaires de N . Nous allons cependant voir comment calculer de manière efficace la
fonction de répartition de la loi binomiale.

Calcul efficace des queues de la loi binomiale

Pour calculer efficacement les queues de la loi binomiale nous utilisons l’approximation
de Stirling donnée dans le lemme 5.1. Si Ck∗ suit une loi binomiale avec paramètres N et
p∗, nous avons

P [Ck∗ = T − 1] =
1− p∗
p∗

· T

N − T + 1
· P [Ck∗ = T ] .

Ce qui nous donne :

P [Ck∗ < T ] = P [Ck∗ = T ] ·
[

(1− p∗) · T
p∗ · (N − T + 1)

+
(1− p∗)2 · T (T − 1)

p2
∗ · (N − T + 1)(N − T + 2)

+ · · ·
]

= P [Ck∗ = T ] ·
T∑
i=1

(
1− p∗
p∗

)i
T !

(T − i)!
(N − T )!

(N − T + i)!

=

(
N

T

)
pT∗ (1− p∗)N−T ·

T∑
i=1

(
1− p∗
p∗

)i
T !

(T − i)!
(N − T )!

(N − T + i)!
.

En utilisant l’approximation de Stirling donnée dans le lemme 5.1 nous obtenons :

P [Ck∗ < T ] ' 2−ND( TN ||p∗)√
2π(1− T

N
)T
·

T∑
i=1

(
1− p∗
p∗

)i
T !

(T − i)!
(N − T )!

(N − T + i)!
. (5.13)

L’astuce nécessaire pour pouvoir calculer les queues de la loi binomiale consiste à remar-
quer que le terme dominant est le dernier terme. En conséquence, nous commençons avec
ce terme et nous ajoutons les suivants jusqu’à avoir atteint une certaine précision. Cette
estimation est précise quand N et T sont assez grand. Quand T est petit 5 nous pouvons
utiliser la formule exacte de la loi binomiale. La même méthode peut être utilisée pour
calculer l’erreur de fausse alarme.

5. C’est le cas dans les attaques différentielles classiques



Analyse des attaques statistiques 83

5.3.3 Travaux relatifs dans le cas de la cryptanalyse linéaire

Beaucoup de travaux concernant l’étude des complexités des attaques linéaires ont été
fait auparavant. Certaines de ces études avaient déjà exhibées le terme polynomial ou le
terme exponentiel des formules données dans le théorème 5.1. Nous allons donc revenir
rapidement sur ces méthodes.

Le comportement exponentiel des queues de la loi binomiale

Les queues de la loi binomiale sont bien connues pour décroître exponentiellement
en N . Le bon terme exponentiel (c’est-à-dire celui donné par le théorème 5.1) a déjà
été donné dans plusieurs articles. Par exemple, dans [BJV04, BV08], le but des auteurs
était de déterminer une formule asymptotique pour le meilleur distingueur, c’est-à-dire le
distingueur qui maximise la quantité |1− α− β| où α et β sont les probabilités d’erreurs
définies dans la définition 5.4. De leur étude sur la complexité en données ils déduisent le
résultat suivant :

max(α, β)
.
= 2−N ·Cher(p∗,p) (5.14)

où f(N)
.
= g(N) signifie que f(N) = g(N)eo(N) et Cher est l’information de Chernoff

[CT91]. Dans le cas général où p∗, p /∈ {0, 1}, ce type de distingueur a une région d’accep-
tation de la forme décrite par le lemme 5.4 avec t égal à 1. Dans ce contexte, la valeur du
seuil relatif τ satisfait l’égalité D (τ ||p∗) = D (τ ||p). Cependant, dans notre contexte la va-
leur de la divergence de Kullback-Leibler est égale à l’information de Chernoff Cher(p∗, p)
multipliée par ln(2) (voir [CT91, section 12.9]). Donc le terme exponentiel des équations
(5.6) et (5.7) est le même que celui donné par l’équation (5.14) :

α
.
= e−ND(τ ||p∗) .= 2−NCher(p∗,p) et β

.
= e−ND(τ ||p) .= 2−NCher(p∗,p).

Dans les cas où p∗ = 0 ou p∗ = 1 6 le seuil relatif τ est égal à p∗ et la probabilité de non
détection est alors égale à 0. Dans ce cas on a

max(α, β) = β
.
= e−ND(p∗||p) .= 2−NCher(p∗,p).

Cette égalité se déduit directement de la définition de la divergence de Kullback-Leibler.
Le comportement exponentiel N ·D (τ ||p) est pris en compte dans le théorème 5.1. Mais
dans ce théorème nous avons aussi en complément un terme polynomial (1−p)√τ

(τ−p)
√

2πN(1−τ)

qui n’est pas négligeable. Prendre en compte seulement le terme exponentiel comme dans
l’équation (5.14) est trop grossier dans certains cas comme le montre le calcul de la
complexité en données faite avec ces approximations pour différentes cryptanalyses dans
le tableau 5.3.

Le comportement polynomial des queues de la loi binomiale

Dans [BJV04], un terme polynomial est pris en considération. Cependant ce terme
polynomial est seulement bon pour les tranches de paramètres où une approximation

6. C’est le cas par exemple de la cryptanalyse différentielle impossible ou de la cryptanalyse différen-
tielle d’ordre supérieur.



84 5.3 Complexité en données

gaussienne des queues de la loi binomiale peut être utilisée. Dans ce cas le nombre d’échan-
tillons est :

N ≈
2 · Φ−1(α+β

2
)2

D (p∗||p)
, (5.15)

où Φ−1 est l’inverse de la fonction de réparation d’une variable aléatoire qui suit une loi
gaussienne. Par exemple cette formule donne une estimation plutôt mauvaise dans le cas
de la cryptanalyse différentielle. En général cette formule est trop optimiste comme le
montrent les résultats expérimentaux donnés dans le tableau 5.3.

log2(N) (5.6) & (5.7) [BJV04] [BV08]

Linéaire p∗ = 0.5 + 1.49 · 2−24 p = 0.5
bnd = 0.1 bfa = 0.1

47.57 47.88 47.57 49.58

Linéaire p∗ = 0.5 + 1.49 · 2−24 p = 0.5
bnd = 0.001 bfa = 0.001

50.10 50.13 50.10 51.17

Différentielle p∗ = 1.87 · 2−56 p = 2−64

bnd = 0.1 bfa = 0.1
56.30 56.77 54.44 57.71

Différentielle p∗ = 1.87 · 2−56 p = 2−64

bnd = 0.001 bfa = 0.001
58.30 58.50 56.98 59.29

Différentielle
tronquée

p∗ = 1.18 · 2−16 p = 2−16

bnd = 0.001 bfa = 0.001
26.32 26.35 26.28 27.39

Table 5.3 – Comparaison des estimations de log2(N) en utilisant l’algorithme 13 avec la
loi binomiale (valeur exacte), les estimations (5.6) & (5.7) et les estimations de [BJV04,
BV08]

.

5.3.4 Travaux relatifs dans le cas de la cryptanalyse différentielle

Pour la cryptanalyse différentielle on ne peut pas utiliser l’approximation gaussienne
de la loi binomiale. Dans [BS90], la loi binomiale est approchée par une loi de Poisson.
Le détail du calcul de la complexité en données est présenté dans la thèse d’Henri Gilbert
[Gil97]. Nous donnons ici le détail de ce calcul.
Pour la cryptanalyse différentielle il est supposé que p∗ est suffisant loin de p. Ainsi à



Analyse des attaques statistiques 85

partir du moment où pour une clé fixée, la différence ar après avoir déchiffré le dernier
tour apparaît au moins une fois alors cette clé est un candidat potentiel. Ainsi dans la
cryptanalyse différentielle, il est classique de fixer le seuil T à 1. Dans ce cas précis on ne
peut donc pas vraiment contrôler la probabilité de fausse alarme on va donc s’intéresser
au calcul de la complexité en données pour une probabilité de non-détection très faible
de l’ordre de 0, 01 (c’est-à-dire une probabilité de succès proche de 99%). Si on écrit la
formule de la probabilité de non-détection en utilisant l’approximation binomiale on a

Gnd =
0∑
i=0

e−Np∗
(Np∗)i

i!
= e−Np∗ .

Pour une probabilité de succès supérieure à 99%, on obtient donc une complexité en
données :

N ≈ 4.6

p∗
.

5.3.5 Le comportement asymptotique de la complexité en don-
nées

Le but ici est de trouver un critère simple pour comparer la puissance de deux at-
taques statistiques. Les paramètres de l’attaque que nous allons utiliser afin de calculer
la complexité en données sont les probabilités p∗ et p :

– p∗ : probabilité que le phénomène observé arrive pour la bonne clé k∗.
– p : probabilité que le phénomène apparaisse pour une autre clé k 6= k∗.

Comme détaillé dans la section 5.3.2, ce calcul consiste à résoudre un système d’in-
équations en N, τ . Au vu de sa complexité, ce système est difficile à résoudre. Nous avons
donc décidé de fixer le seuil relatif τ afin de trouver une formule asymptotique de la
complexité en données.

Une première approximation

Comme nous avons dit dans la section 5.3.1, la probabilité de fausse alarme joue
un rôle important dans le calcul de la complexité en temps d’une attaque statistique.
Sous l’hypothèse que la complexité en données ne varie pas beaucoup en fonction de la
probabilité de fausse alarme, nous fixons le seuil relatif à p∗. Cette hypothèse nous donne
une probabilité de non-détection de l’ordre de 1/2. Nous pouvons alors utiliser la formule
(5.7) donnée dans le théorème 5.1 pour obtenir une approximation relativement précise
du nombre d’échantillons N nécessaire à une cryptanalyse statistique simple.

Théorème 5.2. Soit p∗ (resp. p) la probabilité que le phénomène observé arrive pour la
bonne sous clé k∗ (resp. pour les mauvaises sous clés). Pour un seuil relatif τ fixé à p∗,
une bonne approximation du nombre d’échantillons N nécessaire pour distinguer les deux
distributions des compteurs avec une probabilité de fausse alarme plus petite ou égale à
bfa est :

N ′
def
= − 1

D (p∗||p)

[
ln

(
νbfa√
D (p∗||p)

)
+ 0.5 ln (− ln(νbfa))

]
, (5.16)



86 5.3 Complexité en données

pour

ν
def
=

(p∗ − p)
√

2π(1− p∗)
(1− p)√p∗

et θ
def
=

[
1 +

1

2 ln(νbfa)
ln

(
− ln(νbfa)

D (p∗||p)

)]−1

. (5.17)

L’erreur de cette approximation est encadrée par :

N ′ ≤ N∞ ≤ N ′
[
1 +

(θ − 1) ln(θ)

ln(N ′)

]
,

où N∞ est la valeur obtenue par l’algorithme 13 en utilisant les approximations des pro-
babilités d’erreurs données par les équations (5.6) et (5.7).

Preuve : Le seuil relatif τ est fixé à p∗. De cette façon on sait que la probabilité de
non-détection est proche de 1

2
. Nous voulons contrôler la probabilité de fausse alarme bfa.

L’équation (5.6) nous donne

N ≈ − ln(νbfa
√
N)

D (p∗||p)
où ν

def
=

(p∗ − p)
√

2π(1− p∗)
(1− p)√p∗

. (5.18)

La formule (5.18) nous suggère d’utiliser la fonction contractante f suivante :

f(x)
def
= − ln(νbfa

√
x)

D (p∗||p)
.

Nous appliquons cette fonction itérativement en commençant par le terme N0 =
ln(νbfa)

D (p∗||p)
.

Cela nous donne une séquence (Ni)i≥0 avec Ni+1 = f(Ni). La limite de cette fonction N∞
peut être vue comme le nombre d’échantillons nécessaires à la cryptanalyse. Puisque f
est décroissante, la suite (Ni)i≥0 forme une suite alternée. Les termes consécutifs de cette
suite satisfont : N2i−1 ≤ N∞ ≤ N2i. La fonction f peut se récrire

f(x) = a− b ln(x) avec a def
= − ln(νbfa)

D (p∗||p)
et b def

=
1

2D (p∗||p)
.

Notre choix du premier terme N0 se justifie par le fait qu’il est égal à a. Nous voulons
maintenant montrer que le second terme N1 nous donne une bonne approximation de N∞.

N1 = f(N0) = a− b ln(N1)− 1

D (p∗||p)

[
ln

(
νbfa√
D (p∗||p)

)
+ 0.5 ln (− ln(νbfa))

]
,

Comme N1 ≤ N∞ ≤ N2, on va exprimer N2 en fonction de N1

N2 = f(N1)

= N0 − b ln(N0) + b ln (N0/N1)

= N1 + b ln (N0/N1) .

Soit θ comme défini dans le théorème :

θ
def
=

[
1 +

1

2 ln(νbfa)
ln

(
− ln(νbfa)

D (p∗||p)

)]−1

.



Analyse des attaques statistiques 87

Alors

N1

N0

= 1 +
b ln(a)

a
= 1 +

ln(a)

2 ln(νbfa)

=

[
1 +

1

2 ln(νbfa)
ln

(
− ln(νbfa)

D (p∗||p)

)]
= θ−1.

L’encadrement de N∞ devient :

N1 ≤ N∞ ≤ N1

[
1 +

b ln(θ)

N1

]
.

Dans le but de prouver queN1 est une bonne approximation deN∞, nous nous concentrons
sur b ln(θ)/N1 et nous le comparons à 1. Puisque N1/b = a/b− ln(a), nous allons chercher
une borne pour a/b. Nous avons θN1 = N0, ce qui implique que a/b = θ ln(a)/(θ − 1).
Puisque f est une fonction décroissante, N0 > N1 nous donne N1/b ≥ ln(N2)/(θ − 1).

Pour conclure nous avons N2 ≤ N1

[
1 +

(θ − 1) ln(θ)

ln(N1)

]
et

N1 ≤ N∞ ≤ N1

[
1 +

(θ − 1) ln(θ)

ln(N1)

]
où N1 est égal à la valeur N ′ donnée dans le théorème.
Cette approximation du nombre d’échantillons nécessaire est assez précise : en effet nous
avons estimé la complexité en données de certaines attaques connues (voir tableau 5.4)
et observé que θ est toujours compris entre 1 et 7. De plus, pour bfa = 2−32, les valeurs
observées de θ sont plus petites que 2. Dans le tableau 5.4 nous avons comparé la valeur
de N ′ avec la vraie valeur de N . Ces expérimentations montrent que N ′ est proche de la
vraie valeur de N et valident expérimentalement le fait que θ est compris entre 1 et 7.

Le comportement asymptotique

La formule donnée dans le théorème 5.2, pour calculer le nombre d’échantillons néces-
saire à une cryptanalyse reste cependant assez compliquée. À partir de cette formule nous
déduisons une formule plus simple qui nous donne le comportement asymptotique d’une
cryptanalyse statistique simple.

Lemme 5.6. En utilisant les notations du théorème 5.2, ln(2
√
πD (p∗||p)) est une bonne

approximation de ln(ν) où ν est donné par (5.18).

Preuve : Ceci se fait facilement à partir du développement limité de D (p∗||p).

À partir de ce lemme, on déduit donc une bonne approximation de N ′.

Lemme 5.7. En utilisant les notations du théorème 5.2, une bonne approximation de N ′
est :

N ′′
def
= − ln(2

√
πbfa)

D (p∗||p)
. (5.19)



88 5.3 Complexité en données

Preuve : Dans l’expression de N ′ donnée dans le théorème 5.2 il est facile de voir que le

terme 0.5 ln (− ln(νbfa)) est négligeable par rapport au terme ln

(
νbfa√
D (p∗||p)

)
. Ainsi une

bonne approximation de N ′ devient :

− 1

D (p∗||p)
[ln(ν)− 1/2 ln(D (p∗||p)) + ln(bfa)] .

De plus, par le lemme 5.6, nous avons qu’une bonne approximation de ln(ν) est ln(2
√
πD (p∗||p)).

Ainsi on obtient qu’une bonne approximation de N ′ est donnée par :

− 1

D (p∗||p)
[
ln(2
√
π) + ln(bfa)

]
.

N ′′ est essentiellement une fonction décroissante en fonction de la divergence de
Kullback-Leibler entre p∗ et p. On peut donc en conclure que comparer la complexité
en données de deux attaques statistiques peut se résumer à la comparaison entre les
divergences de Kullback-Leibler correspondantes.

5.3.6 Les résultats expérimentaux

Nous avons fait un certain nombre d’expérimentations dans le but de prouver que
l’estimation N ′ donnant le nombre d’échantillons nécessaire à l’attaque est plutôt bonne
et devient encore meilleure quand la probabilité de fausse alarme tend vers 0 (voir ta-
bleau 5.4).

La valeurN ′ est une approximation. Pour avoir une valeur plus précise de la complexité
en données d’une attaque statistique et afin de pouvoir la comparer avec la complexité en
données d’autres attaques, l’algorithme 13 peut être utilisé.

Rappelons que la quantité N ′ donne le nombre d’échantillons et non le nombre de
messages clairs nécessaire à la cryptanalyse. Dans le cas de la cryptanalyse linéaire ces
deux quantités sont égales. Mais dans le cas de la cryptanalyse différentielle le nombre
de messages clairs est égal au double du nombre d’échantillons. À partir du nombre
d’échantillons il est assez facile d’en déduire la complexité en données en multipliant cette
quantité par un facteur dépendant du type de cryptanalyse.

Les résultats donnés dans le tableau 5.4 montrent que N ′′ donne une estimation moins
précise de la complexité en données d’une attaque statistique. Néanmoins cette estimation
reflète bien le comportement asymptotique de la complexité en données d’une attaque
statistique (c’est-à-dire en 1/D (p∗||p)).

5.3.7 Comportement asymptotique pour certaines cryptanalyses
statistiques simples

Nous avons vu dans le lemme 5.7 que le nombre d’échantillons d’une cryptanalyse
statistique simple dépend essentiellement de la divergence de Kullback-Leibler. Elle est



Analyse des attaques statistiques 89

bfa = 2−8

p p∗ log2(N) log2(N ′) log2(N ′′) θ

L 0.5 0.5 + 1.19 · 2−21 42.32 42.00 (−0.32) 42.60 6.48
DL 0.5 0.5 + 1.73 · 2−6 11.26 11.15 (−0.11) 11.52 2.28
D 2−64 1.87 · 2−56 54.57 54.68 (+0.11) 54.82 6.14
D′ 2−32 1.53 · 2−27 27.14 26.80 (−0.34) 26.94 3.56
TD 2−16 1.18 · 2−16 23.85 23.66 (−0.19) 24.13 3.87

bfa = 2−16

p p∗ log2(N) log2(N ′) log2(N ′′) θ

L 0.5 0.5 + 1.19 · 2−21 43.62 43.54 (−0.08) 43.79 2.89
DL 0.5 0.5 + 1.73 · 2−6 12.54 12.52 (−0.02) 12.71 1.53
D 2−64 1.87 · 2−56 55.85 55.94 (+0.09) 56.02 3.14
D′ 2−32 1.53 · 2−27 28.27 28.05 (−0.22) 28.14 2.09
TD 2−16 1.18 · 2−16 25.15 25.11 (−0.04) 25.33 2.07

bfa = 2−32

p p∗ log2(N) log2(N ′) log2(N ′′) θ

L 0.5 0.5 + 1.19 · 2−21 44.78 44.76 (−0.02) 44.88 1.42
DL 0.5 0.5 + 1.73 · 2−6 13.70 13.69 (−0.01) 13.80 1.25
D 2−64 1.87 · 2−56 56.98 57.06 (+0.08) 57.11 2.00
D′ 2−32 1.53 · 2−27 29.13 29.17 (+0.04) 29.23 1.51
TD 2−16 1.18 · 2−16 26.31 26.30 (−0.01) 26.42 1.48

Table 5.4 – Comparaison entre les deux estimations N ′ et N ′′ et la vraie valeur de la
complexité en données pour différentes valeurs de β, p et p∗ avec une probabilité de non
détection proche de 0.5. La colonne de θ est mise ici pour illustrer le fait que dans le
théorème 5.2 on a 1 ≤ θ ≤ 7.

– L : Attaque linéaire sur le DES retrouvant 26 bits de clés [Mat94].
– DL : Attaque différentielle-linéaire sur le DES [LH94].
– D : Attaque différentielle du DES [BS93].
– D’/TD :Autres attaques Paramètres d’ordre de grandeur d’une cryptanalyse

différentielle/différentielle tronquée.



90 5.3 Complexité en données

dominée par D (p∗||p)−1. Dans cette section nous allons estimer la quantité D (p∗||p)−1

pour en extraire le comportement asymptotique de la complexité en données de plusieurs
attaques statistiques. Nous allons voir que nous retrouvons alors les résultats connus de
la complexité en données pour certaines cryptanalyses comme la cryptanalyse linéaire.
Le tableau 5.5 donne le comportement asymptotique de la complexité en données dans le
cas des cryptanalyses linéaire, différentielle-linéaire, différentielle, différentielle tronquée,
différentielle d’ordre supérieur, différentielle impossible. Nous présentons ici le détail des
calculs.

Expansion de Taylor de la divergence de Kullback-Leibler

Pour extraire les résultats dont nous avons besoin, nous introduisons quelques calculs
intermédiaires qui sont essentiellement des développement limités de la divergence de
Kullback-Leibler. Dans un premier temps, rappelons la définition de cette quantité :

D (p∗||p) = p∗ ln

(
p∗
p

)
+ (1− p∗) ln

(
1− p∗
1− p

)
.

Une première expansion de cette divergence nous donne le résultat suivant :

Lemme 5.8. Soit 0 < a < b < 1 tel que O
(
b−a
1−a
)

= O (b− a). Alors,

D (b||a) = b

[
ln

(
b

a

)
− b− a

b
+

(b− a)2

2b(1− b)
+

(a− b)3

3b(1− b)2

]
+O

(
(b− a)4

)
Preuve : En utilisant un développement limité, nous avons :

(1− b) ln

(
1− b
1− a

)
= −(1− b) ln

(
1 +

b− a
1− b

)
= a− b+

(a− b)2

2(1− b)
+

(a− b)3

3(1− b)
+O

(
(b− a)4

)
.

En conséquence,

D (b||a) = b ln

(
b

a

)
+ (1− b) ln

(
1− b
1− a

)
= b ln

(
b

a

)
+ a− b+

(a− b)2

2(1− b)
+

(a− b)3

3(1− b)2
+O

(
(a− b)4

)
.

Lemme 5.9. Soit ε > 0 un nombre réel tel que O
(
ε
a

)
= O

(
ε

1−a
)

= O (ε). Alors,

D (a+ ε||a) =
ε2

2a(1− a)
+

ε3(1− 2a)

3a2(1− a)2
+O

(
ε4
)
.

Preuve : En utilisant le lemme 5.8, nous avons

D (a+ ε||a) = (a+ε)

[
ln
(

1 +
ε

a

)
− ε

a+ ε
+

ε2

2(a+ ε)(1− a− ε)
− ε3

3(a+ ε)(1− a− ε)2

]
+O

(
ε4
)
.



Analyse des attaques statistiques 91

Puisque ε/a = O (ε), nous pouvons faire le développement limité du logarithme pour
avoir :

D (a+ ε||a) = (a+ ε)

[
ε

a
− ε2

2a2
+

ε3

3a3
− ε

a+ ε
+

ε2

2(a+ ε)(1− a− ε)

− ε3

3(a+ ε)(1− a− ε)2
+O

(
ε4

a4

)]
+O

(
ε4
)

= (a+ ε)

[
ε2 a

2a2(a+ ε)(1− a− ε)
+

ε3(1− 2a)

3a2(1− a)2(a+ ε)
+O

(
ε4

a4

)]
+O

(
ε4
)

=
ε2

2a(1− a)
+

ε3(1− 2a)

3a2(1− a)2
+O

(
ε4
)
.

La cryptanalyse linéaire

Nous rappelons que dans le cas de la cryptanalyse linéaire les variables aléatoires
étudiées suivent des lois binomiales de paramètresN et p = 1/2 dans le cas d’une mauvaise
sous clé ou de paramètres N et p∗ = p+ ε pour le bon candidat (ε, le biais, est petit). Un
résultat bien connu dû à Matsui [Mat93] est que la complexité en données d’une attaque
linéaire est de l’ordre de ε−2. Or

Lemme 5.10. Pour un jeu de paramètres donné par la cryptanalyse linéaire nous avons

D (p+ ε||p) = 2ε2 +O
(
ε3
)
.

Preuve : Cela découle directement du lemme 5.9 avec a = p = 1
2
.

Ainsi nous retrouvons bien le résultat connu sur le comportement asymptotique de la
complexité en données d’une cryptanalyse linéaire.

La cryptanalyse différentielle

Dans le cas de la cryptanalyse différentielle p∗ et p sont tous les deux assez petits mais
la différence p∗ − p est dominée par p∗. Dans le cas de la cryptanalyse différentielle, le
rapport p∗/p est grand, et l’on obtient l’extension suivante de la divergence de Kullback-
Leibler :

Lemme 5.11. Pour un jeu de paramètres donné par la cryptanalyse différentielle nous
avons

D (p∗||p) = p∗ ln

(
p∗
p

)
+ p∗ +O

(
p2
∗
)
.

Preuve : Cela découle directement du lemme 5.8. Comme le rapport p∗/p peut être grand,
la première partie en ln

(
p∗
p

)
ne peut pas être simplifiée.

Ainsi dans le cas de la cryptanalyse différentielle le comportement asymptotique du
nombre d’échantillons est

1

p∗ [ln(p∗/p) + 1]
.



92 5.3 Complexité en données

La valeur asymptotique de la complexité en données que l’on obtient est différente de
la complexité en données asymptotique donnée par Eli Biham et Adi Shamir [BS91] qui
est 1

p∗
. Cette nouvelle formule prend en compte le rapport p∗/p. Ce qui est logique, car

intuitivement, plus ce rapport est grand plus la complexité en données est petite.

La cryptanalyse différentielle linéaire

Cette attaque présentée dans la section 3.3 possède le même type de paramètres que
pour la cryptanalyse linéaire (c’est-à-dire p = 1/2 et p∗ = p + ε). Ainsi un nombre
d’échantillons nécessaire à l’attaque est le même que pour la cryptanalyse linéaire. Comme
dans le cas de la cryptanalyse différentielle un échantillon est composé de deux messages.

La cryptanalyse différentielle tronquée

Il existe plusieurs types de cryptanalyses différentielles tronquées. Dans certaines cryp-
tanalyses différentielles tronquées les paramètres p∗ et p sont du même ordre de grandeur
que pour le cas de la cryptanalyse différentielle classique. Ce cas ne nous intéresse pas ici
puisque le comportement asymptotique du nombre d’échantillons sera alors le même que
celui de la cryptanalyse différentielle. Le type de cryptanalyse différentielle tronquée que
nous étudions ici correspond au cas où p∗ et p sont petits et p∗ = p + ε où ε est petit.
Dans ce cas on a :

Lemme 5.12. Pour un jeu de paramètre donné par la cryptanalyse différentielle tronquée
nous avons

D (p∗||p) ≈
ε2

2p∗
.

Preuve : Cela découle directement du lemme 5.9.

La cryptanalyse différentielle impossible

Ce cas est un peu particulier. En effet dans notre analyse nous avons toujours supposé
que p∗ est plus grand que p. Or ici p∗ = 0. En réalité le cas p∗ ≤ p a été traité par [Tez10].
Dans cet article, il est montré que la preuve de la formule de la complexité en données
peut aussi être faite dans le cas où p∗ < p. Par convention

D (0||p) = − ln(1− p) = p+O
(
p2
)
.

Ainsi le nombre d’échantillons pour une cryptanalyse différentielle impossible est
1

p
.

La cryptanalyse différentielle d’ordre supérieur

Dans cette attaque, présentée dans la section 2.4, la probabilité p∗ est égale à 1. Et

D (1||p) = ln(
1

p
) ≥ 1.

En fait dans les attaques différentielles d’ordre v, un seul échantillon est souvent suffisant à
une cryptanalyse mais un échantillon est composé de 2v messages clairs donc la complexité
en données est de 2v.



Analyse des attaques statistiques 93

Comportement asymptotique Comportement asymptotique
Attaque du nombre du nombre

d’échantillons messages clairs

Linéaire
1

2(p∗ − p)2

1

2(p∗ − p)2

Différentielle
1

p∗ ln(p∗/p) + p∗

2

p∗ ln(p∗/p) + p∗

Différentielle-linéaire
1

2(p∗ − p)2

1

(p∗ − p)2

Différentielle tronquée
p

(p∗ − p)2

p · γ
(p∗ − p)2

, 1 < γ < 2

Différentielle impossible
1

p

2

p

Différentielle d’ordre v − 1

ln p
− 2v

ln p

Table 5.5 – Comportement asymptotique de la complexité en données de certaines at-
taques statistiques.

5.4 Probabilité de succès

Pour le calcul de la complexité en données d’une attaque statistique simple, nous avons
eu besoin de fixer la probabilité de succès (1−α) afin d’en déduire une formule asympto-
tique simple. Dans cette section, nous allons utiliser une autre méthode pour calculer la
probabilité de succès d’une attaque pour une complexité données. Dans l’approche faite
dans la section 5.3, en fixant la probabilité de fausse alarme nous ne savons pas exac-
tement quelle est la taille de la liste des clés gardées. Dans l’approche que nous allons
utiliser ici nous allons fixer la taille de cette liste.

5.4.1 Les statistiques d’ordre

Dans le modèle “taille de liste fixée”, la problématique n’est pas de décider si une
clé candidate est probable ou pas ou pas mais de distinguer les clés candidates les plus
probables parmi l’ensemble des clés candidates. Soit 2n le nombre total de toutes les clés
candidates possibles : la bonne sous clé k∗ plus les 2n − 1 sous clés incorrectes que nous
notons k1, . . . , k2n−1. La liste L des clés candidates les plus probables est de taille fixée `.
Dans cette liste sont gardées ` clés candidates les plus probables (la bonne sous clé peut
y être ou non). La cryptanalyse réussit si la bonne sous clé fait partie de la liste des clés
gardées.



94 5.4 Probabilité de succès

Définition 5.5. La probabilité de succès d’une attaque statistique simple est égale à
la probabilité que la sous clé k∗ fasse partie de la liste des clés gardées.

PS
def
= P [k∗ ∈ L] .

L’étude que nous présentons ici nous conduit à une formule simple qui est une bonne
estimation de la probabilité de succès. Cette formule est une fonction du nombre d’échan-
tillons N nécessaire à la cryptanalyse, du nombre total des clés regardées 2n et de la taille
de la liste ` des clés gardées. Cette section repose sur des arguments venant de la théorie
des statistiques d’ordre que nous présentons ici.

Notation 5.1. Les variables aléatoires correspondant aux compteurs Cki sont notées par
(ψi)0≤i<2n−1. La phase d’analyse consiste à trier les clés et à garder les ` candidats les
plus probables.

Nous définissons donc les variables aléatoires triées : la ième plus grande valeur des
variables ψi est notée : Ψi.

ψ0 est la variable aléatoire correspondant à la clé k∗.

Dans le modèle des statistiques d’ordre nous nous intéressons à la distribution de Ψ`

puisque si nous gardons une liste de taille ` la bonne clé est dans la liste si et seulement
si ψ0 ≥ Ψ`. La probabilité de succès de l’attaque est alors

PS = P [Ψ` ≤ ψ0] =
N∑
i=0

P [ψ0 = i] · P [Ψ` ≤ i] .

Soit G la fonction de répartition des variables ψi(i 6= 0) :

G(x) = P [ψ1 ≤ x] = · · · = P [ψN−1 ≤ x] .

Il est bien connu (voir [DN03]) que G(Ψ`) suit une loi bêta avec paramètres N − `− 1 et
` − 1. Nous notons par h la fonction densité de la loi bêta et par g∗ la fonction g∗(x) =
P [ψ0 = bxc] . Nous pouvons alors écrire,

PS =
N∑
i=0

g∗(i) · P [Ψ` < i]

=
N∑
i=0

g∗(i) · P [G(Ψ`) < G(i)]

=
N∑
i=0

g∗(i) ·
∫ G(i)

0

h(t) dt. (5.20)

A l’aide des définitions présentées dans cette section nous avons trouvé une formule simple
pour calculer la probabilité de succès d’une attaque statistique.



Analyse des attaques statistiques 95

5.4.2 La formule de la probabilité de succès

En 2008, Selçuk dans [Sel08], a utilisé une approximation gaussienne de la loi bino-
miale pour exhiber une formule pour la probabilité de succès d’une attaque statistique.
Il s’est en particulier intéressé au cas de la cryptanalyse linéaire et de la cryptanalyse
différentielle. L’approximation gaussienne étant bonne dans le cas de la cryptanalyse li-
néaire, son approximation de la probabilité de succès est plutôt bonne dans ce cas. En
revanche, dans le cas de la cryptanalyse différentielle, comme l’approximation normale de
la loi binomiale n’est pas bonne, la formule exhibée pour la probabilité de succès n’est
pas très bonne comme Ali Aydin Selçuk le dit lui même. Ici nous exhibons une formule
générale de la probabilité de succès d’une cryptanalyse statistique, laquelle ne dépend
pas d’une approximation de la loi binomiale. Nous utilisons une approximation seulement
pour le calcul du terme d’erreur. Pour trouver sa formule de probabilité de succès, Selçuk
suppose que la distribution de la `ème statistique d’ordre (` est la taille de la liste des
clés gardées) tend vers une loi normale. Dans notre analyse, nous utilisons directement le
fait que la `-ème statistique d’ordre suit une loi bêta.

Le résultat que nous avons trouvé est basé sur le fait que la loi bêta est concentrée
autour du point

t0
def
=

2n − `− 1

2n − 2
.

Nous avons besoin de définir quelques notions avant de donner le résultat principal de
cette section.

Définition 5.6. Soit G la fonction de répartition de la loi binomiale avec paramètre
(N, p). Cette fonction est définie par la formule suivante

G(x)
def
=
∑
i≤x

(
N

i

)
pi(1− p)N−i.

Nous définissons l’inverse de cette fonction G−1 par

G−1(x) = min{t|G(t) ≥ x}.

Remarque 5.2. Comme la loi binomiale n’est pas continue il est facile de voir que
G−1(G(x)) peut être différent de x. Soit g la densité de la loi binomiale de paramètre
(N, p). La définition de G−1 implique que

G−1(x)∑
i=0

g(x) ≥ x et
G−1(x)−1∑

i=0

g(x) < x.

En conséquence, nous pouvons borner le terme d’erreur par

G(G−1(x))− x < g(G−1(x)). (5.21)

La preuve du théoreme suivant est donnée dans la section 5.4.3.

Théorème 5.3. Soit PS la probabilité de succès d’une attaque statistique qui garde ` clés
sur un total de 2n. Soit N le nombre d’échantillons que nous avons à notre disposition.



96 5.4 Probabilité de succès

La probabilité que le compteur correspondant à la bonne clé soit à la ième place dans la
liste des clés gardées est notée par g∗(i) :

g∗(i) =

(
N

i

)
p∗
i(1− p∗)N−i.

Soit G la fonction de répartition des compteurs correspondants aux autres clés. Nous
notons par G−1 l’inverse de cette fonction définie dans la définition 5.6. Soit t0

def
= 1− `−1

2n−2
,

le point de concentration de la loi bêta. Et soit

B
def
= G−1(t0), (5.22)

δ
def
=

B−1∑
i=0

g∗(i), (5.23)

θ
def
=

p

p∗

p∗(N + 1)−B
B − p(N + 1)

. (5.24)

Si t0 ≥ 3
4
alors

PS = 1− δ +O

(
δ(1 + θ)

√
ln(`/δ2)

`
+

1

`2
+

1

n

)
.

Les hypothèses faites au début du théorème précédent sont nécessaires afin de prouver
le théorème. Pour les cryptanalyses usuelles, ces conditions sont toujours respectées. Le
paragraphe suivant explique plus en détail ce que signifie chacune de ces conditions.

Discussion sur les conditions du théorème 5.3

Les valeurs prises par θ : Pour les tranches de paramètres que nous utilisons dans le cas
des cryptanalyses statistiques, θ est petit. Il est difficile d’obtenir la vraie valeur de
cette constante. Celle-ci dépend de l’ordre de grandeur des paramètres p et p∗. Nous
avons calculé l’ordre de grandeur de cette valeur pour les cryptanalyses citées dans
les chapitres 2 et 3. Nous avons remarqué que la valeur de θ est la plus grande quand
on se place dans le cas de la cryptanalyse linéaire (p = 1/2 et p∗ = p + ε). Nous
détaillons donc rapidement le calcul permettant de nous donner l’ordre de grandeur
de cette valeur.
Dans le cas de la cryptanalyse linéaire, l’approximation gaussienne de la loi binomiale
est très bonne. Nous allons donc l’utiliser pour obtenir l’ordre de grandeur de θ. Soit
Φ la fonction de répartition de la loi normale :

Φ(x)
def
=

∫ ∞
x

e−u
2/2

√
2π

du.

En utilisant les notations du théorème 5.3 et par l’équation (5.22) il peut être vérifié
que

B ≈ pN + Φ−1(λ)
√
Np(1− p).

À partir de la définition de δ donnée dans l’équation (5.23), on a Φ−1(λ) ∼
λ→0+√

−2 ln(λ). De la même façon

B ≈ p∗N − Φ−1(δ)
√
Np∗(1− p∗).



Analyse des attaques statistiques 97

On a aussi Φ−1(δ) ∼
λ→0+

√
−2 ln(δ). En rassemblant toutes ces remarques nous

obtenons

θ ≈ p

p∗

y
√
Np∗(1− p∗)

x
√
Np(1− p)

≈

√
− ln(δ)

− ln(λ)
.

Pour obtenir cette formule nous avons aussi utilisé le fait que p∗ ≈ p ( ce qui est
vrai dans le cas de la cryptanalyse linéaire).

À propos de δ : Nous pouvons remarquer que δ peut être vu comme une approximation
de 1− PS et donc que cette valeur est souvent de l’ordre de 0.05.

À propos de t0 : Pour ne pas avoir une complexité en temps trop grande nous avons

besoin que 1− t0 ≈
`

2n
reste petit, par exemple 10−5. Dans le cas où 1− t0 = 10−5

et δ = 0.05 on obtient alors θ ≈ 0.5.
Condition non restrictive : Dans le théorème 5.3 nous avons supposé que

`− 1

2n − 2
≤ 1

4
. (5.25)

Cette inégalité signifie que nous gardons au plus 1/4 des clés. Dans la plupart des
attaques statistiques connues on accepte mois d’un quart des clés donc cette condi-
tion n’est pas restrictive.

Expression du terme d’erreur dans la formule de la probabilité de succès

Dans le théorème 5.3 nous avons exhibé le terme d’erreur de notre formule par rapport
à la vraie valeur de la probabilité de succès. Ce terme d’erreur est égal à

PS −
N∑

i=G−1(1− `−1
2n−2

)

g∗(i).

Ce terme d’erreur décroît quand 2n et ` tendent vers l’infini mais est aussi décroissant
avec δ. Rappelons que δ ≈ 1 − PS, donc, le terme d’erreur induit par notre formule
décroît quand la probabilité de succès augmente.

Lien avec la complexité en données

Dans la section 5.3 nous avons utilisé une autre méthode pour calculer la complexité
en données d’une attaque statistique. En utilisant des outils venant du modèle test d’hy-
pothèses (voir section 5.3.1) nous avons extrait une formule de la complexité en données
qui dépend de la probabilité de non-détection α et de la probabilité de fausse alarme β.
Cette dernière correspond à la probabilité d’accepter un mauvais candidat dans la liste
L des clés gardées. Dans ce cas il semble naturel de prendre β = `/2n. D’autre part, α
correspond à la probabilité de rejeter la bonne sous-clé et α peut être choisi de telle sorte
que α = 1−PS. Si nous utilisons l’équation (5.10) pour exprimer α en fonction de β, nous
obtenons

α =

G−1(1−β)−1∑
i=0

g∗(i).



98 5.4 Probabilité de succès

En utilisant les valeurs suggérées pour les probabilités d’erreurs α et β, nous obtenons

PS = 1−
G−1(1−`/n)−1∑

i=0

g∗(i)

ce qui correspond au résultat donné par le théorème 5.3.

5.4.3 Preuve de la formule de la probabilité de succès

Le théorème 5.3 est difficile et long à prouver. Pour cette raison nous dédions toute
une section à sa preuve. Dans un premier temps, nous donnons une idée de la preuve :

Idée de la preuve du théorème 5.3

L’idée principale consiste à décomposer la somme

N∑
i=0

g∗(i)

∫ G(i)

0

h(t) dt

en effectuant un encadrement autour de G−1(t0) où t0 est défini par

t0
def
=

2n − `− 1

2n − 2
.

Soit ε > 0 un réel, nous avons

PS =
N∑
i=0

g∗(i)

∫ G(i)

0

h(t) dt

=

G−1(t0−ε)−1∑
i=0

g∗(i)

∫ G(i)

0

h(t) dt︸ ︷︷ ︸
A

+

G−1(t0)−1∑
i=G−1(t0−ε)

g∗(i)

∫ G(i)

0

h(t) dt︸ ︷︷ ︸
B

+
N∑

i=G−1(t0)

g∗(i)

∫ G(i)

0

h(t) dt︸ ︷︷ ︸
C

. (5.26)

Le troisième terme de la somme (5.26) (celui noté C) est :

N∑
i=G−1(t0)

g∗(i)

∫ G(i)

0

h(t) dt =
N∑

i=G−1(t0)

g∗(i)−
N∑

i=G−1(t0)

g∗(i)

∫ 1

G(i)

h(t) dt.

Au regard de la valeur de C, nous montrons que la probabilité de succès de l’attaque est
essentiellement concentrée en

N∑
i=G−1(t0)

g∗(i)



Analyse des attaques statistiques 99

et que les autres termes de (5.26) sont négligeables.

PS −
N∑

i=G−1(t0)

g∗(i) =

G−1(t0−ε)−1∑
i=0

g∗(i)

∫ G(i)

0

h(t) dt︸ ︷︷ ︸
S1

+

G−1(t0)−1∑
i=G−1(t0−ε)

g∗(i)

∫ G(i)

0

h(t) dt︸ ︷︷ ︸
S2

−
N∑

i=G−1(t0)

g∗(i)

∫ 1

G(i)

h(t) dt︸ ︷︷ ︸
S3

Le premier argument pour prouver que ces termes sont négligeables est que la loi bêta est
concentrée autour de t0. Ce qui signifie que les intégrales avec des domaines suffisamment
loin de t0 sont négligeables. C’est le cas de l’intégrale définie par S1, mais aussi pour une
partie de la somme S3 que nous notons S5 .

S3 =

G−1(t0+ε)−1∑
i=G−1(t0)

g∗(i)

∫ 1

G(i)

h(t) dt︸ ︷︷ ︸
S4

+
N∑

i=G−1(t0+ε)

g∗(i)

∫ 1

G(i)

h(t) dt︸ ︷︷ ︸
S5

.

Pour résumer, nous avons maintenant un terme d’erreur S1 + S2 − S4 − S5 avec S1 et S5

négligeables grâce aux propriétés de la loi bêta.

Par la suite nous donnons le détail de la preuve qui montre que les termes S2 et S4 sont
négligeables. Cette preuve qui repose sur deux lemmes est longue et fastidieuse. On peut
aisément ignorer cette partie pour lire directement la fin de la preuve du théorème.

Les quantités S2 et S4 sont négligeables.

Concentrons nous sur S2 − S4. On a

|S2 − S4| ≤ max(S2, S4)

≤ max

 G−1(t0)−1∑
i=G−1(t0−ε)

g∗(i),

G−1(t0+ε)−1∑
i=G−1(t0)

g∗(i)

 .

L’argument ici est que la somme tend vers 0 et est négligeable par rapport à δ. Les lemmes
suivants justifient les arguments donnés précédemment. Avant d’avoir une estimation des
queues de la loi bêta nous introduisons un lemme intermédiaire.

Lemme 5.13. Soit f(t) une fonction définie sur ]0, 1[ qui est 4 fois différentiable. Suppo-
sons que cette fonction atteint sa valeur minimale 0 au point t0 ∈]1

2
, 1[ et que f ′′(t0) > 0.

Soit λ un nombre réel positif. Alors, pour ε ∈ (0, 1− t0), on a∫ t0+ε

t0

e−λf(t) dt =

∫ φ(t0+ε)

0

[
1√

2τf ′′(t0)
− 1

3

f ′′′(t0)

f ′′2(t0)
+ At0

√
τ + o

(√
τ
)]
e−λτdτ



100 5.4 Probabilité de succès

et ∫ t0

t0−ε
e−λf(t) dt =

∫ f(t0−ε)

0

[
1√

2τf ′′(t0)
+

1

3

f ′′′(t0)

f ′′2(t0)
+ At0

√
τ + o

(√
τ
)]
e−λτdτ.

où At0
def
=

√
2

24f ′′(t0)5/2

(
5f (3)(t0)2

f ′′(t0)
− 3f (4)(t0)

)
.

Preuve : En remplaçant τ par f(t) dans
∫ t0±ε
t0

e−λf(t)dt nous obtenons :∫ t0±ε

t0

e−λf(t)dt =

∫ f(t0±ε)

0

I(τ)e−λτdτ

avec I(τ) =
1

f ′(t)

∣∣∣∣
t=f−1(τ)

. Dans un premier temps nous exprimons t − t0 comme une

fonction de τ en utilisant l’expansion suivante de f .

f(t) =
f ′′(t0)

2
(t− t0)2 +

f (3)(t0)

6
(t− t0)3 +

f (4)(t0)

24
(t− t0)4 + o

(
(t− t0)4

)
.

Sans perte de généralité, nous supposons que t > t0 et nous en déduisons donc le com-
portement asymptotique de t− t0.

(t− t0)2 =
2f(t)

f ′′(t0)

[
1 +

1

3

f (3)(t0)

f ′′(t0)
(t− t0) +

1

12

f (4)(t0)

f ′′(t0)
(t− t0)2 + o

(
(t− t0)2

)]−1

(5.27)

Ce qui nous donne t− t0 =

√
2τ

φ′′(t0)
[1 +O (

√
τ)].

En remettant cette quantité dans l’équation (5.27) cela nous donne :

t− t0 =

√
2τ

f ′′(t0)

[
1−
√

2

6

f (3)(t0)

f ′′(t0)3/2

√
τ + o(

√
τ)

]
.

En allant itérant une nouvelle fois on obtient :

(t− t0)2 =
2τ

f ′′(t0)

[
1 +

√
2

3

f (3)(t0)

f ′′(t0)3/2

[
1−
√

2

6

f (3)(t0)

f ′′(t0)3/2

√
τ

]
√
τ +

1

6

f (4)(t0)

f ′′(t0)2
τ + o (τ)

]−1

t− t0 =

√
2τ

f ′′(t0)

[
1 +

√
2

3

f (3)(t0)

f ′′(t0)3/2

√
τ +

(
1

6

f (4)(t0)

f ′′(t0)2
− 1

9

f (3)(t0)2

f ′′(t0)3

)
τ + o (τ)

]−1/2

.

Nous obtenons finalement :

t−t0 =

√
2τ

f ′′(t0)

[
1−
√

2

6

f (3)(t0)

f ′′(t0)3/2

√
τ −

(
1

12

f (4)(t0)

f ′′(t0)2
− 5

36

f (3)(t0)2

f ′′(t0)3

)
τ + o (τ)

]
. (5.28)

Nous pouvons utiliser la même méthode pour le cas où t < t0. Nous obtenons alors :

t− t0 = −

√
2τ

f ′′(t0)

[
1 +

√
2

6

f (3)(t0)

f ′′(t0)2

√
τ −

(
1

12

f (4)(t0)

f ′′(t0)2
− 5

36

f (3)(t0)2

f ′′(t0)3

)
τ + o(τ)

]
. (5.29)



Analyse des attaques statistiques 101

À partir de l’expression de t − t0 en fonction de τ nous pouvons calculer I(τ). Nous
utilisons le développement limité suivant :

f ′(t) = f ′′(t0)(t− t0) +
f (3)(t0)

2
(t− t0)2 +

f (4)(t0)

6
(t− t0)3 + o

(
(t− t0)3

)
.

Ce qui nous donne l’expression suivante pour 1
f ′(t)

:

1

f ′(t)
=

1

f ′′(t0)(t− t0) + 1
2f

(3)(t0)(t− t0)2 + 1
6f

(4)(t0)(t− t0)3 + o ((t− t0)3)

=
1

f ′′(t0)(t− t0)

[
1 +

1

2

f (3)(t0)

f ′′(t0)
(t− t0) +

1

6

f (4)(t0)

f ′′(t0)
(t− t0)2 + o

(
(t− t0)2

)]−1

=
1

f ′′(t0)(t− t0)

[
1− f (3)(t0)

2f ′′(t0)
(t− t0) +

(
3
f (3)(t0)2

f ′′(t0)
− 2f (4)(t0)

)
(t− t0)2

12f ′′(t0)
+ o

(
(t− t0)2

)]

=
1

f ′′(t0)(t− t0)
− f (3)(t0)

2f ′′(t0)2
+

(
3
f (3)(t0)2

f ′′(t0)
− 2f (4)(t0)

)
t− t0

12f ′′(t0)2
+ o (t− t0) . (5.30)

Nous allons maintenant remplacer la valeur de t − t0 donnée par l’équation (5.28) dans
la formule précédente. Le premier terme de (5.30) s’écrit alors :

1

f ′′(t0)(t− t0)
=

1√
2f ′′(t)τ

[
1−
√

2

6

f (3)(t0)

f ′′(t0)3/2

√
τ −

(
1

12

f (4)(t0)

f ′′(t0)2
− 5

36

f (3)(t0)2

f ′′(t0)3

)
τ + o (τ)

]−1

=
1√

2f ′′(t)τ
+
f (3)(t0)

6f ′′(t0)2
+

(
f (4)(t0)− f (3)(t0)2

f ′′(t0)

) √
2

24f ′′(t0)5/2

√
τ + o

(√
τ
)
.

Le troisième terme de (5.30) devient :

(
3
f (3)(t0)2

f ′′(t0)
− 2f (4)(t0)

)
t− t0

12f ′′(t0)2
=

(
6
f (3)(t0)2

f ′′(t0)
− 4f (4)(t0)

) √
2

24f ′′(t0)5/2

√
τ + o (τ) .

Comme I(τ) =
1

f ′(t)

∣∣∣∣
t=f−1(τ)

, en rassemblant ces deux équations nous obtenons :

I(τ) =
1√

2f ′′(t0)τ
− f (3)(t0)

3f ′′(t0)2
+

√
2

24f ′′(t0)5/2

(
5
f (3)(t0)2

f ′(t0)
− 3f (4)(t0)

)√
τ + o (τ) .

Dans le cas où t < t0, en utilisant l’équation (5.29), nous obtenons

−I(τ) =
1√

2f ′′(t0)τ
+
f (3)(t0)

3f ′′(t0)2
+

√
2

24f ′′(t0)5/2

(
5
f (3)(t0)2

f ′′(t0)
− 3f (4)(t0)

)√
τ + o (τ) .



102 5.4 Probabilité de succès

Lemme 5.14. Soit h la fonction de densité de la loi bêta avec paramètres (2n−`−1, `−1) :

h(t)
def
= (2n − 1) ·

(
2n − 2

`− 1

)
· t2n−`−1(1− t)`−1.

Le maximum de h est atteint au point

t0
def
=

2n − `− 1

2n − 2
.

Soit ε def
= z ·

√
`− 1

2n − 2
. Si z = o

(√
`
)
et ` ∈ [1, 2n/2], nous avons :

∫ t0+ε

t0−ε
h(t) dt = 1 +O

(
1

`2
+

1

2n
+
e−z

2/2

z

)
.

Preuve : Nous appliquons, d’abord, l’approximation de Stirling au coefficient binomial :(
2n − 2

`− 1

)
=

√
1

2π

(
2n − 2

2n − `− 1

)2n−`−1/2(
2n − 2

`− 1

)`−1/2 [
1− 1

12(`− 1)
+O

(
1

2n
+

1

`2

)]
.

Nous simplifions l’expression :(
2n − 2

2n − `− 1

)2n−`−1(
2n − 2

`− 1

)`−1

t2
n−`−1(1− t)`−1 = e−(2n−2)D(t0||t).

Cela nous conduit à définir une nouvelle fonction h̃

h̃(t) = C2n,` · e−(2n−2)D(t0||t) avec C2n,` = (2n − 1) ·

√
2n − 2

2π(`− 1)(2n − `− 1)
.

Alors
h(t) = h̃(t) ·

[
1− 1

12(`− 1)
+O

(
1

2n
+

1

`2

)]
.

La structure de h̃ suggère d’utiliser le lemme 5.13 avec λ = 2n − 2 et f(t) = D (t0||t).
Alors,

f ′′(t0) =
1

t0
+

1

1− t0
=

1

t0(1− t0)
> 0,

f (3)(t0) =
2

(1− t0)2
− 2

t20
= 2

2t0 − 1

t20(1− t0)2
,

f (4)(t0) =
6

(1− t0)3
+

6

t30
= 6

3t20 − 3t0 + 1

t30(1− t0)3
,

et At0 =
13t20 − 13t0 + 1

6
√

2t0(1− t0)
.

Puisque f ′′(t0) > 0 and f(t0) = f ′(t0) = 0, nous pouvons appliquer le lemme 5.13 sous les
deux contraintes z = o

(√
`
)
et ` < 2n/2. La première contrainte vient du fait que ε doit



Analyse des attaques statistiques 103

être petit vis à vis de t0. Cette condition est vérifiée par notre choix final de z. La seconde
contrainte vient de la restriction sur t0 et signifie que nous gardons au plus une clé sur deux
ce qui est actuellement le cas pour les cryptanalyses statistiques. Par intégration par par-
ties il est facile de calculer les trois intégrales suivantes. Soit a un nombre réel, nous avons :

•
∫ a

0
e−t · t−1/2 dt =

√
π − e−aa−1/2 +O

(
e−aa−3/2

)
.

•
∫ a

0
e−t dt = 1− e−a.

•
∫ a

0
e−t · t1/2 dt =

√
π

2
− e−a

√
a+O

(
e−aa−1/2

)
.

En appliquant ce résultat au lemme 5.13, nous avons :

∫ t0+ε

t0

e−λf(t) dt =

√
π

2λf ′′(t0)
+O

(
e−λf(t0+ε)

λ
√
f ′′(t0)f(t0 + ε)

)

− 1

3λ

f (3)(t0)

f ′′2(t0)
+O

(
1

λ

f (3)(t0)

f ′′2(t0)
e−λf(t0+ε)

)
+

At0
2λ

√
π

λ
+O

(
At0

e−λf(t0+ε)

λ

√
f(t0 + ε)

)
et,

∫ t0

t0−ε
e−λf(t) dt =

√
π

2λf ′′(t0)
+O

(
e−λf(t0−ε)

λ
√
f ′′(t0)f(t0 − ε)

)

+
1

3λ

f (3)(t0)

f ′′2(t0)
+O

(
1

λ

f (3)(t0)

f ′′2(t0)
e−λf(t0−ε)

)
+

At0
2λ

√
π

λ
+O

(
At0

e−λf(t0−ε)

λ

√
f(t0 − ε)

)
.

Additionner les deux intégrales nous donne :

∫ t0+ε

t0−ε
e−λf(t) dt =

√
2π

λf ′′(t0)
+O

(
e−λ(f(t0−ε) + e−λf(t0+ε))

λεf ′′(t0)

)
+ O

(
1

3λ

f (3)(t0)

f ′′2(t0)

(
e−λf(t0−ε) + e−λf(t0+ε)

))
+

At0
λ

√
π

λ
+O

(
At0ε

λ

√
f ′′(t0)

(
e−λf(t0−ε) + e−λf(t0+ε)

))
=

√
2π

λf ′′(t0)
·
[
1 +

√
f ′′(t0)

At0
λ

]
+ O

(
1

λ

[
e−λf(t0−ε) + e−λf(t0+ε)

] [ 1

εf ′′(t0)
+
f (3)(t0)

3φ′′2(t0)
+ At0ε

√
f ′′(t0)

])
.



104 5.4 Probabilité de succès

Nous remplaçons maintenant λ et les dérivées de f par leur vraie valeur :∫ t0+ε

t0−ε
h̃(t) dt =

∫ t0+ε

t0−ε
C2n,`e

−(2n−2)D(t0||t) dt

= C2n,` ·
√

2πt0(1− t0)

2n − 2
·
[
1 +

13t20 − 13t0 + 1

12(2n − 2)t0(1− t0)

]
+R

=
2n − 1

2n − 2
·
[
1 +

13t20 − 13t0 + 1

12(2n − 2)t0(1− t0)

]
+R

=

[
1 +

1

2n − 2

]
·
[
1 +

13t20 − 13t0 + 1

12(2n − 2)t0(1− t0)

]
+R

= 1 +
13t20 − 13t0 + 1

12(`− 1)t0
+O

(
1

2n

)
+R,

avec

R = O
(
C2n,`

2n
(
e−λf(t0−ε) + e−λf(t0+ε)

) [t0(1− t0)

ε
+

2

3
(2t0 − 1) +

13t20 − 13t0 + 1

12t0(1− t0)
· ε
])

.

Dans R, la somme entre les crochets est dominée par le premier terme. Ce terme

t0(1− t0)

ε
≈ (1− `/2n)`/2n

z
√
`/2n

est de l’ordre
√
`/z. Nous obtenons alors

R = O

(√
`C2n,`

z · 2n
[
e−(2n−2)D(t0||t0−ε) + e−(2n−2)D(t0||t0+ε)

])

= O

( √
`

z · 2n
C2n,`e

−(2n−2)D(t0||t0−ε) [1 + e−(2n−2)[D(t0||t0−ε)−D(t0||t0+ε)]
])

.

En utilisant le lemme 5.9 nous avons

(2n − 2)D (t0||t0 − ε) ≈
2nε2

2(t0 − ε)(1− t0 = ε)
≈ z2`/2n

2
.

Et
√
`

2n
C2n,` ≈

1√
2π

= O (1). On en déduit donc que :

R = O

(
e−z

2/2

z

[
1 + e−(2n−2)[D(t0||t0−ε)−D(t0||t0+ε)]

])
.

En utilisant le même développement limité que le précédent nous avons

D (t0||t0 − ε)−D (t0||t0 + ε) =
ε2

2(t0 − ε)(1− t0 + ε)
+

ε3(1− 2t0 + 2ε)

3(t0 − ε)2(1− t0 + ε)2

− ε2

2(t0 + ε)(1− t0 − ε)
+

ε3(1− 2t0 − 2ε)

3(t0 + ε)2(1− t0 − ε)2
+O

(
ε4
)

=
2ε3(1− 2t0)

3t20(1− t0)2
+O

(
ε4
)
.

Or
t0(1− t0)

ε
≈
√
`

z
, donc D (t0||t0 − ε)−D (t0||t0 + ε) ≈ 2ε(1− 2t0)z2

3`
.



Analyse des attaques statistiques 105

Et (2n − 2) [D (t0||t0 − ε)−D (t0||t0 + ε)] ≈ 2
√
`− 1(1− 2t0)z3

3`
≈ 2z3

3
√
`
.

Alors,

e−(2n−2)[D(t0||t0−ε)−D(t0||t0+ε)] = O
(
e
− 2z3

3
√
`

)
.

Et en conséquence R = O
(
e−z

2/2

z

)
.

Pour conclure cette preuve nous avons∫ t0+ε

t0−ε
h(t) dt =

[
1 +

13t20 − 13t0 + 1

12(`− 1)t0
+O

(
1

2n
+
e−z

2/2

z

)]

·
[
1− 1

12(`− 1)
+O

(
1

2n
+

1

`2

)]
= 1− (1− t0)

13t0 − 1

12t0
· 1

`− 1
+O

(
1

`2
+

1

2n
+
e−z

2/2

z

)

= 1 +O

(
1

`2
+

1

2n
+
e−z

2/2

z

)

La seconde partie de la preuve du théorème 5.3 consiste à exprimer S2 comme une
fonction de δ ≈ 1− PS. Cette preuve peut être faite de la même façon pour S4.

Lemme 5.15. Soit δ =
∑G−1(t0)−1

i=0 g∗(i). Soit ε = z
√
`−1
2n

pour une certaine valeur de z
où z = o(

√
`) quand ` tend vers l’infini. Si λ ≤ 1

4
,alors

S2 =

G−1(t0)−1∑
i=G−1(t0−ε)

g∗(i) = O
(

zθδ√
`− 1

)
.

Preuve : Dans un premier temps, afin de simplifier les formules, nous notons par B et Bε

les valeurs B def
= F−1(t0) et Bε

def
= F−1(t0 − ε). Dans le cas où B = Bε, il n’y a aucun

terme dans la somme. Le lemme est alors prouvé. À partir de maintenant nous supposons
que B ≥ Bε + 1.

La preuve de ce lemme 5.15 est basée sur le lemme 5.3. Nous utilisons donc le coefficient
suivant

γ
def
=

(1− p) ·B
p · (N −B + 1)

. (5.31)

Afin de prouver ce lemme, dans un premier temps nous allons prouver que

(B −Bε)(γ − 1) = O
(

z√
`− 1

)
(5.32)

Afin de prouver cette équation nous remarquons en utilisant le lemme 5.3 que

N∑
i=B+1

f(i) = θ

(
f(B)

1− 1/γ

)
= θ

(
γ
f(B)

γ − 1

)
. (5.33)



106 5.4 Probabilité de succès

Et,

(γB−Bε− − 1)
f(B)

γ− − 1
≤

B∑
i=Bε+1

f(i) (5.34)

où γ− est défini par

γ−
def
=

1− p
p

min

(
B

N −B + 1
,

Bε + 2

N −Bε − 1

)
Comme nous avons supposé que `−1

2n−2
≤ 1

4
, nous avons B > Np. Pour ` suffisament grand

Bε > Np. En conséquence pour ` suffisament large nous avons γ− = γ. À partir de
l’hypothèse que nous avons faite sur ε, nous savons que

∑B
i=Bε+1 f(i) = o

(∑N
i=B+1 f(i)

)
quand ` tend vers l’infini. Ceci est possible si γB−Bε− − 1 tend vers 0 quand ` tend vers
l’infini. Ceci implique que γB−Bε− − 1 ∼ (B − Bε)(γ− − 1) quand ` tend vers l’infini. La
même remarque peut être faite en remplaçant γ− par γ (puisque γ− coïncide avec γ pour
` suffisamment large). En mettant toutes ces remarques ensemble et en utilisant (5.34) et
(5.33) nous obtenons

(B −Bε)(γ − 1) ∼
`→∞

γB−Bε− − 1

= O

(
B∑

i=Bε+1

f(i)
γ − 1

f(B)

)

= O

(∑B
i=Bε+1 f(i)∑N
i=B+1 f(i)

)

car γ = O (1). Alors, nous pouvons exprimer les sommes apparaissant dans cette fraction
comme fonction de ε et t0 :

B∑
i=Bε+1

f(i) = F (F−1(t0))− F (F−1(t0 − ε)) = ε

[
1 +O

(
f(Bε)

ε

)]
,

et
N∑

i=B+1

f(i) = 1− F (F−1(t0)) = (1− t0)

[
1 +O

(
f(B)

1− t0

)]
.

Finalement, nous obtenons

(B −Bε)(γ − 1) = O

(
ε

1− t0

[
1 +O

(
f(Bε)

ε

)])
.

Nous pouvons vérifier que O
(
f(Bε)
ε

)
= O (1). En remplaçant les valeurs de ε et t0 par

leur vraie valeur nous obtenons

(B −Bε)(γ − 1) = O
(

z√
`− 1

)
.



Analyse des attaques statistiques 107

Maintenant que nous avons prouvé l’assertion (5.32) nous pouvons nous concentrer de
nouveau sur la preuve du lemme 5.15. Nous pouvons une nouvelle fois utiliser le lemme 5.3
pour obtenir les expressions suivantes

B−1∑
i=0

f0(i) = O
(
f0(B)

1− γ0

)
(5.35)

B∑
i=Bε

f0(i) = O
(

(1− γB−Bε0 )f0(B)

1− γ0

)
(5.36)

Nous avons

1− γB−Bε0 = O ((B −Bε)(1− γ0))

= O (θ(γ − 1)(B −Bε))

= O
(
θ

z√
`− 1

)
,

où θ = O
(

1−γ0

1−γ

)
En remettant ce résultat dans l’équation (5.36) et en utilisant le fait que

δ
def
=
∑B−1

i=0 f0(i) nous obtenons :

B∑
i=Bε

f0(i) = O
(
θ

z√
`− 1δ

)
et nous avons prouvé le lemme 5.15

Preuve du théorème

À partir des lemmes que nous venons de prouver nous pouvons revenir sur la preuve
du théorème 5.3.
Preuve : Rappelons que nous voulons borner supérieurement l’erreur suivante :

PS −
N∑

i=G−1(t0)

g∗(i) = S1 + S2 − S4 − S5.

Nous commençons par borner S1 et S5 :

S1 =

G−1(t0−ε)−1∑
i=0

g∗(i)

∫ G(i)

0

h(t) dt ≤
∫ t0−ε

0

h(t) dt,

S5 =
N∑

i=G−1(t0+ε)

g∗(i)

∫ 1

G(i)

h(t) dt ≤
∫ 1

t0+ε

h(t) dt.

Or, |S1 − S5| ≤ S1 + S5 ≤ 1−
∫ t0+ε

t0−ε g(t) dt. Donc, en utilisant le lemme 5.14 nous avons :

|S1 − S5| = O

(
1

`2
+

1

2n
+
e−z

2/2

z

)
. (5.37)



108 5.4 Probabilité de succès

Pour montrer que S2 est négligeable nous utilisons le lemme 5.15. Une preuve peut être
faite de la même manière pour montrer S4 est négligeable. Nous avons alors

|S2 − S4| = O
(
δ
z√
`

)
. (5.38)

En ajoutant les équations (5.37) et (5.38), nous obtenons

PS −
N∑

i=G−1(t0)

g∗(i) = O

(
1

`2
+

1

2n
+
e−z

2/2

z
+ δ

z√
`

)
.

La dernière étape de la preuve consiste à choisir une valeur particulière pour z. En prenant
z de la forme z =

√
ln
(
`
δ2

)
nous obtenons

PS −
N∑

i=G−1(t0)

g∗(i) = O

(
δ

√
ln(`/δ2)

`
+

1

`2
+

1

2n

)
.

Le choix de z que nous avons pris vérifie bien la condition réclamée dans les lemmes
qui était e−z

2/2

z
= O

(
δ z√

`

)
.

5.4.4 Lien avec les formules existantes

Le calcul de la probabilité de succès d’une attaque différentielle ou linéaire avait déjà
été fait par Selçuk [Sel08]. Cette étude reposait sur l’hypothèse que la distribution des
statistiques d’ordre étudiée convergeait vers une loi normale.

Description des travaux de Selçuk

Nous rappelons ici un des théorèmes principaux de l’article [Sel08].

Théorème 5.4. Soit φ∗ la fonction densité de la loi gaussienne de moyenne Np∗ et de
variance Np∗(1 − p∗). Soit Φ−1 l’inverse de la fonction de répartition de la loi normale
de paramètre Np et Np(1− p). Alors une bonne approximation de la probabilité de succès
est

PS ≈
∫ ∞

Φ−1(1−`/2n)

φ∗(x) dx. (5.39)

On peut remarquer que la formule donnée dans le théorème 5.3 et la formule de la
probabilité de succès donnée par Selçuk sont très similaires. En effet les fonctions Φ et
φ∗ sont des approximations de G et g∗. Ainsi la formule de Selçuk est bonne lorsque l’ap-
proximation gaussienne l’est. Le problème de l’utilisation de l’approximation gaussienne
est soulevé par Selçuk lui-même lors de l’étude de la complexité en données d’une attaque
différentielle. Les résultats expérimentaux montrent que son approximation de la proba-
bilité de succès est bonne dans le cas de la cryptanalyse linéaire mais est très loin de la
réalité pour la cryptanalyse différentielle.



Analyse des attaques statistiques 109

5.4.5 Résultats expérimentaux

Nous avons fait des expérimentations afin de comparer notre formule de la probabilité
de succès avec celle donnée par Selçuk (voir théorème 5.4). Nous avons aussi comparé
cette formule avec la vraie valeur de la probabilité de succès. Cette valeur a pu être
calculée en utilisant une astuce simple qui permet de calculer la densité de la loi bêta
avec une grande précision. Dans le cas de la cryptanalyse linéaire comme l’approximation
gaussienne est bonne, notre formule de la probabilité de succès donne le même résultat
que la formule de la probabilité de succès donnée par Selçuk. Cependant dans le cas de
la cryptanalyse différentielle, la formule donnée par Selçuk est trop optimiste alors que
notre formule donnée par le théorème 5.3 est proche de la vraie valeur de la probabilité de
succès. Les résultats de certaines des expérimentations que nous avons faites sont donnés
dans le tableau 5.6 et illustrent bien le phénomène décrit ci dessus.

Type Paramètres Notre estimation Estimation de [Sel08]
de Probabilités N = 248 PS de PS de PS

cryptanalyse 2n = 220 (5.22) (5.39)

Linéaire p = 0.5
p∗ = p+ 1.49 · 2−24 ` = 215 0.8681 0.8681 0.8681

Linéaire p = 0.5
p∗ = p+ 1.49 · 2−24 ` = 210 0.4533 0.4533 0.4533

Différentielle p = 2−64

p∗ = 2−47.2 ` = 215 0.8257 0.8247 0.9050

Différentielle p = 2−64

p∗ = 2−47.2 ` = 210 0.8250 0.8247 0.9050

Table 5.6 – Comparaison entre les équations (5.22) et (5.39) avec la vraie valeur de la
probabilité de succès.

5.4.6 Lien entre la probabilité de succès et la complexité en don-
nées

Nous avons mené d’autre expérimentations dans le but de montrer que quand nous
choisissons N de la forme

N = −c · ln(2
√
π · `/2n)

D (p∗||p)
,

(ce choix est guidé par la formule donnée dans le théorème 5.2) alors la probabilité de
succès de l’attaque dépend essentiellement de la valeur de c et est indépendante du type de
cryptanalyse. Pour illustrer ce propos nous avons calculé dans le tableau 5.7 plusieurs va-
leurs de probabilité de succès pour un nombre total de clés fixé à 2n = 230, pour différentes
valeurs de taille de liste ` et pour différents types de cryptanalyses. Ces probabilités de
succès ont été calculées à l’aide de la formule donnée dans le théorème 5.3. Les valeurs cal-
culées dans le tableau 5.7 pour plusieurs valeurs de c montrent que la probabilité de succès
dépend essentiellement de la valeur de c et est indépendante du type de cryptanalyse.



110 5.5 Probabilité de succès dans le cas de la cryptanalyse différentielle

c = 1 c = 1.5 c = 2

Paramètres ` ` `
210 225 240 210 225 240 210 225 240

p = 0.5
p∗ = p+ 1.49 · 2−24 0.5855 0.5922 0.6012 0.9799 0.9606 0.9169 0.9998 0.9988 0.9902

p = 0.5
p∗ = p+ 1.23 · 2−11 0.5856 0.5924 0.6013 0.9800 0.9606 0.9170 0.9998 0.9988 0.9903

p = 2−30

p∗ = 1.2 · 2−30 0.5802 0.5847 0.6117 0.9766 0.9580 0.9105 0.9998 0.9985 0.9880

p = 2−40

p∗ = 1.2 · 2−40 0.5802 0.5847 0.5981 0.9766 0.9580 0.9105 0.9998 0.9985 0.9880

p = 2−64

p∗ = 2−60 0.5496 0.5976 0.5300 0.9078 0.8936 0.8054 0.9928 0.9783 0.9292

p = 2−32

p∗ = 2−29 0.6421 0.7058 0.6817 0.9381 0.8936 0.8875 0.9959 0.9880 0.9832

Table 5.7 – Probabilité de succès pour différents paramètres avec 2n = 260 et N =

−c · ln(2
√
π·`/2n)

D(p∗||p) .

5.5 Amélioration de la formule de la probabilité de suc-
cès dans le cas de la cryptanalyse différentielle

Dans la section précédente nous avons vu que la formule de la probabilité de succès
que nous donnons dans le théorème 5.3 est bonne et assez proche de la vraie formule
lorsque l’on utilise la loi binomiale. Cependant dans le cas de la cryptanalyse différentielle
nous avons remarqué expérimentalement que pour une différentielle fixée, les clés suivaient
aussi une distribution binomiale (voir section 4.3). Cette hypothèse n’a pas été prise en
compte dans notre analyse générale de la probabilité de succès.

Dans cette section nous présentons les résultats d’une attaque expérimentale que nous
avons fait sur SMALLPRESENT-[8]. En utilisant la remarque que nous avons faite dans
la section 4.3, nous donnons une formule de la probabilité de succès plus précise dans le
cas de la cryptanalyse différentielle.

5.5.1 Amélioration de la formule de la probabilité de succès dans
le cas de la cryptanalyse différentielle

L’observation faite dans la section 4.3 que la répartition des clés suit une distribution
binomiale peut être prise en compte dans le calcul de la probabilité de succès d’une attaque
différentielle.

On commence par rappeler que dans la section précédente nous avons montré que la
probabilité de succès (voir théorème 5.3) est proche de

1−
G−1(t0)−1∑

i=0

g∗(i),



Analyse des attaques statistiques 111

où G est la fonction de répartition d’une loi binomiale de paramètres (N, p∗) et g∗ est la
densité d’une loi binomiale de paramètres (N, p∗). Nous notons ici par Ps(p∗) cette quan-
tité. À partir de maintenant comme la distribution des différences est différente suivant
les clés nous notons par Ps(q) la quantité suivante

Ps(q) = 1−
G−1(t0)−1∑

i=0

gq(i),

où gq est la densité d’une loi binomiale avec paramètres N et q.

Proposition 5.1. En utilisant les notations précédentes, la probabilité de succès d’une
attaque différentielle utilisant une seule différentielle avec probabilité p∗ est :

PS =
2m−1∑
i=0

PS

(
i

2m−1

)
·
[
pi∗(1− p∗)2m−1−i

(
2m−1

i

)]
. (5.40)

Dans la section suivante, nous validons expérimentalement cette nouvelle formule. Et
nous montrons que la formule donnée dans la proposition 5.1 est plus exacte que la formule
donnée dans le théorème 5.3.

5.5.2 Cryptanalyse différentielle de SMALLPRESENT-[8]

Nous présentons ici une cryptanalyse différentielle simple sur SMALLPRESENT-[8].
Dans cette cryptanalyse nous utilisons la différentielle suivante sur 7 tours du système de
chiffrement :

(a0, a7) = (0x7, 0x2a2a0000).

Cette différentielle arrive avec probabilité

p∗ = 2−24.885.

Afin de faire une attaque rapide, nous n’inversons qu’un seul tour de clé. Comme au
dernier tour nous avons 4 boîtes-S actives nous avons 216 clés candidates. Dans notre
attaque, nous avons choisi de ne garder que ` = 210 candidats (voir algorithme 2).
Afin de mesurer la probabilité de succès expérimentale nous avons fait 200 expérimenta-
tions. Les résultats expérimentaux sont donnés dans la figure 5.1. Sur ce même graphique
nous avons aussi dessiné la courbe de la probabilité de succès obtenue par la formule don-
née dans le théorème 5.3 et la courbe de la nouvelle formule de la probabilité de succès
que nous avons obtenue après avoir pris en compte la distribution binomiale des clés.

Dans le cas de la cryptanalyse différentielle les formules théoriques de la probabilité de
succès ne donnent pas toujours de bons résultats. Ceci peut s’expliquer facilement pas le
fait que comme p∗ et p sont éloignées, G(t0) (où t0 = 1 − `−1

2n−2
) est souvent égal à 0 et

donc les formules de la probabilité de succès sont plus ou moins indépendantes de la taille
de la liste des clés gardées.
Cependant dans ce graphique on remarque que la courbe de la probabilité de succès
obtenue grâce à la proposition 5.1 est plus proche des résultats expérimentaux.



112 5.5 Probabilité de succès dans le cas de la cryptanalyse différentielle

0.6

0.65

0.7

0.75

0.8

0.85

0.9

30 30.5 31 31.5 32

P
S

log2(N)

Expérimentale
théorème 5.3

proposition 5.1

Figure 5.1 – Probabilité de succès de l’attaque différentielle sur SMALLPRESENT-[8]
spécifiée dans la section 5.5.2

Dans ce chapitre, nous avons étudié la complexité en données et la probabilité de succès
d’une attaque statistique dans laquelle les variables aléatoires suivent une loi binomiale.
Un certain nombre des généralisations de la cryptanalyse différentielle rentrent dans ce
contexte. On peut cependant réfléchir à d’autres types de cryptanalyses qui généralise-
raient la cryptanalyse différentielle et qui ne rentrent pas dans ce contexte.
Dans le chapitre suivant nous présentons une nouvelle généralisation de la cryptanalyse
différentielle tronquée. Dans cette attaque, les variables aléatoires étudiées ne suivent
pas des distributions binomiales. Une autre étude de la complexité en données et de la
probabilité de succès est alors nécessaire.



Chapitre 6

La cryptanalyse différentielle multiple

Dans le chapitre 2 nous avons vu qu’il existait un certain nombre de variantes de la
cryptanalyse différentielle. Certaines de ces cryptanalyses tirent de l’information à partir
de plusieurs différentielles. Nous présentons ici une généralisation de ces attaques. Ce
chapitre a pour objet nos travaux avec Benoît Gérard dont les principaux résultats ont
été présentés à FSE 2011 [BG11].

Nous avons introduit la cryptanalyse différentielle multiple dans le but d’avoir une at-
taque plus performante que l’attaque différentielle classique ou que l’attaque différentielle
tronquée.

L’idée de la cryptanalyse différentielle multiple consiste à exploiter l’information fournie
par plusieurs différentielles n’ayant pas forcément de lien direct entre elles. Dans la cryp-
tanalyse différentielle classique, celle introduite par Eli Biham et Adi Shamir, l’attaquant
exploite de l’information venant de plusieurs différentielles ayant la même différence en
sortie. Dans les attaques différentielles tronquées classiques l’attaquant exploite des dif-
férentielles telles que pour chaque différence en entrée étudiée l’ensemble des différences
en sortie est le même. La notion de différentielle multiple que nous introduisons dans ce
chapitre regroupe ces deux types d’attaques.

Dans ce chapitre nous abordons le problème en prenant les différentielles qui ont les
meilleures probabilités.

Contrairement aux autres généralisations de la cryptanalyse différentielle décrites dans
le chapitre 2, les variables aléatoires étudiées ici ne suivent pas une loi binomiale. Ainsi
l’étude que nous avons faite dans le chapitre 5 pour calculer la complexité en données et
la probabilité de succès d’une attaque statistique simple ne s’applique pas ici. Dans ce
chapitre après avoir présenté la cryptanalyse différentielle multiple, nous étudions la distri-
bution des variables aléatoires qui sont impliquées dans l’attaque afin de pouvoir calculer
la complexité en données et la probabilité de succès d’une attaque différentielle multiple.
Comme nous l’avons fait régulièrement dans les chapitres précédents, nous testons cette
attaque sur une version réduite de PRESENT.

6.1 La cryptanalyse différentielle multiple

Dans un premier temps nous posons les notations de ce chapitre.



114 6.1 La cryptanalyse différentielle multiple

6.1.1 Contexte

Dans la cryptanalyse différentielle multiple, étudiée avec Benoît Gérard, nous cher-
chons à exploiter de l’information à partir d’un certain nombre de différences.

Nous notons par A l’ensemble des différentielles que l’attaquant cherche à exploiter.

A
def
= {(a0, ar) ∈ Fm2 × Fm2 },

où ar est une différence après r tours.
Une façon naturelle d’ordonner ces différentielles consiste à regrouper toutes les dif-

férentielles qui ont la même différence en entrée. Nous notons par A0 l’ensemble des
différences en entrée qui sont comprises dans A :

A0
def
= {a0, ∃ar, (a0, ar) ∈ A}.

Soit #A0 le nombre de différences en entrée ; nous indexons les éléments de A0 :

A0 = {a0
(1), . . . , a0

(#A0)}.

Donc, pour une différence en entrée fixée a0
(i) ∈ A0 (i ∈ {1..#A0}), nous définissons

l’ensemble des différences en sortie correspondantes A(i)
r par :

A(i)
r

def
= {ar | (a0

(i), ar) ∈ A}.

L’ensemble des différentielles A qui sont impliquées dans l’attaque différentielle multiple
peut alors s’exprimer

A =
{(
a0

(i), a(i,j)
r

) ∣∣∣ i = 1 . . .#A0 and j = 1 . . .#A(i)
r

}
.

On ne peut pas parler de différentielles sans les associer à leurs probabilités. Soit F la
fonction de tour d’un système de chiffrement avec clé maître K, F r

K correspond à r tours
de ce système de chiffrement Ainsi nous notons par p(i,j)

∗ la probabilité de la différentielle
(a0

(i), a
(i,j)
r ) :

p(i,j)
∗ = PX,K

[
F r
K(X) + F r

K(X + a0
(i)) = a(i,j)

r

]
.

La probabilité théorique d’une différentielle peut être obtenue grâce à un algorithme
“branch and bound” (voir algorithme 12)

6.1.2 L’algorithme décrivant l’attaque

L’attaque différentielle multiple est assez similaire à l’attaque différentielle classique
(voir algorithme 2). Nous présentons l’algorithme dans le cas d’une attaque sur le dernier
tour d’un système de chiffrement de type substitution-permutation. L’attaque consiste
alors à déchiffrer partiellement les NDC messages chiffrés en utilisant toutes les clés pos-
sibles du dernier tour et à compter le nombre d’occurrences des différentielles dans A. En
d’autres termes, nous comptons le nombre de paires de messages clairs avec différence en
entrée a0

(i) ∈ A0 qui conduisent à une différence dans A(i)
r après r tours. Comme dans

l’attaque différentielle classique, dans le but de réduire la complexité en temps de l’at-
taque, un crible est utilisé pour supprimer certaines paires de messages. La particularité



La cryptanalyse différentielle multiple 115

ici est que ce crible dépend de la différence en entrée. Ainsi pour chaque différence en
entrée a0

(i) nous définissons un crible ∆
(i)
sieve. Ce crible consiste en toutes les différences

possibles après un tour sachant que les différences précédentes appartenaient à A(i)
r :

∀ i ∆
(i)
sieve =

⋃
ar∈A(i)

r

{
a | P

[
ar →

F
a
]}

.

L’attaque différentielle multiple qui consiste à ajouter le nombre d’occurrences de
chaque différentielle est décrite dans l’algorithme 14.

Algorithme 14 : Cryptanalyse différentielle multiple d’un système de chiffrement
de type substitution-permutation
Entrée : NDC couples de clairs/chiffrés (Xi, Yi) avec Yi = EK∗(Xi)
Sortie : La clé K∗ utilisée pour chiffrer les messages
Initialiser une table C de 2n compteurs à 0.
Pour chaque a0

(i) ∈ A0 faire
Pour chaque paire de messages (Xa, Xb) tel que Xb = Xa ⊕ a0

(i) faire
Si Ya ⊕ Yb ∈ ∆

(i)
sieve alors

Pour chaque sous clé candidate k faire
Calculer δ = F−1

k (Ya)⊕ F−1
k (Yb);

Si δ ∈ A(i)
r alors

C[k]← C[k] + 1;

Générer une liste L des ` candidats avec la plus grande valeur de C[k] ;
Pour chaque k ∈ L faire

Pour chaque clé maître possible K correspondant à k faire
Si EK(X) = Y = EK∗(X) alors retourner K;

Cet algorithme va nous servir de support pour calculer la complexité en temps et en
mémoire d’une attaque différentielle multiple. Dans le chapitre 2, nous n’avons pas pris
le temps de détailler la complexité en temps des attaques différentielles et différentielles
tronquées. Ces deux cryptanalyses sont des cas particulier de la cryptanalyse différentielle
multiple, la section suivante est dédiée à l’étude de ces deux complexités.

6.1.3 La complexité en temps et en mémoire

Afin de comparer une attaque statistique à une autre en plus de la probabilité de
succès et de la complexité en données, il est aussi intéressant de comparer la complexité
en temps et en mémoire. Dans cette section nous détaillons donc brièvement le calcul de
ces complexités dans le cas de l’attaque présentée dans l’algorithme 14. La complexité en
temps d’une attaque statistique peut se découper en trois phases importantes 1 :

Phase de distillation : Pour chaque paire de différences en sortie qui passe le crible,
l’attaquant doit inverser partiellement la fonction de tour pour toutes les clés can-
didates possibles.

1. Ces trois phases sont décrites dans le chapitre 1 dans la section 1.5



116 6.1 La cryptanalyse différentielle multiple

Phase d’analyse : Pour les variables aléatoires étudiées, les trier afin de garder une
liste des candidats les plus probables.

Phase de recherche exhaustive : Pour toutes le clés candidates qui sont dans la
liste il faut tester toutes les clés maîtres correspondantes afin de trouver la bonne.

Complexité en temps de la phase de distillation

Nous analysons dans un premier temps la complexité en temps de la phase de disti-
lation. Pour ceci nous avons besoin d’introduire un certain nombre de notations. Nous
notons par Sr (resp. Sr+1) le cardinal maximum des différences possibles en sortie (resp.
le cardinal maximum du crible) :

Sr
def
= max

i
{#A(i)

r } et Sr+1
def
= max

i
{#∆

(i)
sieve}.

Pour calculer la complexité en données nous nous plaçons dans le pire des cas, c’est-à-dire
que nous allons supposer que tous les cribles ont la même taille, égale à Sr+1.

Soit m le nombre de bits de la sortie de la fonction de chiffrement. Nous notons par
psieve la probabilité maximale sur toutes les différences en entrée A0 qu’une paire passe le
crible :

psieve = 2−mSr+1.

Quand l’ensemble des différences en sortie n’est pas réduit à un élément, nous avons besoin
de vérifier si une différence appartient à un certain ensemble. En supposant que l’ensemble
A est trié, cette étape peut se faire à l’aide d’un recherche dichotomique. La complexité
en temps de cette vérification est alors en O (log(#A)).

Dans l’algorithme 14, le nombre de paires à tester est

N = #A0NDC/2.

Pour chaque paire nous devons vérifier les paires qui passent le crible. Ceci peut se faire
avec une complexité de N log(Sr+1).

Cependant, on peut réduire la complexité en temps de cette étape lorsque les cribles
∆

(i)
sieve se ressemblent.
L’inversion partielle de la fonction de tour doit être faite pour toutes les paires qui

passent le crible et pour toutes les clés candidates possibles. Donc, la complexité de la
phase de distillation est en

O (2nNpsieve) déchiffrements/chiffrements

et
O
(
2nN2−mSr+1 log(1 + Sr)

)
comparaisons

Complexité en temps de la phase d’analyse

L’étape consistant à extraire la liste L des ` candidats les plus probables peut être
faite en temps linéaire, en fonction du nombre 2n de clés testées.



La cryptanalyse différentielle multiple 117

Complexité en temps de la phase de recherche exhaustive

La dernière partie de l’algorithme correspond à une recherche exhaustive des bits
restant de la clé maître. Cette étape qui peut être coûteuse nécessite

O
(
` · 2Ω

2n

)
applications de la fonction de chiffrement

où Ω correspond au nombre de bits de la clé maître.
Il est difficile de prédire laquelle de ces étapes est la plus coûteuse. En effet suivant les

paramètres de l’attaque (notamment le nombre de clés testées et la taille de la liste des
clés gardées) la complexité en temps de la phase de distillation peut être plus ou moins
importante que la complexité en temps de la phase de recherche exhaustive.

Le tableau 6.1 donne le détail de la complexité en temps. Les termes correspondant aux
étapes avec une complexité en temps négligeable sont omis ici,

Chiffrement Dechiffrement partiel Comparaisons

O
(
`2Ω−n) O (2nNpsieve) O (2nN2−mSr+1 log(1 + Sr))

Table 6.1 – Complexité en temps d’une attaque différentielle multiple. Les quantités Sr
(resp. Sr+1) correspondent au nombre maximum de différences pour une différence en
entrée dans A0 après r tours (resp. (r + 1) tours).

La complexité en mémoire d’une attaque est essentiellement due au stockage des comp-
teurs, des paires de messages qui passent le crible et au stockage des cribles ∆

(i)
sieve.

6.2 La statistique étudiée

L’étude de la complexité en données et de la probabilité de succès d’une attaque diffé-
rentielle multiple comme définie précédemment nécessite la connaissance de la distribution
des variables aléatoires utilisées. Cette section est dédiée à la définition des variables aléa-
toires impliquées et à l’étude de leur distribution.

6.2.1 Les variables aléatoires simples

Dans cette section, nous rappelons que EK est un système de chiffrement avec fonction
de tour F . Nous supposons que le système de chiffrement est composé de r + 1 tours et
que l’on cherche à retrouver de l’information sur la clé du r + 1ème tour.

Définition 6.1. Nous notons par Ca0
(i),X,k les variables aléatoires simples pour une diffé-

rence en entrée a0
(i) fixée et l’ensemble des différences en sortie A(i)

r correspondant. Pour
un message clair donné X et pour une clé candidate donnée k nous avons

Ca0
(i),X,k

def
=

{
1 si F−1

k

(
EK∗(X)

)
⊕ F−1

k

(
EK∗(x⊕ a0

(i))
)
∈ A(i)

r ,
0 sinon.



118 6.2 La statistique étudiée

Définition 6.2. En utilisant les notations de la définition 6.1, nous obtenons les variables
CX,k ou Ca0

(i),X,k selon que l’on somme sur les messages clairs ou sur les différences en
entrée :

CX,k =

#A0∑
i=1

Ca0
(i),X,k,

Ca0
(i),k =

1

2

∑
x

Ca0
(i),X,k.

Les variables aléatoires qui nous intéressent dans le cas de notre cryptanalyse sont
alors les suivantes :

Définition 6.3. En utilisant les notations de la définition 6.1 et de la définition 6.2, les
variables aléatoires que nous regardons dans le cas de notre cryptanalyse sont

Ck =
1

2

∑
X

CX,k, (6.1)

ou de manière équivalente,

Ck =

#A0∑
i=1

Ca0
(i),k. (6.2)

Afin de déterminer la distribution des variables aléatoires définies dans la définition 6.2,
nous commençons par une petite discussion sur la meilleure façon de sommer.

6.2.2 Distribution des variables aléatoires simples

On note par p(i,j) la probabilité suivante

p(i,j) = PX

[
F−1
k (EK∗(X))⊕ F−1

k (EK∗(X ⊕ a0
(i))) = a(i,j)

r

∣∣k 6= k∗
]

En utilisant l’hypothèse de répartition aléatoire par fausse clé définie dans le cas de la
cryptanalyse différentielle (voir hypothèse 2.1), nous obtenons que les variables aléatoires
simples Ca0

(i),X,k (voir définition 6.2) suivent une loi de Bernoulli de paramètre
p

(i)
∗

def
=

∑#A
(i)
r

j=1 p
(i,j)
∗ si k = k∗,

et

p(i) def
=

∑#A
(i)
r

j=1 p(i,j) ≈ #A
(i)
r 2−m sinon.

Il existe deux moyens de sommer ces variables aléatoires simples. On peut sommer
sur les messages clairs. A ce moment là on obtient les variables aléatoires Ca0

(i),k. Ces
variables aléatoires sont alors une somme de variables de Bernoulli avec même paramètre.
Sous une hypothèse d’indépendance, ces variables aléatoires suivent une loi binomiale de
paramètres NDC/2 et p(i) ou p(i)

∗ suivant la clé candidate.
On rappelle que les variables aléatoires que nous utilisons dans notre cryptanalyse cor-
respondent à la somme des variables aléatoires simples Ca0

(i),X,k. Le problème qui se pose



La cryptanalyse différentielle multiple 119

alors est que l’on ne peut pas définir aisément la distribution de la somme de variables
binomiales qui n’ont pas la même probabilité. Pour cette raison, pour trouver la distribu-
tion des variables aléatoires Ck, nous avons choisi de sommer d’abord sur les différences
en entrée avant de sommer sur les messages clairs. Ce choix est purement théorique et ne
change rien au principe de l’attaque ni à la puissance de celle-ci. De cette façon on obtient
que les variables aléatoires Cx(k) sont identiquement distribuées.

6.2.3 Approximation par une loi de Poisson

Les variables aléatoires Ca0
(i),X,k sont des variables aléatoires indépendantes qui suivent

des lois de Bernoulli avec paramètres différents. La somme des ces variables aléatoires ne
suit alors pas une loi binomiale. Cependant grâce à un résultat de Le Cam [Cam60] nous
pouvons dire que la distribution des variables aléatoires CX,k est proche d’une loi de
Poisson.

Théorème 6.1. [Cam60] Soit Ca0
(i),X,k un ensemble de #A0 variables aléatoires indépen-

dantes qui suivent des lois de Bernoulli de paramètre p(i). Soient

CX,k
def
=

#A0∑
i=1

Ca0
(i),X,k

et

λ =

#A0∑
i=1

p(i).

Alors, pour tout ensemble A ⊂ {0, 1, . . . ,#A0}, nous avons∣∣∣∣∣P [CX,k ∈ A]−
∑
a∈A

λae−λ

a!

∣∣∣∣∣ <
#A0∑
i=1

p(i)2
.

Il est facile de vérifier que dans notre contexte les variables aléatoires Ca0
(i),X,k sont

indépendantes puisque pour une clé fixée et un message fixé la connaissance des valeurs
F r
K(X)⊕ F r

K(X ⊕ a0
(i)) ne nous donne pas d’information sur les F r

K(X)⊕ F r
K(X ⊕ δ) si

δ 6= a0
(i).

À partir de ce théorème nous pouvons donc déduire que la distribution des variables
aléatoires CX,k est proche d’une distribution de Poisson avec paramètre

∑#A0

i=1 p(i).

Lemme 6.1. En utilisant le théorème 6.1 nous avons que
– La distribution des variables aléatoires CX,k∗ est proche d’une loi de Poisson de
paramètre

∑#A0

i=1 p
(i)
∗ .

– La distribution des variables aléatoires CX,k pour k 6= k∗ est proche d’une loi de
Poisson de paramètre

∑#A0

i=1 p(i).

Comme la loi de Poisson est stable par addition, si l’on somme des variables aléatoires
indépendantes, nous voulons pouvoir en déduire que

∑
xCX,k suit une loi de Poisson avec

paramètre NDC
2
·
∑#A0

i=0 p(i). Si l’on regarde plus en détail, cela n’est pas le cas puisque



120 6.2 La statistique étudiée

chaque différentielle est comptée deux fois et en conséquence les variables aléatoires CX,k
sont dépendantes. Dans le cas de la cryptanalyse différentielle classique (une seule diffé-
rence en entrée) il est facile de voir que pour avoir des variables aléatoires indépendantes
il suffit de sommer sur la moitié des messages. Quand le nombre de différences augmente,
pour pouvoir sommer sur seulement la moitié des messages il faut alors que l’ensemble
des différences en entrée possède une certaine propriété.
En effet s’il existe un ensemble X de cardinalité NDC/2 tel que pour tout X et X ′ dans
X il n’existe pas de différence en entrée a0

(i) tel que x = x′ ⊕ a0
(i), alors nous avons

que
∑

x∈X CX,k = 1
2

∑
xCX,k = Ck. Un ensemble de différence en entrée qui vérifie cette

condition est dit admissible.

Définition 6.4. L’ensemble des différences en entrée A0 est dit admissible s’il est tel
qu’il existe un ensemble X de NDC/2 messages clairs qui vérifient :

∀a0
(i) ∈ A0,∀x ∈ X , x⊕ a0

(i) 6∈ X . (6.3)

Pour la suite de notre analyse on suppose que l’ensemble des différences en entrée
A0 est admissible. Si on est en possession d’un certain nombre de différences en entrée il
est facile de voir si A0 est admissible ou non. L’explication sur la façon de vérifier qu’un
ensemble est admissible est donnée dans la section 6.2.4.

Pour la suite de notre analyse, afin d’étudier la distribution des variables aléatoires Ck
nous avons besoin de supposer que les variables aléatoires (CX,k)x∈X sont indépendantes.

Hypothèse 6.1. Soit A0 un ensemble de différences en entrée admissible comme défini
dans la définition 6.4. Soit X un ensemble de taille NDC/2 qui vérifie l’équation (6.3).
Alors, les variables aléatoires (Cx,k)x∈X sont indépendantes.

Des expérimentations montrent que l’hypothèse précédente est souvent vraie.
En conséquence en supposant l’hypothèse 6.1 vérifiée nous obtenons que la distribution

des variables aléatoires (Ck) est proche d’une loi de Poisson.

Lemme 6.2. D’après le lemme précédent, si l’on se place sous l’hypothèse 6.1 nous avons
que

– La distribution des variables aléatoires Ck∗ est proche d’une loi de Poisson de para-
mètre NDC

2

∑#A0

i=1 p
(i)
∗ .

– La distribution des variables aléatoires Ck pour k 6= k∗ est proche d’une loi de
Poisson de paramètre NDC

2

∑#A0

i=1 p(i).

Nous introduisons ici les quantités suivantes qui vont jouer un rôle important dans la
suite de notre analyse de la cryptanalyse différentielle multiple.

p∗
def
=

∑
i p

(i)
∗

#A0

et p
def
=

∑
i p

(i)

#A0

≈ #A · 2−m

#A0

.

Ces notations sont utilisées dans la section 6.2.5

6.2.4 Comment vérifier qu’un ensemble de différences en entrée
A0 est admissible

Dans la section précédente, afin de pouvoir sommer des variables indépendantes, nous
avons supposé que l’ensemble des différences en entrée vérifiait certaines propriétés . Pour



La cryptanalyse différentielle multiple 121

admissible

0x1

0x7

0x3

0x5

0x2

0x4

0x0

0x6

a0
(1)

a0
(1)

a0
(1)

a0
(1)

a0
(2) a0

(2)

a0
(2) a0

(2)

Non-admissible

0x1

0x7

0x3

0x5

0x2

0x4

0x0

0x6

a0
(1)

a0
(1)

a0
(1)

a0
(1)

a0
(2) a0

(2)

a0
(2) a0

(2)

a0
(3)

a0
(3)

a0
(3)

a0
(3)

Figure 6.1 – Exemple de graphe : 1 biparti et l’autre non. a0
(1) = 0x3, a0

(2) = 0x5 et
a0

(3) = 0x2. {a0
(1), a0

(2)} est admissible. {a0
(1), a0

(2), a0
(3)} n’est pas admissible.

autant, plus l’ensemble des différences en entrée est grand, plus il est difficile de vérifier
facilement si cet ensemble est admissible. Nous présentons ici une méthode efficace pour
vérifier si l’ensemble des différences en entrée est admissible.

Nous rappelons ici la définition d’un ensemble admissible. Un ensemble A0 est ad-
missible s’il existe un ensemble X de NDC/2 messages clairs tel que ∀a0

(i) ∈ A0, ∀x ∈
X , x⊕ a0

(i) 6∈ X .
Cette condition s’exprime par l’existence d’un graphe biparti 2. Les sommets de ce graphe
représentent l’ensemble des messages X et les arêtes l’ensemble des différences en en-
trée. La figure 6.1 montre sous forme de représentation d’un graphe deux ensembles de
différences : un admissible (le graphe est biparti) l’autre non (le graphe n’est pas biparti).

L’existence d’un tel graphe est équivalente à la non-existence de cycles de poids impairs
dans le graphe, c’est-à-dire que la somme d’un nombre impair de a0

(i) n’est jamais égale
à 0.

Nous pouvons tester efficacement cette condition si nous redéfinissons le problème dans
un contexte de théorie des codes. Soit M la matrice définie de la façon suivante : chaque
colonne de M correspond à la décomposition binaire des différences dans A0. Dire que
chaque combinaison d’un nombre impair de colonnes est non-nulle est équivalent à dire
que le dual du code engendré par la matrice M n’a que des mots de poids de Hamming
pair. Cette condition est équivalente au fait que le code contient le vecteur tout à un. Elle
peut se vérifier en un temps polynomial en utilisant une élimination gaussienne. Il suffit
en effet de calculer la forme systématique du code, c’est-à-dire d’exprimer M sous forme
systématique : M ′ = (I||U) où I est la matrice identité.

Vérifier que A0 est admissible peut alors se faire en vérifiant que

(1 . . . 1) · U = (1 . . . 1).

6.2.5 Approximation des queues de la distribution des variables
aléatoires Ck

Dans la section 6.2.3 nous avons montré que les variables aléatoires Ck avaient une
distribution proche d’une loi de Poisson. D’après le théorème de Le Cam (voir théo-

2. En théorie des graphes, un graphe est dit biparti s’il existe une partition de son ensemble de sommets
en deux sous-ensembles U et V telle que chaque arête ait une extrémité dans U et l’autre dans V.



122 6.2 La statistique étudiée

rème 6.1), la borne d’erreur que nous avons en utilisant une approximation de Poisson est
relativement petite (de l’ordre de 10−1). Cet ordre de grandeur sur l’erreur reste cependant
important si l’on regarde les queues de la fonction de répartition de la distribution des
variables aléatoires Ck. Cette hypothèse, que l’erreur pour l’approximation des queues des
variables aléatoires Ck est assez grande a été vérifiée expérimentalement. Une discussion
sur ces expérimentations est faite dans la section 6.4.
Pour avoir une bonne estimation de la distribution des queues des variables aléatoires Ck
nous avons utilisé un autre résultat qui nous donne une bonne estimation pour les queues
de la distribution de ces variables aléatoires.

Théorème 6.2. [Gal68, chapitre 5] Soit Ck =
∑

xCx,k une somme de M variables aléa-
toires discrètes, indépendantes et uniformément distribuées. Soit s 7→ µ(s) le logarithme
de la fonction génératrice des moments de chaque Cx,k. On note par µ′ et µ′′ les dérivées
d’ordre 1 et 2 de µ. Alors, pour s > 0,

P [Ck ≥ µ′(s)M ] = eM [µ(s)−sµ′(s)]
[

1

|s|
√
π2Mµ′′(s)

+ o

(
1√
M

)]
.

En utilisant le résultat de ce théorème et en calculant le logarithme de la fonction
génératrice des moments dans le cas particulier où les variables aléatoires Ca0

(i),X,k suivent
des lois binomiales nous déduisons le théorème suivant.

Théorème 6.3. Soit Ck =
∑

xCX,k une somme de NDC
2

variables aléatoires discrètes,
indépendantes et identiquement distribuées. Nous définissons les fonctions G−(τ, q) et
G+(τ, q) pour τ et q des nombres réels dans [0, 1] avec τ 6= q par :

G−(τ, q)
def
= e−ND(τ ||q) ·

[
q
√

(1− τ)

(q − τ)
√

2πτN
+

1√
8πτN

]
, (6.4)

G+(τ, q)
def
= e−ND(τ ||q) ·

[
(1− q)

√
τ

(τ − q)
√

2πN(1− τ)
+

1√
8πτN

]
. (6.5)

Alors, les queues de la fonction de répartition des variables aléatoires Ck sont égales
à :

P [Ck ≤ τN ] = G−(τ, p)

[
1 +O

(
p− τ
p

)]
,

P [Ck ≥ τN ] = G+(τ, p)

[
1 +O

(
p− τ
p

)]
.

Preuve : La preuve de ce théorème est compliquée et nécessite l’introduction de lemmes
intermédiaires. La section 6.2.6 est dédiée à la preuve de ce théorème.

6.2.6 Preuve du théorème 6.3

Afin de pouvoir utiliser les résultats du théorème 6.2 nous avons calculé le logarithme
de la fonction génératrice des moments des CX,k. Nous avons que

CX,k =

#A0∑
i=1

Ca0
(i)X,k.



La cryptanalyse différentielle multiple 123

où les variables aléatoires Ca0
(i)X,k suivent des lois de Bernoulli de paramètre p(i) ou p(i)

∗
suivant la valeur de k. Pour plus de simplicité, dans la suite de cette section nous notons
par qi la valeur de p(i) ou de p(i)

∗ . Pour simplifier les notations nous notons par d le cardinal
de l’espace des différences en entrée A0 : d = #A0. Afin de prouver le théorème 6.3 nous
introduisons les notations suivantes :

q̄
def
=

∑d
i=1 qi
d

, m2
def
=

∑
i q

2
i

d
, s0

def
= ln

(
τ(1− q̄)
q̄(1− τ)

)
(6.6)

Les autres notations utilisées sont celles du théorème 6.2.
Le logarithme de la fonction génératrice des moments des CX,k dans notre contexte vaut :

µ(s) =
d∑
i=1

ln (1− qi + qie
s) .

Pour s /∈ ∪i{log
(

1−qi
qi

)
}, ses dérivées sont alors égales à

µ′(s) =
d∑
i=1

qie
s

1− qi + qies
, (6.7)

µ′′(s) =
d∑
i=1

qie
s(1− qi)

(1− qi + qies)2
. (6.8)

La fonction µ′ est continue pour un voisinage de s0. Soit sr la valeur réelle telle que
µ′(sr) = dτ . Le but de cette preuve consiste à montrer que sr est proche de s0. D’après
(6.8), on a

es =
µ′(s)∑d

i=1
qi

1−qi+qies

On note f la fonction suivante :

f(s)
def
= ln (dτ)− ln

(
d∑
i=1

qi
1− qi + qies

)
.

On a f(sr) = sr.
Nous pouvons tout d’abord remarquer que ∀ s on a µ′′(s) = µ′(s)(1 − f ′(s)). En

utilisant ce résultat sur sr et le théorème 6.2 nous arrivons à la formule suivante :

P [Ck ≥ dτNDC/2] = eNDC/2[µ(sr)−srdτ ]

[
1

|sr|
√

2πdτNDC/2(1− f ′(sr))
+ o

(
1√

NDC/2

)]
.

(6.9)
Nous avons besoin de quantifier l’erreur faite en remplaçant s0 par sr dans l’équation
(6.9) mais nous avons besoin dans un premier temps de calculer f(s0)− s0.

Lemme 6.3. En utilisant les notations précédentes, on a

f(s0)− s0 =
τ − q̄
q̄2
· (q̄2 −m2) + o

(
τ − q̄
q̄2
· (q̄2 −m2)

)
.



124 6.2 La statistique étudiée

Preuve : Nous pouvons d’abord extraire s0 à partir de la formule.

f(s0) = ln (dτ)− ln

(
d∑
i=1

qi
1− qi + qies0

)

= ln

(
dτ

(1− τ)q̄

)
− ln

(
d∑
i=1

qi
(1− qi)(1− τ)q̄ + qi(1− q̄)τ

)

= ln

(
(1− q̄)τ
(1− τ)q̄

)
− ln

(
1− q̄
d

d∑
i=1

qi
(1− qi)(1− τ)q̄ + qi(1− q̄)τ

)

= s0 − ln

(
1

d

d∑
i=1

qi ·
1− q̄

(1− qi)(1− τ)q̄ + qi(1− q̄)τ

)
.

Nous obtenons alors

f(s0)− s0 = − ln

(
1

d

d∑
i=1

qi ·
1− q̄

qi(τ − q̄) + q̄(1− τ)

)
= − ln

(
1

d

d∑
i=1

qi(1− q̄)
q̄(1− τ)

· 1

1 + qi(τ−q̄)
q̄(1−τ)

)

= − ln

(
1

d

d∑
i=1

qi
q̄

(1− q̄)[1 + τ + o (τ)]

[
1− qi(τ − q̄)

q̄(1− τ)
+ o

(
qi(τ − q̄)

q̄

)])

= − ln

(
d∑
i=1

qi
dq̄

+
d∑
i=1

τ − q̄
dq̄

[
qi −

q2
i

q̄

]
+ o

(
τ − q̄
dq̄

[
qi −

q2
i

q̄

]))

= − ln

(
1 +

τ − q̄
q̄2
· (q̄2 −m2) + o

(
τ − q̄
q̄2
· (q̄2 −m2)

))
=

τ − q̄
q̄2
· (q̄2 −m2) + o

(
τ − q̄
q̄2
· (q̄2 −m2)

)
.

Lemme 6.4. En utilisant les notations précédentes nous avons

sr = s0 +O
(
τ − q̄
q̄2
· (q̄2 −m2)

)
et f ′(s0) = τ

m2

q̄2
+ o

(
τ
m2

q̄2

)
.

Preuve : Le développement en série de Taylor de f est

f(sr) = f(s0) + (sr − s0)f ′(s0) +O
(
f ′′(s0)(sr − s0)2

)
.

Donc, comme f(sr) = sr, nous avons sr = s0 +O
(
f(s0)− s0

1− f ′(s0)

)
.

Par définition, f ′(s0) =
∑d

i=1
q2
i e
s0

(1−qi+qies0 )2 ·
[∑d

i=1
qi

1−qi+qies0

]−1

et es0 = τ/q̄ + o (τ/q̄).
Donc,

f ′(s0) =

[
d∑
i=1

q2
i e
s0 (1 + o (1))

]
·

[
d∑
i=1

qi (1− o (1))

]−1

=

[
dτ

q̄
m2 + o

(
dτ

q̄
m2

)]
· (dq̄)−1

[
1 + o (1)

]
.



La cryptanalyse différentielle multiple 125

Ce résultat donne f ′(s0) = τ m2

q̄2 + o
(
τ m2

q̄2

)
. En utilisant le fait que 1

1−f ′(s0)
= O (1) et le

lemme 6.3, nous obtenons que

sr = s0 +O
(
f(s0)− s0

1− f ′(s0)

)
= s0 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)
.

Lemme 6.5. En utilisant les notations précédentes nous avons

µ(sr) = d ln

(
1− q̄
1− τ

)
+O

(
d

(τ − q̄)
q̄2

· (q̄2 −m2) max(τ − q̄, τ)

)
,

1− f ′(sr) = 1− τ +O
(

max(τ − q̄, τ)

q̄2
(q̄2 −m2)

)
.

Preuve : En utilisant le lemme 6.4 nous avons

esr = es0 × eO
(
τ−q̄
q̄2
·(q̄2−m2)

)
= es0

[
1 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)]
.

Donc,

µ(sr) =
d∑
i=1

ln (1− qi + qie
sr) =

d∑
i=1

ln

(
1− qi + qie

s0

[
1 +O

(
τ − q̄
q̄2
· (q̄2 −m2)

)])

=
d∑
i=1

ln

([
1− qi + qie

s0
] [

1 +O
(
qi τ

q̄

τ − q̄
q̄2
· (q̄2 −m2)

)])

=
d∑
i=1

ln (1− qi + qie
s0) +O

(
dτ · τ − q̄

q̄2
· (q̄2 −m2)

)
.

Et finalement, µ(sr) = µ(s0) +O
(
dτ · τ−q̄

q̄2 · (q̄2 −m2)
)
. Cependant,

µ(s0) =
d∑
i=1

ln (1− qi + qie
s0)

=
d∑
i=1

ln ((1− qi)q̄(1− τ) + qi(1− q̄)τ)− d ln (q̄(1− τ))

=
d∑
i=1

ln (q̄ − qiq̄ − q̄τ + qiτ)− d ln (q̄(1− τ)) .



126 6.2 La statistique étudiée

Et,

µ(s0) =
d∑
i=1

ln

(
q̄(1− τ) + qi(τ − q̄)

(1− q̄)q̄

)
− d ln

(
1− τ
1− q̄

)

= d ln

(
1− q̄
1− τ

)
+

d∑
i=1

ln

(
1 +

(qi − q̄)(τ − q̄)
(1− q̄)q̄

)

= d ln

(
1− q̄
1− τ

)
+

d∑
i=1

(qi − q̄)(τ − q̄)
(1− q̄)q̄

+O
(
d

(τ − q̄)2

q̄2
· (q̄2 −m2)

)
= d ln

(
1− q̄
1− τ

)
+O

(
d

(τ − q̄)2

q̄2
· (q̄2 −m2)

)
.

Donc µ(sr) = d ln
(

1−q̄
1−τ
)

+ O
(
d (τ−q̄)

q̄2 · (q̄2 −m2) max(τ − q̄, τ)
)
. La seconde partie du

lemme est donnée par un développement en série de Taylor de f ′(sr) :

f ′(sr) = f ′(s0) +O (s0 − sr) = τ
m2

q̄2
+O

(
τ − q̄
q̄2

(q̄2 −m2)

)
.

Donc

1− f ′(sr) = (1− τ)

[
1 +O

(
τ(q̄2 −m2)

q̄2(1− τ)

)]
+O

(
τ − q̄
q̄2

(q̄2 −m2)

)
= (1− τ) +O

(
max(τ − q̄, τ)

q̄2
(q̄2 −m2)

)
.

Preuve du théorème 6.3

A partir de l’équation (6.9), du lemme 6.4 et du lemme 6.5, nous donnons une preuve
du théorème 6.3. Dans cette partie nous supposons que τ est plus grand que q̄. Nous
considérons d’abord le terme exponentiel.

eNDC/2[µ(sr)−srdτ ] = exp

[
NDC/2 d ln

(
1− q̄
1− τ

)
−NDC/2 ln

(
τ(1− q̄)
q̄(1− τ)

)
dτ

+O
(
NDC/2 dτ

τ − q̄
q̄2

(q̄2 −m2)

)]
= e−ND(τ ||q̄)

[
1 +O

(
Nτ

τ − q̄
q̄2

(q̄2 −m2)

)]
. (6.10)

Puis nous considérons le terme polynomial[
|sr|
√

2πτN(1− f ′(sr))
]−1

=

[
|s0|+O

(
τ − q̄
q̄2

(q̄2 −m2)

)]−1

×

[
√

2πτN

√
1− τ +O

(
τ

q̄2
(q̄2 −m2)

)]−1

=

[
s0

√
2πτN(1− τ)

[
1 +O

(
τ

q̄2
(q̄2 −m2)

)]]−1

.



La cryptanalyse différentielle multiple 127

Comme nous avons supposé que τ est plus grand que q̄, nous avons que s0 est positif, et
donc

s0
def
= − ln

(
q̄(1− τ)

τ(1− q̄)

)
= − ln

(
1− τ − q̄

τ(1− q̄)

)
=

τ − q̄
τ(1− q̄)

[
1 +

τ − q̄
2τ(1− q̄)

+ o

(
τ − q̄
τ

)]
.

Donc

[
sr
√

2πτN(1− f ′(sr))
]−1

=
1 +O

(
τ
q̄2 (q̄2 −m2)

)
s0

√
2πτN(1− τ)

=
τ(1− q̄)

(τ − q̄)
√

2πτN(1− τ)
·
[
1 +

(τ − q̄)
2τ(1− q̄)

+ o

(
τ − q̄
τ

)]
=

√
τ(1− q̄)

(τ − q̄)
√

2πN(1− τ)
+

1√
8πT

+ o

(
1√
T

)
. (6.11)

Pour conclure, nous remplaçons les termes (6.10) et (6.11) dans (6.9) et nous obtenons

P [Ck ≥ τN ] =

[ √
τ(1− q̄)

(τ − q̄)
√

2πN(1− τ)
+

1√
8πT

+ o

(
1√
T

+
1√

NDC/2

)]

× e−ND(τ ||q̄) · [1 +O
(
Nτ

τ − q̄
q̄2

(q̄2 −m2)

)
]

= e−ND(τ ||q̄)
[ √

τ(1− q̄)
(τ − q̄)

√
2πN(1− τ)

+
1√
8πT

+ o

(
1√
T

)]
.

La formule pour P [Ck ≤ τN ] s’obtient de la même façon en supposant cette fois ci que
τ ≤ q̄.

6.2.7 Distribution des variables aléatoires Ck
En combinant les résultats du théorème 6.1 avec ceux du théorème 6.3 nous proposons

une définition pour la fonction de répartition de variables aléatoires Ck

Définition 6.5. Soit GPoisson(τ, q) la fonction de répartition de la loi de Poisson avec
paramètre qN . Soit G−(τ, q) et G+(τ, q) les deux queues de distributions définies dans le
théorème 6.3. Nous définissons la fonction G(τ, q) par

G(τ, q)
def
=


G−(τ, q) si τ < q − 3 ·

√
q/N ,

1−G+(τ, q) si τ > q + 3 ·
√
q/N ,

GPoisson(τ, q) sinon.

Proposition 6.1. Soit G(τ, q) la fonction définie dans la définition 6.5. Soit p∗ et p les
paramètres de l’attaque :

p∗ =

∑
i,j p

(i,j)
∗

#A0

et p ≈ #A

2m#A0

Nous proposons les estimations suivantes de la fonction de répartition des variables aléa-
toires Ck et Ck∗ :



128 6.3 Complexité en données et probabilité de succès

– La fonction de répartition correspondant à la variable aléatoire Ck∗ est proche de

G∗(τ)
def
= G(τ, p∗).

– La fonction de répartition correspondant à la variable aléatoire Ck est proche de

G(τ)
def
= G(τ, p).

6.3 Complexité en données et probabilité de succès

6.3.1 La complexité en données

Pour le calcul de la complexité en données d’une attaque différentielle multiple, nous
supposons que l’ensemble A0 est admissible et que l’hypothèse 6.1 est vérifiée. L’expression
de la fonction de répartition des variables aléatoires est déterminée par la proposition 6.1.
Pour le calcul de la complexité en données nous utilisons le contexte du test d’hypothèses
(voir section 5.3.1) Dans la section 5.3.5, afin de calculer la complexité en données de
l’attaque nous avons fixé le seuil τ à p∗, c’est-à-dire que nous calculons une approximation
de la complexité en données pour une probabilité de succès proche de 50%. Il s’avère que
dans le cas où p∗ est suffisant loin de p (p∗ > p+3 ·

√
p/N), on se place dans le contexte où

la fonction de répartition des variables aléatoire Ck est proche de la fonction de répartition
définie dans la proposition 6.1. La fonction 1−G+(τ, q) est similaire à celle que nous avons
utilisée dans la section 5.3. En utilisant la même méthode que dans la section 5.3, nous
obtenons une estimation de la complexité en données.

Théorème 6.4. Soit ` la taille de la liste des clés gardées. Soit 2n le nombre de clés
candidates qui sont testées dans notre attaque. Pour une probabilité de succès proche de
0.5, la complexité en données d’une attaque différentielle multiple quand les variables
aléatoires étudiées correspondent à la somme des variables aléatoires simples est :

N = −2 · ln(2
√
π`/2n)

#A0D(p∗||p)
.

Preuve : Dans la section 5.3, nous avons étudié la complexité en données d’une attaque
statistique simple. Dans la preuve du théorème 5.2, afin de déterminer la complexité en
données d’une attaque statistique simple, nous avons approché la queue de la loi binomiale
par

e−ND(τ ||p) (1− p)
√
τ

(τ − p)
√

2πN(1− τ)
. (6.12)

Dans le théorème 6.3 nous avons montré que la queue de la fonction de distribution des
variables aléatoires Ck (voir définition 6.3) est égale à

P [Ck ≥ τN ] ∼
N→∞

e−ND(τ ||q) ·

[
(1− q)

√
τ

(τ − q)
√

2πN(1− τ)
+

1√
8πτN

]
. (6.13)

Nous utilisons donc ici la même méthode pour déterminer le nombre d’échantillons
d’une attaque différentielle multiple dans le cas où la statistique étudiée correspond à
la somme des variables aléatoires. Pour les mêmes raisons que celles spécifiées dans la



La cryptanalyse différentielle multiple 129

preuve du théorème 5.2, nous pouvons fixer le seuil relatif τ à p∗ 3. Sous cette condition,
le nombre d’échantillons N peut alors être trouvé en résolvant l’équation en N

e−ND(τ ||p) ·

[
(1− p)

√
τ

(τ − p)
√

2πN(1− τ)
+

1√
8πτN

]
=

`

2n
.

Dans les attaques différentielles multiples on a p∗ ≥ p+ 3
√
p/N .

De la même façon que pour la preuve du théorème 5.2 une bonne estimation de N
peut être trouvée en utilisant une méthode du point fixe pour l’équation :

e−ND(p∗||p) ·

[
(1− p)√p∗

(p∗ − p)
√

2πN(1− p∗)
+

1√
8πτN

]
=

`

2n
.

Comme pour la preuve de théorème 5.2, on obtient que N est alors proche de

− 1

D(p∗||p)

[
ln

(
ν`/2n√
D(p∗||p)

)
+ 0.5 ln(− ln(ν`/2n))

]
(6.14)

où ν def
=

(p∗ − p)
√

8π(1− p∗)p∗
2p∗(1− p) + (p∗ − p)

√
1− p∗

.

Le lemme 5.6 nous dit que ln(2
√
πD(p∗||p)) est une bonne estimation de ln(ν). Ce qui

implique que N est proche de

−
ln(2
√
π `

2n
)

D(p∗||p)
.

On complète la preuve en remarquant que le nombre de messages clairs NDC = 2N
#A0

.

6.3.2 La probabilité de succès

Dans le théorème 6.5 ci-après, nous donnons une formule de la probabilité de succès
d’une attaque différentielle multiple dans le cas où la statistique étudiée correspond à la
somme des variables aléatoires simples. Ce résultat est prouvé en utilisant des arguments
similaires à ceux utilisés dans la preuve du théorème 5.3.

Théorème 6.5. Soit G∗(x) (resp. G(x)) l’estimation de la fonction de répartition des
variables aléatoires Ck∗ (resp. Ck) comme définie dans la proposition 6.1. La probabilité
de succès, PS, d’une cryptanalyse différentielle multiple où la statistique étudiée correspond
à la somme des variables aléatoires simples est donnée par

PS ≈ 1−G∗
[
G−1

(
1− `− 1

2n − 2

)
− 1

]
(6.15)

où la pseudo-inverse de G est définie par G−1(y) = min{x|G(x) ≥ y}.

3. On rappelle ici que cette condition nous donne une probabilité de succès proche de 0.5.



130 6.4 Validation expérimentale

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S7 S6 S5 S4

⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

S7 S5 S3 S1

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 6.2 – Diffusion sur 2 tours de SMALLPRESENT-[8].

6.4 Validation expérimentale

Dans cette section nous validons expérimentalement les résultats théoriques présentés
dans la section 6.3. Dans le but de valider expérimentalement la formule de la probabilité
de succès donnée dans le théorème 6.5 nous faisons une attaque différentielle multiple
sur 11 tours de la version réduite de PRESENT appelé SMALLPRESENT-[8] . Une
description de PRESENT et SMALLPRESENT-[8] est faite dans la section 1.4.1 4.

6.4.1 Description de l’attaque

L’attaque que nous présentons ici utilise des caractéristiques différentielles sur 9 tours
de SMALLPRESENT-[8] et a pour but de retrouver de l’information sur les clés des deux
derniers tours. Cela donne alors une attaque sur 11 tours.

Dans le but d’estimer empiriquement la probabilité de succès, nous avons itéré 250
fois cette attaque pour l’algorithme de cadencement de clé utilisant des clés de 80 bits ou
des clés de 40 (voir section 1.4.1). Pour limiter la complexité en temps de l’attaque nous
avons limité le nombre de bit de clés à retrouver à 32 bits (pour les 2 derniers tours).
Dans ce but nous avons pris des différences après 9 tours de la forme 0x????0000. Cette
structure nous permet dans le cas de SMALLPRESENT-[8] de retrouver 16 bits des deux
dernières clés. La figure 6.2 montre la diffusion sur 2 tours du système de chiffrement
quand la différence en sortie est 0x????0000.

Il apparaît clairement que les meilleures différentielles s’obtiennent quand il n’y a
qu’une boîte-S active au premier tour. Pour cette attaque expérimentale nous avons décidé
de réduire l’ensemble des différences en entrée à une seule boîte-S.

L’ensemble des différences en entrée que nous avons pris est alors le suivant :

A0 = {0x3, 0x5, 0x7, 0xB, 0xD, 0xF}.

Il est assez facile de vérifier que cet ensemble est admissible car nous pouvons par exemple
séparer l’ensemble des messages clairs en les messages pairs et les messages impairs. Notre

4. On rappelle que SMALLPRESENT-[8] est la version pour chiffrer des messages de 32 bits.



La cryptanalyse différentielle multiple 131

attaque utilise 55 différentielles sur 9 tours de SMALLPRESENT-[8]. La probabilité de
chaque différentielle pour les deux algorithmes de cadencement de clés (celui avec 40 bits
et celui avec 80 bits) a été estimée par une moyenne sur 250 clés. Les 55 différentielles
ainsi que l’estimation de leurs probabilités sont données dans le tableau A.1 qui se trouve
en section A.1. Pour chacune de nos attaques, nous avons décidé de garder une liste L de
taille ` = 212 clés les plus probables pour les deux derniers tours.

6.4.2 Analyse des résultats expérimentaux

Soit H∗(x) et H(x) les estimations de la fonction de répartition des variables aléatoires
Ck∗ et Ck. La probabilité de succès théorique d’une attaque est

PS = 1−H∗
[
H−1

(
1− `− 1

2n − 2

)
− 1

]
,

H et H∗ variant en fonction des variables aléatoires étudiées. Dans ce chapitre nous avons
montré que les variables aléatoires Ck suivaient une distribution hybride, c’est-à-dire que
les fonctions H et H∗ étaient égales aux fonctions G et G∗ définies dans la proposition 6.1.
Cependant pour valider cette théorie vous avons comparé notre formule de la probabilité
de succès avec d’autres formules utilisant d’autres fonctions de répartition.

Dans les figures 6.3 et 6.4, nous comparons la probabilité de succès expérimentale
obtenue grâce à une moyenne sur 250 expérimentations avec différentes formules de pro-
babilités de succès théorique. Comme nous l’avons dit dans la section 5.4, la formule de
la probabilité de succès donnée par Ali Aydin Selçuk est sensiblement la même que la
notre. La différence réside principalement en l’estimation de la distribution des variables
aléatoires.

Ainsi dans les figures 6.4 et 6.4 nous représentons la probabilité de succès dans le cas
où les fonctions G et G∗ sont les fonctions de répartition :

– d’une loi Normale (Formule proche de celle de Ali Aydin Selçuk [Sel08]) ;
– d’une loi de Poisson ;
– de la loi hybride définie par sa fonction de répartie dans la proposition 6.1.

6.4.3 Commentaires sur les figures 6.3 et 6.4

Si on analyse les figures 6.3 et 6.4, on remarque qu’il est clair que l’utilisation de l’ap-
proximation normale pour analyser la probabilité de succès d’une attaque différentielle
multiple n’est pas bonne. D’ailleurs cette remarque a déjà été faite par Ali Aydin Selçuk
dans son article [Sel08] pour le cas de la cryptanalyse différentielle simple.
Dans la cryptanalyse différentielle simple, la loi de Poisson est une bonne approximation
de la distribution des variables aléatoires Ck∗ et Ck. Pour autant comme le montrent les
résultats, dans le cas de la cryptanalyse différentielle multiple cette approximation est
moins bonne que l’approximation hybride que nous définissons dans la définition 6.5.



132 6.4 Validation expérimentale

0

0.2

0.4

0.6

0.8

1

28 28.5 29 29.5 30 30.5 31 31.5

P
S

log2(N)

théorème 6.5
Poisson

Normale[Sel08]
Experimentale

Figure 6.3 – Comparaison des différentes formules de la probabilité de succès avec la
valeur expérimentale de celle-ci. (Expériences faites avec l’algorithme de cadencement de
clé de 40 bits))

0

0.2

0.4

0.6

0.8

1

28 28.5 29 29.5 30 30.5 31 31.5
log2(N)

théorème 6.5
Poisson

Normale [Sel08]
Experimental

Figure 6.4 – Comparaison des différentes formules de la probabilité de succès avec la
valeur expérimentale de celle-ci. (Expériences faites avec l’algorithme de cadencement de
clé de 80 bits))



La cryptanalyse différentielle multiple 133

6.4.4 Validation de la formule de la probabilité de succès

Quand le rapport `−1
2n−2

est petit, la précision du calcul de G−1
(
1− `−1

2n−2

)
dépend es-

sentiellement d’une bonne approximation de l’estimation de la queue de distribution des
variables aléatoires. Or la queue de la loi de Poisson ne constitue pas une bonne approxi-
mation de la distribution des variables aléatoires. D’où l’importance de notre approche
hybride qui est la plus pertinente ici. Nos résultats expérimentaux justifient l’utilisation
de cette approche. En effet, comme dans la figure 6.3, la courbe représentant la probabilité
de succès expérimentale et celle représentant la probabilité de succès théorique obtenue
en utilisant notre approximation de la probabilité de succès donnée dans le théorème 6.5
sont proches, on peut estimer que notre approximation de la distribution des variables
aléatoires est correcte.

6.4.5 Validation de la formule de la complexité en données

En utilisant les mêmes expérimentations, nous pouvons aussi confirmer la pertinence
du théorème 6.4. En effet, dans le chapitre 5 nous avons conjecturé (voir section 5.4.6)
que prendre N de la forme

N = −2 · c · ln(2
√
π`/2n)

#A0D (p∗||p)
(6.16)

conduit à une probabilité de succès de 50% pour c = 1, 80% pour c = 1.5 et de 90% pour
c = 2. Dans la tableau 6.2, nous donnons les valeurs de la probabilité de succès empirique
pour ces différentes valeurs de N . Ces calculs ont été faits pour des clés maîtres de 40 bits
et de 80 bits.

Table 6.2 – Probabilité de succès empirique calculée à partir de N donné par (6.16).
c = 1.0 c = 1.5 c = 2.0

taille de la clé 40-bit 80-bit 40-bit 80-bit 40-bit 80-bit
N 228.92 229.06 229.50 229.65 229.92 230.06

PS 0.55 0.47 0.83 0.75 0.92 0.88

6.5 Attaque sur 18 tours de PRESENT
Dans les sections précédentes nous avons décrit le principe de la cryptanalyse différen-

tielle multiple et étudié les différentes complexités de celle-ci. Comme il est précisé dans la
partie expérimentale (voir section 6.4) la formule de la probabilité de succès de l’attaque
est bonne lorsque l’on a une bonne estimation de la probabilité des différentielles. Nous
avons donc voulu appliquer cette approche en effectuant une cryptanalyse d’une version
réduite du système de chiffrement PRESENT (voir section 1.4.1). Depuis 2008 il y a eu un
certain nombre de cryptanalyses de ce système de chiffrement. Parmi ces attaques on peut
notamment citer l’attaque faite par Meiqin Wang dans [Wan08]. Cette cryptanalyse sur
16 tours permet de retrouver de l’information sur la clé des 2 derniers tours (c’est le même
principe que celui utilisé pour notre attaque expérimentale sur SMALLPRESENT-[8]).
Pour faire cette attaque Meiqin Wang utilise de l’information venant de 24 différentielles.



134 6.5 Attaque sur 18 tours de PRESENT

Afin d’estimer la probabilité de chacune de ces différentielles sur 4 tours, Meiqin Wang
étudie la probabilité du meilleur chemin sur 4 tours avec la même différence en entrée
et en sortie pour pouvoir les itérer facilement. En utilisant cette méthode, elle obtient
une borne inférieure sur la probabilité des différentielles qu’elle utilise. Nous détaillons
certains problèmes que nous avons relevés dans l’attaque de Meiqin Wang.

Quelques remarques sur l’attaque faite par Meiqin Wang

Une des différentielles sur 14 tours de PRESENT utilisées par Meiqin Wang dans son
attaque est la suivante :

(d0, d14) = (0x0700000000000700, 0x0000000900000009).

La probabilité de cette différentielle est obtenue en itérant 3 fois un chemin différentiel
sur 4 tours et en ajoutant 1 tour au début et à la fin. En utilisant notre algorithme de
“branch and bound”, nous avons quelques remarques à propos de ce chemin :

– Le chemin utilisé sur 4 tours n’est pas le meilleur chemin sur 4 tours. En effet le
meilleur chemin sur 4 tours a une probabilité 2−12. Le chemin choisi par Meiqin
Wang est le suivant :

(0x4004, 0x900000009, 0x10100000000, 0x200000000000500, 0x4004).

La probabilité théorique de ce chemin est 2−18.
Le choix de Meiqin Wang pour ce chemin peut être justifié par le fait que nous avons
remarqué que ce chemin est le meilleur chemin qui peut être itéré(c’est-à-dire les
différences en entrée et en sortie après 4 tours sont les mêmes)

– En utilisant notre algorithme de recherche automatique de chemins, nous avons
vu qu’il existe beaucoup de chemins sur 14 tours avec probabilité 2−62. Bien sûr
nous n’avons pas pu faire une recherche exhaustive sur les 264 − 1 différences en
entrée. Mais en supposant que les meilleurs chemins différentiels ont peu de boîtes-S
actives nous pouvons conjecturer que 2−62 semble être la meilleure probabilité pour
un chemin sur 14 tours. En utilisant cette conjecture, nous pouvons dire que les
chemins différentiels utilisés par Meiqin Wang ont la meilleure probabilité possible.

– En utilisant l’algorithme de “branch and bound”, nous avons pu déterminer tous les
chemins avec différence en entrée d0 et différence en sortie d14 qui ont une proba-
bilité théorique supérieure à 2−73. En sommant la probabilité de ces chemins (voir
section 4.2) nous avons pu observer que la probabilité de la différentielle (d0, d14)
est supérieure à 2−57.53. Au regard de ce résultat la complexité de l’attaque faite par
Meiqin Wang est plus petite que la complexité qu’elle nous donne.

Dans cette section nous présentons une attaque sur 18 tours de PRESENT. Pour ef-
fectuer cette attaque nous avons calculé la probabilité de chaque différentielle à l’aide
de l’algorithme “branch and bound” décrit dans la section 4.1.2. En prenant la somme
des chemins ayant une probabilité supérieure à 2−90 et un nombre maximal de boîtes-S
actives par tour égal à 3, nous avons trouvé une borne inférieure sur la probabilité d’un
certain nombre de différentielles sur 16 tours. Parmi les meilleures différentielles trouvées,
nous avons gardé les différentielles pour lesquelles l’ensemble de différences en entrée est
“admissible”. Les différentielles que nous avons utilisées sont détaillées dans le tableau 6.3.



La cryptanalyse différentielle multiple 135

a0 ar log (P [a0 → ar])

0x1001 0x404040400000000 -62.21
0x1001 0x40400000000 -62.58
0x1001 0x400040400000000 -62.84
0x1001 0x4040400000000 -62.84

0x100100000000 0x404040400000000 -62.97
0x4004 0x404040400000000 -62.99

0x10010000 0x404040400000000 -63.13
0x400c 0x404040400000000 -63.16
0xc004 0x404040400000000 -63.16
0xc00c 0x404040400000000 -63.16
0x2002 0x404040400000000 -63.17
0x1008 0x404040400000000 -63.21
0x100e 0x404040400000000 -63.21
0x101 0x404040400000000 -63.29
0x11 0x404040400000000 -63.29

0x100100000000 0x40400000000 -63.35
0x200a 0x404040400000000 -63.37
0xa002 0x404040400000000 -63.37
0xa00a 0x404040400000000 -63.37
0x4004 0x40400000000 -63.39
0x1001 0x400400000000 -63.40
0x2004 0x404040400000000 -63.45
0x4002 0x404040400000000 -63.45

Table 6.3 – Les différentielles utilisées dans l’attaque différentielle multiple sur
PRESENT.



136 6.5 Attaque sur 18 tours de PRESENT

Pour la cryptanalyse que nous avons effectuée, nous avons utilisé 23 différentielles sur
16 tours. Ces différentielles peuvent être regroupées par rapport à #A0 = 16 différences
en entrée

Pour chacune des différences en entrée, l’ensemble des différences en sortie varie. Ainsi
l’ensemble des différences en sortie est inclus dans l’ensemble

Ar ∈ {0x0?0?0?0?00000000}.

Il s’avère que dans notre cas le nombre de différences en sortie pour chaque différence en
entrée varie. Il est le plus important pour la différence en entrée 0x1001. Pour cette entrée
on a |Ar| = 5. En utilisant cet ensemble de différence en sortie, nous obtenons des cribles
similaires pour chaque différence en entrée après 18 tours du système de chiffrement. La
taille de chacun de ces cribles est proche de 232.

#∆
(i)
sieve ≈ 232.

Dans le cas de nos expérimentations sur SMALLPRESENT-[8], il nous avait été possible
d’obtenir une bonne estimation de la probabilité des différentielles 5. La probabilité de
la meilleure différentielle que nous avons trouvée est (0x1001, 0x404040400000000) sur
16 tours est bornée par 2−62.21. En utilisant seulement cette différentielle, une attaque
différentielle classique utilisant les 264 messages clairs aurait une probabilité de réussite de
59% pour une taille de liste ` = 241. En utilisant plusieurs différentielles nous augmentons
sensiblement la probabilité de succès de l’attaque.

A partir des 23 différentielles qui sont utilisées dans notre cryptanalyse nous obtenons
des probabilités

p∗ = 2−62.59 et p = 2−63.47.

Le nombre de boîte-S actives est égal à 4 pour le tour 17 et à 8 pour le tour 18. Comme
pour chaque boîtes-S le nombre de bits de clés impliqués est égal à 4. Cela nous fait en
théorie 48 bits de clés à retrouver. En regardant de plus près l’algorithme de cadencement
de clés pour la clé maître de 80 bits, nous avons remarqué que 6 bits sont partagés sur les
deux derniers tours. Notre attaque nous permet donc au maximum de retrouver 42 bits
de clés (on a 242 candidats possibles pour la clé des deux derniers tours.)
Afin de diminuer la complexité en temps de l’attaque, nous pouvons utiliser la même
méthode que celle donnée par Meiqin Wang dans son papier : nous pouvons décomposer
le crible en ajoutant un crible intermédiaire après avoir partiellement déchiffré un tour.
Les cribles ∆

(i)
sieve

′

, correspondent à l’ensemble des différences possibles après r + 1 tours.
La taille maximale de ces cribles est 212.

Le tableau 6.4 nous donne les complexités de l’attaque pour différentes valeurs de la
complexité en données et pour différentes valeurs de taille de liste.

6.5.1 Conclusion

L’attaque que nous avons présentée n’est pas la meilleure attaque sur PRESENT. Cette
attaque a pour but d’illustrer le fait que la cryptanalyse différentielle multiple améliore la
cryptanalyse différentielle classique. Le tableau 6.5 donne la liste des attaques statistiques
effectuées sur PRESENT.

5. Dans la section 6.4, nous expliquons que nous les avons obtenues par une moyenne sur tous les
clairs pour un certain nombre de clés



La cryptanalyse différentielle multiple 137

complexité
NDC ` PS en temps
262 ` = 241 73% 279.00

264 ` = 239 77% 276.00

264 ` = 241 98% 279.00

Table 6.4 – Paramètres d’attaque différentielle multiple sur 18 tours de PRESENT.
Pour une complexité en mémoire de 242(clé de 80 bits)

Table 6.5 – Résumé des attaques sur PRESENT.
#rounds version Cryptanalyse NDC temps mémoire référence

8 128 intégrale 224.3 2100.1 277.0 [ZRHD08]
16 80 différentielle 264.0 264.0 232.0 [Wan08]
17 128 clés liées 263 2104.0 253.0 [ÖVTcK09]
18 80 différentielle multiple 264 279 242 section 6.5
19 128 différentielle algébrique 262.0 2113.0 n/r [AC09]
24 80 linéaire 263.5 240.0 240.0 [Ohk09]
24 80 saturation 257.0 257.0 232.0 [CS09]
25 128 linéaire 264.0 296.7 240.0 [NSZW09]
26 80 linéaire multiple 264.0 272.0 232.0 [Cho10]





Deuxième partie

Propriétés des boîtes-S





Chapitre 7

Introduction

Au début de la partie précédente nous avons défini les systèmes de chiffrement par
bloc. Cette partie est dédiée à l’étude de certaines propriétés de la partie de substitution
des algorithmes de chiffrement par bloc (voir section 1.3.1). Nous rappelons ici que cette
partie de substitution, qui est non-linéaire, est composée de petites fonctions appliquées
en parallèle à l’état interne du système de chiffrement. Ces fonctions sont appelées boîtes-
S. Afin d’avoir un système de chiffrement qui résiste aux attaques statistiques présentées
dans les chapitres 2 et 3, les boîtes-S doivent avoir de bonnes propriétés. Par exemple
l’uniformité différentielle des boîtes-S (voir définition 2.5) permet de mesurer la vulné-
rabilité des boîtes-S contre les attaques différentielles (voir section 2.1). Chaque bit de
sortie de la boîte-S peut s’écrire comme combinaison des bits de l’entrée. Ainsi certaines
propriétés des boîtes-S peuvent être étudiées en analysant les propriétés des fonctions
booléennes (fonction qui prend plusieurs bits d’entrée et a un bit en sortie).
Les boîtes-S peuvent aussi être représentées par un polynôme sur le corps fini F2n . Pour
faire le parallèle avec les fonctions booléennes, les fonctions alors obtenues sont appelées
fonctions vectorielles. Ce chapitre d’introduction est dédié à la présentation d’un certain
nombre de propriétés des fonctions booléennes et des fonctions vectorielles.
Le chapitre 8 est quant à lui consacré à certaines nombre de propriétés obtenues avec
Anne Canteaut et Pascale Charpin.

Soit k un entier positif. Dans ce chapitre et le suivant nous manipulons des éléments
du corps fini F2n de taille 2n. Nous rappelons la définition de la trace que nous utilisons
dans cette partie.

Définition 7.1. Soit α un élément du corps fini F2n. La trace de α sur le sous corps F2k

où k divise n est notée Trnk et est définie par

Trnk(α) = α + α2k + ...+ α2k(n/k−1)

.

Lorsque que k = 1, c’est-à-dire lorsque le sous corps en question est F2, on note Tr
l’application trace de F2n dans F2. On appelle cette trace la “trace absolue” sur F2n Celle-
ci vaut alors :

Tr(α) = α + α2 + ...+ α2(n−1)

.



142 7.1 Les fonctions booléennes

7.1 Les fonctions booléennes

7.1.1 Définition

Définition 7.2. On appelle fonction booléenne à n variables toute application f de
Fn2 dans F2. L’ensemble des fonctions booléennes à n variables est noté Bn.

Comme il existe une bijection entre l’espace vectoriel Fn2 et le corps F2n , les vecteurs
de Fn2 peuvent être identifiés aux les éléments du corps fini F2n .

Définition 7.3. Soit f une fonction booléenne à n variables. On appelle support de f
l’ensemble des vecteurs de Fn2 qui ont une image non nulle, c’est-à-dire

supp(f) = {x|f(x) 6= 0}.

Définition 7.4. Soit f une fonction booléenne, le poids de Hamming de f est égal au
cardinal du support de f :

wt(f) = #supp(x).

Une fonction booléenne peut être définie par sa table de vérité : la table de vérité d’une
fonction booléenne f ∈ Bn est l’ensemble des couples (x, f(x)) où x parcourt Fn2 .

Exemple 7.1. Soit f une fonction booléenne à trois variables définie par sa table de vé-
rité :

x (000) (001) (010) (011) (100) (101) (110) (111)
f(x) 0 1 0 0 0 1 1 0

Le support de f est supp(f) =
{

(001), (101), (110)
}
et le poids de f est wt(f) = 3.

Définition 7.5. Une fonction booléenne est dite équilibrée si son image possède autant
de 0 que de 1. C’est-à-dire f ∈ Bn est équilibrée si et seulement si

wt(f) = 2n−1.

Définition 7.6. Soit f une fonction booléenne à n variables. La transformée de Mo-
bius de f est définie par

f ◦ : Fn2 → F2

u 7→
⊕

v�u f(v)

où v � u signifie vi ≤ ui ∀i ∈ {1..n}.

Exemple 7.2. Soit f la fonction définie dans l’exemple 7.1. La transformée de Mobius
f ◦ de f satisfait

f ◦(1, 0, 1) = f(0, 0, 0)⊕ f(0, 0, 1)⊕ f(1, 0, 0)⊕ f(1, 0, 1) = 0.

A partir de la définition de la transformée de Mobius on peut calculer la forme algé-
brique normale d’une fonction booléenne.



Introduction 143

Définition 7.7. Soit f une fonction booléenne à n variables. La forme algébrique
normale(ANF 1) de f est définie par⊕

u=(u1,..un)

f ◦(u) xu1
1 ...x

un
n ,

où ui ∈ {0, 1} et u parcourt Fn2 .

Exemple 7.3. Soit f la fonction définie dans l’exemple 7.1. La forme algébrique normale
de f est :

f(x1, x2, x3) = x3 ⊕ x2x3 ⊕ x1x2 ⊕ x1x2x3.

À partir de la forme algébrique normale d’une fonction booléenne on peut définir le
degré algébrique de cette fonction.

Définition 7.8. Le degré algébrique d’une fonction booléenne f à n variables est le
degré de sa forme algébrique normale. C’est-à-dire si f est définie par⊕

u=(u1,··· ,un)

f ◦(u) xu1
1 ...x

un
n ,

alors
deg(f) = max

u∈Fn2
{wt(u)|f ◦(u) 6= 0}.

On dit que f est affine si deg(f) = 1 et que f est constante si deg(f) = 0.

7.1.2 Spectre de Walsh

En cryptographie nous avons besoin de calculer la distance des fonctions booléennes
aux fonctions affines. Pour cela nous étudions la transformée de Walsh de la somme de f
avec une fonction affine.

Définition 7.9. Soit u ∈ F2n, nous notons par ϕu la fonction booléenne affine définie
par

ϕu : F2n → F2

x 7→ Tr(ux)

Nous définissons alors la Transformée de Walsh d’une fonction booléenne f comme la
corrélation de (−1)f avec la fonction signe d’une fonction linéaire. Nous parlerons plus
commodément de corrélation centrée de f avec une fonction linéaire.

Définition 7.10. Soit f ∈ Bn une fonction booléenne. Le coefficient de Walsh de f au
point u ∈ Fn2 est noté F(f + ϕu). Il correspond à la quantité

F(f + ϕu) =
∑
x∈Fn2

(−1)f(x)+u·x

L’ensemble
{F(f + ϕu), u ∈ Fn2},

est appelé spectre de Walsh de la fonction f .

1. ANF est l’abréviation du terme anglais "Algebraic normal form"



144 7.1 Les fonctions booléennes

La non-linéarité d’une fonction booléenne mesure la distance entre la fonction boo-
léenne et l’ensemble des fonctions affines.

Définition 7.11. Soit f ∈ Bn une fonction booléenne. La non-linéarité de f notée
NL(f) est la distance de Hamming entre la fonction f et l’ensemble des fonctions affines.
Elle est définie par la valeur

NL(f) = 2n−1 − 1

2
L(f) où L(f) = max

u∈F2n
|F(f + ϕu)| .

La plus petite valeur pour L(f) est 2
n
2 . Cette valeur est atteinte par les fonctions dites

courbes. Les fonctions courbes font partie d’une famille plus grande, appelée fonctions
plateaux.

Définition 7.12. [ZZ99][CCCF00] Soit f ∈ Bn une fonction booléenne. La fonction f est
dite plateau si ses coefficients de Walsh prennent au plus trois valeurs, {0,±L(f)}. On
a alors L(f) = 2s avec s ≥ n/2.
Les fonctions courbes sont les fonctions plateaux qui vérifient s = n/2. Les fonctions
courbes existent si et seulement si n est pair. Dans ce cas particulier ses coefficients de
Walsh ne prennent que deux valeurs ±2

n
2 .

De plus, f est dite plateau optimal si s = (n+ 1)/2 pour n impair ou si s = (n+ 2)/2
pour n pair.

Dans le contexte des fonctions booléennes, la relation de Parseval est la suivante∑
a∈F2n

F2(f + ϕa) = 22n.

En appliquant cette relation il est facile de voir que le s défini dans la définition précédente
ne peut pas être inférieur à n

2
.

Avant de donner un exemple de fonction plateau. Nous donnons deux formules simples
que nous utilisons à maintes reprises dans ce chapitre et dans le suivant.

Lemme 7.1. Soient t et n deux entiers positifs. Nous avons

pgcd(2t − 1, 2n − 1) = 2pgcd(t,n) − 1 (7.1)

A partir de l’égalité précédente on peut montrer [McE87][lemme 11.1] :

pgcd(2t + 1, 2n − 1) =

{
1, si pgcd(t, n) = pgcd(2t, n)
2pgcd(t,n) + 1, si 2pgcd(t, n) = pgcd(2t, n).

(7.2)

Exemple 7.4. Soit f ∈ Bn la fonction booléenne définie par f(x) = Tr(x2t+1) et soit
k = pgcd(2t, n). A partir de l’égalité (7.2), on peut calculer la transformée de Walsh des
fonctions f + ϕu pour u ∈ F2n.

F(f + ϕu) nombre de u
0 2n − 2n−k

2(n+k)/2 2n−k−1 + 2(n−k−2)/2

−2(n+k)/2 2n−k−1 − 2(n−k−2)/2.

Ainsi la fonction f : x 7→ Tr(x2t+1) est une fonction plateau qui n’est jamais courbe.



Introduction 145

Il est aussi intéressant d’étudier les moments d’ordre supérieur de la transformée de
Walsh d’une fonction booléenne. Nous donnons ici la définition du moment d’ordre quatre
normalisé.

Définition 7.13. Le moment d’ordre quatre normalisé d’une fonction booléenne
f ∈ Bn est défini par :

ν(f) = 2−n
∑
u∈F2n

F4(f + ϕu) .

Le moment d’ordre quatre normalisé de f est relié au moment d’ordre deux de la
transformée de Walsh des dérivées de la fonction f .

Définition 7.14. Soit f : F2n → F2 une fonction booléenne. La dérivée au point a de
f est définie par

Daf(x) = f(x) + f(x+ a).

Remarque 7.1. On vérifie facilement que

ν(f) =
∑
a∈F2n

F2(Daf). (7.3)

C’est sous cette forme que le moment d’ordre quatre normalisé a été introduit dans [ZZ95]
comme un critère cryptographique sous le nom de "sum of square indicator". Cette quan-
tité a été particulièrement étudiée dans [CCCF00, CCCF01, ZZ99].

Le théorème suivant donne une borne sur la valeur du moment d’ordre quatre norma-
lisé. La preuve de ce théorème se trouve dans [CCCF00] et [ZZ99].

Théorème 7.1. Toute fonction booléenne f ∈ Bn vérifie ν(f) ≤ 2nL2(f). L’égalité est
vraie si et seulement si f est plateau. Dans ce cas on a

L(f) = 2s et ν(f) = 2n+2s, pour
n

2
≤ s ≤ n. (7.4)

7.2 Fonctions vectorielles

Au lieu d’étudier chaque bit de sortie des boîtes-S d’un système individuellement, on
peut aussi regarder la fonction qui à une entrée de Fn2 donne une sortie dans Fm2 avec m
plus grand que 1. Les fonctions de ce type, sont appelées fonctions vectorielles.

7.2.1 Définition

Définition 7.15. On appelle fonction vectorielle à n entrées et m sorties une
application de Fn2 dans Fm2 . L’ensemble des fonctions vectorielles à n entrées et m sorties
est noté Bmn .

Par la suite une fonction vectorielle est caractérisée par une lettre majuscule afin de
faire la distinction avec les fonctions booléennes que nous notons en minuscule.



146 7.2 Fonctions vectorielles

Définition 7.16. Soit F une fonction vectorielle F : F2n 7→ F2m. Les composantes de
F sont des fonctions booléennes. Elles sont notées fλ (fλ ∈ Bn) et sont définies pour tout
λ ∈ F2m par

fλ : F2n → F2

x 7→ Trm1 (λF (x)).

Toute fonction de F2n dans F2n peut s’exprimer comme un polynôme univarié de
F2n [X]. Avec cette représentation, on définit le degré d’une fonction vectorielle comme
suit.

Définition 7.17. Soit F une fonction de F2n dans F2n représentée par le polynôme uni-
varié P dans F2n [X]. Le degré de F est alors le degré maximal du poids de Hamming des
exposants du polynôme P :

deg

(
2n−1∑
i=0

λiX
i

)
= max {wt(i) | λi 6= 0 },

où λi ∈ F2n

En cryptographie, les fonctions de petit degré présentent des faiblesses contre les at-
taques algébriques.

7.2.2 Différentiabilité

Les boîtes-S des systèmes de chiffrement par bloc sont définies à partir de fonctions
vectorielles. Dans la section 2.1 nous avons vu que la résistance des systèmes de chiffrement
par bloc aux attaques différentielles était reliée à certaines propriétés des dérivées des
fonctions vectorielles. Nous rappelons ici quelques définitions.

Définition 7.18. Soit F ∈ Bmn une fonction de F2n dans F2m. Soit a un élément du corps
F2n. La dérivée de F par rapport à a est notée DaF et est définie par

DaF : F2n → F2m

x 7→ F (x) + F (x+ a)

En cryptographie on s’intéresse à la répartition de l’image de la dérivée d’une fonction
vectorielle

Définition 7.19. Soit F ∈ Bmn une fonction de F2n dans F2m. Soient a ∈ F2n et b ∈ F2m.
On définit la quantité δ(a, b) par

δ(a, b) = #{x ∈ F2n|DaF (x) = b}
= #{x ∈ F2n|F (x) + F (x+ a) = b}

Comme on est en caractéristique deux, si x vérifie DaF (x) = b alors on a DaF (x+a) = b
et donc pour tout a et tout b, la quantité δ(a, b) est pair. Évidemment la dérivée par
rapport à 0 n’a pas d’intérêt car pour toute fonction F et pour tout x nous avons D0F (x) =
0.
En cryptographie le maximum des δ(a, b) pour a non nul, définit l’uniformité différentielle
d’une fonction F .



Introduction 147

Définition 7.20. Soit F ∈ Bmn une fonction de F2n dans F2m. On note par δ(F ) le
maximum des δ(a, b) pour a non nul :

δ(F ) = max
a6=0,b

δ(a, b).

On dit alors que F est différentiellement δ(F )-uniforme.

La quantité δ(F ) est paire et supérieure ou égale à 2. Les fonctions atteignant la valeur
minimale, c’est-à-dire les fonctions différentiellement 2-uniformes sont dites APN ("almost
perfect non-linear").

Dans beaucoup de systèmes de chiffrement par bloc, les boîtes-S sont “carrées” c’est-à-
dire que le nombre de bits en entrée et en sortie de la boîte-S est le même. Cette propriété
n’est pas toujours vraie notamment pour les systèmes de chiffrement de type Feistel pour
lesquels la fonction de tour n’a pas besoin d’être inversible 2. Par la suite on s’intéresse
aux fonctions F qui sont dans Bnn, c’est-à-dire aux fonctions de F2n dans F2n . Dans ces
fonctions on peut distinguer les permutations des non-permutations. On rappelle qu’une
fonction F ∈ Bmn n’est pas une permutation si il existe x1 et x2 tels que F (x1) = F (x2).
Dans le cas où F n’est pas une permutation il est facile de voir qu’il existe a tel que
δ(a, 0) = 0.

Proposition 7.1. Soit F ∈ Bnn une fonction de F2n. Alors F est une permutation du
corps F2n si et seulement si, pour tout a non nul, δ(a, 0) = 0.

7.2.3 Non-linéarité

La non-linéarité d’une fonction vectorielle F de F2n dans F2n est définie à partir de la
non-linéarité de ses fonctions composantes fλ pour tout λ ∈ F2n\{0}(voir définition 7.16).

Définition 7.21. Soit F une fonction de F2n dans lui-même avec fonctions composantes
fλ, λ ∈ F2n. La non-linéarité de F est reliée à la non-linéarité de ses fonctions compo-
santes fλ. Celle-ci est égale à

NL(F ) = 2n−1 − Λ(F )

2
où Λ(F ) = max

λ∈F∗2n
L(fλ).

La non-linéarité de la fonction F est une mesure qui permet de calculer sa vulnérabilité
aux attaques linéaires (voir section 3.2). Les fonctions qui ont une non-linéarité maximale
sont dites presque courbes. Cette propriété existe seulement pour n impair lorsque l’on
considère les fonctions de Bnn.

Définition 7.22. Soit F une fonction de F2n dans lui même avec composantes fλ, λ ∈
F2n. Alors,

Λ(F ) ≥ 2
n+1

2 .

Les fonctions F qui satisfont
Λ(F ) = 2

n+1
2

2. On peut par exemple citer le DES [DES77] qui utilise des boîtes-S de 6 bits vers 4 bits



148 7.2 Fonctions vectorielles

sont dites presque courbes 3. De plus si F est presque courbe, alors pour tout a ∈ F2n

pour tout λ non nul

{F(fλ + ϕa), λ ∈ F∗2n , a ∈ F2n} = {0,±2
n+1

2 }, (7.5)

c’est-à-dire, toutes les composantes fλ, λ 6= 0, sont “plateau optimal”(ou "semi bent").

7.2.4 Fonctions puissances

Dans sa généralité, l’étude des fonctions vectorielles et de leurs propriétés cryptogra-
phiques est complexe. Nous devons identifier des classes particulières. Les monômes sont
faciles à implémenter et sont utilisés dans beaucoup de boîtes-S des système de chiffrement
par bloc. On peut citer par exemple la boîte-S de l’AES (voir section 1.4.2) qui utilise la
fonction x 7→ x−1 dans le corps F2n .

Définition 7.23. Soit F un polynôme sur le corps fini F2n. Soit d un entier tel que
1 ≤ d ≤ 2n − 2. F est une fonction puissance ou encore un monôme si F (x) = xd.
Dans ce cas on note par Fd cette fonction

Fd : F2n → F2n

x 7→ xd.

Proposition 7.2. Soit Fd une fonction puissance sur le corps F2n :

Fd(x) = xd.

Fd est une permutation si et seulement pgcd(d, 2n − 1) = 1.

Pour les fonctions puissances il existe des classes d’équivalence qui préservent l’unifor-
mité différentielle. Les lemmes suivants détaillent certaines de ces équivalences.

Lemme 7.2. Soit Fd une permutation puissance F (x) = xd du corps F2n. Soit d′ = 2id
mod 2n − 1 un exposant dans la classe cyclotomique de d. Alors δd(a, b) = δd′(a, b

2i)

Preuve : Supposons que δd(a, b) = λ 6= 0 alors il existe λ racines du polynôme

Xd + (X + a)d = b, (7.6)

dans le corps fini F2n .
En élevant cette équation à la puissance 2i on obtient

X2id + (X + a)2id = b2i .

Ainsi si x est racine de (7.6), alors x est racine de

xd
′
+ (x+ a)d

′
= b2i .

Et on a δd(a, b) = δd′(a, b
2i).

3. Le terme anglais est "almost bent" connu sous l’abréviation AB



Introduction 149

Lemme 7.3. Soit F une permutation Fd(x) = xd. Soit F−1 la réciproque de F . Alors

δF (a, b) = δF−1(b, a).

Preuve : Supposons que δF−1(a, b) = λ 6= 0 alors il existe λ racines du polynôme

F−1(X) + F−1(X + a) = b. (7.7)

Notons x une de ces racines. Alors on a

F−1(x+ a) = b+ F−1(x)
⇔ x+ a = F (b+ F−1(x))
⇔ a = F (b+ F−1(x)) + x

En posant y = F−1(x), l’équation précédente devient a = F (b+y)+F (y). Ainsi on obtient

δF−1(a, b) = δF (b, a).

Remarque 7.2. Le lemme précédent est vrai en particulier pour les monômes de permu-
tation. Soit Fd(x) = xd une permutation de F2n. On a

δd(a, b) = δd−1(b, a).

7.2.5 Dérivée en un point des fonctions puissances

Nous pouvons remarquer que pour les fonctions puissances, analyser la dérivée en un
point suffit pour étudier les propriétés différentielles de la fonction.
En effet dans le cas des fonctions puissances, F (x) = xd, les propriétés différentielles
peuvent être analysées plus facilement puisque, pour tout a ∈ F2n\{0}, l’équation (x +
a)d + xd = b peut se récrire

ad
((x

a
+ 1
)d

+
(x
a

)d)
= b,

ce qui implique que δ(a, b) = δ(1, b/ad) pour tout a 6= 0. Alors, si F : x 7→ xd est une
fonction puissance, les propriétés différentielles de F sont déterminées par les valeurs de
δ(1, b), quand b parcourt le corps F2n .

À partir de maintenant, nous écrivons δ(b) pour parler de δ(1, b).

Définition 7.24. Soit F un monôme. L’uniformité différentielle de F se détermine par
la quantité

δ(F ) = max
b∈F2n

δ(b).

On dit alors que F est différentiellement δ(F )-uniforme.



150 7.2 Fonctions vectorielles

7.2.6 Remarques sur δ(0)

Dans le but d’évaluer la différentiabilité d’une fonction puissance Fd(x) = xd définie
sur le corps F2n , nous pouvons commencer par étudier le cas particulier de certaines
valeurs de δ(b). En particulier nous nous intéressons au cas particulier où b = 0. Dans
cette partie, nous notons Sd(b) l’ensemble formé par les solutions de l’équation

(x+ 1)d + xd = b. (7.8)

Dans le cas où b = 0, nous avons le résultat suivant :

Lemme 7.4. Soit d un exposant tel que pgcd(d, 2n − 1) = s alors δ(0) = s − 1. En
particulier s = 1 si et seulement si δ(0) = 0.

Ce lemme signifie que δ(0) = 0 si et seulement si Fd est une permutation.
Une conséquence immédiate de ce lemme pour certaines valeurs de l’exposant d est la
suivante :

Lemme 7.5. Soit d ≥ 3 tel que d = pgcd(d, 2n − 1). Alors δ(0) = δ(Fd) = d− 1.

Preuve : Puisque d = pgcd(d, 2n − 1), à partir du lemme 7.4 nous avons δ(0) = d − 1.
De plus le polynôme xd + (x + 1)d + b est de degré d − 1 pour tout b. Ainsi on a que
δ(b) ≤ d− 1 et on en déduit donc que δ(Fd) = d− 1.

Exemple 7.5. Soit d = 11, d’après le lemme précédent on a δ(Fd) = δ(0) = 10 pour tout
n tel que 11 divise 2n− 1. Comme 11 divise 1023 = 210− 1, on obtient que cette propriété
est vérifiée si 10 divise n.

7.2.7 Les monômes APN

Dans cette thèse nous nous sommes intéressés aux monômes différentiellement 4- et
6-uniformes. Les résultats que nous avons trouvés sur ces fonctions sont détaillés dans le
chapitre 8. Cependant cette thèse n’aurait pas été complète sans citer les résultats connus
sur les monômes APN qui restent ceux qui résistent le mieux aux attaques différentielles.
Dans son habilitation Anne Canteaut [Can06] avait déjà regroupé tous les résultats connus
sur les monômes APN.

Le tableau 7.1 donne la liste des exposants d tel que la fonction F (x) = xd est APN
sur le corps F2n dans le cas où n est impair. Nous rappelons que dans ce cas toutes les
fonctions sont des permutations.
Dans le cas où n est pair, les monômes APN ne sont jamais des permutations. Le ta-
bleau 7.2.7 nous donne la liste des exposants d tels que F (x) = xd est APN.

Dans le chapitre suivant, nous remarquons que si pgcd(t, n) = s, les fonctions avec
exposant quadratique ou de Kasami sont différentiellement 2s - uniformes. De plus dans
le théorème 8.3 et le théorème 8.4, nous montrons que pour tout b, δ(a, b) est égal à 0 ou
à 2s.



Introduction 151

Nom Exposant Conditions Références

fonction quadratique Qt 2t + 1
1 ≤ t ≤ m

pgcd(t, n) = 1
[Gol68, Nyb94]

fonction de Kasami Kt 22t − 2t + 1
2 ≤ t ≤ m

pgcd(t, n) = 1
[Kas71]

fonction de Welsh 2m + 3
cc
cc [Dob99a, CCD00]

fonction de Niho 2m + 2
m
2 − 1 m pair [Dob99b, HX01]

2m + 2
3m+1

2 − 1 m impair

fonction inverse 22m − 1
cc
cc [Nyb94, BD93]

fonction de Dobbertin 24g + 23g + 22g + 2g − 1 n = 5g [Dob00]

Table 7.1 – Fonctions puissances F (x) = xd APN connues sur le corps F2n avec n =
2m+ 1.

Nom Exposant Conditions Références

fonction quadratique Qt 2t + 1
1 ≤ t ≤ m

pgcd(t, n) = 1
[Gol68, Nyb94]

fonction de Kasami Kt 22t−2t+1 2 ≤ t ≤ m
pgcd(t, n) = 1

[Kas71]

fonction de Dobbertin 24g + 23g + 22g + 2g − 1 n = 5g [Dob00]

Table 7.2 – Fonctions puissances F (x) = xd APN connues sur le corps F2n avec n = 2m.





Chapitre 8

Spectre différentiel des monômes

L’uniformité différentielle d’une fonction vectorielle a été introduite dans le but d’éva-
luer la résistance des systèmes de chiffrement par bloc aux attaques différentielles (cha-
pitre 2). Ce chapitre est fondé sur un ensemble d’observations sur le spectre différentiel
des fonctions. Par exemple, nous avons remarqué que deux fonctions F et G qui ont la
même uniformité différentielle peuvent avoir des comportements différents par rapport
aux attaques différentielles en fonction de la répartition des valeurs de leurs tables de
différences 1.

Durant cette thèse, nous nous somme donc intéressés à cette répartition des différences
pour certaines classes particulières de fonctions. Les fonctions monômes étant très utili-
sées pour définir les boîtes-S des systèmes de chiffrement par bloc, nous avons restreint
notre analyse à cet ensemble de fonctions.
Pour les monômes nous avons précisé la notion de spectre différentiel et étudié l’intérêt
de celui-ci. Dans le cheminement de cette étude du spectre différentiel, nous avons en
particulier, étudié les fonctions avec uniformité différentielle égale à 4 ou 6.
Dans ce chapitre, après avoir défini l’intérêt de l’étude du spectre différentiel, nous pré-
sentons les résultats de notre recherche exhaustive du spectre différentiel des fonctions
différentiellement 4- et 6-uniformes pour des petites tailles de corps. Les résultats de nos
expériences nous ont permis d’identifier un certain nombre de classes de monômes qui
étaient différentiellement 4- ou 6- uniformes. Les sections suivantes de ce chapitre sont
dédiées à l’étude du spectre différentiel des monômes différentiellement 4- ou 6- uniformes.

Dans ce chapitre nous utilisons les mêmes notations que celles du chapitre 7. Soit d un
entier ; nous étudions les monômes sur F2n :

F : F2n → F2n

x 7→ xd.

On rappelle que F est une permutation si et seulement si pgcd(d, 2n − 1) = 1.
Dans la suite de ce chapitre, nous utilisons indifféremment le terme de monôme et

de fonction puissance. Le terme permutation puissance désigne quant à lui, une fonction
puissance bijective.

1. La définition de δ(a, b) est donnée dans la définition 7.19.



154 8.1 Spectre différentiel

8.1 Spectre différentiel
Pour mesurer la résistance d’un système de chiffrement aux attaques différentielles,

un certain nombre de propriétés des fonctions puissances ont été étudiées. Notamment on
peut mesurer la résistance d’un système de chiffrement aux attaques différentielles en cal-
culant l’uniformité différentielle des boîtes-S composant le système de chiffrement. Ainsi,
soit F une fonction vectorielle comme définie dans le chapitre précédent ; pour vérifier la
résistance du système de chiffrement contre les attaques différentielles on s’intéresse au
maximum des δ(a, b). Dans ce chapitre nous nous intéressons aussi à la répartition des
δ(a, b). En particulier nous illustrons le fait que cette répartition peut être différente pour
deux fonctions qui ont la même uniformité différentielle.

8.1.1 Définition

En introduction on a souligné qu’on voulait étudier la répartition de δ(a, b) pour
tout a ∈ F∗2n et pour tout b ∈ F2n , c’est-à-dire que l’on veut s’intéresser aux valeurs
#{b ∈ F2n|δ(a, b) = i}. Or pour les fonctions puissances, nous avons vu à la fin du
chapitre précédent qu’il suffit d’étudier la dérivée par rapport à 1 :

#{b ∈ F2n|δ(a, b) = i} = #{b ∈ F2n|δ(1, b) = i} ∀a 6= 0.

Par la suite δ(1, b) est notée δ(b).
On définit alors le spectre différentiel d’une fonction puissance de la façon suivante.

Définition 8.1. Soit F (x) = xd une fonction puissance sur le corps F2n. Nous définissons
la quantité ωi, pour i pair, comme le nombre de b tels que l’équation F (x) +F (x+ 1) = b
a i racines :

ωi = #{b ∈ F2n|δ(b) = i}.
Le spectre différentiel de F est alors l’ensemble des ωi :

SF = {ω0, ω2, ..., ωδ(F )}.

Nous donnons d’abord des propriétés élémentaires des ωi.

Lemme 8.1. Soit ωi les valeurs définies dans la définition 8.1. Pour une fonction puis-
sance F nous avons les propriétés suivantes.

∑δ(F )
i=0 ωi = 2n,∑δ(F )

i=0 i× ωi = 2n.

Preuve : En sommant tous les ωi, on obtient tous les b ∈ F2n et ceci une et une seule
fois. Et en sommant tous les iωi on obtient toutes les racines des différentes équations
xd + (x + 1)d = b. Chaque élément du corps étant racine d’une et d’une seule équation,
on en déduit la deuxième égalité.

À titre d’exemple nous donnons le spectre différentiel de la fonction inverse. Le lemme
suivant est basé sur un résultat de Kaisa Nyberg [Nyb94].

Lemme 8.2. Soit F (x) = x2n−2 définie sur le corps F2n. Le spectre différentiel de F est :



Spectre différentiel des monômes 155

– Si n est impair, on a SF = {ω0 = 2n−1, ω2 = 2n−1}.
– Si n est pair, on a SF = {ω1 = 2n−1 + 1, ω2 = 2n−1 − 2, ω4 = 1}.

Preuve : Dans cette preuve on note F , la fonction définie par F (x) = x−1 avec la conven-
tion que F (0) = 0.

L’étude du spectre différentiel repose sur l’étude du nombre de solutions de l’équation :

x−1 + (x+ 1)−1 = b (8.1)

Deux cas se présentent à nous.

1. Si b = 1 alors 0 et 1 sont solutions de (8.1). Pour x 6= {0, 1} l’équation (8.1) peut se
récrire

1

x
+

1

x+ 1
= 1 ⇔ x2 + x+ 1 = 0 (8.2)

Or x2 +x+1 = 0 a deux solutions dans F2n si et seulement si Tr(1) = 0, c’est-à-dire
si et seulement si n est pair.

Donc si b = 1 on a 4 solutions dans le cas où n est pair et 2 solutions dans le cas
où n est impair.

2. Si b 6= 1 alors une solution x de (8.1) est telle que x 6= {0, 1} et doit vérifier

b =
1

x+ 1
+

1

x
. Cette condition se réecrit bx2 + bx+ 1 = 0. Cette équation a 0 ou 2

solutions dans F2n selon que Tr(1
b
) = 0 ou 1.

En utilisant le lemme 8.1, on prouve la seconde partie du lemme. Cela revient à
résoudre le système {

ω0 + ω2 + ω4 = 2n

2ω2 + 4ω4 = 2n.

Ainsi dans le cas où n est impair, comme ω4 = 0, le spectre différentiel est {2n−1, 2n−1}.
Dans le cas où n est pair, comme ω4 = 1, le spectre différentiel est {2n−1 + 1, 2n−1− 2, 1}.

Dans [CHZ07] Pascale Charpin, Tor Helleseth et Victor Zinoviev ont étudié d’autres
critères sur la fonction inverse. Ils ont notamment étudié le spectre de Walsh de la dérivée
de la fonction inverse.

Toutes les fonctions APN ont le même spectre différentiel {2n−1, 2n−1}. Mais les fonc-
tions telles que δ(F ) > 2 présentent une grande variété de spectres.

Lemme 8.3. Soit Fd(x) = xd et Fe(x) = xe deux fonctions puissances. S’il existe k tel
que e = 2kd mod 2n − 1 ou si pgcd(2n − 1, d) = 1 et e = d−1 mod 2n − 1 alors Fd et Fe
ont le même spectre différentiel.

Dans la partie suivante nous donnons des arguments pour expliquer ce qui a motivé
l’introduction du spectre différentiel : comment pour deux fonctions qui ont la même
uniformité différentielle, le spectre différentiel peut influer sur la résistance du système de
chiffrement aux attaques différentielles.



156 8.1 Spectre différentiel

8.1.2 Intérêt de l’étude du spectre différentiel

Par le passé, Lars R. Knudsen et Kaisa Nyberg [NK92] a montré que connaissant
l’uniformité différentielle de la fonction de tour d’un système de chiffrement de type Feistel
on pouvait en déduire une borne sur la probabilité d’un chemin différentiel. Ce résultat
nous dit que plus l’uniformité différentielle de la fonction de tour est petite, plus le système
de chiffrement résiste aux attaques différentielles. D’où l’importance pour un système de
chiffrement par bloc d’étudier la différentiabilité des boîtes-S le composant.

Lors de la conception d’un système de chiffrement par bloc, le concepteur a alors tout
intérêt à choisir des boîtes-S qui sont APN. Or dans le cas où n (taille de la boîte-S) est
pair, la seule permutation APN connue à l’heure actuelle est celle découverte par Dillon
[BDMW10] dans le cas où n = 6. La forme algébrique normale de cette fonction est très
complexe. En revanche, il a été prouvé qu’il n’existe pas de permutation puissance APN
dans le cas où n est pair (une preuve récente peut être trouvée dans [BCCLC06]).

Pour des raisons d’implémentation dans la plupart des systèmes de chiffrement actuels
les boîtes-S sont de taille 4 ou 8 bits 2. Pour λ fixé, il existe un certain nombre de fonctions
qui sont différentiellement λ-uniformes. Pour résister aux autres types de cryptanalyses, il
existe d’autres critères qui permettent de choisir les meilleures boîtes-S. La non-linéarité,
par exemple, (définition 7.21) de la fonction donne un critère de résistance du système de
chiffrement contre les attaques linéaires (section 3.2).

Dans cette section, nous donnons l’exemple de deux systèmes de chiffrement identiques
utilisant des boîtes-S différentes, ayant la même uniformité différentielle, et ne possédant
pas le même potentiel de résistance à la cryptanalyse Ceci est dû aux différences entre
leurs spectres différentiels.
Nous rappelons que les boîtes-S APN ont toutes le même spectre différentiel (ω0 =
2n−1, ω2 = 2n−1). Par la suite, nous illustrons ce phénomène en utilisant des boîtes-
S qui sont différentiellement 4-uniformes.

Exemple 8.1. Dans cet exemple nous nous plaçons dans le cas où n = 6. D’après le
tableau 8.1 qui est commenté dans la section 8.2, il existe un certain nombre de permu-
tations puissances qui sont différentiellement 4-uniformes. Cette table illustre le fait que
le spectre différentiel peut être très différent pour deux fonctions qui ont la même unifor-
mité différentielle. Pour illustrer l’importance du spectre différentiel, nous allons prendre
deux fonctions qui ont des spectres différentiels éloignés. Nous prenons par exemple les
fonctions G(x) = x31 et H(x) = x5. La première fonction est dans la classe de la fonction
inverse et donc son spectre différentiel est :

ω0(G) = 33, ω2(G) = 30, ω4(G) = 1.

La fonction H quant à elle, est un monôme avec exposant quadratique 3. La formule gé-
nérale du spectre différentiel des fonctions avec exposant quadratique est donnée dans la
section 8.4.2. D’après le tableau 8.1, pour n = 6, le spectre différentiel de H est :

ω0(H) = 48, ω2(H) = 0, ω4(H) = 16.

2. Voir par exemple les boîtes-S des systèmes de chiffrement PRESENT (section 1.4.1) et AES (sec-
tion 1.4.2)

3. fonctions avec exposant d = 2i + 1



Spectre différentiel des monômes 157

S

S

S

S

0 1 0 1

1 x 1 0

0 1 0 1

P [1→ x]

P [1→ x]

Figure 8.1 – Propagation d’une différence sur un Feistel généralisé. Illustre l’intérêt de
l’étude du spectre différentiel

Le but est d’illustrer que la résistance d’un système de chiffrement à la cryptanalyse dif-
férentielle est différente selon que les boîtes-S de celui-ci sont définies par la fonction G
ou par la fonction H.
Prenons l’exemple simple du chiffrement “jouet” défini par un schéma de Feistel généra-
lisé avec deux boîtes-S (voir définition 1.7). La probabilité de la différentielle (0, 1, 0, 1)→
(0, 1, 0, 1) sur deux tours du système de chiffrement (voir figure 8.1) est définie par∑

x

P
[
1→

S
x
]
P
[
1→

S
x
]

Dans le cas où la boîte-S est définie par la fonction H (S = H), tous les chemins
différentiels avec différence en entrée a = (0, 1, 0, 1) et différence en sortie b = (0, 1, 0, 1)

arrivent avec probabilité 2−8 =
(

4
26

)2. Et le nombre de chemins suivant cette différentielle
est exactement égal à ω4 = 16. On en déduit donc que la probabilité théorique de la
différentielle est égale à 16× 2−8 = 2−4.

Dans le cas où S = G un seul chemin avec différence en entrée a = (0, 1, 0, 1) et
différence en sortie b = (0, 1, 0, 1) arrive avec probabilité 2−8 =

(
4
26

)2 (c’est le cas où
x = 1) tous les autres chemins arrivent avec probabilité 2−10 =

(
2
26

)2. On en déduit donc
que la probabilité théorique de la différentielle est égale à 30× 2−10 + 2−8 = 2−4.91.

Cet exemple simple sur deux tours d’un schéma de Feistel généralisé à quatre branches
illustre bien l’intérêt de l’étude du spectre différentiel des boîtes-S puisque dans cet exemple
plus ω4 est petit plus la probabilité de la différentielle est aussi petite.

Au regard de cette discussion, la fonction inverse est celle qui possède la meilleure
résistance contre la cryptanalyse différentielle (parmi les monômes de permutation dif-
férentiellement 4-uniformes dans le cas où n est pair) puisque pour la fonction inverse
ω4 = 1. Le spectre différentiel de cette fonction est proche du spectre différentiel d’une
fonction APN.



158 8.2 Fonctions puissances différentiellement 4- et 6- uniformes

Définition 8.2. Soit F une fonction puissance. Si F vérifie les conditions suivantes :

δ(b) ≤ 2 pour tout b 6= {0, 1},

alors le spectre différentiel de F est proche du spectre différentiel d’une fonction APN.
Par la suite, on dit que F est localement-APN.

Par rapport aux travaux de Kaisa Nyberg, nous dirons que dans le cas des schémas de
Feistel, l’étude de l’uniformité différentielle nous donne une borne sur la probabilité du
meilleur chemin différentiel alors que l’étude du spectre différentiel nous donne des indi-
cations sur le nombre de chemins composant une différentielle ainsi que leurs probabilités.
Ce résultat donne alors une borne sur la probabilité d’une différentielle.

8.2 Fonctions puissances différentiellement 4- et 6- uni-
formes

Depuis les travaux de Lars R. Knudsen et Kaisa Nyberg [NK92], les fonctions APN
ont été beaucoup étudiées. Ainsi on sait par exemple qu’il n’existe pas de monôme de
permutation APN quand n est pair [BCCLC06]. Or, pour la conception de primitive
cryptographique, nous avons besoin de fonctions bijectives, faciles à implémenter et dif-
férentiellement λ-uniformes avec λ petit (voir section 2.1). Dans cette thèse, nous nous
sommes concentrées sur les fonctions puissances différentiellement 4- ou 6-uniformes. On
rappelle ici, que les monômes APN ont tous le même spectre différentiel : {2n−1, 2n−1}.
Dans l’exemple 8.1, nous avons illustré l’importance de l’étude du spectre différentiel
quand δ(F ) > 2. Dans cette partie nous avons calculé le spectre différentiel de tous les
monômes différentiellement 4- ou 6-uniformes sur le corps F2n avec n < 27. Lors de cette
recherche nous avons identifié un certain nombre de classes de fonctions différentielle-
ment 4- ou 6- uniformes. Cette section est dédiée à nos résultats expérimentaux. Nous
divisons notre étude en quatre sous-sections : les permutations et non-permutations dif-
férentiellement 4- ou 6-uniformes. Dans chaque section nous identifions différentes classes
de fonctions et nous commentons un résumé des résultats obtenus dans les sections sui-
vantes. Certains résultats, qui ne sont pas prouvés, sont des questions ouvertes ou des
conjectures.

Nous nous intéressons dans un premier temps aux permutations puissances différentiel-
lement 4-uniformes.

8.2.1 Permutation puissances différentiellements 4-uniformes

Le tableau 8.1 présente tous les monômes F (x) = xd qui sont différentiellement 4-
uniformes dans le corps F2n , pour n compris entre 6 et 26. En accord avec le lemme 8.3,
nous avons calculé le spectre différentiel des fonctions xd où l’exposant d est le représentant
de la classe cyclotomique modulo 2n − 1.



Spectre différentiel des monômes 159

Permutations puissances x 7→ xd sur le corps F2n , différentiellement 4-uniformes
n exposant/inverse ω0 ω2 ω4 Type
6 5/13 48 0 16 Quadratique/Kasami
6 31/31 33 30 1 Inverse
7 19/47 85 22 21
8 127/127 129 126 1 Inverse
9 45/125 292 184 36
10 5/205 768 0 256 Quadratique
10 13/79 768 0 256 Kasami
10 17/181 768 0 256 Quadratique
10 29/247 573 390 61
10 103/149 588 360 76
10 223/367 603 330 91
10 511/511 513 510 1 Inverse
11 79/183 1156 760 132
11 109/695 1189 694 165
11 251/367 1255 562 231
11 463/703 1222 628 198
12 73/731 2496 1152 448 Bracken et Leander[BL10]
12 2047/2047 2049 2046 1 Inverse
13 303/947 4603 3082 507
14 5/3277 12288 0 4096 Quadratique
14 13/1339 12288 0 4096 Kasami
14 17/2893 12288 0 4096 Quadratique
14 65/2773 12288 0 4096 Quadratique
14 205/241 12288 0 4096 Kasami
14 319/979 12288 0 4046 Kasami (4033)
14 8191/8191 8193 8190 1 Inverse
16 32767/32767 32769 32766 1 Inverse
18 5/52429 196608 0 65536 Quadratique
18 13/20165 196608 0 65536 Kasami
18 17/46261 196608 0 65536 Quadratique
18 241/12101 196608 0 65536 Kasami
18 257/43861 196608 0 65536 Quadratique
18 1279/12605 196608 0 65536 Kasami (65281)
18 131071/131071 131073 131070 1 Inverse
20 1057/306539 651264 270336 126976 Bracken et Leander [BL10]
20 524287/524287 524289 524286 1 Inverse
22 5/838861 3145728 0 1048576 Quadratique
22 13/322639 3145728 0 1048576 Kasami
22 17/740173 3145728 0 1048576 Quadratique
22 65/709813 3145728 0 1048576 Quadratique



160 8.2 Fonctions puissances différentiellement 4- et 6- uniformes

Permutations puissances x 7→ xd sur le corps F2n , différentiellement 4-uniformes.
n exposant/inverse ω0 ω2 ω4 Type
22 241/87019 3145728 0 1048576 Kasami
22 257/734419 3145728 0 1048576 Quadratique
22 1025/699733 3145728 0 1048576 Quadratique
22 3277/16639 3145728 0 1048576 Kasami (65281)
22 4033/246739 3145728 0 1048576 Kasami
22 5119/49981 3145728 0 1048576 Kasami (1047553)
22 2097151/2097151 2097153 2097150 1 Inverse
24 8388607/8388607 8388609 8388606 1 Inverse
26 5/13421773 50331648 0 16777216 Quadratique
26 13/5162299 50331648 0 16777216 Kasami
26 17/11842741 50331648 0 16777216 Quadratique
26 65/11356885 50331648 0 16777216 Quadratique
26 241/1396651 50331648 0 16777216 Kasami
26 257/11750611 50331648 0 16777216 Quadratique
26 1025/11719501 50331648 0 16777216 Quadratique
26 4033/848653 50331648 0 16777216 Kasami
26 4097/11187541 50331648 0 16777216 Quadratique
26 20479/3208147 50331648 0 16777216 Kasami
26 52429/65281 50331648 0 16777216 Kasami
26 66559/3951439 50331648 0 16777216 Kasami
26 33554431/33554431 33554433 33554430 1 Inverse

Table 8.1 – Permutations puissances x 7→ xd sur le corps F2n , différentiellement 4-
uniformes

Nous décrivons les différentes classes de permutations puissances différentiellement 4-
uniformes qui apparaissent dans le tableau 8.1. Pour certaines des ces fonctions le spectre
différentiel est déjà connu. Pour d’autres, une étude plus complète du spectre différentiel
est faite dans les sections suivantes.

La fonction inverse

La fonction inverse est la fonction avec exposant 2n − 2 (celui-ci est dans la même
classe cyclotomique que l’exposant 2n−1 − 1). Il est bien connu que dans le cas où n est
pair la fonction inverse est différentiellement 4-uniformes [Nyb94]. Le spectre différentiel
de cette fonction est donné dans le lemme 8.2.

L’exposant 22k + 2k + 1 pour n = 4k

En 2010 Carl Bracken et Gregor Leander ([BL10]) ont étudié les monômes F (x) = xd

avec exposant d = 22k + 2k + 1 dans le corps F24k . Dans leur article ils ont prouvé que
cette fonction est différentiellement 4-uniformes. Nous rappelons ici leur résultat.

Théorème 8.1. [BL10] Soit n = 4k et F (x) = x22k+2k+1 la fonction puissance définie
sur le corps F2n. F est différentiellement 4-uniformes. De plus cette fonction est une
permutation si et seulement si k est impair.



Spectre différentiel des monômes 161

Dans la section 8.3, à l’aide des résultats liant le spectre de Walsh avec le spectre
différentiel, nous déduisons le spectre différentiel de ces fonctions (voir théorème 8.2).

Exposant quadratique ou de Kasami

Nous rappelons ici que l’on appelle exposant quadratique, tout exposant de la forme
2t + 1.

F : x 7→ x2t+1

Et que l’on appelle exposant de Kasami, tout exposant de la forme 22t − 2t + 1.

F : x 7→ x22t−2t+1

Les fonctions avec exposant quadratique ou avec exposant de Kasami sont APN si et seule-
ment si pgcd(t, n) = 1. Dans les sections 8.4.2 et 8.4.3, nous étudions le spectre différentiel
des fonctions avec exposant quadratique ou exposant de Kasami. Nous remarquons dans
le tableau 8.1 qu’un certain nombre de ces fonctions sont différentiellement 4-uniformes.
L’exposant de Kasami n’étant pas toujours le plus petit de sa classe nous donnons ici le
lien entre les exposants donnés dans la table et l’exposant de Kasami correspondant :

Pour n = 12 (resp. n = 20), x73 (resp. x1057) sont dans la même classe cyclotomique
que xd avec d = 22t − 2t + 1 et n = 4t. Pour n = 14, nous remarquons que 319 est dans
la classe de l’exposant de Kasami 319 · 26 = 212− 26 + 1. De la même façon, pour n = 18,
1279 est dans la même classe que l’exposant de Kasami 1279 · 28 = 216 − 28 + 1.

Conjectures

En analysant les résultats du tableau 8.1, il est aussi important de remarquer qu’il
n’existe pas de permutation puissance différentiellement-4-uniformes pour n impair entre
15 et 25.

On peut donc faire la conjecture suivante.

Conjecture 8.1. Soit F une permutation puissance du corps F2n. Si n est impair et
n ≥ 15 alors F n’est pas différentiellement 4-uniformes.

De la même façon, dans le cas où n est pair, il semble que pour n > 12 toutes les
permutations puissances différentiellement 4-uniformes font partie d’une des famille citées
ci-dessus.

Conjecture 8.2. Soit F une permutation puissance du corps F2n différentiellement 4-
uniformes. Si n est pair et n ≥ 12 alors d est équivalent soit à un exposant quadratique,
soit à un exposant de Kasami, soit à l’exposant 2n−1 − 1, soit si n = 4k à l”exposant
22k + 2k + 1.

8.2.2 Non-permutations puissances différentiellement 4-uniformes

D’un point de vue expérimental, nous avons aussi cherché les monômes différentielle-
ment 4-uniformes qui ne sont pas des permutations. Le tableau 8.2 donne la liste de toutes
les fonctions puissances F (x) = xd sur le corps F2n , non-permutations, différentiellement
4-uniformes pour n compris entre 8 et 26. On peut d’abord remarquer que le corpus consi-
déré est “pauvre”. Nous détaillons cependant les différentes classes de non-permutations
puissances différentiellement 4-uniformes.



162 8.2 Fonctions puissances différentiellement 4- et 6- uniformes

n s pgcd(s, 2n − 1) ω0 ω2 ω4 Type

8

5 5 192 0 64 Quadratique
21 3 152 80 24 Bracken et Leander[BL10]
95 5 156 72 28
111 3 140 104 12

12 5 5 3072 0 1024 Quadratique

14 69 3 9200 6176 1008
81 3 9200 6176 1008

16
5 5 49152 0 16384 Quadratique
65 5 49152 0 16384 Quadratique
273 3 40448 17408 7680 Bracken et Leander[BL10]

20 5 5 786432 0 262144 Quadratique

24
5 5 12582912 0 4194304 Quadratique

1025 5 12582912 0 4194304 Quadratique
4161 3 10452992 4259840 2064384 Bracken et Leander[BL10]

Table 8.2 – Non-permutations puissances x 7→ xs sur le corps F2n différentiellement
4-uniformes

L’exposant quadratique

Certaines des non-permutations puissances avec exposant quadratique

F : x 7→ x2t+1

sont différentiellement 4-uniformes. Dans la section 8.4.2, nous donnons leur spectre dif-
férentiel.

L’exposant 22k + 2k + 1 pour n = 4k

Soit n = 4k, le théorème 8.2 montre que les fonctions puissances avec exposant 22k +
2k + 1 sont différentiellement 4-uniformes. Dans le cas où k est pair, ce ne sont pas des
permutations.

n impair

Le résultat suivant montre que dans le cas où n est impair, il n’existe pas de fonctions
puissances différentiellement 4-uniformes qui ne sont pas des permutations.

Proposition 8.1. Soit F une fonction puissance sur le corps F2n avec n impair. Si F est
différentiellement 4-uniformes alors F est une permutation.

Preuve : Raisonnons par l’absurde. Supposons que F est différentiellement 4-uniformes et
que F n’est pas une permutation. D’après le lemme 7.4, nous avons que δ(0) = pgcd(d, 2n−
1)− 1. Comme F n’est pas une permutation, δ(0) 6= 0 et comme F est différentiellement
4-uniformes, δ(0) ≤ 4. C’est-à-dire δ(0) ∈ {2, 4}.

Supposons que δ(0) = 2. Cela signifie que 3 divise 2n − 1. Ceci n’est pas possible car
n est impair ce qui implique que pgcd(22 − 1, 2n − 1) = 2pgcd(2,n) − 1 = 1 et donc que
δ(0) 6= 2.



Spectre différentiel des monômes 163

Supposons que δ(0) = 4. Cela signifie que 5 divise 2n − 1. Or pgcd(22 + 1, 2n − 1) = 1
(voir lemme 7.1). Donc δ(0) 6= 4. On peut donc conclure que δ(0) ≥ 6 et que donc qu’il
n’existe pas de non-permutation puissance différentiellement 4-uniforme dans le cas où n
est impair.

La proposition précédente est analogue au résultat bien connu suivant :

Proposition 8.2. Soit F un fonction puissance de F2n avec n impair. Si F est APN
alors F est une permutation.

Conjectures

Dans le tableau 8.2, on remarque que si n ≡ 2 mod 4 et 18 ≤ n ≤ 26, il n’existe
pas de non-permutation puissance différentiellement 4-uniforme. Nous faisons, donc, la
conjecture suivante :

Conjecture 8.3. Soit F2n le corps de taille 2n. Si n ≡ 2 mod 4 il n’existe pas de non-
permutation puissance différentiellement 4-uniforme pour n ≥ 18.

Dans le cas où n ≡ 0 mod 4 on fait la conjecture suivante.

Conjecture 8.4. Soit F une non-permutation puissance sur le corps F2n avec n ≡ 0
mod 4 et n ≥ 12. Si F est différentiellement 4-uniforme alors d est équivalent soit à un
exposant quadratique soit à l’exposant 22k + 2k + 1 pour n = 4k.

8.2.3 Permutation puissance différentiellement 6-uniformes

Le nombre de permutations puissances différentiellement 6-uniformes est assez impor-
tant en particulier pour les corps F2n avec n ≤ 14.

Dans nos expérimentations, nous avons remarqué que parmi les permutations puis-
sances différentiellement 6-uniformes, une classe d’exposants se dégageait nettement. Cette
classe correspond aux fonctions F (x) = xd avec d = 2t − 1 pour certaines valeurs de
2 ≤ t ≤ n − 1. Dans le tableau 8.3, pour 7 ≤ n ≤ 26, nous avons calculé le nombre de
permutations puissances différentiellement 6-uniformes qui ont un exposant de la forme
d = 2t − 1.

On peut premièrement remarquer que quand n grandit la plupart des permutations
puissances différentiellement 6-uniformes sont équivalentes aux fonctions F (x) = xd avec
d = 2t − 1 pour 2 ≤ t ≤ n− 1.

Une étude approfondie du spectre des fonctions puissances avec exposant d = 2t − 1
est présentée dans la section 8.6.7.

On peut aussi remarquer que pour n = 18 et n = 24 il n’existe pas de permutations
puissances différentiellement 6-uniformes. Ainsi on peut formuler la conjecture suivante.

Conjecture 8.5. Soit F2n le corps à 2n éléments. Pour n ≡ 0 mod 6 et n ≥ 18, il
n’existe pas de permutation puissance différentiellement 6-uniforme.



164 8.2 Fonctions puissances différentiellement 4- et 6- uniformes

n exposant nombre de fonctions

7 2t − 1 1
Autre 1

8 2t − 1 1
Autre 0

9 2t − 1 0
Autre 2

10 2t − 1 2
Autre 11

11 2t − 1 6
Autre 46

12 2t − 1 0
Autre 2

13 2t − 1 5
Autre 130

14 2t − 1 2
Autre 24

15 2t − 1 0
Autre 6

16 2t − 1 2
Autre 0

n exposant nombre de fonctions

17 2t − 1 12
Autre 0

18 2t − 1 0
Autre 0

19 2t − 1 8
Autre 0

20 2t − 1 2
Autre 0

21 2t − 1 0
Autre 2

22 2t − 1 2
Autre 0

23 2t − 1 6
Autre 0

24 2t − 1 0
Autre 0

25 2t − 1 6
Autre 0

26 2t − 1 2
Autre 0

Table 8.3 – Monômes de permutation différentiellement 6-uniformeS sur le corps F2n .
Résumé du nombre de fonctions pour un exposant d de la forme particulière d = 2t − 1
ou avec une autre valeur.



Spectre différentiel des monômes 165

n s pgcd(s, 2n − 1) ω0 ω2 ω4 ω6 Type
6 7 7 35 27 1 1 2t − 1

8 25 5 172 48 28 8
63 3 156 86 0 14 2t − 1

12 7 7 2401 1518 1 176 2t − 1

14 75 3 9858 4958 1470 98
105 3 9487 5693 1113 91

15 7 7 19046 12391 0 1331 2t − 1

16
63 3 38116 24746 0 2674 2t − 1
4915 5 38988 21024 4828 696
16383 3 38116 24746 0 2674 2t − 1

18 7 7 153167 97929 1 11047 2t − 1
22 255 3 2446578 1573013 0 174713 2t − 1
24 7 7 9788205 6289212 1 699798 2t − 1

26 262143 3 39142742 25171967 0 2794155 2t − 1
16777215 3 39142742 25171967 0 2794155 2t − 1

Table 8.4 – Non-permutations puissances x 7→ xs sur le corps F2n différentiellement
6-uniformes.

8.2.4 Non-permutations puissances différentiellement 6-uniformes

Le tableau 8.4 donne la liste des fonctions puissances F = xd sur le corps F2n pour
6 ≤ n ≤ 26 qui ne sont pas des permutations, et qui sont différentiellement 6-uniformes.

On peut remarquer qu’à part quelques exceptions pour des corps de petite taille, tous
les exposants cités dans le tableau sont de la forme 2t − 1. Ainsi, comme dans le cas des
permutations différentiellement 6-uniformes, on peut faire la conjecture suivante :

Conjecture 8.6. Soit F = xd une fonction puissance, non-permutation du corps F2n avec
n ≥ 18. Si F est différentiellement 6-uniforme alors d est équivalent à un exposant de la
forme 2t − 1.

8.2.5 Récapitulatif

Les résultats de nos expérimentations détaillées dans les sections précédentes nous ont
permis de remarquer que le nombre de fonctions différentiellement 4- ou 6-uniformes est
assez petit. De plus quand la taille de corps grandit tous les monômes observés ont des
exposants de la forme

– d = 2t + 1
– d = 22t − 2t + 1
– d = 22m + 2m + 1 avec n = 4m
– d = 2t − 1

Dans le tableau 8.5 nous résumons les résultats de nos expérimentations.

Les sections suivantes de ce chapitre sont dédiées à l’étude de ces quatre classes de
fonctions. Ainsi dans la section 8.3 nous étudions le spectre différentiel de la fonction



166 8.2 Fonctions puissances différentiellement 4- et 6- uniformes

puissance avec exposant d = 22m+2m+1 avec n = 4m. La section 8.4 est dédiée à l’étude
des fonctions avec exposant quadratique d = 2t + 1 ou de Kasami d = 22t − 2t + 1. Et
enfin dans la section 8.6 nous étudions le spectre différentiel des fonctions avec exposant
d = 2t − 1.



Spectre différentiel des monômes 167

E
xp

os
an

t
pe

rm
ut
at
io
n

4-
un

ifo
rm

e
no

n-
pe

rm
ut
at
io
n

4-
un

ifo
rm

e
pe

rm
ut
at
io
n

6-
un

ifo
rm

e
no

n-
pe

rm
ut
at
io
n

6-
un

ifo
rm

e

n
pa

ir

In
ve
rs
e

2n
−

1
−

1
to
uj
ou

rs
∅

∅
∅

Q
ua

dr
at
iq
ue

2t
+

1
p
gc

d
(t
,n

)
=

2
p
gc

d
(t
,n

)
=

p
gc

d
(t
,2
n

)
p
gc

d
(t
,n

)
=

2
p
gc

d
(t
,n

)
6=

p
gc

d
(t
,2
n

)
∅

∅

K
as
am

i
22
t
−

2t
+

1

n
6=

3t
p
gc

d
(n
,t

)
=

2
n
≡

2
m

o
d

4
∅

∅
∅

n
=

4k
22
k

+
2k

+
1

k
im

pa
ir

k
pa

ir
∅

∅

2t
−

1
(t
6=
{2
,n
−

1}
)

∅
∅

p
gc

d
(t
,n

)
=

1
au

tr
es

co
nd

it
io
ns

vo
ir
se
ct
io
n
8.
6

p
gc

d
(t
,n

)
6=

1
au

tr
es

co
nd

it
io
ns

vo
ir
se
ct
io
n
8.
6

R
em

ar
qu

es
C
on

je
ct
ur
e
:

Li
st
e
co
m
pl
èt
e

po
ur
n
≥

12

C
on

je
ct
ur
e
:

n
≡

2
m

o
d

4
In
ex
is
te
nc
e

po
ur
n
≥

18

n
≡

0
m

o
d

4
Li
st
e
co
m
pl
èt
e

po
ur
n
≥

16

C
on

je
ct
ur
e
:

Li
st
e
co
m
pl
èt
e

po
ur
n
≥

18

C
on

je
ct
ur
e
:

Li
st
e
co
m
pl
èt
e

po
ur
n
≥

18

n
im

pa
ir

2t
−

1
(t
6=
{2
,n
−

1}
)

∅
∅

p
gc

d
(t
,n

)
=

1
au

tr
es

co
nd

it
io
ns

vo
ir
se
ct
io
n
8.
6

p
gc

d
(t
,n

)
6=

1
au

tr
es

co
nd

it
io
ns

vo
ir
se
ct
io
n
8.
6

R
em

ar
qu

es
C
on

je
ct
ur
e
:

In
ex
is
te
nc
e

po
ur
n
≥

15

In
ex
is
te
nc
e

pr
ou

vé
e

vo
ir
??

C
on

je
ct
ur
e
:

Li
st
e
co
m
pl
èt
e

po
ur
n
≥

17

T
a
bl

e
8.
5
–

R
es
um

é
su
r
le
s
m
on

ôm
es

di
ffé

re
nt
ie
lle
m
en
t
4-
et

6-
un

ifo
rm

es



168 8.3 Monômes avec exposant 22k + 2k + 1

8.3 Monômes avec exposant 22k + 2k + 1

Dans [BL10], Carl Bracken et Gregor Leander ont montré que les fonctions F (x) =
x22k+2k+1 sur le corps F24k sont différentiellement 4-uniformes. Nous avons étudié le spectre
différentiel de ces fonctions. Les résultats présentés dans cette section ont été présentés
dans [BCC10a]. Dans cette section nous donnons tout d’abord quelques résultats prélimi-
naires qui relient le spectre différentiel d’une fonction différentiellement 4-uniforme avec
le spectre de Walsh de la fonction booléenne associée.

8.3.1 Lien entre le spectre différentiel d’une fonction différentiel-
lement 4-uniformes et le spectre de Walsh

Le résultat principal de cette section donne le lien entre le spectre différentiel d’une
fonction vectorielle différentiellement 4-uniforme et le spectre de Walsh de la fonction
booléenne associée.

Soit la fonction puissance F (x) = xd dans cette section nous notons par fd sa fonction
booléenne associée :

fd : F2n → F2

x 7→ Tr(xd)
(8.3)

Nous rappelons (voir définition 7.13) la définition du moment d’ordre quatre normalisé
pour les fonctions booléennes :

ν(f) = 2−n
∑
u∈F2n

F4(f + ϕu) . (8.4)

Proposition 8.3. [BCCLC06] Soit F (x) une permutation puissance du corps F2n. Soit
fd = Tr(xd) la fonction booléenne associée à F . Alors

ν(f) = 2n#{(x, y) ∈ F2n × F2n|xd + (x+ 1)d = yd + (y + 1)d}
= 22n+1 + 2n#

{
(x, y) ∈ F2n × F2n|x 6= y 6= y + 1 et xd + (x+ 1)d = yd + (y + 1)d

}
À partir de la proposition précédente, nous pouvons déduire la proposition suivante :

Proposition 8.4. Soit F (x) = xd une permutation puissance du corps F2n. Soit fd(x) la
fonction booléenne associée. On a

2−nν(fd) =
∑
x∈F2n

δ(xd + (x+ 1)d).

Donc δ(F ) ≥ 2−2nν(fd).

Preuve : Soit Λ = 2−nν(fd). A partir de la proposition 8.3, nous avons

Λ = #{(x, y) ∈ F2n × F2n|xd + (x+ 1)d = yd + (y + 1)d}.

Ce qui implique que

Λ =
∑
x∈F2n

#{y ∈ F2n|yd + (y + 1)d = b avec b = xd + (x+ 1)d}

=
∑
x∈F2n

(
δ(xd + (x+ 1)d

)
≤ 2nδ(F )



Spectre différentiel des monômes 169

Une conséquence directe de la proposition 8.4 est que le spectre différentiel d’une
permutation puissance différentiellement 4-uniforme est déterminé par le moment d’ordre
quatre normalisé de la fonction booléenne associée.

Lemme 8.4. Soit F (x) = xd une permutation puissance de F2n. Soit fd = Tr(xd) sa
fonction booléenne associée (voir (8.3)). Si δ(F ) = 4 alors le spectre différentiel de F est
le suivant.

ω4 =
ν(fd)

2n+3
− 2n−2, ω2 = 2n−1 − 2 ω4 et ω0 = 2n−1 + ω4. (8.5)

Donc, ν(f) = 2n+3κ avec 2n−2 < κ ≤ 2n−1. En particulier, si κ = 2n−1 alors ω2 = 0.

Preuve : D’après la proposition 8.4 on a

2−nν(f) =
∑
b∈F2n

δ(b)2 =
2n∑
i=0

i2ωi,

ce qui implique que

2−nν(f) = 22ω2 + 24ω4 avec 2ω2 + 4ω4 = 2n.

En remplaçant ω2 par (2n−1 − 2ω4), nous obtenons ω4 = ν(f)/2n+3 − 2n−2.
De ce résultat nous déduisons que ν(f) = 2n+3κ avec κ > 0. Comme 0 < ω4 ≤ 2n−2,

nous devons avoir 2n−2 < κ ≤ 2n−1. En particulier ω2 = 0 si et seulement si κ = 2n−1.

8.3.2 Spectre différentiel

A partir des résultats précédents qui nous donnent le lien entre le spectre différentiel
d’une fonction différentiellement 4-uniforme et le spectre de Walsh de la fonction boo-
léenne associée, nous pouvons extraire le spectre différentiel de la fonction F (x) = xd sur
le corps F2n avec d = 22k + 2k + 1.

Théorème 8.2. Soit F (x) la fonction puissance définie sur le corps F24k par F (x) = xd

avec d = 22k + 2k + 1. Le spectre différentiel de cette fonction est le suivant :

ω4 = 23k−3(2k − 1), ω2 = 23k−2(2k + 1) et ω0 = 5.24k−3 − 23k−3.

Preuve : Carl Bracken et Gregor Leander ont prouvé que δ(F ) = 4 (voir théorème 8.1).
Si on veut utiliser le lemme précédent il suffit de calculer le moment d’ordre quatre
normalisé de la fonction booléenne associée. D’après la définition même du moment d’ordre
quatre normalisé pour calculer celui-ci, il suffit de connaître le spectre de Walsh. Or Hans
Dobbertin a montré [Dob98] que le spectre de Walsh de la fonction fd = Tr(xd) avec
d = 22k + 2k + 1 est le suivant :

F(fd + ϕu) nombre u
−22k+1 (2n−2 − 23(k−1))/3− 22k−2

−22k (2n−1 + 23k−1)/3
0 2n−1 − 23k−2

22k (2n−1 + 23k−1)/3
−22k+1 (2n−2 − 23(k−1))/3 + 22k−2.



170 8.4 Fonctions avec exposant quadratique ou de Kasami

D’après (8.4), nous avons

2nν(fd) = 24(2k+1) (2n−1 − 23(k−1)+1)

3
+ 28k (2n + 23k)

3

= 28k (2k+3 − 23k+2 + 2n + 23k)

3

= 28k (9.2n − 3.23k)

3
= 211.k(3.2k − 1).

De sorte que le moment d’ordre quatre normalisé est ν(fd) = 27k(3.2k − 1).
Ainsi en appliquant le lemme 8.4, on obtient

ω4 = 23k−3(2k+1 + 2k − 1)− 24k−2 = 23k−3(2k − 1)

et
ω2 = 24k−1 − 23k−2(2k − 1) = 24k−2 + 23k−2 = 23k−2(2k + 1).

8.4 Fonctions avec exposant quadratique ou de Kasami
En analysant les résultats du tableau 8.1, nous avons remarqué que le spectre diffé-

rentiel des fonctions puissances avec exposant quadratique ou exposant de Kasami dif-
férentiellement 4-uniformes est de la forme suivante {2n−1 + 2n−2, 0, 2n−2}. Ce spectre
différentiel semble particulier car seuls ω0 et ω4 sont non-nuls.

Dans cette section nous nous sommes donc intéressés au cas particulier des fonctions
puissances où δ(a, b) prend seulement 2 valeurs, c’est-à-dire, δ(a, b) ∈ {0, κ} pour tout
(a, b) ∈ F∗2n × F2n et pour κ ≥ 2.

Définition 8.3. Soit F une fonction puissance définie sur le corps F2n. On dit que F est
différentiellement 2-valuées si δ(b) ∈ {0, δ(F )}. C’est-à-dire si pour tout i 6= {0, δ(F )},
ωi = 0.

Exemple 8.2. Les fonctions puissances APN sont différentiellement 2-valuées (δ(b) ∈
{0, 2}).

Remarque 8.1. Soit F une fonction linéaire sur le corps F2n alors F est différentielle-
ment 2-valuées avec spectre différentiel ω0 = 2n − 1, ω2n = 1.

Dans la suite de cette section, on étudie les fonctions différentiellement 2-valuées non-
linéaires.

8.4.1 Fonctions puissances différentiellement 2-valuées

Soit F une fonction puissance différentiellement 2-valuées. Nous remarquons que dans
ce cas δ(F ) est une puissance de 2.

Lemme 8.5. Soit F une fonction puissance du corps F2n Supposons que F est différen-
tiellement 2-valuées. Alors il existe s (1 ≤ s ≤ n) telle que δ(F ) = 2s.



Spectre différentiel des monômes 171

Preuve : Cette propriété est simple à montrer dans le cas où F est une fonction puissance.
En effet, d’après le lemme 8.1, nous avons{

ω0 + ωκ = 2n

κωκ = 2n.

Donc κ divise 2n.

Proposition 8.5. Soit F (x) = xd une fonction puissance du corps F2n tel que δ(F ) = 2s.
Soit fd(x) = Tr(xd) la fonction booléenne associée. Si F est différentiellement 2-valuées
alors ν(fd) = 22n+s.

Preuve : D’après la proposition 8.4 nous avons

ν(f) = 2n
∑
x

δ(xd + (x+ 1)d)

= 2n · 2n · 2s.

À partir de ce résultat, nous déduisons que certains monômes, pour lesquels la fonction
booléenne associée est plateau, (voir définition 7.12) sont différentiellement 2-valués.

Proposition 8.6. Soit d un entier tel que pgcd(d, 2n − 1) = 1. Soit F (x) = xd une
permutation et fd(x) = Tr(xd). Supposons que fd est une fonction plateau avec spectre de
Walsh {0,±2(n+k)/2}. Alors δ(F ) ≥ 2k avec égalité si et seulement si δ(b) ∈ {0, 2k} pour
tout b. De plus, si tout δ(b) non-nul est supérieur ou égal à 2k alors δ(b) ∈ {0, 2k} pour
tout b ∈ F2n.

Preuve : Puisque fd est plateau à partir de la définition 7.12 et du théorème 7.1 nous
avons ν(fd) = 22n+k. En utilisant la proposition 8.4, nous obtenons

2n+k =
∑
x∈F2n

δ
(
xd + (x+ 1)d

)
.

Donc δ(F ) ≥ 2k et l’égalité est vraie si et seulement si δ
(
xd + (x+ 1)d

)
est égal à 2k

pour tout x. D’autre part, il est clairement impossible d’avoir δ(b) ≥ 2k, pour tout δ(b)
non-nul, sauf si δ(b) ∈ {0, 2k} pour tout b.

A l’aide de ces résultats préliminaires nous pouvons déduire le spectre différentiel des
fonctions puissances avec exposant quadratique ou exposant de Kasami.

8.4.2 L’exposant quadratique

Dans cette section, nous considérons le cas particulier des fonctions Qt(x) = x2t+1 avec
1 ≤ t ≤ n− 1 sur le corps F2n . La valeur d = 2t + 1 est appelée exposant quadratique.



172 8.4 Fonctions avec exposant quadratique ou de Kasami

Théorème 8.3. Soit Qt une fonction du corps F2n définie par Qt(x) = x2t+1.
Soit s = pgcd(t, n).Considérons l’équation

Qt(x) +Qt(x+ a) = b. (8.6)

pour tout a, b dans F2n. Si (8.6) a au moins une solution x, alors l’ensemble des solutions
est x + aF2s. C’est-à-dire que les fonctions puissances avec exposant quadratique sont
différentiellement 2-valuées avec δ(Qt) = 2s et δ(b) ∈ {0, 2s}.

Preuve : Supposons que nous avons une paire (a, b) telle que l’équation (8.6) a au moins
une solution x. Alors nous avons

x2t+1 + (x+ a)2t+1 = x2ta+ a2tx+ a2t+1 = b. (8.7)

L’équation x2ta+a2tx+a2t+1+b = 0 est affine sur le corps F2n ; donc le nombre de solutions
de l’équation (8.6) est soit égal à 0 soit égal au nombre de solutions de x2ta+ a2tx (partie
linéaire de l’équation). Or x2ta + a2tx = ax(x2t−1 + a2t−1). Donc l’espace des solutions
de cette équation linéaire est aF2s et nous concluons que l’équation (8.6) a pour solution
l’ensemble x+ aF2s .

Grâce à ce résultat, nous déduisons le spectre différentiel des fonctions Qt.

Corollaire 8.1. Soit Qt une fonction puissance avec exposant quadratique, définie dans
le théorème 8.3. Le spectre différentiel de Qt est

ω0 = 2n − 2n−s et ω2s = 2n−s avec s = pgcd(n, t).

8.4.3 L’exposant de Kasami

Dans cette section, nous nous intéressons aux fonctions puissances ayant un exposant
de Kasami. Nous notons par Kt ces fonctions :

Kt : F2n → F2n

x 7→ x22t−2t+1 où 2 ≤ t ≤ n/2.

La quantité 22t − 2t + 1 est appelée exposant de Kasami. Dans un premier temps nous
rappelons le spectre de Walsh d’une fonction avec exposant de Kasami.

Proposition 8.7. [Kas71] Soit la fonction Kt avec exposant de Kasami. Soit f la
fonction booléenne associée : f(x) = Tr(Kt(x)). Soit s = pgcd(n, t) = pgcd(n, 2t). Le
spectre de Walsh de f est

{0,±2(n+s)/2}.

Si l’on veut utiliser la proposition 8.6, afin de prouver que les monômes avec exposant
de Kasami sont différentiellement 2-valués nous devons montrer que ∀b si δ(b) 6= 0 alors
δ(b) ≥ 2k. Pour cela nous commençons par rappeler un résultat qui relie l’exposant de
Kasami à l’exposant quadratique.

Lemme 8.6. Soit t un entier positif, nous avons

23t + 1 = (2t + 1)(22t − 2t + 1). (8.8)

De plus, si 3t ≥ n, nous pouvons remarquer que :



Spectre différentiel des monômes 173

– Si 3t = n+ k avec k ≥ 0, alors la fonction Q3t correspond à la fonction Qk.
– Si 3t = n, alors Kt est dans la classe de inverse de Qt.

Preuve :
– L’équation (8.8) se démontre facilement en développant le deuxième terme de l’éga-

lité.
– Dans le cas où 3t = n+ k nous avons 23t + 1 ≡ 2n2k + 1 ≡ 2k + 1 mod (2n − 1).
– Dans le cas où 3t = n nous avons (22t − 2t + 1)(2t + 1) ≡ 2n + 1 ≡ 2 mod (2n − 1).

Donc (22t − 2t + 1)(2t + 1)(2n−1) ≡ 1 mod (2n − 1).

Dans la section précédente nous avons montré que la fonction Qt est différentiellement
2-valuée. A l’aide du lemme précédent, nous montrons que les fonctions Kt sont différen-
tiellement 2-valuées.

Dans un premier temps nous rappelons un résultat bien connu sur les fonctions avec
exposant de Kasami Kt.

Lemme 8.7. [Kas71, JW93] La fonction Kt : F2n → F2n est APN si est seulement si
pgcd(t, n) = 1.

Par la suite, nous nous concentrons donc sur les valeurs de t telles que s = pgcd(t, n) >
1. De plus nous supposons que n/pgcd(t, n) est impair. Ceci implique que pour tout r
impair, pgcd(2rt + 1, 2n − 1) = 1, c’est-à-dire que d = 22t − 2t + 1 est premier avec 2n − 1
et que Kt est une permutation du corps F2n .

Théorème 8.4. Soit Kt : x 7→ x22t−2t+1 une fonction définie sur F2n. Supposons que
n 6= 3t et s = pgcd(n, t) avec n/s impair. Alors δ(b) ∈ {0, 2s} pour tout b et donc
δ(Kt) = 2s. Plus précisément, si l’équation Kt(x) + Kt(x + 1) = b a une solution x
l’ensemble des solutions est

(y + aF2s)
2t+1 où x = y2t+1, x+ 1 = (y + a)2t+1.

Preuve : Soit b ∈ F2n tel que l’équation suivante

x22t−2t+1 + (x+ 1)22t−2t+1 = b (8.9)

a au moins une solution x. Pour les valeurs de t définies dans le théorème, on a pgcd(2t +
1, 2n − 1) = 1 (voir équation (7.2)). En conséquence, il existe y et z tels que x = y2t+1 et
x+ 1 = z2t+1 et il existe a tel que z = y + a. Avec ces notations, l’équation (8.9) devient

y23t+1 + (y + a)23t+1 = b, (8.10)

où 23t+1 est calculé modulo (2n−1) (c’est-à-dire que si 3t = n+ ` avec ` ≥ 1 alors 23t+1
est équivalent à 2` + 1). Soit k défini par k = pgcd(3t, n). Comme s = pgcd(t, n) et 3 est
premier, nous avons k = s ou k = 3s. A partir du théorème 8.3, nous déduisons que si
l’équation (8.10) a une solution y alors l’ensemble des solutions est y + aF2k .



174 8.4 Fonctions avec exposant quadratique ou de Kasami

A partir de maintenant, nous voulons prouver que pour tout β ∈ F2s , l’élément (y +
βa)2t+1 est solution de l’équation (8.9). Soit u = (y + βa)2t+1 et v = (y + (β + 1)a)2t+1.
Nous avons

u+ v = (y + βa)2ta+ (y + βa)a2t + a2t+1

= ya2t + y2ta+ a2t+1

= y2t+1 + (y + a)2t+1

= x+ (x+ 1) = 1.

Alors l’égalité

u22t−2t+1 + (u+ 1)22t−2t+1 = u22t−2t+1 + v22t−2t+1

= (y + βa)23t+1 + (y + (β + 1)a)23t+1 = b,

prouve que l’équation (8.10) a au moins 2s solutions. Nous en déduisons que δ(b) ≥ 2s pour
tout δ(b) non-nul. D’après la proposition 8.7, la fonction booléenne x 7→ Tr(x22t−2t+1) est
plateau avec spectre de Walsh {0,±2(n+s)/2}. En utilisant la proposition 8.6 nous pouvons
conclure que δ(b) ∈ {0, 2s} pour tout b.

Remarque 8.2. La condition n/s impair donnée dans le théorème précédent est néces-
saire. En effet il existe un certain nombre de fonctions Kt qui ne sont pas différentiellement
2-valuées. Nous donnons ici l’exemple du spectre différentiel de la fonction K2(x) = x13

dans le corps fini F212 :

ω0 = 2389, ω2 = 1638, ω4 = 1, et ω12 = 68.

8.4.4 Monômes avec exposant 2m+1 + 2m−1 − 1 sur le corps F22m

En 2009, Yassir Nawaz, Kishan Chand Gupta et Guang Gong dans [NGG09] ont
conjecturé que les fonctions puissances F (x) = x2m+1+2m−1−1 étaient différentiellement
4-uniformes. Or, nous avons remarqué que ces fonctions étaient dans la classe cycloto-
mique d’une fonction avec exposant de Kasami. Dans cette section nous donnons donc
une preuve que les fonctions F (x) = x2m−1+2m−1−1 sont différentiellement 4-uniformes et
différentiellement 2-valuées.

Proposition 8.8. Soit n = 2m, avec m impair, et d = 2m+1 + 2m−1 − 1. La fonction
x 7→ xd définie sur le corps F2n est une permutation différentiellement 4-uniforme,et
différentiellement 2-valuée.

Preuve : Pour m > 3 l’exposant d = 2m+1 + 2m−1− 1 est dans la classe cyclotomique d’un
exposant de Kasami :

2m−1 · d = 22m + 22m−2 − 2m−1 mod (22m − 1)

= 22(m−1) − 2m−1 + 1.

Donc d est dans la classe cyclotomique de la fonction Kt avec t = m − 1. Nous avons
2m = 3(m− 1) si et seulement si m = 3.



Spectre différentiel des monômes 175

Soit k tel que m = 2k + 1 nous avons :

pgcd(m− 1, 2m) = pgcd(2k, 4k + 2) = 2pgcd(k, 2k + 1) = 2.

D’après le théorème 8.4, la fonction F (x) = xd est différentiellement 4-uniforme. Et pour
tout b, δ(b) ∈ {0, 4}.

Dans le cas où m = 3, d = 19 est dans la classe de l’exposant de Kasami 13. Dans ce
cas le théorème ne peut pas s’appliquer directement. Mais d est l’inverse de l’exposant
quadratique d = 5 et nous pouvons aussi prouver que la fonction est différentiellement
4-uniforme, 2-valuées.

Remarque 8.3. Comme il est dit dans l’article [NGG09] la fonction puissance avec
exposant 2m+1 + 2m−1 − 1 est hautement non-linéaire. En dehors du cas où n = 6 cet
exposant est le représentant de la classe cyclotomique.

Remarque 8.4. Dans le cas où m est pair la fonction F (x) = x2m+1+2m−1−1 est une
non-permutation APN sur le corps F22m car elle est dans la classe de Km−1 et pgcd(m−
1, 2m) = 1.

8.4.5 Quelques remarques sur les autres exposants : Quelles sont
les fonctions différentiellement 2-valuées ?

Dans le tableau 8.1, nous donnons l’ensemble des permutations puissances différentiel-
lement 4-uniformes. Nous remarquons dans ce tableau que les seules fonctions qui sont
différentiellement 4-uniformes et différentiellement 2-valuées sont équivalentes aux fonc-
tions avec exposant quadratique ou de Kasami. La même remarque peut être faite dans
le cas général où les fonctions sont différentiellement 2s-uniformes. Nous proposons donc
la conjecture suivante :

Conjecture 8.7. Toute fonction puissance xd différentiellement 2-valuée est telle que d
est équivalent à un exposant quadratique ou un exposant de Kasami 4.

Dans la seconde partie de cette section, nous montrons que pour certaines tailles de
corps finis il n’existe pas de monômes différentiellement 2-valués. Ces résultats renforcent
la conjecture précédente.

Nous pouvons aussi remarquer que cette conjecture illustre le fait que pour les permu-
tations puissances, il y a une décorrélation entre le spectre différentiel et le spectre de
Walsh de la fonction booléenne associée. C’est-à-dire que deux fonctions peuvent avoir le
même spectre de Walsh et un spectre différentiel différent.

4. Équivalent au sens défini dans le lemme 8.3.



176 8.4 Fonctions avec exposant quadratique ou de Kasami

Étude des monômes avec exposant d = 2m+1 + 3 sur F22m avec m impair

Dans cette partie nous allons illustrer ce phénomène en montrant qu’une autre famille
de fonction plateau n’est pas différentiellement 2-valuée. Plus précisément, nous donnons
ici le spectre différentiel des fonctions puissances étudiées par Thomas Cusick et Hans
Dobbertin [CD96].

Théorème 8.5. [CD96] Soit n = 2m un entier avec m impair. Soit d un entier pouvant
prendre les valeurs suivantes :

d = 2m + 2(m+1)/2 + 1 ;
d = 2m+1 + 3.

Soit fd la fonction booléenne définie par fd(x) = Tr(xd) sur le corps F2n. Alors fd est
plateau avec spectre de Walsh {0,±2

n+2
2 }.

Remarque 8.5. Les fonctions définies dans le théorème précédent sont des permutations.

Nous rappelons que dans le cas où n est pair, une fonction puissance APN sur F2n ne
peut pas être bijective. Ce qui signifie que les fonctions F avec d défini comme dans le
théorème précédent ne peuvent pas être APN. Or comme la fonction booléenne associée
à la fonction F est plateau, la proposition 8.6 implique que la fonction F est :

– soit différentiellement 4-uniforme et différentiellement 2-valuée ;
– soit δ(F ) ≥ 6.

Le tableau 8.6 retranscrit les résultats des calculs effectués pour n ≡ 2 mod 4 et 10 ≤ n ≤
30. Les résultats montrent que les deux fonctions puissances avec exposant défini comme
dans le théorème 8.5 sont différentiellement 8-uniformes. De plus ces deux fonctions ont
le même spectre différentiel.

Table 8.6 – Spectre différentiel des permutations puissances étudiées par Cusick et Dob-
bertin : Fd : x 7→ xd sur le corps F2n avec d = 2m + 2(m+1)/2 + 1 et d = 2m+1 + 3, pour
n = 2m, avec m impair.
n s inverse ω0 ω2 ω4 ω6 ω8

10 41 25 698 200 76 40 10
67 107 698 200 76 40 10

14 145 113 11504 2240 2080 448 112
259 1613 11504 2240 2080 448 112

18 545 481 182496 40320 29248 8064 2016
1027 26291 182496 40320 29248 8064 2016

22 2113 1985 2909184 675840 440320 135168 33792
4099 419021 2909184 675840 440320 135168 33792

26 8321 8065 46744064 10250240 7552000 2050048 512512
16387 6712115 46744064 10250240 7552000 2050048 512512

30 33025 32513 746098688 169164800 116187136 33832960 8458240
65539 1073676229 746098688 169164800 116187136 33832960 8458240

À partir de ces résultats nous proposons la conjecture suivante.



Spectre différentiel des monômes 177

Conjecture 8.8. Soit n = 2m avec m impair. Soit F : x 7→ xd une permutation puissance
définie pour les valeurs suivantes de d :

– d = 2m + 2(m+1)/2 + 1 ;
– d = 2m+1 + 3.

Alors, pour ces valeurs de d, F est différentiellement 8-uniformes et toutes les valeurs
0, 2, 4, 6 et 8 apparaissent dans le spectre différentiel.

Non-existence de fonctions différentiellement 2-valuées pour certaines tailles
de corps

Dans la conjecture 8.7, nous avons supposé que seules les fonctions puissances avec
exposant quadratique ou de Kasami étaient différentiellement 2-valuées (à équivalence
près). La validité de cette conjecture est renforcée par les résultats suivants qui montrent
que pour certaines valeurs de n il y a un certain nombre d’exposants d pour lesquels les
fonctions puissances correspondantes ne peuvent pas être différentiellement 2-valuées.

Afin de prouver que pour certaines tailles de corps et pour certaines uniformités dif-
férentielles il n’existe pas de fonctions puissances différentiellement 2-valuées, nous avons
besoin du lemme générique suivant.

Lemme 8.8. Soit p un nombre premier impair, pour tout w, nous avons 2p
w ≡ 2 mod p.

Preuve : Soit i un entier. Comme pour p impair pgcd(2p
i−1
, p) = 1 d’après le petit théorème

de Fermat nous avons : (
2p

i−1
)p−1

≡ 1 mod p.

Or
(

2p
i−1
)p−1

= 2p
i−pi−1 , donc

2p
i ≡ 2p

i−1

mod p (8.11)

Pour i = 1, nous avons 2p ≡ 2 mod p. Par récurrence sur l’équation (8.11), on en déduit
que , pour tout w,

2p
w ≡ 2 mod p.

Proposition 8.9. Soient p un nombre premier et n = pw une puissance de p pour une
valeur particulière de w ≥ 1. Soit F : x 7→ xd une permutation puissance non-linéaire sur
le corps F2n différentiellement 2-valuée avec δ(F ) = 2s. Alors, p > 2 et p divise (2s−1−1).
Et l’on a notamment,

– pour tout p, δ(F ) 6= 4 ;
– pour tout p 6= 3, δ(F ) 6= 8 ;
– pour tout p 6= 7, δ(F ) 6= 16.

Ainsi si p 6= 3, 7, on a δ(F ) ≥ 25

Preuve : Nous définissons l’ensemble E = {b ∈ F2n , δ(b) 6= 0}. Soit F une fonction
différentiellement 2-valuée avec δ(F ) = 2s. Comme∑

b∈F2n

δ(b) = 2n,



178 8.5 Résumé sur les fonctions différentiellement 4-uniformes

on a #E = 2n−s. Mais, pour tout b, δ(b) = δ(b2). En conséquence, l’ensemble E correspond
à une union de classes cyclotomiques modulo (2n−1). De plus b = 1 est inclus dans l’espace
E puisque δ(1) ≥ 2.

Quand n = pw, la taille des classes cyclotomiques est divisible par p excepté pour la
classe de 1 et de 0. On en déduit donc qu’il existe λ tel que #E = 1 + pλ (car 0 /∈ E). Ce
résultat implique que pλ = 2n−s − 1.

Nous pouvons remarquer que λ ≥ 1 puisque si λ = 0 on a δ(F ) = 2n. Ceci est
impossible car nous avons supposé que F était non-linéaire. Nous obtenons donc

2p
v−s − 1 ≡ 0 mod p. (8.12)

Ceci implique donc que p > 2. D’après le lemme 8.8 nous avons alors que 2p
v ≡ 2s ≡

2 mod p, c’est-à-dire que p divise 2s−1 − 1.

Remarque 8.6. La proposition précédente dit que si n est une puissance de 2, il n’existe
pas de monôme de permutation non-linéaire différentiellement 2-valué.

Proposition 8.10. Soient p > 2 un nombre premier, w un entier positif et n = 2pw.
Soit F : x 7→ xd une permutation puissance non-linéaire du corps F2n différentiellement
2-valuée. Soit s tel que δ(F ) = 2s. Ces permutations existent si et seulement si p divise
soit (2s−2 − 1) soit (3 · 2s−2 − 1). Plus précisément, on a que

– pour tout p 6= 5, δ(F ) 6= 8 ;
– pour tout p 6∈ {3, 11}, δ(F ) 6= 16 ;
– pour tout p 6∈ {7, 23}, δ(F ) 6= 32 ;
– pour tout p 6∈ {3, 5, 47}, δ(F ) 6= 64.

Preuve : La preuve est similaire à celle de la proposition précédente. Ici comme n = 2pv, en
plus des classes d’ordre divisibles par 1 et p on a la classe d’ordre 2. Soit b′ un représentant
de cette classe. Deux cas se présentent alors : soit δ(b′) = 0 soit δ(b′) = 2s.

Dans le cas où δ(b′) = 2s avec les notations de la preuve précédente on a #E = 1+2+pλ.
Alors 22pv ≡ 3 · 2s mod p. De plus par le lemme 8.8 22pv ≡ 4 mod p donc p divise
3 · 2s−2 − 1.

Dans le cas où δ(b′) = 0, avec les notations de la preuve précédente on a #E = 1 + pλ.
Alors 22pm ≡ 2s mod p. De plus par le lemme 8.8 22pv ≡ 4 mod p donc p divise 2s−2− 1.

8.5 Résumé sur les fonctions différentiellement 4-uniformes

Le tableau 8.7 résume les spectres différentiels des familles infinies de monômes diffé-
rentiellement 4-uniformes.



Spectre différentiel des monômes 179

Nom Exposant Conditions Spectre
ω0 ω2 ω4

quadratique 2t + 1
pgcd(t, n) = 2
pgcd(2t, n) = 2

2n − 2n−2 0 2n−2

Kasami 22t − 2t + 1
n ≡ 2 mod 4

n 6= 3t
pgcd(t, n) = 2

2n − 2n−2 0 2n−2

[BL10] 22k + 2k + 1 n = 4k 5 · 24k−3 − 23k−3 23k−2(2k + 1) 23k−3(2k − 1)

Inverse 2n−1 − 1 n pair 2n−1 + 1 2n−1 − 2 1

Table 8.7 – Spectre différentiel des monômes différentiellement 4-uniformes

Dans la section suivante nous continuons, d’explorer les monômes avec petite unifor-
mité différentielle. Dans nos simulations nous avons remarqué que la plupart des fonctions
différentiellement 6-uniformes ont un exposant de la forme d = 2t − 1. Parmi les fonctions
avec exposant de cette forme on retrouve naturellement la fonction inverse (qui est APN
si n est impair) et localement-APN sinon. Dans cette famille d’exposant on retrouve aussi
la fonction quadratique x 7→ x3 qui est APN.

Nous donnons donc maintenant des propriétés générales des monômes x 7→ x2t−1. En
outre nous montrons qu’un certain nombre de ces fonctions ont une petite uniformité
différentielle.

8.6 Les exposants 2t − 1

Dans les sections 8.2.3 et 8.2.4 nous avons vu que pour des tailles de corps suffisamment
grandes, la plupart des fonctions puissances différentiellement 6-uniformes ont un exposant
équivalent à un exposant de la forme 2t − 1

La seconde partie de ma thèse étant dédiée à l’étude du spectre différentiel des mo-
nômes avec petite uniformité différentielle, nous nous sommes donc intéressés aux fonc-
tions F (x) = x2t−1. Les résultats présentés dans cette section ont été publiés dans
[BCC11].

Soit F2n le corps de taille 2n. Soit 2 ≤ t ≤ n − 1 ; dans la suite de cette section nous
notons par Gt les fonctions

Gt : F2n → F2n , 2 ≤ t ≤ n− 1

x 7→ x2t−1 (8.13)

Dans cette section nous étudions les fonctions Gt pour tout t. Pourtant nous remarquons
que Gt est une permutation si et seulement si pgcd(2t − 1, 2n − 1) = 1, c’est-à-dire si et
seulement si pgcd(t, n) = 1.

8.6.1 Lien avec les polynômes linéaires

Dans un premier temps nous donnons quelques propriétés générales sur la famille des
fonctions Gt.



180 8.6 Les exposants 2t − 1

Théorème 8.6. Soit Gt(x) = x2t−1 la fonction puissance définie par (8.13). Nous avons,

Gt(x+ 1) +Gt(x) + 1 =
(x2t−1

+ x)2

x2 + x
. (8.14)

Donc, pour tout b ∈ F2n\{1}, δ(b) est égal au nombre de racines dans F2n\F2 du polynôme
linéaire

Pb(x) = x2t + bx2 + (b+ 1)x .

De plus

δ(0) = 2pgcd(t,n) − 2,

δ(1) = 2pgcd(t−1,n).

Et pour tout b ∈ F2n \ F2, il existe r avec 1 ≤ r ≤ min(t, n− t+ 1) tel que

δ(b) = 2r − 2.

Preuve : Dans un premier temps nous regardons le cas particulier où b = 1. On s’intéresse
alors aux racines du polynôme 1 + x2t−1 + (1 + x)2t−1. En multipliant ce polynôme par
x2 + x on obtient le polynôme linéarisé suivant :

(x+ x2)(1 + x2t−1 + (1 + x)2t−1) = x+ x2 + x2t + x2t+1 + x(1 + x)2t = x2 + x2t .

On en déduit donc que δ(1) correspond au nombre de racines du polynôme P1(x) =
(x2t−1

+ x)2.
Maintenant considérons le cas où b 6= 1. Alors x ∈ F2n\F2 est solution de (x+1)d+xd =

b si et seulement si il est solution de (x2t−1
+x)2 = (b+1)x(x+1). De manière équivalente

xF2n\F2 est solution de (x+ 1)d + xd = b si et seulement si c’est une racine du polynôme
linéarisé

Pb(x) = x2t + bx2 + (b+ 1)x.

Les racines x = 0 et x = 1 de (8.14) sont comptées dans δ(1). Or Pb(0) = Pb(1) = 0 pour
tout b. Nous obtenons donc que pour b 6= 1, le nombre de racines de Pb dans le corps F2n

est égal à (δ(b)+2). Comme l’ensemble des racines d’un polynôme linéarisé est un espace
vectoriel, nous déduisons que

∀b ∈ F2n \ {1}, δ(b) = 2r − 2 avec r ≤ t.

De plus, en élevant Pb à la puissance 2n−t, nous obtenons que toute racine de Pb est aussi
une racine de b2n−tx2n−t+1

+ (b2n−t + 1)x2n−t + x. Ce qui implique que δ(b) = 2r − 2 avec
r ≤ n − t + 1. Dans le cas particulier où b = 0, P0(x) = x2t + x, ce qui implique que
δ(0) = 2pgcd(t,n) − 2.

Remarque 8.7. La fonction inverse x 7→ x2n−2 est dans la même classe cyclotomique que
la fonction Gn−1 : x 7→ x2n−1−1 définie sur le corps F2n. Ainsi en appliquant le théorème
précédent on retrouve la formule bien connue du spectre différentiel de la fonction inverse
(voir lemme 8.2). En effet si on applique le théorème précédent dans le cas où t = n− 1,
cela nous donne δ(0) = 0 et δ(1) = 2 quand n est impair et δ(1) = 4 quand n est pair.
Pour tout b /∈ F2, δ(b) ∈ {0, 2}.

On obtient donc



Spectre différentiel des monômes 181

– si n est impair, δ(Gn−1) = 2 et ω0 = 2n−1, ω2 = 2n−1 ;
– si n est pair, δ(Gn−1) = 4 et ω0 = 2n−1 + 1, ω2 = 2n−1 − 2, ω4 = 1.

L’application du théorème 8.6 nous permet de faire la remarque suivante qui nous dit
que δ(Gt) prend un nombre limité de valeurs.

Remarque 8.8. Soit Gt(x) = x2t−1 une fonction puissance définie par (8.13). Alors, il
existe 2 ≤ r ≤ n tel que Gt(x) est différentiellement (2r−2)-uniforme ou différentiellement
2r-uniforme. De plus, si δ(Gt) = 2r, alors cette valeur apparaît une seule fois dans le
spectre différentiel, c’est-à-dire, ω2r = 1. Cette valeur correspond à δ(1), ce qui implique,
d’après le théorème, que δ(Gt) = 2pgcd(t−1,n).

8.6.2 D’autres formulations équivalentes

Le but de cette section est d’étudier le spectre différentiel des fonctions x 7→ x2t−1.
Dans le théorème 8.6, nous avons montré qu’étudier le spectre différentiel de cette famille
de fonctions est équivalent à trouver les racines d’un polynôme linéaire. Dans cette section
nous donnons d’autres méthodes équivalentes pour résoudre ce problème.

Dans un premier temps nous allons voir le lien entre le nombre de racines de Pt,b :

Pt,b = x2t + bx2 + (b+ 1)x .

et celui de son application adjointe. Ce lien nous permet dans la section 8.6.3 d’établir un
lien entre le spectre différentiel de Gt et celui de Gn+1−t.

Dans un second temps nous remarquons que trouver les racines du polynôme Pt,b est
équivalent à résoudre un système de deux équations linéaires de degré plus petit que celui
de Pt,b. Ce lien nous permet en particulier dans la section 8.6.5 de déterminer le spectre
différentiel de la fonction G3(x) = x7.

Nous commençons par introduire quelques notations que nous allons utiliser dans cette
partie.

Pour tout sous espace E de F2n (où le corps F2n est identifié à l’espace vectoriel Fn2 ),
nous définissons le dual de E de la manière suivante :

E⊥ = { x | Tr(xy) = 0, ∀ y ∈ E }.

Nous notons par Im(F ) l’espace image d’une fonction F et par Ker(F ) le noyau d’une
l’application linéaire F .

Lien avec le nombre de racines de l’application adjointe

Lemme 8.9. Soit t, s ≥ 2 et s = n− t+ 1. Considérons l’application linéaire

Pt,b(x) = x2t + bx2 + (b+ 1)x, b ∈ F2n .

Alors le dual de Im(Pt,b) est l’ensemble des α satisfaisant P ∗t,b(α) = 0 où

P ∗t,b(x) = x2s + (b+ 1)2x2 + bx.

Dans la littérature, P ∗t,b est appelé application adjointe de Pt,b.



182 8.6 Les exposants 2t − 1

Preuve : Par définition, Im(Pt,b)
⊥ consiste en l’ensemble des α tels que Tr(αPt,b(x)) = 0

pour tout x ∈ F2n . Nous avons

Tr(αPt,b(x)) = Tr(αx2t) + Tr(bαx2) + Tr(α(b+ 1)x)

= Tr(α2n−t+1

x2) + Tr(bαx2) + Tr(α2(b+ 1)2x2)

= Tr(x2(α2s + α2(b+ 1)2 + αb)).

Donc, α appartient au dual de l’image de Pt,b si et seulement si α2s +α2(b+ 1)2 +αb = 0,
c’est-à-dire, si et seulement si α est une racine de P ∗t,b.

Système d’équations linéaires

Le théorème suivant nous donne une information nouvelle nous permettant de trouver
une borne supérieure sur l’uniformité différentielle des fonctions Gt.

Théorème 8.7. Soit t, s ≥ 2 et s = n − t + 1. Soit Pt,b et P ∗t,b comme défini dans le
lemme 8.9. Alors

dimKer(Pt,b) = dimKer(P ∗t,b).

Donc, la dimension de Ker(Pt,b) peut être déterminée en résolvant l’équation

x2s + (b+ 1)2x2 + bx = 0, où s = n− t+ 1.

Preuve : Soit κ la dimension de l’espace image de Pt,b. Il est bien connu que n = κ +
dimKer(Pt,b). D’autre part, le lemme 8.9 dit que α ∈ Im(Pt,b)

⊥ est dans le dual de
l’image de Pt,b si et seulement si P ∗t,b(α) = 0. Nous déduisons que

n− κ = dimKer(P ∗t,b) = dimKer(Pt,b).

Le théorème suivant nous dit qu’étudier le spectre différentiel des fonctions x 7→ x2t−1 est
équivalent à la résolution d’un système d’équations linéaires.

Théorème 8.8. Pour tout t ≥ 2, nous définissons l’équation suivante :

Eb : x2t + bx2 + (b+ 1)x = 0, b ∈ F2n .

Soit Nb le nombre de solutions de Eb dans F2n \ F2. Soit Mb le nombre de solutions dans
F∗2n du système {

y2t−1
+ · · ·+ y2 + y(b+ 1) = 0

Tr(y) = 0

Alors Nb = 2×Mb.

Preuve : Remarquons que

x2t + bx2 + (b+ 1)x = x2t + x+ b(x2 + x)

= (x2 + x)2t−1

+ (x2 + x)2t−2

+ · · ·+ (x2 + x) + b(x2 + x)

= y2t−1

+ y2t−2

+ · · · y2 + y(b+ 1), avec y = x2 + x.



Spectre différentiel des monômes 183

Nous nous intéressons au nombre de solutions de Eb qui ne sont pas dans F2 . Ce problème
est équivalent au calcul du nombre de solutions non-nulles y de

y2t−1

+ y2t−2

+ · · · y2 + y(b+ 1) = 0

pour lesquelles l’équation x2 + x+ y = 0 a 2 solutions. Cette dernière condition est vraie
si et seulement si Tr(y) = 0. On a alors 2 solutions x1 et x2 = x1 + 1 qui vérifient
x2
i + xi = y.

Remarque 8.9. Dans le théorème 8.8, la quantité b peut prendre toutes les valeurs du
corps F2n. Or dans le théorème 8.6, Pb est défini pour b 6= 1. Nous faisons ici le lien entre
Mb et δ(b).

Pour tout b 6= 1, nous avons Nb = δ(b). Si b = 1, P1(x) = x2t + x2 et le nombre de
racines de P1 dans F2n est égal à

N1 + 2 = 2pgcd(t−1,n) = δ(1).

Donc M1 = δ(1)/2− 1.

8.6.3 Une propriété de symétrie

Soit Gt(x) la fonction définie par Gt(x) = x2t−1 sur le corps F2n . Dans cette partie,
nous établissons que les spectres différentiels de Gt et Gs, où t, s ≥ 2 et s = n − t + 1,
sont reliés entre eux.

Le résultat principal de cette section est le théorème suivant. La preuve de ce théorème
est longue et très technique. Cette preuve est détaillée dans la section 8.6.4.

Théorème 8.9. Pour tout µ avec 2 ≤ µ ≤ n− 1, nous définissons

Siµ = { b | dimKer(Pµ,b) = i } avec 1 ≤ i ≤ µ .

Alors pour tout s, t ≥ 2 avec t = n− s+ 1 et pour tout i, nous avons #Sis = #Sit.

Le théorème 8.9 n’est pas très explicite en lui-même. Dans le corollaire suivant nous
donnons une version plus explicite de ce théorème. C’est-à-dire nous donnons la méthode
pour calculer le spectre différentiel de Gn−t+1 à partir de celui de Gt.

Corollaire 8.2. Nous notons par δµ(b), b ∈ F2n, la quantité δ(b) correspondante à la
fonction Gµ : x 7→ x2µ−1 (µ = s ou µ = t). Alors, pour tout s, t ≥ 2 avec t = n − s + 1,
nous avons

δs(0) = δt(1)− 2 = 2pgcd(t−1,n) − 2

δs(1) = δt(0) + 2 = 2pgcd(t,n).

et nous avons l’égalité entre les deux “multi-ensembles” 5 suivants :

{δs(b), b ∈ F2n \ F2} = {δt(b), b ∈ F2n \ F2}. (8.15)

5. Le terme “multi-ensemble” correspond à un ensemble où les répétitions sont possibles



184 8.6 Les exposants 2t − 1

De plus Gt et Gs ont le même spectre différentiel si et seulement si

pgcd(s, n) = pgcd(t, n) = 1 6.

Dans tous les cas, Gt est localement-APN 7 si et seulement si Gs est localement-APN.

Preuve : Puisque s = n− t+ 1, nous avons

pgcd(s, n) = pgcd(t− 1, n) et pgcd(s− 1, n) = pgcd(t, n).

Alors, en appliquant le théorème 8.6, nous obtenons{
δs(0) = 2pgcd(s,n) − 2 = 2pgcd(t−1,n) − 2 = δt(1)− 2
δs(1) = 2pgcd(s−1,n) = 2pgcd(t,n) = δt(0) + 2,

c’est-à-dire

{dimKer(Pt,0), dimKer(Pt,1)} = {dimKer(Ps,0), dimKer(Ps,1)} .

A partir du théorème 8.9, nous déduisons que

#{ b ∈ F2n \ F2 | dimKer(Pt,b) = i } = #{ b ∈ F2n \ F2 | dimKer(Ps,b) = i } .

L’égalité (8.15) est alors une conséquence directe du théorème 8.6, puisque

{δµ(b), b ∈ F2n \ F2} = {2κ(b) − 2, κ(b) = dimKer(Pµ,b), b ∈ F2n\F2} .

Remarquons que δs(0) = δt(0) si et seulement si δs(1) = δt(1). Nous déduisons alors que
Gt et Gs ont le même spectre différentiel si et seulement si δs(0) = δt(0). Or

δs(0) = 2pgcd(s,n) − 2 et δt(0) = 2pgcd(t,n) − 2.

La condition précédente est vérifiée si et seulement si pgcd(t, n) = pgcd(s, n) = 1. Cette
condition n’est jamais vérifiée quand n est pair car dans ce cas soit s soit t est pair,
c’est-à-dire que 2 divise pgcd(t, n) ou pgcd(s, n).

Corollaire 8.3. Soit n et t < n tels que Gt : x 7→ x2t−1 est APN sur le corps F2n. Soit
s = n− t+ 1. Alors,

– si n est impair, Gt et Gs sont des permutations APN ;
– si n est pair, Gt n’est pas une permutation et Gs est une permutation différentielle-
ment 4-uniformes, localement-APN avec spectre différentiel :

ω4 = 1, ω2 = 2n−1 − 2 et ω0 = 2n−1 + 1.

6. Ce cas ne peut apparaître que pour n impair
7. Une fonction est localement-APN si ∀b 6= 0, 1 on a δ(b) ≤ 2(voir définition 8.2)



Spectre différentiel des monômes 185

Preuve : Supposons Gt est APN, alors ∀b ∈ F2n , nous avons δt(b) ∈ {0, 2}. En particulier
nous avons δt(1) ≤ 2 et δt(0) ≤ 2. En utilisant les résultats du théorème 8.6, nous
déduisons donc que pgcd(n, t− 1) = 1 et pgcd(n, t) ∈ {1, 2}.

Si n est impair, nous avons pgcd(n, t) = 1 c’est-à-dire que δt(0) = 0. En utilisant le
corollaire 8.2, nous obtenons : δs(0) = 0, δs(1) = 2 et δs(b) ∈ {0, 2} pour tout b ∈ F2n .

Nous venons de montrer que si Gt est APN alors Gt et Gs sont des permutations APN.
Dans le cas où n est pair, il est bien connu qu’une fonction puissance APN ne peut pas

être une permutation. Comme Gt est APN d’après le théorème 8.6, nous avons δt(0) = 2
et pgcd(n, t) = 2. D’après le corollaire 8.2, nous en déduisons que δs(0) = 0 (car δt(1) 6= 0
implique que δt(1) = 2) et δs(1) = 4. Le calcul du spectre différentiel complet de Gs est
une conséquence directe du corollaire 8.2.

Exemple 8.3. Dans cet exemple nous illustrons un lien entre la fonction inverse et la
fonction avec exposant quadratique x 7→ x3.

Pour t = 2, nous avons Gt(x) = x3. Il est bien connu que cette fonction est APN
quelle que soit la parité de n(c’est une permutation si et seulement si n est impair). Soit
s = n− t+ 1 = n− 1 ; on a que Gs est dans la classe de la fonction inverse. C’est-à-dire
que le spectre différentiel de Gs est le même que celui de la fonction inverse. En appliquant
le corollaire 8.3 on retrouve le résultat bien connu montré par Kaisa Nyberg [Nyb94] qui
dit que la fonction inverse est une permutation APN quand n est impair et qu’elle est
différentiellement 4-uniformes localement-APN quand n est pair.

En utilisant le corollaire 8.2, nous pouvons extraire le même type de résultat pour les
fonctions différentiellement 4-uniformes.

Corollaire 8.4. Soit n et t < n deux entiers tels que la fonction Gt : x 7→ x2t−1 sur le
corps F2n est différentiellement 4-uniformes. Alors, n est pair et Gt est une permutation
avec le spectre différentiel suivant :

ω4 = 1 , ω2 = 2n−1 − 2 et ω0 = 2n−1 + 1.

De plus, pour s = n− t+ 1, Gs est APN (non-permutation).

Preuve : Comme δ(Gt) = 4, à partir du théorème 8.6 nous avons que δt(b) 6= 4 pour tout
b 6= 1 et que seul δt(1) = 4. C’est-à-dire que pgcd(n, t − 1) = 2 et que ω4 = 1. Nous
remarquons alors que n doit être pair pour satisfaire pgcd(n, t − 1) = 2. De plus comme
pgcd(n, t − 1) et pgcd(n, t) ne peuvent pas être tous les deux égaux à 2, nous déduisons
aussi que Gt est une permutation localement-APN. En utilisant le corollaire 8.2, nous
avons que δs(0) = 2 et que δs(1) = 2, ce qui implique que Gs est APN.

8.6.4 Preuve du théorème 8.9 sur la propriété de symétrie

Afin de prouver le théorème 8.9 nous avons besoin d’introduire quelques lemmes in-
termédiaires.

Lemme 8.10. Soit s, t ≥ 2 avec t = n − s + 1. Soit π une permutation de F∗2n × F2n

définie par

π(a, b) =

(
a2s ,

ab

a2s
+ 1

)
.



186 8.6 Les exposants 2t − 1

Alors, pour tout (a, b) dans F∗2n×F2n, l’élément (α, β) = π(a, b) satisfait P ∗s,β(α) = P ∗t,b(a) .

Preuve : Dans un premier temps, nous montrons que π est une permutation de F∗2n ×F2n .
En effet, π (F∗2n × F2n) ⊂ F∗2n × F2n . Soit p la fonction définie par

p(α, β) =

(
α2n−s ,

α(β + 1))

α2n−s

)
.

Alors p est l’inverse de π. En effet, (α2n−s)2s = α et il peut être calculé facilement que

π(p(α, β)) =

(
α,
α2n−sα(β + 1)

αα2n−s
+ 1

)
= (α, β).

Nous en déduisons que π est une permutation et que p est l’inverse de la fonction π.

En utilisant les égalités (β + 1)2 = a2b2

a2s+1 et s+ t = n+ 1, nous en déduisons que

P ∗s,β(α) = (a2s)2t + (a2s)2(β + 1)2 + (a2s)β

= a2 + a2b2 + ab+ a2s

= P ∗t,b(a) .

Lemme 8.11. Soit s, t ≥ 2 avec t = n − s + 1. Soit b ∈ F2n et soit a ∈ F∗2n tels que
P ∗t,b(a) = 0. Alors dimKer(P ∗t,b) = dimKer(P ∗s,β), où β = 1 + ab/a2s.

Preuve : Dans un premier temps nous rappelons l’expression des polynômes P ∗t,b et P ∗s,β :

P ∗t,b(x) = x2s + x2(b+ 1)2 + xb et P ∗s,β(x) = x2t + x2(β + 1)2 + xβ.

D’après le théorème 8.7 nous avons dimKer(Pt,b) = dimKer(P ∗t,b) et {0, 1} est inclus
dans le noyau de Pt,b. Nous en déduisons que pour tout b 6∈ F2 il existe γ ∈ F2n \ {0, 1}
tel que P ∗t,b(γ) = 0. En effet, P ∗t,b(1) = b2 + b = 0 si et seulement si b ∈ F2 .

Nous allons dans un premier temps, traiter le cas où a = 1. Ce cas apparaît seulement
si b est égal à 0 ou à 1. Pour β = b + 1, d’après le lemme 8.10 nous avons P ∗s,β(1) = 0
puisque π(1, b) = (1, b+ 1).

– Pour b = 0 on a P ∗t,0(x) = x2s + x2 = Ps,1(x).
– Pour b = 1 on a P ∗t,1(x) = x2s + x = Ps,0(x). Alors, nous pouvons conclure que pour
a = 1, si b est tel que P ∗t,b(1) = 0 et β = b + 1 alors d’après le théorème 8.7 nous
avons dimKer(P ∗t,b) = dimKer(Ps,β) = dimKer(P ∗s,b+1).

À partir de maintenant nous supposons que a 6∈ F2 . Avec x = ay, l’équation P ∗t,b(x) = 0
est équivalente à

a2sy2s + a2y2(b+ 1)2 + ayb = 0

c’est-à-dire à

a2s
(
y2s +

a2(b+ 1)2

a2s
y2 + y

ab

a2s

)
= 0.



Spectre différentiel des monômes 187

Comme
a2(b+ 1)2

a2s
+ 1 =

ab

a2s

car c’est equivalent à

a2s + a2(b+ 1)2 + ab = 0, i .e., P ∗t,b(a) = 0,

nous avons
β =

a2(b+ 1)2

a2s
et β + 1 =

ab

a2s
.

En remplaçant dans l’équation nous obtenons que P ∗t,b(x) = 0 est équivalent à

Ps,β(y) = y2s + βy2 + (β + 1)y = 0.

En conséquence dimKer(Ps,β) = dimKer(P ∗t,b). En utilisant le théorème 8.7, comme
dimKer(Ps,β) = dimKer(P ∗s,β) nous pouvous conclure que dimKer(P ∗t,b) = dimKer(P ∗s,β).

À partir de ces résultats nous pouvons revenir sur la preuve du théorème 8.9.
Preuve : Preuve du théorème 8.9

Nous rappelons la notation suivante

Siµ = { b ∈ F2n | dimKer(Pµ,b) = i } où µ = t ou s .

Le problème consiste alors à montrer que pour tout i,

#Sit = #Sis.

Pour tout 2 ≤ µ ≤ n− 1 et pour tout 1 ≤ i ≤ µ, nous définissons

E iµ = {(a, b) ∈ F∗2n × F2n | P ∗µ,b(a) = 0 et dimKer(Pµ,b) = i } .

À partir du théorème 8.7, nous savons que dimKer(Pµ,b) = dimKer(P ∗µ,b). Alors,

E iµ = {(a, b) ∈ F∗2n × F2n| P ∗µ,b(a) = 0 et dimKer(P ∗µ,b) = i }.

Pour tout b ∈ Siµ, on a dimKer(P ∗µ,b) = i avec a = 0 ∈ Ker(P ∗µ,b) donc on a 2i− 1 valeurs
a 6= 0 dans Ker(P ∗µ,b). Pour un b fixé, on a donc 2i − 1 paires (a, b) dans E iµ qui vérifient

#E iµ = (2i − 1)#Siµ . (8.16)

Nous allons utiliser le lemme 8.10. Nous rappelons que π est la permutation de F∗2n × F2n

définie par

π(a, b) =

(
a2s ,

ab

a2s
+ 1

)
.

Nous avons donc,

E it = {(a, b) ∈ F∗2n × F2n | P ∗t,b(a) = 0 et dimKer(P ∗t,b) = i },
E is = {(α, β) ∈ F∗2n × F2n | P ∗s,β(α) = 0 et dimKer(P ∗s,β) = i }

= {(α, β) = π(a, b), (a, b) ∈ E it} .



188 8.6 Les exposants 2t − 1

En effet, comme π est une permutation, tout couple (α, β) est identifié à un seul couple
(a, b). À partir du lemme 8.10, nous avons P ∗s,β(α) = P ∗t,b(a). De plus d’après le lemme 8.11,
nous avons dimKer(P ∗t,b) = dimKer(P ∗s,β), où β est calculé à partir de a et b, pour tout
a tel que P ∗t,b(a) = 0.

En d’autres termes, pour toute paire (a, b) ∈ E it il correspond une unique paire (α, β) ∈
E is. Nous obtenons finalement que #E is = #E it . D’après l’équation (8.16), nous complétons
la preuve en remarquant que

#Sis = #Sit .

8.6.5 La fonction x 7→ x7

Dans cette section nous nous intéressons à l’étude du spectre différentiel de la fonction
G3 : x 7→ x7. Dans cette partie nous montrons que cette fonction est différentiellement
6-uniformes et nous donnons le spectre différentiel complet de cette fonction.

Définition 8.4. Nous notons par K(1) la somme de Kloosterman définie par

K(1) =
∑
x∈F2n

(−1)Tr(x−1+x), (8.17)

où par convention Tr(x−1) = Tr(x2n−2) = 1 pour x = 0. Le calcul de cette somme pour
x = 0 peut se faire en fixant la convention suivante : (−1)Tr(x−1) = 1 pour x = 0.

Proposition 8.11. [Car69, Formula (6.8)] Soit K(1) la somme de Kloosterman définie
par (8.17). Alors,

K(1) = 1 +
(−1)n−1

2n−1

bn
2
c∑

i=0

(−1)i
(
n

2i

)
7i.

Le théorème 8.10 est le résultat principal de cette section. La preuve de ce théoreme
est longue et nécessite l’introduction d’un certain nombre de résultats préliminaires. La
section 8.6.6 est dédiée à la présentation de ces résultats préliminaires ainsi qu’à la preuve
du théorème. Les résultats suivants sont des conséquences de ce théorème.

Théorème 8.10. Soit G3 : x 7→ x7 sur le corps F2n avec n ≥ 4.
– si n est impair, le spectre différentiel de G3 est

ω6 = 2n−2+1
6
− K(1)

8
, ω4 = 0, ω2 = 2n−1 − 3ω6, ω0 = 2n−1 + 2ω6.

– si n est pair, le spectre différentiel de G3 est

ω6 = 2n−2−4
6

+ K(1)
8

, ω4 = 1, ω2 = 2n−1−3ω6−2, ω0 = 2n−1 +2ω6+1.

où K(1) est la somme de Kloosterman définie dans la définition 8.4. En particulier, G3

est différentiellement 6-uniformes pour tout n ≥ 6.



Spectre différentiel des monômes 189

En combinant les résultats du théorème 8.10 et du corollaire 8.2, nous en déduisons le
spectre différentiel de Gn−2 : x 7→ x2n−2−1 sur le corps F2n .

Corollaire 8.5. Soit la fonction Gn−2 : x 7→ x2n−2−1 définie sur le corps F2n pour n ≥ 6.
Nous avons :

– si pgcd(n, 3) = 1, alors Gn−2 est différentiellement 6-uniformes et pour tout b ∈ F2n,
δ(b) ∈ {0, 2, 6}. De plus, son spectre différentiel est donné par :

ω6 =

{
2n−2+1

6
− K(1)

8
si n est impair

2n−2−4
6

+ K(1)
8

si n est pair ;

ω2 = 2n−1 − 3ω6;

ω0 = 2n−1 + 2ω6 .

– Si 3 divise n, alors Gn−2 est différentiellement 8-uniformes et pour tout b ∈ F2n,
δ(b) ∈ {0, 2, 6, 8}. De plus, son spectre différentiel est donné par :

ω8 = 1;

ω6 =

{
2n−2−5

6
− K(1)

8
si n est impair

2n−2−10
6

+ K(1)
8

si n est pair ;

ω2 = 2n−1 − 3ω6 − 4;

ω0 = 2n−1 + 2ω6 + 3 .

Preuve : Nous appliquons le corollaire 8.2, pour t = 3 et s = n− 2 où 3 = n− (n− 2) + 1.
On note par δ3(b) la valeur de δ(b) pour la fonction G3 et par δn−2(b) la valeur de δ(b)

pour la fonction Gn−2. D’après le corollaire 8.2, nous avons :
– Si pgcd(3, n) = 1 alors δ3(0) = 0 et δn−2(1) = 2.
– Sinon, δ3(0) = 6 et δn−2(1) = 8.

De plus
– Si n pair, δ3(1) = 4 et δn−2(0) = 2
– Si n impair, δ3(1) = 2 et δn−2(0) = 0
Toujours d’après le corollaire 8.2 nous avons que les spectres différentiels de ces fonc-

tions sont égaux “à δ(0) et δ(1) près”. Dans cette preuve nous notons par (λ0, λ2, λ4, λ6)
(resp. (µ0, µ2, µ4, µ6)) le spectre différentiel de G3 sur le corps F2n quand n est impair
(resp. n pair).

D’après le théorème 8.10, pour n impair, nous avons

λ6 = 2n−2+1
6
− K(1)

8
, λ4 = 0, λ2 = 2n−1 − 3λ6, λ0 = 2n−1 + 2λ6, (8.18)

et pour n pair,

µ6 = 2n−2−4
6

+ K(1)
8
, µ4 = 1, µ2 = 2n−1−3µ6−2, µ0 = 2n−1 +2µ6 +1. (8.19)

Nous séparons notre analyse suivant quatre cas.
1. Si pgcd(3, n) = 1 et n est impair, nous avons(

δ3(0), δ3(1)
)

=
(
0, 2
)

et
(
δn−2(0), δn−2(1)

)
=
(
0, 2
)
.

Nous obtenons
ωi = λi ∀ i.

C’est-à-dire,



190 8.6 Les exposants 2t − 1

ω6 = 2n−2+1
6
− K(1)

8
, ω4 = 0, ω2 = 2n−1 − 3ω6, ω0 = 2n−1 + 2ω6,

et pour i ≥ 8, ωi = 0.

2. Si pgcd(3, n) = 1 et n pair, nous avons(
δ3(0), δ3(1)

)
=
(
0, 4
)
et
(
δn−2(0), δn−2(1)

)
=
(
2, 2
)
.

Nous obtenons,

ω6 = µ6, ω4 = µ4 − 1, ω2 = µ2 + 2, ω0 = µ0 − 1.

C’est-à-dire,

ω6 = 2n−2−4
6

+ K(1)
8

, ω4 = 0, ω2 = 2n−1 − 3ω6, ω0 = 2n−1 + 2ω6,

et pour i ≥ 8, ωi = 0.

3. Si pgcd(3, n) = 3 et n impair, nous avons(
δ3(0), δ3(1)

)
=
(
6, 2
)

et
(
δn−2(0), δn−2(1)

)
=
(
0, 8
)
.

Nous obtenons,

ω8 = 1, ω6 = λ6 − 1, ω4 = λ4, ω2 = λ2 − 1, ω0 = ω0 + 1.

C’est-à-dire,

ω8 = 1, ω4 = 0,

ω6 = 2n−2+1
6
− K(1)

8
− 1,

ω2 = 2n−1 − 3λ6 − 1 = 2n−1 − 3(ω6 + 1)− 1 = 2n−1 − 3ω6 − 4,

ω0 = 2n−1 − 2λ6 + 1 = 2n−1 + 2(ω6 + 1) + 1 = 2n−1 + 2ω6 + 3,

et pour i ≥ 8, ωi = 0.

4. Si pgcd(3, n) = 3 et n pair, nous avons(
δ3(0), δ3(1)

)
=
(
6, 4
)

et
(
δn−2(0), δn−2(1)

)
=
(
2, 8
)
.

Nous obtenons,

ω8 =
1,

ω6 = µ6 − 1, ω4 = µ4 − 1, ω2 = µ2 + 1, ω0 = µ0.

C’est-à-dire,

ω8 = 1, ω4 = 0,

ω6 = 2n−2−4
6
− K(1)

8
− 1,

ω2 = 2n−1 − 3µ6 − 1 = 2n−1 − 3(ω6 + 1)− 1 = 2n−1 − 3ω6 − 4,

ω0 = 2n−1 − 2µ6 + 1 = 2n−1 + 2(ω6 + 1) + 1 = 2n−1 + 2ω6 + 3,

et pour i ≥ 8, ωi = 0.



Spectre différentiel des monômes 191

8.6.6 Preuve du théorème 8.10 sur le spectre différentiel de la
fonction x 7→ x7

Lemme 8.12. [BRS67] Soient a ∈ F2n et b ∈ F∗2n, l’équation x3 + ax + b = 0 a une
solution unique dans F2n si et seulement si Tr(a3/b2) 6= Tr(1). En particulier, si cette
équation a 3 solutions distinctes dans F2n, alors Tr(a3/b2) = Tr(1).

Proposition 8.12. [KHCH96, Appendice] Soient a ∈ F2n, fa(x) = x3 + x+ a et

Mi = #{ a ∈ F∗2n | fa(x) = 0 a précisément i solutions dans F2n }.

Si n est impair, nous avons

M0 =
2n + 1

3
, M1 = 2n−1 − 1, M3 =

2n−1 − 1

3

et si n est pair, nous avons

M0 =
2n − 1

3
, M1 = 2n−1, M3 =

2n−1 − 2

3
.

Le résultat suivant est un résultat proche de celui du théorème 8.10.

Théorème 8.11. Soit

Pb(x) = x8 + bx2 + (b+ 1)x, b ∈ F2n \ {1}

Le nombre µ0 de b ∈ F2n \ {1} tels que Pb n’a pas de racine dans F2n \ {0, 1} est donné
par

µ0 =
2n + (−1)n+1

3
+ 2n−2 + (−1)n

K(1)

4

Preuve : Soit b ∈ F2n \ {1}. D’après le théorème 8.8 nous savons que le nombre Nb de
racines de Pb dans F2n \ F2 est égal au double du nombre de racines dans F∗2n du système
suivant où β = b+ 1 : {

Qβ(y) = y3 + y + β = 0
Tr(y) = 0

(8.20)

Puisque β 6= 0, on a Qβ(y) 6= 0 pour y ∈ F2n . Donc, pour tout β 6= 0, on peut avoir les
différents cas suivant :

– Qβ n’a pas de racines dans F2n . Dans ce cas, Nb = 0.
– Qβ a une unique racine y ∈ F2n . D’après le lemme 8.12, cette situation arrive si

et seulement si Tr(β−1) 6= Tr(1). Dans ce cas, Nb = 0 si Tr(y) = 1 et Nb = 2 si
Tr(y) = 0.

– Qβ a trois racines y1, y2, y3 ∈ F2n . Ces racines sont racines d’un polynôme linéaire
de degré 4. Ainsi on a y3 = y1 + y2, ce qui implique que Tr(y3) = Tr(y1) + Tr(y2).
Cette condition implique qu’il y a au moins un des yi tel que Tr(yi) = 0. Dans ce
cas on a soit Nb = 6 soit Nb = 2.



192 8.6 Les exposants 2t − 1

Nous définissons la quantité suivante :

B = #{β ∈ F∗2n , Qβ a une unique racine y ∈ F2n et Tr(y) = 1}.

À partir de la discussion précédente nous avons,

µ0 = #{β ∈ F∗2n , Qβ n’a pas de racines dans F2n}+B

D’après la proposition 8.12 nous avons

µ0 =
2n + (−1)n+1

3
+B. (8.21)

En utilisant le fait que β = y3 + y, on obtient

B = #{(y3 + y) ∈ F∗2n , Tr

(
1

y3 + y

)
6= Tr(1) et Tr(y) = 1} ,

De plus nous avons

1

y3 + y
=

1 + y2

y3 + y
+
y2 + y

y3 + y
+

y

y3 + y
=

1

y
+

1

y + 1
+

1

y2 + 1
.

Ce qui implique que

Tr

(
1

y3 + y

)
= Tr

(
1

y

)
.

En conséquence

B = #{(y3 + y) ∈ F∗2n , Tr

(
1

y

)
6= Tr(1) et Tr(y) = 1}.

Maintenant, nous avons (y3 + y) = 0 si et seulement si y ∈ F2 . De plus, deux éléments
distincts y1 et y2 dans F2n \ F2 avec Tr(y−1

1 ) 6= Tr(1) et Tr(y−1
2 ) 6= Tr(1) vérifient

(y3
1 + y1) 6= (y3

2 + y2) (dans le cas contraire, Qβ avec β = y3
1 + y1 a au moins 2 racines dans

F2n). Nous en déduisons donc,

B = #{y ∈ F2n \ F2 , Tr

(
1

y

)
6= Tr(1) et Tr(y) = 1}.

Si n est impair, nous en déduisons que

B = #{y ∈ F2n \ F2 , Tr

(
1

y

)
= 0 et Tr(y) = 1}.

Si n est pair, nous en déduisons que

B = #{y ∈ F2n \ F2 , Tr

(
1

y

)
= 1 et Tr(y) = 1}

= #{y ∈ F2n \ F2 ,Tr(y) = 1} −#{y ∈ F2n \ F2 , Tr

(
1

y

)
= 0 et Tr(y) = 1}

= 2n−1 −#{y ∈ F2n \ F2 , Tr

(
1

y

)
= 0 et Tr(y) = 1} .



Spectre différentiel des monômes 193

D’un autre côté, par la définition de la somme de Kloosterman K(1), nous avons

K(1)− 2 =
∑

x∈F2n\F2

(−1)Tr(x−1+x)

= −2#{x ∈ F2n \ F2 ,Tr(x
−1 + x) = 1}+ 2n − 2

= −4#{x ∈ F2n \ F2 ,Tr(x
−1) = 0 et Tr(x) = 1}+ 2n − 2.

Alors,

#{x ∈ F2n \ F2 ,Tr(x
−1) = 0 et Tr(x) = 1} = 2n−2 − K(1)

4
.

Nous en déduisons alors, que pour tout n,

B = 2n−2 + (−1)n
K(1)

4
.

D’après l’équation 8.21, on en déduit que

µ0 =
2n + (−1)n+1

3
+ 2n−2 + (−1)n

K(1)

4
.

Preuve : Preuve du théorème 8.10
D’après le lemme 8.1, afin de trouver le spectre différentiel complet de G3 nous devons

être capable de résoudre le système suivant :{
ω0 + ω2 + ω4 + ω6 = 2n

2ω2 + 4ω4 + 6ω6 = 2n
(8.22)

D’après le théorème 8.6, nous savons que pour tout b 6= {0, 1}, δ(b) ∈ {0, 2, 6}. De
plus dans le théorème 8.11 nous avons calculé la valeur µ0 (voir définition de µ0 dans le
théorème 8.11) qui correspond exactement à la quantité ω0. On a donc

ω0 = µ0 =
2n + (−1)n+1

3
+ 2n−2 + (−1)n

K(1)

4
.

Afin de pouvoir déterminer le spectre différentiel complet de la fonction G3, nous avons
besoin de calculer la valeur de δ(1). D’après le théorème 8.6, on a δ(0) = 2pgcd(t,n) et
δ(1) = 2pgcd(t−1,n). Comme t = 3, si n est impair on a pgcd(t − 1, n) = 1, et si n est pair
on a pgcd(t − 1, n) = 1. Ainsi δ(1) = 4 si n est pair et δ(1) = 2 si n est impair. Donc,
ω4 = 1 si n est pair et ω4 = 0 sinon. À partir de la seconde équation du système (8.22),
nous obtenons

ω2 = 2n−1 − 3ω6 − 2ω4,

et en utilisant la première équation du même système, nous obtenons

ω6 = 2n − ω0 − ω2 − ω4 = 2n−1 − ω0 + ω4 + 3ω6 ,

ω6 = −2n−2 +
ω0 − ω4

2
.



194 8.6 Les exposants 2t − 1

t max
b6={0,1}

δ(b) Commentaires

2 2 quadratique
3 6

(n+ k)/3 6 k = 0, 1, 2, 3 et n+ k mod 3 = 0
n/2 2 n pair

(n− 1)/2 6 n impair
(n+ 3)/2 6 n impair
n/2 + 1 2 n pair

(2n+ k)/3 6 k = 0, 1, 2, 3 et n− k mod 3 = 0
n− 2 6
n− 1 2 Inverse

Table 8.8 – Uniformité différentielle restreinte des fonctions puissances avec exposant
2t − 1.

Nous en déduisons que pour n impair,

ω6 = −2n−2 +
ω0

2
= −2n−3 +

2n + 1

6
− K(1)

8

=
2n−2 + 1

6
− K(1)

8

et pour n pair,

ω6 = −2n−2 +
ω0 − 1

2
= −2n−3 +

2n − 1

6
+
K(1)

8
− 1

2

=
2n−2 − 4

6
+
K(1)

8
.

Pour conclure la preuve, d’après l’expression de la somme de Kloosterman, on montre
que ω6 ≥ 1 pour tout n ≥ 6. Ce résultat implique que G3 est différentiellement 6-uniforme.

Remarque 8.10. Pour n = 5, la fonction G3 est l’inverse de la permutation puissance
APN avec exposant quadratique x 7→ x9. Ainsi pour n = 5, G3 est une fonction APN.

Pour n = 4, la fonction G3 correspond à la fonction inverse sur le corps F24. Dans ce
cas la fonction G3 est localement-APN différentiellement 4-uniforme avec ω4 = 1.

8.6.7 Quelques classes spécifiques

Dans la section A.2 nous avons mis les tables des fonctions Gt(x) = 2t − 1 pour 5 ≤
n ≤ 32. Nous avons séparé les résultats suivant que max

b 6={0,1}
δ(b) ≤ λ pour λ = 2, 6, 14, 30.

Dans cette section, nous allons prouver les propriétés présentées de manière synthétique
dans le tableau 8.8.



Spectre différentiel des monômes 195

Exposant 2bn/2c − 1

Nous étudions la sous famille Gt pour t = bn/2c. Dans un premier temps, nous
considérons le cas où n est pair. Nous avons que Gt n’est pas une permutation puisque
2n − 1 = (2t − 1)(2t + 1).

Théorème 8.12. Soit n un entier pair, n > 4 et Gt(x) = x2t−1 pour t = n
2
. Alors Gt est

quasi-APN (voir définition 8.2). Plus précisément

δ(Gt) = 2t − 2 et δ(b) ≤ 2, ∀ b ∈ F2n \ F2 .

– Si n ≡ 0 mod 4, le spectre différentiel de Gt est :

ω2t−2 = 1,

ωi = 0, ∀ i, 2 < i < 2t − 2,

ω2 = 2n−1 − 2t−1 + 1,

ω0 = 2n−1 + 2t−1 − 2.

– Si n ≡ 2 mod 4, le spectre différentiel de Gt est :

ω2t−2 = 1,

ωi = 0, ∀ i, 4 < i < 2t − 2,

ω4 = 1,

ω2 = 2n−1 − 2t−1 − 1,

ω0 = 2n−1 + 2t−1 − 1.

Preuve : À partir du théorème 8.6, nous obtenons directement δ(0) = 2t − 2, et δ(1) = 2
si t est pair ou δ(1) = 4 si t est impair.

Maintenant, pour tout b /∈ F2 , nous devons déterminer le nombre de racines dans F2n

de
Pb(x) = x2t + bx2 + (b+ 1)x

ou, de manière équivalente, le nombre de racine de

(Pb(x))2t = x+ b2tx2t+1

+ (b+ 1)2tx2t .

Si x est une racine de Pb alors x2t = bx2 + (b+ 1)x. Donc, l’équation Pb(x) = 0 implique

(Pb(x))2t = x+ b2t(x2t)2 + (b2t + 1)x2t

= x+ b2t(bx2 + (b+ 1)x)2 + (b2t + 1)(bx2 + (b+ 1)x)

= b2t+2x4 + (b2t+2 + b2t+1 + b2t + b)x2 + (b2t+1 + b2t + b)x.

On obtient alors un polynôme linéaire de degré 4. Deux racines évidentes de ce polynôme
sont 0 et 1. Donc ce polynôme a τ racines où τ est égal à 4 ou 2. Et, pour tout b 6∈ F2 ,
δ(b) ≤ 2 puisque δ(b) ≤ τ − 2. Nous en déduisons que Gt est quasi-APN. Le spectre
différentiel complet peut alors être obtenu en utilisant le lemme 8.1. Dans le cas où t est
pair, nous avons ωi = 0 pour tout i /∈ {0, 2, 2t − 2}, sinon nous avons ωi = 0 pour tout



196 8.6 Les exposants 2t − 1

i /∈ {0, 2, 4, 2t− 2}, de plus si t est impair ω2t−2 = ω4 = 1. En utilisant le lemme 8.1, pour
t pair nous obtenons : {

2n = ω0 + ω2 + 1XXX

2n = 2ω2 + (2t − 2).
(
XXX

)
Donc ω2 = 2n−1 − 2t−1 + 1 et nous concluons avec ω0 = 2n − ω2 − 1. La même preuve

peut être faite pour t impair en résolvant le système suivant :{
2n = ω0 + ω2 + 2
2n = 2ω2 + 2t + 2.

À partir de ce résultat, nous déduisons un résultat général sur le nombre de racines des
polynômes linéaires correspondants.

Corollaire 8.6. Soit n = 2t. Soit b ∈ F2n fixé. Soit les polynômes définis sur le corps F2n

par
x2t + bx2 + (b+ 1)x et x2t+1

+ bx2 + (b+ 1)x.

Alors, pour tout b ∈ F2n \ F2, ces polynômes ont 2 ou 4 racines dans le corps F2n.

Théorème 8.13. Soit n un entier pair n > 4 et Gt+1(x) = x2t+1−1 pour t = n
2
. Alors,

Gt+1 est localement-APN, différentiellement 2t-uniformes et son spectre différentiel est

ω2t = 1

ωi = 0, ∀ i, 2 < i < 2t

ω2 = 2n−1 − 2t−1

ω0 = 2n−1 + 2t−1 − 1 .

De plus, Gt+1 est une permutation si et seulement si n ≡ 0 mod 4.

Preuve : Dans un premier temps, puisque n = 2t, nous avons pgcd(t+1, n) = 1 si t est pair
(c’est-à-dire, n ≡ 0 mod 4) et pgcd(t+1, n) = 2 si t est impair (c’est-à-dire, n ≡ 2 mod 4).

Soit (ω′i)0≤i≤2n (resp. (ωi)0≤i≤2n) le spectre différentiel de Gt (resp. Gt+1) sur le corps
F2n . Nous obtenons alors le lien suivant entre les deux spectres :

– Pour n ≡ 0 mod 4, nous avons

(δt(0), δt(1)) = (2t − 2, 2) et (δs(0), δs(1)) = (0, 2t).

Nous déduisons,

ω0 = ω′0 + 1, ω2 = ω′2 − 1, ω2t−2 = ω′2t−2 − 1 et ω2t = 1.

– Pour n ≡ 2 mod 4, nous avons

(δt(0), δt(1)) = (2t − 2, 4) et (δs(0), δs(1)) = (2, 2t).

Nous déduisons ,

ω2 = ω′2 + 1, ω4 = ω′4 − 1, ω2t−2 = ω′2t−2 − 1 et ω2t = 1.



Spectre différentiel des monômes 197

Le spectre différentiel Gt+1 se déduit directement en combinant les deux formules précé-
dentes avec les valeurs de ω′i calculées dans le théorème 8.12.

Dans le cas où n est impair, le théorème suivant nous donne des informations sur le
spectre différentiel de Gt, avec t = n−1

2
.

Théorème 8.14. Soit n un entier impair, n > 3. Soit Gt(x) = x2t−1 avec t = (n− 1)/2.
de spectre différentiel {ωi}i. Alors, Gt est une permutation. Pour tout b ∈ F2n \ F2 nous
avons δ(b) ∈ {0, 2, 6}. De plus

– si n ≡ 0 mod 3, alors δ(Gt) = 8, ω8 = 1 et ωi = 0 pour tout i 6∈ {0, 2, 6, 8}.
– si n 6≡ 0 mod 3, alors δ(Gt) ≤ 6 et ωi = 0 pour tout i 6∈ {0, 2, 6}

Preuve : À partir du théorème 8.6, nous avons δ(0) = 0. De plus, si 3 divise n alors
δ(1) = 8 sinon δ(1) = 2. En effet, puisque

pgcd(t− 1, n) = pgcd(
n− 3

2
, n) = pgcd(n− 3, n) = pgcd(3, n),

donc
δ(1) =

{
8 si n ≡ 0 mod 3;
2 sinon.

À partir de maintenant, nous supposons que b 6∈ F2 , Nous devons alors déterminer le
nombre de solutions dans F2n de

Pb(x) = x2t + bx2 + (b+ 1)x,

ou, de façon équivalente, le nombre de racines de

(Pb(x))2t+1

= x+ b2t+1

x2t+2

+ (b+ 1)2t+1

x2t+1

.

Soient c = b2t+1 et Qb(x) = (Pb(x))2t+1

. Si x est une racine Pb alors x2t = bx2 + (b + 1)x.
Donc, l’équation Pb(x) = 0 implique

Qb(x) = x+ c(x2t)4 + (c+ 1)(x2t)2

= x+ c(bx2 + (b+ 1)x)4 + (c+ 1)(bx2 + (b+ 1)x)2

= cb4x8 + (c(b+ 1)4 + (c+ 1)b2)x4 + (c+ 1)(b2 + 1)x2 + x .

Puisque Qb est de degré 8, il a soit 8 soit 4 soit 2 solutions. En d’autres termes, pour
tout b 6= {0, 1}, nous avons δ(b) ∈ {0, 2, 6}.

Lemme 8.13. Soit n un entier impair, n > 3. Soit Gt(x) = x2t−1 avec t = (n + 3)/2.
Alors, si n n’est pas divisible par 3 Gt est une permutation. De plus δ(Gt) ≤ 6

Preuve : On note s = n+3
2

et t = n−1
2
. Nous appliquons le corollaire 8.2. Par le théo-

rème 8.14, nous avons

δs(0) = δt(1)− 2 =

{
6 si n ≡ 0 mod 3
0 sinon.

et δs(1) = δt(0) + 2 = 2. De plus, comme ∀b 6= {0, 1}, on a δ(b) ≤ 6 et le résultat suit.

Le théorème 8.14 et les résultats expérimentaux donnés dans la section A.2 nous
amènent à la conjecture suivante.



198 8.6 Les exposants 2t − 1

Conjecture 8.9. La fonction Gt(x) = x2t−1 avec t = (n − 1)/2 a le même spectre
différentiel que la fonction G3 = x7.

Exposant 2bn/3c − 1

Dans le tableau A.3, nous pouvons remarquer que pour chaque valeur de n > 8, il
existe au moins 4 exposants (6 dans le cas où 3 divise n) pour lesquels max

b 6=0,1
δ(b) = 6. Dans

la section 8.6.5, nous avons étudié le spectre différentiel des fonctions G3 et Gn−2. Dans
cette section, nous donnons le début d’une étude du spectre différentiel des fonctions Gt

avec t = n+k
3

(où k = 0, 1, 2, 3 tel que n + k ≡ 0 mod 3). On peut alors appliquer la
même technique que celle de la section précédente pour montrer que pour b 6= {0, 1} on a
δ(b) ≤ 6.

Théorème 8.15. Soit F2n le corps à 2n éléments. Soit k = 0, 1, 2, 3 tel que n + k ≡ 0
mod 3. Soit Gn+k

3
la fonction puissance définie sur le corps F2n par :

Gn+k
3

: x 7→ x2
n+k

3 −1

Alors ∀b 6= 0, 1 nous avons δ(b) = 0, 2, 6

Preuve : Nous devons déterminer le nombre de racines dans F2n du polynôme Pb(X) =

X2(n+k)/3
+ bX2 + (b + 1)X. Pour simplifier la preuve nous notons d = b2(n+k)/3 et c =

b2(2n+2k)/3

Soit x une racine de Pb(X). On a

Pb(x)2(n+k)/3

= x2(2n+2k)/3

+ dx2(n+k)/3+1

+ (d+ 1)x2(n+k)/3

et
Qb(x) = Pb(x)2(2n+2k)/3

= x2(3n+3k)/3

+ cx2(2n+2k)/3+1

+ (c+ 1)x2(2n+2k)/3

En remplaçant dans la deuxième équation nous obtenons :

Qb(x) = x2k + c[dx2(n+k)/3+1

+ (d+ 1)x2(n+k)/3

]2 + (c+ 1)[dx2(n+k)/3+1

+ (d+ 1)x2(n+k)/3

]

= x2k + cd2x2(n+k)/3+2

+ [c(d2 + 1) + (c+ 1)d]x2(n+k)/3+1

+ (c+ 1)(d+ 1)x2(n+k)/3

= x2k + cd2[bx2 + (b+ 1)x]4 + (cd2 + c+ cd+ d)[bx2 + (b+ 1)x]2

+(c+ 1)(d+ 1)[bx2 + (b+ 1)x]

= [cd2b4]x8 + [cd2(b4 + 1) + (cd2 + c+ cd+ d)b2]x4 + [(cd2 + c+ cd+ d)(b2 + 1)

+(c+ 1)(d+ 1)b]x2 + [(c+ 1)(d+ 1)(b+ 1)]x+ x2k

= [cd2b4]x8 + [cd2b4 + cd2 + cd2b2 + cb2 + cdb2 + db2]x4 +

[cd2b2 + cd2 + cb2 + c+ cdb2 + cd+ db2 + d+ cdb+ cb+ db+ b]x2 +

[cdb+ cd+ cb+ c+ db+ d+ b+ 1]x+ x2k

Le résultat suit alors immédiatement en remarquant que Qb est de degré 8, et qu’il a
alors 8, 4 ou 2 solutions.



Spectre différentiel des monômes 199

t = 2(n+k)/3 t = 2(2n+3−k)/3

δ(0) δ(1) δ(0) δ(1)

n = 3l k = 0 2n/3 − 2 2pgcd(n/3,3) 2pgcd(n/3,3) − 2 2n/3

n = 6l + 1 k = 2 0 2 0 2
n = 6l + 2 k = 1 0 4 2 2
n = 6l + 4 k = 2 2 2 0 4
n = 6l + 5 k = 1 0 2 0 2

n = 3l k = 3 2pgcd(n/3+1,3) − 2 2n/3 2n/3 − 2 2pgcd(n/3+1,3)

Table 8.9 – δ(0) et δ(1) pour les fonctions 2t − 1 avec t = (n+ k)/3

Dans le tableau 8.3 nous avons mis seulement les permutations puissances qui sont
différentiellement 6-uniformes. Pourtant si on exclut δ(0) et δ(1), d’après le théorème
précédent on a que les fonctions Gn+k

3
vérifient max

b 6=0,1
δ(b) ≤ 6 .

Pour cette raison en appendice nous avons calculé le spectre différentiel des fonctions
Gt pour des tailles de corps comprises entre 6 et 32(voir section A.2)

Si on étudie le spectre différentiel des fonctions Gn+k
3

nous remarquons que si k = 1, 2

alors le spectre différentiel de Gn+k
3

est le même que celui de G3 (en tout cas pour n < 32).
On peut donc faire la conjecture suivante.

Conjecture 8.10. Soient n et k tel que n ≡ k mod 3 et k = 1 ou 2 alors le spectre
différentiel privé de δ(0) et δ(1) de Gn+k

3
est le même que celui de G3(x) = x7.

Dans le cas où n est divisible par 3, nous avons vu dans le théorème précédent que les
fonctions Gn

3
et Gn+3

3
vérifient max

b 6=0,1
δ(b) ≤ 6. Par symétrie (au sens du théorème 8.9) les

fonctions G 2n−3
3

et G 2n
3
vérifient aussi max

b6=0,1
δ(b) ≤ 6. Expérimentalement on peut voir que

le spectre différentiel de ces fonctions n’est pas le même que le spectre différentiel de G3.

Afin de déterminer le spectre différentiel des fonctions Gn+k
3

nous pouvons commencer
par nous intéresser aux valeurs de δ(0) et δ(1). Le calcul de ces valeurs a été effectué à
l’aide des formules données dans le théorème 8.6. Le tableau 8.9 résume ces valeurs suivant
la taille du corps n.





Appendices

A.1 Attaque expérimentale sur SMALLPRESENT-[8]
Dans le tableau A.1 nous donnons toutes les différentielles que nous avons utilisées pour

faire notre attaque expérimentale sur SMALLPRESENT-[8]. Pour chaque différentielle
nous avons calculé la probabilité théorique en sommant les probabilités des chemins qui
composent la différentielle (chemins avec probabilité supérieure à 2−48). Cette probabilité
a été obtenue grâce à l’algorithme de “branch and bound” que nous avons décrit dans
la section 4.1.2. Les autres colonnes correspondent à la probabilité de la différentielle
obtenue par une moyenne sur les 232 messages clairs et 250 clés pour les deux algorithmes
de cadencement de clés pour des clés maîtres de 40 bits et de 80 bits (voir section 1.4.1).



202 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Table A.1 – Différentielles utilisées pour notre attaque par différentielle multiple sur
SMALLPRESENT-[8]

Differential Theo. 40-bit 80-bit Differential Theo. 40-bit 80-bit
0x3 → 0x40400000 2−30.28 2−29.80 2−29.85 0x5 → 0x40400000 2−30.20 2−29.76 2−29.80

0x3 → 0x04040000 2−30.33 2−29.80 2−29.84 0x5 → 0x04040000 2−30.25 2−29.87 2−29.73

0x3 → 0x50500000 2−30.46 2−29.96 2−30.07 0x5 → 0x50500000 2−30.34 2−29.87 2−29.76

0x3 → 0x05050000 2−30.58 2−29.98 2−29.99 0x5 → 0x10100000 2−30.50 2−30.06 2−30.28

0x3 → 0x10100000 2−30.59 2−29.90 2−30.10 0x5 → 0x05050000 2−30.52 2−30.02 2−30.06

0x3 → 0x01010000 2−30.64 2−29.94 2−30.45 0x5 → 0x01010000 2−30.55 2−29.96 2−29.94

0x3 → 0x80800000 2−30.70 2−30.17 2−30.24 0x5 → 0x08080000 2−30.57 2−30.01 2−29.97

0x3 → 0x08080000 2−30.70 2−30.10 2−30.01 0x5 → 0x80800000 2−30.57 2−29.98 2−30.04

0x3 → 0x0a0a0000 2−30.97 2−30.27 2−30.32 0x5 → 0x0a0a0000 2−30.77 2−30.08 2−30.04

0x7 → 0x40400000 2−29.47 2−29.20 2−29.21 0xB → 0x40400000 2−30.21 2−29.60 2−29.88

0x7 → 0x04040000 2−29.54 2−29.23 2−23.23 0xB → 0x04040000 2−30.26 2−29.75 2−29.92

0x7 → 0x50500000 2−29.59 2−29.26 2−29.30 0xB → 0x50500000 2−30.41 2−29.96 2−29.99

0x7 → 0x10100000 2−29.74 2−29.33 2−29.70 0xB → 0x05050000 2−30.59 2−29.97 2−30.06

0x7 → 0x05050000 2−29.76 2−29.37 2−29.43 0xB → 0x08080000 2−30.64 2−29.94 2−30.02

0x7 → 0x01010000 2−29.86 2−29.54 2−29.56 0xB → 0x80800000 2−30.65 2−29.95 2−30.06

0x7 → 0x0a0a0000 2−30.00 2−29.63 2−29.65 0xB → 0x10100000 2−30.73 2−30.13 2−30.33

0x7 → 0x80800000 2−30.19 2−29.61 2−29.72 0xB → 0x01010000 2−30.81 2−30.13 2−30.18

0x7 → 0x08080000 2−30.21 2−29.66 2−29.66 0xB → 0x0a0a0000 2−30.86 2−30.09 2−30.10

0x7 → 0x40500000 2−30.76 2−30.22 2−30.09 0xF → 0x00110000 2−30.60 2−29.97 2−29.78

0xD → 0x05050000 2−29.81 2−29.30 2−29.39 0xF → 0x40400000 2−29.49 2−29.26 2−29.36

0xD → 0x40400000 2−29.82 2−29.42 2−29.42 0xF → 0x04040000 2−29.56 2−29.23 2−29.31

0xD → 0x04040000 2−29.91 2−29.50 2−29.46 0xF → 0x50500000 2−29.80 2−29.46 2−29.45

0xD → 0x10100000 2−30.01 2−29.50 2−29.83 0xF → 0x05050000 2−29.82 2−29.39 2−29.37

0xD → 0x50500000 2−30.08 2−29.60 2−29.71 0xF → 0x80800000 2−29.88 2−29.32 2−29.37

0xD → 0x01010000 2−30.15 2−29.52 2−30.14 0xF → 0x08080000 2−29.88 2−29.58 2−29.38

0xD → 0x0a0a0000 2−30.25 2−29.74 2−29.78 0xF → 0x10100000 2−30.10 2−29.69 2−29.76

0xD → 0x80800000 2−30.39 2−29.82 2−29.96 0xF → 0x01010000 2−30.16 2−29.68 2−29.94

0xF → 0x0a0a0000 2−30.22 2−29.67 2−29.80

A.2 Spectre différentiel des fonctions x 7→ x2t−1

Dans cette section, nous donnons le spectre différentiel des fonctions x 7→ x2t−1. Nous
avons séparé les résultats en 4 tableaux.

– Dans le tableau A.2 nous donnons les fonctions Gt(x) = x2t−1 pour lesquelles
max
b 6=0,1

δ(b) = 2.

– Dans le tableau A.3 nous donnons les fonctions Gt(x) = x2t−1 pour lesquelles
max
b 6=0,1

δ(b) = 6.

– Dans le tableau A.4 nous donnons les fonctions Gt(x) = x2t−1 pour lesquelles
max
b 6=0,1

δ(b) = 14.

– Dans le tableau A.5 nous donnons les fonctions Gt(x) = x2t−1 pour lesquelles
max
b 6=0,1

δ(b) = 30.



Appendices 203

Les spectres différentiels donnés dans ces tableaux sont calculés sans la valeur de δ(0)
et de δ(1).

Table A.2 – Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=
{0, 1}, δ(b) ≤ 2

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 2

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

5 2 11 1 2 0 , 2 0 [15] 2 [15]
5 3 5 1 2 0 , 2 0 [15] 2 [15]
5 4 15 1 2 0 , 2 0 [15] 2 [15]
6 2 - 3 2 2 , 2 0 [32] 2 [30]
6 3 - 7 6 6 , 4 0 [35] 2 [27]
6 4 - 3 8 2 , 8 0 [35] 2 [27]
6 5 31 1 4 0 , 4 0 [32] 2 [30]
7 2 43 1 2 0 , 2 0 [63] 2 [63]
7 4 9 1 2 0 , 2 0 [63] 2 [63]
7 6 63 1 2 0 , 2 0 [63] 2 [63]
8 2 - 3 2 2 , 2 0 [128] 2 [126]
8 4 - 15 14 14 , 2 0 [134] 2 [120]
8 5 91 1 16 0 , 16 0 [134] 2 [120]
8 7 127 1 4 0 , 4 0 [128] 2 [126]
9 2 171 1 2 0 , 2 0 [255] 2 [255]
9 5 17 1 2 0 , 2 0 [255] 2 [255]
9 8 255 1 2 0 , 2 0 [255] 2 [255]
10 2 - 3 2 2 , 2 0 [512] 2 [510]
10 5 - 31 30 30 , 4 0 [527] 2 [495]
10 6 - 3 32 2 , 32 0 [527] 2 [495]
10 9 511 1 4 0 , 4 0 [512] 2 [510]
11 2 683 1 2 0 , 2 0 [1023] 2 [1023]
11 6 33 1 2 0 , 2 0 [1023] 2 [1023]
11 10 1023 1 2 0 , 2 0 [1023] 2 [1023]
12 2 - 3 2 2 , 2 0 [2048] 2 [2046]
12 6 - 63 62 62 , 2 0 [2078] 2 [2016]
12 7 1387 1 64 0 , 64 0 [2078] 2 [2016]
12 11 2047 1 4 0 , 4 0 [2048] 2 [2046]
13 2 2731 1 2 0 , 2 0 [4095] 2 [4095]
13 7 65 1 2 0 , 2 0 [4095] 2 [4095]
13 12 4095 1 2 0 , 2 0 [4095] 2 [4095]
14 2 - 3 2 2 , 2 0 [8192] 2 [8190]
14 7 - 127 126 126 , 4 0 [8255] 2 [8127]
14 8 - 3 128 2 , 128 0 [8255] 2 [8127]
14 13 8191 1 4 0 , 4 0 [8192] 2 [8190]
15 2 10923 1 2 0 , 2 0 [16383] 2 [16383]
15 8 129 1 2 0 , 2 0 [16383] 2 [16383]
15 14 16383 1 2 0 , 2 0 [16383] 2 [16383]



204 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 2

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

16 2 - 3 2 2 , 2 0 [32768] 2 [32766]
16 8 - 255 254 254 , 2 0 [32894] 2 [32640]
16 9 21931 1 256 0 , 256 0 [32894] 2 [32640]
16 15 32767 1 4 0 , 4 0 [32768] 2 [32766]
17 2 43691 1 2 0 , 2 0 [65535] 2 [65535]
17 9 257 1 2 0 , 2 0 [65535] 2 [65535]
17 16 65535 1 2 0 , 2 0 [65535] 2 [65535]
18 2 - 3 2 2 , 2 0 [131072] 2 [131070]
18 9 - 511 510 510 , 4 0 [131327] 2 [130815]
18 10 - 3 512 2 , 512 0 [131327] 2 [130815]
18 17 131071 1 4 0 , 4 0 [131072] 2 [131070]
19 2 174763 1 2 0 , 2 0 [262143] 2 [262143]
19 10 513 1 2 0 , 2 0 [262143] 2 [262143]
19 18 262143 1 2 0 , 2 0 [262143] 2 [262143]
20 2 - 3 2 2 , 2 0 [524288] 2 [524286]
20 10 - 1023 1022 1022 , 2 0 [524798] 2 [523776]
20 11 349867 1 1024 0 , 1024 0 [524798] 2 [523776]
20 19 524287 1 4 0 , 4 0 [524288] 2 [524286]
21 2 699051 1 2 0 , 2 0 [1048575] 2 [1048575]
21 11 1025 1 2 0 , 2 0 [1048575] 2 [1048575]
21 20 1048575 1 2 0 , 2 0 [1048575] 2 [1048575]
22 2 - 3 2 2 , 2 0 [2097152] 2 [2097150]
22 11 - 2047 2046 2046 , 4 0 [2098175] 2 [2096127]
22 12 - 3 2048 2 , 2048 0 [2098175] 2 [2096127]
22 21 2097151 1 4 0 , 4 0 [2097152] 2 [2097150]
23 2 2796203 1 2 0 , 2 0 [4194303] 2 [4194303]
23 12 2049 1 2 0 , 2 0 [4194303] 2 [4194303]
23 22 4194303 1 2 0 , 2 0 [4194303] 2 [4194303]
24 2 - 3 2 2 , 2 0 [8388608] 2 [8388606]
24 12 - 4095 4094 4094 , 2 0 [8390654] 2 [8386560]
24 13 5593771 1 4096 0 , 4096 0 [8390654] 2 [8386560]
24 23 8388607 1 4 0 , 4 0 [8388608] 2 [8388606]
25 2 11184811 1 2 0 , 2 0 [16777215] 2 [16777215]
25 13 4097 1 2 0 , 2 0 [16777215] 2 [16777215]
25 24 16777215 1 2 0 , 2 0 [16777215] 2 [16777215]
26 2 - 3 2 2 , 2 0 [33554432] 2 [33554430]
26 13 - 8191 8190 8190 , 4 0 [33558527] 2 [33550335]
26 14 - 3 8192 2 , 8192 0 [33558527] 2 [33550335]
26 25 33554431 1 4 0 , 4 0 [33554432] 2 [33554430]
27 2 44739243 1 2 0 , 2 0 [67108863] 2 [67108863]
27 14 8193 1 2 0 , 2 0 [67108863] 2 [67108863]
27 26 67108863 1 2 0 , 2 0 [67108863] 2 [67108863]
28 2 - 3 2 2 , 2 0 [134217728] 2 [134217726]
28 14 - 16383 16382 16382 , 2 0 [134225918] 2 [134209536]
28 15 89483947 1 16384 0 , 16384 0 [134225918] 2 [134209536]



Appendices 205

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 2

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

28 27 134217727 1 4 0 , 4 0 [134217728] 2 [134217726]
29 2 178956971 1 2 0 , 2 0 [268435455] 2 [268435455]
29 15 16385 1 2 0 , 2 0 [268435455] 2 [268435455]
29 28 268435455 1 2 0 , 2 0 [268435455] 2 [268435455]
30 2 - 3 2 2 , 2 0 [536870912] 2 [536870910]
30 15 - 32767 32766 32766 , 4 0 [536887295] 2 [536854527]
30 16 - 3 32768 2 , 32768 0 [536887295] 2 [536854527]
30 29 536870911 1 4 0 , 4 0 [536870912] 2 [536870910]
31 2 715827883 1 2 0 , 2 0 [1073741823] 2 [1073741823]
31 16 32769 1 2 0 , 2 0 [1073741823] 2 [1073741823]
31 30 1073741823 1 2 0 , 2 0 [1073741823] 2 [1073741823]
32 2 - 3 2 2 , 2 0 [2147483648] 2 [2147483646]
32 16 - 65535 65534 65534 , 2 0 [2147516414] 2 [2147450880]
32 17 1431677611 1 65536 0 , 65536 0 [2147516414] 2 [2147450880]
32 31 2147483647 1 4 0 , 4 0 [2147483648] 2 [2147483646]

Table A.3 – Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=
{0, 1}, δ(b) ≤ 6

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 6

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

7 3 21 1 6 0 , 2 0 [77] 2 [42] 6 [7]
7 5 21 1 6 0 , 2 0 [77] 2 [42] 6 [7]
8 3 37 1 6 0 , 4 0 [156] 2 [84] 6 [14]
8 6 - 3 6 2 , 2 0 [156] 2 [84] 6 [14]
9 3 - 7 6 6 , 2 0 [300] 2 [189] 6 [21]
9 4 239 1 8 0 , 8 0 [300] 2 [189] 6 [21]
9 6 - 7 6 6 , 2 0 [300] 2 [189] 6 [21]
9 7 85 1 8 0 , 8 0 [300] 2 [189] 6 [21]
10 3 439 1 6 0 , 4 0 [582] 2 [405] 6 [35]
10 4 - 3 6 2 , 2 0 [582] 2 [405] 6 [35]
10 7 73 1 6 0 , 4 0 [582] 2 [405] 6 [35]
10 8 - 3 6 2 , 2 0 [582] 2 [405] 6 [35]
11 3 293 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
11 4 137 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
11 5 991 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
11 7 887 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
11 8 731 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
11 9 341 1 6 0 , 2 0 [1177] 2 [792] 6 [77]
12 3 - 7 6 6 , 4 0 [2401] 2 [1518] 6 [175]
12 4 - 15 14 14 , 8 0 [2365] 2 [1575] 6 [154]
12 5 661 1 16 0 , 16 0 [2362] 2 [1578] 6 [154]
12 8 - 15 14 14 , 2 0 [2362] 2 [1578] 6 [154]
12 9 - 7 16 6 , 16 0 [2365] 2 [1575] 6 [154]
12 10 - 3 8 2 , 8 0 [2401] 2 [1518] 6 [175]



206 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 6

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

13 3 3511 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 4 3823 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 5 2907 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 6 4031 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 8 1189 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 9 273 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 10 585 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
13 11 1365 1 6 0 , 2 0 [4823] 2 [3003] 6 [364]
14 3 2341 1 6 0 , 4 0 [9578] 2 [6111] 6 [693]
14 5 529 1 6 0 , 4 0 [9578] 2 [6111] 6 [693]
14 10 - 3 6 2 , 2 0 [9578] 2 [6111] 6 [693]
14 12 - 3 6 2 , 2 0 [9578] 2 [6111] 6 [693]
15 3 - 7 6 6 , 2 0 [19046] 2 [12390] 6 [1330]
15 5 - 31 30 30 , 2 0 [19058] 2 [12378] 6 [1330]
15 6 - 7 32 6 , 32 0 [19061] 2 [12375] 6 [1330]
15 7 16255 1 8 0 , 8 0 [19046] 2 [12390] 6 [1330]
15 9 - 7 6 6 , 2 0 [19046] 2 [12390] 6 [1330]
15 10 - 31 30 30 , 8 0 [19061] 2 [12375] 6 [1330]
15 11 14199 1 32 0 , 32 0 [19058] 2 [12378] 6 [1330]
15 13 5461 1 8 0 , 8 0 [19046] 2 [12390] 6 [1330]
16 3 28087 1 6 0 , 4 0 [38116] 2 [24744] 6 [2674]
16 6 - 3 6 2 , 2 0 [38116] 2 [24744] 6 [2674]
16 11 1057 1 6 0 , 4 0 [38116] 2 [24744] 6 [2674]
16 14 - 3 6 2 , 2 0 [38116] 2 [24744] 6 [2674]
17 3 18725 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
17 4 61167 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 5 21141 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 6 2081 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
17 7 9289 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 8 65279 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
17 10 56247 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
17 11 63455 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 12 44395 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
17 13 4369 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 14 46811 1 6 0 , 2 0 [75531] 2 [50541] 6 [4998]
17 15 21845 1 6 0 , 2 0 [76483] 2 [49113] 6 [5474]
18 3 - 7 6 6 , 4 0 [153167] 2 [97929] 6 [11046]
18 6 - 63 62 62 , 2 0 [152564] 2 [98847] 6 [10731]
18 7 113527 1 64 0 , 64 0 [152564] 2 [98847] 6 [10731]
18 12 - 63 62 62 , 2 0 [152564] 2 [98847] 6 [10731]
18 13 38053 1 64 0 , 64 0 [152564] 2 [98847] 6 [10731]
18 16 - 3 8 2 , 8 0 [153167] 2 [97929] 6 [11046]
19 3 224695 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
19 7 177515 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
19 8 187099 1 6 0 , 2 0 [302309] 2 [201894] 6 [20083]



Appendices 207

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 6

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

19 9 261631 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
19 11 75045 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
19 12 84629 1 6 0 , 2 0 [302309] 2 [201894] 6 [20083]
19 13 4161 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
19 17 87381 1 6 0 , 2 0 [306033] 2 [196308] 6 [21945]
20 3 149797 1 6 0 , 4 0 [611368] 2 [393666] 6 [43540]
20 7 8257 1 6 0 , 4 0 [611368] 2 [393666] 6 [43540]
20 14 - 3 6 2 , 2 0 [611368] 2 [393666] 6 [43540]
20 18 - 3 6 2 , 2 0 [611368] 2 [393666] 6 [43540]
21 3 - 7 6 6 , 2 0 [1222640] 2 [787479] 6 [87031]
21 7 - 127 126 126 , 8 0 [1222101] 2 [788319] 6 [86730]
21 8 304293 1 128 0 , 128 0 [1222098] 2 [788322] 6 [86730]
21 10 1047551 1 8 0 , 8 0 [1222640] 2 [787479] 6 [87031]
21 12 - 7 6 6 , 2 0 [1222640] 2 [787479] 6 [87031]
21 14 - 127 126 126 , 2 0 [1222098] 2 [788322] 6 [86730]
21 15 - 7 128 6 , 128 0 [1222101] 2 [788319] 6 [86730]
21 19 349525 1 8 0 , 8 0 [1222640] 2 [787479] 6 [87031]
22 3 1797559 1 6 0 , 4 0 [2446578] 2 [1573011] 6 [174713]
22 8 - 3 6 2 , 2 0 [2446578] 2 [1573011] 6 [174713]
22 15 16513 1 6 0 , 4 0 [2446578] 2 [1573011] 6 [174713]
22 20 - 3 6 2 , 2 0 [2446578] 2 [1573011] 6 [174713]
23 3 1198373 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
23 8 32897 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
23 11 4192255 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
23 13 3595703 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
23 16 2807211 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
23 21 1398101 1 6 0 , 2 0 [4894653] 2 [3143778] 6 [350175]
24 3 - 7 6 6 , 4 0 [9788205] 2 [6289212] 6 [699797]
24 8 - 255 254 254 , 2 0 [9781202] 2 [6299778] 6 [696234]
24 9 - 7 256 6 , 256 0 [9781205] 2 [6299775] 6 [696234]
24 16 - 255 254 254 , 8 0 [9781205] 2 [6299775] 6 [696234]
24 17 7199671 1 256 0 , 256 0 [9781202] 2 [6299778] 6 [696234]
24 22 - 3 8 2 , 8 0 [9788205] 2 [6289212] 6 [699797]
25 3 14380471 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
25 9 11228587 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
25 12 16773119 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
25 14 4794661 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
25 17 65793 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
25 23 5592405 1 6 0 , 2 0 [19572315] 2 [12584565] 6 [1397550]
26 3 9586981 1 6 0 , 4 0 [39142742] 2 [25171965] 6 [2794155]
26 9 131329 1 6 0 , 4 0 [39142742] 2 [25171965] 6 [2794155]
26 18 - 3 6 2 , 2 0 [39142742] 2 [25171965] 6 [2794155]
26 24 - 3 6 2 , 2 0 [39142742] 2 [25171965] 6 [2794155]
27 3 - 7 6 6 , 2 0 [78291786] 2 [50334480] 6 [5591460]
27 9 - 511 510 510 , 2 0 [78272340] 2 [50363775] 6 [5581611]



208 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 6

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

27 10 57596855 1 512 0 , 512 0 [78272340] 2 [50363775] 6 [5581611]
27 13 67100671 1 8 0 , 8 0 [78291786] 2 [50334480] 6 [5591460]
27 15 - 7 6 6 , 2 0 [78291786] 2 [50334480] 6 [5591460]
27 18 - 511 510 510 , 2 0 [78272340] 2 [50363775] 6 [5581611]
27 19 19211557 1 512 0 , 512 0 [78272340] 2 [50363775] 6 [5581611]
27 25 22369621 1 8 0 , 8 0 [78291786] 2 [50334480] 6 [5591460]
28 3 115043767 1 6 0 , 4 0 [156593648] 2 [100653846] 6 [11187960]
28 10 - 3 6 2 , 2 0 [156593648] 2 [100653846] 6 [11187960]
28 19 262657 1 6 0 , 4 0 [156593648] 2 [100653846] 6 [11187960]
28 26 - 3 6 2 , 2 0 [156593648] 2 [100653846] 6 [11187960]
29 3 76695845 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
29 10 524801 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
29 14 268419071 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
29 16 230092215 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
29 20 179132075 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
29 27 89478485 1 6 0 , 2 0 [313184775] 2 [201311475] 6 [22374660]
30 3 - 7 6 6 , 4 0 [626346875] 2 [402656967] 6 [44737980]
30 10 - 1023 1022 1022 , 8 0 [626261845] 2 [402784767] 6 [44695210]
30 11 153691429 1 1024 0 , 1024 0 [626261842] 2 [402784770] 6 [44695210]
30 20 - 1023 1022 1022 , 2 0 [626261842] 2 [402784770] 6 [44695210]
30 21 - 7 1024 6 , 1024 0 [626261845] 2 [402784767] 6 [44695210]
30 28 - 3 8 2 , 8 0 [626346875] 2 [402656967] 6 [44737980]
31 3 920350135 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
31 11 716527275 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
31 15 1073709055 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
31 17 306792741 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
31 21 1049601 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
31 29 357913941 1 6 0 , 2 0 [1252676117] 2 [805340382] 6 [89467147]
32 3 613566757 1 6 0 , 4 0 [2505379956] 2 [1610639184] 6 [178948154]
32 11 2098177 1 6 0 , 4 0 [2505379956] 2 [1610639184] 6 [178948154]
32 22 - 3 6 2 , 2 0 [2505379956] 2 [1610639184] 6 [178948154]
32 30 - 3 6 2 , 2 0 [2505379956] 2 [1610639184] 6 [178948154]

Table A.4 – Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=
{0, 1}, δ(b) ≤ 14

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 14

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

14 4 - 3 14 2 , 2 0 [9548] 2 [6216] 6 [588] 14 [30]
14 6 - 3 14 2 , 2 0 [9548] 2 [6216] 6 [588] 14 [30]
14 9 7663 1 14 0 , 4 0 [9548] 2 [6216] 6 [588] 14 [30]
14 11 5851 1 14 0 , 4 0 [9548] 2 [6216] 6 [588] 14 [30]
15 4 2185 1 14 0 , 8 0 [18786] 2 [12810] 6 [1155] 14 [15]
15 12 - 7 14 6 , 2 0 [18786] 2 [12810] 6 [1155] 14 [15]
16 4 - 15 14 14 , 2 0 [37838] 2 [25284] 6 [2352] 14 [60]
16 5 31711 1 16 0 , 16 0 [37838] 2 [25284] 6 [2352] 14 [60]



Appendices 209

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 14

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

16 7 10837 1 14 0 , 4 0 [38136] 2 [24954] 6 [2324] 14 [120]
16 10 - 3 14 2 , 2 0 [38136] 2 [24954] 6 [2324] 14 [120]
16 12 - 15 14 14 , 2 0 [37838] 2 [25284] 6 [2352] 14 [60]
16 13 4681 1 16 0 , 16 0 [37838] 2 [25284] 6 [2352] 14 [60]
18 4 - 3 14 2 , 8 0 [151223] 2 [101205] 6 [9534] 14 [180]
18 5 93019 1 14 0 , 4 0 [151058] 2 [101271] 6 [9723] 14 [90]
18 8 - 3 14 2 , 2 0 [151058] 2 [101271] 6 [9723] 14 [90]
18 11 17545 1 14 0 , 4 0 [151058] 2 [101271] 6 [9723] 14 [90]
18 14 - 3 14 2 , 2 0 [151058] 2 [101271] 6 [9723] 14 [90]
18 15 - 7 14 6 , 4 0 [151223] 2 [101205] 6 [9534] 14 [180]
19 4 34953 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
19 5 16913 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
19 6 257983 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
19 14 245231 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
19 15 227191 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
19 16 37449 1 14 0 , 2 0 [303335] 2 [201495] 6 [18886] 14 [570]
20 4 - 15 14 14 , 2 0 [606074] 2 [403110] 6 [38640] 14 [750]
20 5 - 31 30 30 , 16 0 [605739] 2 [403620] 6 [38465] 14 [750]
20 6 - 3 32 2 , 32 0 [605203] 2 [404571] 6 [37975] 14 [825]
20 8 - 15 14 14 , 2 0 [606074] 2 [403110] 6 [38640] 14 [750]
20 9 174421 1 16 0 , 16 0 [606134] 2 [403320] 6 [38220] 14 [900]
20 12 - 15 14 14 , 2 0 [606134] 2 [403320] 6 [38220] 14 [900]
20 13 516031 1 16 0 , 16 0 [606074] 2 [403110] 6 [38640] 14 [750]
20 15 - 31 30 30 , 4 0 [605203] 2 [404571] 6 [37975] 14 [825]
20 16 - 15 32 14 , 32 0 [605739] 2 [403620] 6 [38465] 14 [750]
20 17 374491 1 16 0 , 16 0 [606074] 2 [403110] 6 [38640] 14 [750]
21 4 978671 1 14 0 , 8 0 [1211640] 2 [808059] 6 [75411] 14 [2040]
21 6 - 7 14 6 , 2 0 [1211640] 2 [808059] 6 [75411] 14 [2040]
21 9 - 7 14 6 , 2 0 [1211398] 2 [806022] 6 [78890] 14 [840]
21 13 744283 1 14 0 , 8 0 [1211398] 2 [806022] 6 [78890] 14 [840]
21 16 33825 1 14 0 , 8 0 [1211640] 2 [808059] 6 [75411] 14 [2040]
21 18 - 7 14 6 , 2 0 [1211640] 2 [808059] 6 [75411] 14 [2040]
22 4 - 3 14 2 , 2 0 [2421454] 2 [1615977] 6 [154231] 14 [2640]
22 5 676501 1 14 0 , 4 0 [2422686] 2 [1614129] 6 [154847] 14 [2640]
22 6 - 3 14 2 , 2 0 [2422488] 2 [1615746] 6 [152768] 14 [3300]
22 7 2080639 1 14 0 , 4 0 [2421454] 2 [1615977] 6 [154231] 14 [2640]
22 9 139537 1 14 0 , 4 0 [2422686] 2 [1614129] 6 [154847] 14 [2640]
22 10 - 3 14 2 , 2 0 [2422488] 2 [1615746] 6 [152768] 14 [3300]
22 13 1957615 1 14 0 , 4 0 [2422488] 2 [1615746] 6 [152768] 14 [3300]
22 14 - 3 14 2 , 2 0 [2422686] 2 [1614129] 6 [154847] 14 [2640]
22 16 - 3 14 2 , 2 0 [2421454] 2 [1615977] 6 [154231] 14 [2640]
22 17 1420651 1 14 0 , 4 0 [2422488] 2 [1615746] 6 [152768] 14 [3300]
22 18 - 3 14 2 , 2 0 [2422686] 2 [1614129] 6 [154847] 14 [2640]
22 19 299593 1 14 0 , 4 0 [2421454] 2 [1615977] 6 [154231] 14 [2640]
23 4 559241 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]



210 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 14

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

23 5 2976603 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 6 133153 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]
23 7 1387093 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 9 3923439 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]
23 10 598601 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 14 270865 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 15 4161407 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]
23 17 4061151 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 18 1217701 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]
23 19 3635063 1 14 0 , 2 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23 20 2995931 1 14 0 , 2 0 [4841477] 2 [3234582] 6 [307027] 14 [5520]
24 4 - 15 14 14 , 8 0 [9681841] 2 [6473481] 6 [609532] 14 [12360]
24 6 - 63 62 62 , 2 0 [9687702] 2 [6463380] 6 [614432] 14 [11700]
24 7 1188937 1 64 0 , 64 0 [9683814] 2 [6471612] 6 [608888] 14 [12900]
24 11 2794837 1 14 0 , 4 0 [9687668] 2 [6465216] 6 [611730] 14 [12600]
24 14 - 3 14 2 , 2 0 [9687668] 2 [6465216] 6 [611730] 14 [12600]
24 18 - 63 62 62 , 2 0 [9683814] 2 [6471612] 6 [608888] 14 [12900]
24 19 7847407 1 64 0 , 64 0 [9687702] 2 [6463380] 6 [614432] 14 [11700]
24 21 - 7 16 6 , 16 0 [9681841] 2 [6473481] 6 [609532] 14 [12360]
25 4 15658735 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
25 5 - 31 30 30 , 2 0 [19377280] 2 [12922125] 6 [1232525] 14 [22500]
25 6 16510911 1 32 0 , 32 0 [19377280] 2 [12922125] 6 [1232525] 14 [22500]
25 7 14531447 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
25 8 16711423 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
25 18 2245769 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
25 19 266305 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
25 20 - 31 30 30 , 2 0 [19377280] 2 [12922125] 6 [1232525] 14 [22500]
25 21 1118481 1 32 0 , 32 0 [19377280] 2 [12922125] 6 [1232525] 14 [22500]
25 22 2396745 1 14 0 , 2 0 [19368015] 2 [12940515] 6 [1221150] 14 [24750]
26 4 - 3 14 2 , 2 0 [38755888] 2 [25853646] 6 [2448628] 14 [50700]
26 7 22721899 1 14 0 , 4 0 [38748062] 2 [25865385] 6 [2444715] 14 [50700]
26 8 - 3 14 2 , 2 0 [38749206] 2 [25859379] 6 [2451722] 14 [48555]
26 10 - 3 14 2 , 2 0 [38755888] 2 [25853646] 6 [2448628] 14 [50700]
26 11 29079415 1 14 0 , 4 0 [38749206] 2 [25859379] 6 [2451722] 14 [48555]
26 12 - 3 14 2 , 2 0 [38748062] 2 [25865385] 6 [2444715] 14 [50700]
26 15 4475017 1 14 0 , 4 0 [38748062] 2 [25865385] 6 [2444715] 14 [50700]
26 16 - 3 14 2 , 2 0 [38749206] 2 [25859379] 6 [2451722] 14 [48555]
26 17 33423103 1 14 0 , 4 0 [38755888] 2 [25853646] 6 [2448628] 14 [50700]
26 19 10832533 1 14 0 , 4 0 [38749206] 2 [25859379] 6 [2451722] 14 [48555]
26 20 - 3 14 2 , 2 0 [38748062] 2 [25865385] 6 [2444715] 14 [50700]
26 23 23967451 1 14 0 , 4 0 [38755888] 2 [25853646] 6 [2448628] 14 [50700]
27 4 8947849 1 14 0 , 8 0 [77496654] 2 [51731568] 6 [4887309] 14 [102195]
27 5 21648021 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]
27 7 1056833 1 14 0 , 8 0 [77496654] 2 [51731568] 6 [4887309] 14 [102195]
27 8 47897307 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]



Appendices 211

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 14

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

27 11 2163745 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]
27 17 9512009 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]
27 20 66052031 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]
27 21 - 7 14 6 , 2 0 [77496654] 2 [51731568] 6 [4887309] 14 [102195]
27 23 58161015 1 14 0 , 2 0 [77516427] 2 [51691377] 6 [4912992] 14 [96930]
27 24 - 7 14 6 , 2 0 [77496654] 2 [51731568] 6 [4887309] 14 [102195]
28 4 - 15 14 14 , 2 0 [154986630] 2 [103467336] 6 [9780008] 14 [201480]
28 7 - 127 126 126 , 4 0 [155001911] 2 [103443423] 6 [9789150] 14 [200970]
28 8 - 15 128 14 , 128 0 [155017415] 2 [103410720] 6 [9811074] 14 [196245]
28 9 133955071 1 16 0 , 16 0 [154986630] 2 [103467336] 6 [9780008] 14 [201480]
28 13 44733781 1 16 0 , 16 0 [154996274] 2 [103448310] 6 [9791670] 14 [199200]
28 16 - 15 14 14 , 2 0 [154996274] 2 [103448310] 6 [9791670] 14 [199200]
28 20 - 15 14 14 , 2 0 [154986630] 2 [103467336] 6 [9780008] 14 [201480]
28 21 - 127 126 126 , 16 0 [155017415] 2 [103410720] 6 [9811074] 14 [196245]
28 22 - 3 128 2 , 128 0 [155001911] 2 [103443423] 6 [9789150] 14 [200970]
28 25 19173961 1 16 0 , 16 0 [154986630] 2 [103467336] 6 [9780008] 14 [201480]
29 4 250539759 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
29 8 77898917 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
29 11 35931273 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
29 19 267910655 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
29 22 2113665 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
29 26 191739611 1 14 0 , 2 0 [309989671] 2 [206904531] 6 [19576508] 14 [400200]
30 4 - 3 14 2 , 8 0 [619954315] 2 [413841567] 6 [39148060] 14 [797880]
30 8 - 3 14 2 , 2 0 [619931492] 2 [413867820] 6 [39148620] 14 [793890]
30 14 - 3 14 2 , 2 0 [619931492] 2 [413867820] 6 [39148620] 14 [793890]
30 17 501083887 1 14 0 , 4 0 [619931492] 2 [413867820] 6 [39148620] 14 [793890]
30 23 359323051 1 14 0 , 4 0 [619931492] 2 [413867820] 6 [39148620] 14 [793890]
30 27 - 7 14 6 , 4 0 [619954315] 2 [413841567] 6 [39148060] 14 [797880]
31 4 143165577 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
31 8 8421505 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
31 10 1072692223 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
31 22 1002299119 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
31 24 921557943 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
31 28 153391689 1 14 0 , 2 0 [1239931087] 2 [827653407] 6 [78301412] 14

[1597740]
32 4 - 15 14 14 , 2 0 [2479823822] 2 [1655355108] 6 [156597504] 14

[3190860]
32 8 - 255 254 254 , 2 0 [2479848702] 2 [1655306688] 6 [156626624] 14

[3185280]



212 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 14

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

32 9 2008800751 1 256 0 , 256 0 [2479848702] 2 [1655306688] 6 [156626624] 14
[3185280]

32 12 - 15 14 14 , 2 0 [2479823822] 2 [1655355108] 6 [156597504] 14
[3190860]

32 15 715806037 1 14 0 , 4 0 [2479908336] 2 [1655272374] 6 [156573704] 14
[3212880]

32 18 - 3 14 2 , 2 0 [2479908336] 2 [1655272374] 6 [156573704] 14
[3212880]

32 21 2145385471 1 16 0 , 16 0 [2479823822] 2 [1655355108] 6 [156597504] 14
[3190860]

32 24 - 255 254 254 , 2 0 [2479848702] 2 [1655306688] 6 [156626624] 14
[3185280]

32 25 287458441 1 256 0 , 256 0 [2479848702] 2 [1655306688] 6 [156626624] 14
[3185280]

32 29 1533916891 1 16 0 , 16 0 [2479823822] 2 [1655355108] 6 [156597504] 14
[3190860]

Table A.5 – Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=
{0, 1}, δ(b) ≤ 30

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 30

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

21 5 1014751 1 30 0 , 2 0 [1211217] 2 [807828] 6 [76559] 14 [1515] 30 [31]
21 17 69905 1 30 0 , 2 0 [1211217] 2 [807828] 6 [76559] 14 [1515] 30 [31]
24 5 541201 1 30 0 , 16 0 [9700642] 2 [6451422] 6 [609966] 14 [15060] 30 [124]
24 10 - 3 30 2 , 8 0 [9690937] 2 [6461730] 6 [611611] 14 [12750] 30 [186]
24 15 - 7 30 6 , 4 0 [9690937] 2 [6461730] 6 [611611] 14 [12750] 30 [186]
24 20 - 15 30 14 , 2 0 [9700642] 2 [6451422] 6 [609966] 14 [15060] 30 [124]
25 10 - 31 30 30 , 2 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30

[155]
25 11 11982555 1 32 0 , 32 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30

[155]
25 15 - 31 30 30 , 2 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30

[155]
25 16 5548629 1 32 0 , 32 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30

[155]
26 5 32472031 1 30 0 , 4 0 [38743980] 2 [25868076] 6 [2448628] 14 [47775] 30

[403]
26 6 - 3 30 2 , 2 0 [38743980] 2 [25868076] 6 [2448628] 14 [47775] 30

[403]
26 21 1082401 1 30 0 , 4 0 [38743980] 2 [25868076] 6 [2448628] 14 [47775] 30

[403]
26 22 - 3 30 2 , 2 0 [38743980] 2 [25868076] 6 [2448628] 14 [47775] 30

[403]



Appendices 213

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 30

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

27 6 - 7 30 6 , 2 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27 12 - 7 30 6 , 2 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27 16 64945119 1 30 0 , 8 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27 22 45460843 1 30 0 , 8 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

28 5 95251291 1 30 0 , 16 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

28 6 - 3 30 2 , 2 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798]

28 11 129955807 1 30 0 , 4 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798]

28 12 - 15 30 14 , 2 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

28 17 4261921 1 30 0 , 16 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

28 18 - 3 30 2 , 2 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798]

28 23 38966437 1 30 0 , 4 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798]

28 24 - 15 30 14 , 2 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

29 5 17318417 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

29 6 8521761 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

29 7 266321791 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

29 9 89303381 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 12 181841259 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 13 38343241 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 17 86594197 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 18 232504183 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 21 190536539 1 30 0 , 2 0 [310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899]

29 23 259913695 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]



214 A.2 Spectre différentiel des fonctions x 7→ x2t−1

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 30

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

29 24 251117039 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

29 25 17895697 1 30 0 , 2 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

30 5 - 31 30 30 , 4 0 [620184815] 2 [413429025] 6 [39372305] 14 [751275]
30 [4402]

30 6 - 63 62 62 , 32 0 [620125101] 2 [413500845] 6 [39367160] 14 [745275]
30 [3441]

30 7 177547861 1 64 0 , 64 0 [620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30 9 - 7 30 6 , 4 0 [620148195] 2 [413469807] 6 [39371990] 14 [749040]
30 [2790]

30 12 - 63 62 62 , 2 0 [620174850] 2 [413388690] 6 [39445910] 14 [730140]
30 [2232]

30 13 35787025 1 64 0 , 64 0 [620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30 18 - 63 62 62 , 2 0 [620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30 19 383179483 1 64 0 , 64 0 [620174850] 2 [413388690] 6 [39445910] 14 [730140]
30 [2232]

30 22 - 3 30 2 , 8 0 [620148195] 2 [413469807] 6 [39371990] 14 [749040]
30 [2790]

30 24 - 63 62 62 , 2 0 [620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30 25 - 31 64 30 , 64 0 [620125101] 2 [413500845] 6 [39367160] 14 [745275]
30 [3441]

30 26 - 3 32 2 , 32 0 [620184815] 2 [413429025] 6 [39372305] 14 [751275]
30 [4402]

31 5 1039104991 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31 6 1056698303 1 30 0 , 2 0 [1240370295] 2 [826844679] 6 [78763188] 14
[1496835] 30 [8649]

31 7 152183881 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31 9 71442705 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31 12 346638997 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31 13 311727269 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31 14 766949083 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31 18 762014555 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]



Appendices 215

Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6= {0, 1}, δ(b) ≤ 30

n t inverse pgcd δmax δ0, δ1 Spectre différentiel sans δ(0), δ(1)

31 19 727102827 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31 20 357214549 1 30 0 , 2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31 23 1065320319 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31 25 17043521 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31 26 34636833 1 30 0 , 2 0 [1240370295] 2 [826844679] 6 [78763188] 14
[1496835] 30 [8649]

31 27 930576247 1 30 0 , 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

32 5 692736661 1 30 0 , 16 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32 6 - 3 30 2 , 2 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32 7 1860025207 1 30 0 , 4 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32 10 - 3 30 2 , 2 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32 13 34082881 1 30 0 , 16 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32 14 - 3 30 2 , 2 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32 19 2113400767 1 30 0 , 4 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32 20 - 15 30 14 , 2 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32 23 138682897 1 30 0 , 4 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32 26 - 3 30 2 , 2 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32 27 1454746987 1 30 0 , 4 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32 28 - 15 30 14 , 2 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]



216 BIBLIOGRAPHIE

Bibliographie

[ABNP+11] Mohamed Ahmed Abdelraheem, Céline Blondeau, María Naya-Plasencia,
Marion Videau, and Erik Zenner. Cryptanalysis of ARMADILLO2. In D.H.
Lee and X. Wang, editors, Asiacrypt 2011, volume 7073 of Lecture Notes in
Computer Science, pages 308–326. Springer, 2011.

[AC09] Martin Albrecht and Carlos Cid. Algebraic Techniques in Differential Cryp-
tanalysis. In Orr Dunkelman, editor, FSE, volume 5665 of Lecture Notes in
Computer Science, pages 193–208. Springer, 2009.

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New Features of Latin Dances : Analysis of Salsa,
ChaCha, and Rumba. In Fast Software Encryption ,FSE 2008, volume 5086
of Lecture Notes in Computer Science, pages 470–488. Springer, 2008.

[AG89] R. Arriata and L. Gordon. Tutorial on large deviations for the binomial
distribution. Bulletin of Mathematical Biology, 51(1) :125–131, 1989.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho
Moriai, Junko Nakajima, and Toshio Tokita. Camellia : A 128-Bit Block
Cipher Suitable for Multiple Platforms - Design and Analysis. In Douglas R.
Stinson and Stafford E. Tavares, editors, Selected Areas in Cryptography,
SAC 2000, volume 2012 of Lecture Notes in Computer Science, pages 39–56.
Springer, 2000.

[AM09] J.-P. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f
and for the core functions of Luffa and Hamsi. Presented at the rump session
of Cryptographic Hardware and Embedded Systems - CHES 2009, 2009.

[AS64] Milton Abramowitz and Irene A. StegunM. Handbook of mathematical func-
tions. Courier Dover Publications, 1964.

[ASB08] Bora Aslan, M. Tolga Sakalli, and Ercan Bulus. Classifying 8-Bit to 8-Bit
S-Boxes Based on Power Mappings from the Point of DDT and LAT Distri-
butions. In Joachim von zur Gathen, José Luis Imaña, and Çetin Kaya Koç,
editors, Arithmetic of Finite Fields, WAIFI 2008, volume 5130 of Lecture
Notes in Computer Science, pages 123–133. Springer, 2008.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials. In EUROCRYPT ’99,
volume 1592 of Lecture Notes in Computer Science, pages 12–23. Springer,
1999.

[BC10] Christina Boura and Anne Canteaut. Zero-Sum Distinguishers for Iterated
Permutations and Application to Keccak- and Hamsi-256. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptogra-
phy, SAC 2010, volume 6544 of Lecture Notes in Computer Science, pages
1–17. Springer, 2010.

[BCC10a] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Pro-
perties of Power Functions. In Proceedings of the 2010 IEEE International
Symposium on Information Theory, ISIT 10, 2010.

[BCC10b] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Proper-
ties of Power Functions. Int. J. Inform. and Coding Theory, 1(2) :149–170,
2010.



BIBLIOGRAPHIE 217

[BCC11] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential Proper-
ties of x 7→ x2t−1. IEEE Trans. Inform. Theory, 2011. In press.

[BCCLC06] Thierry P. Berger, Anne Canteaut, Pascale Charpin, and Yann Laigle-
Chapuy. On Almost Perfect Nonlinear Functions Over F2n. IEEE Tran-
sactions on Information Theory, 52(9) :4160–4170, 2006.

[BCL08] Lilya Budaghyan, Claude Carlet, and Gregor Leander. Two Classes of Qua-
dratic APN Binomials Inequivalent to Power Functions. IEEE Transactions
on Information Theory, 54(9) :4218–4229, 2008.

[BCQ04] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. On Mul-
tiple Linear Approximations. In Matthew K. Franklin, editor, Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 1–22. Springer, 2004.

[BD93] Thomas Beth and Cunsheng Ding. On Almost Perfect Nonlinear Permu-
tations. In EUROCRYPT-93, volume 765 of Lecture Notes in Computer
Science, pages 65–76. Springer, 1993.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. Enhancing Differential-
Linear Cryptanalysis. In ASIACRYPT ’02, volume 2501 of Lecture Notes in
Computer Science, pages 254–266. Springer, 2002.

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and
Adi Shamir. Key Recovery Attacks of Practical Complexity on AES-256 Va-
riants with up to 10 Rounds. In Henri Gilbert, editor, Advances in Cryptology
- EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 299–319. Springer, 2010.

[BDMW10] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN
permutation in dimension six. In Finite Fields : theory and applications,
volume 518 of Contemp. Math., pages 33–42. Amer. Math. Soc., 2010.

[BEA08] Behnam Bahrak, Taraneh Eghlidos, and Mohammad Reza Aref. Impossible
Differential Cryptanalysis of Safer++. In Hamid R. Arabnia and Selim Aissi,
editors, Proceedings of the 2008 International Conference on Security & Ma-
nagement, SAM 2008, pages 10–14. CSREA Press, 2008.

[BF00] Steve Babbage and Laurent Frisch. On MISTY1 Higher Order Differential
Cryptanalysis. In Dongho Won, editor, Information Security and Cryptology
- ICISC 2000, Lecture Notes in Computer Science, pages 22–36. Springer,
2000.

[BG09a] Céline Blondeau and Benoît Gérard. On the Data Complexity of Statisti-
cal Attacks Against Block Ciphers, 2009. EUROCRYPT 2009 POSTER-
SESSION.

[BG09b] Céline Blondeau and Benoît Gérard. On the Data Complexity of Statistical
Attacks Against Block Ciphers. In Alexander Kholosha, Eirik Rosnes, and
Matthew G. Parker, editors, Workshop on Coding and Cryptography - WCC
2009, pages 469–488, 2009.

[BG10] Céline Blondeau and Benoît Gérard. Links Between Theoretical and Effective
Differential Probabilities : Experiments on PRESENT. In TOOLS’10, 2010.
http: // eprint. iacr. org/ 2010/ 261 .

http://eprint.iacr.org/2010/261


218 BIBLIOGRAPHIE

[BG11] Céline Blondeau and Benoît Gérard. Multiple Differential Cryptanalysis :
Theory and Practice. In Antoine Joux, editor, Fast Software Encryption,
FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 35–54.
Springer, 2011.

[BGT11] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. Des.
Codes Cryptography, 59(1-3) :3–34, 2011.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys. volume 7,
pages 229–246, 1994.

[Bir04] Alex Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, Advanced
Encryption Standard - AES, 4th International Conference, AES 2004, Bonn,
Germany, May 10-12, 2004, Revised Selected and Invited Papers, volume
3373 of Lecture Notes in Computer Science, pages 11–15. Springer, 2004.

[BJV04] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How Far Can We Go
Beyond Linear Cryptanalysis ? In ASIACRYPT ’04, volume 3329 of Lecture
Notes in Computer Science, pages 432–450. Springer, 2004.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT : An Ultra-Lightweight Block Cipher. In Pascal Paillier and In-
grid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, 2007.

[BL08] Marcus Brinkmann and Gregor Leander. On the classification of APN func-
tions up to dimension five. Des. Codes Cryptography, 49(1-3) :273–288,
2008.

[BL10] Carl Bracken and Gregor Leander. A highly nonlinear differentially 4 uniform
power mapping that permutes fields of even degree. Finite Fields and Their
Applications, 16(4) :231–242, 2010.

[BRS67] E. R. Berlekamp, H. Rumsey, and G. Solomon. On the Solution of Algebraic
Equations over Finite Fields. Information and control, 10 :553–564, 1967.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Crypto-
systems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO 1990,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Crypto-
systems. Journal of Cryptology, 4(1) :3–72, 1991.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-round
DES. In CRYPTO’92, volume 740 of Lecture Notes in Computer Science,
pages 487–496. Springer, 1993.

[BV08] Thomas Baignères and Serge Vaudenay. The Complexity of Distinguishing
Distributions. In ICITS 2008, volume 2008/5155 of Lecture Notes in Com-
puter Science, pages p. 210–222, 2008.



BIBLIOGRAPHIE 219

[Cam60] Lucien Le Cam. An Approximation Theorem for the Poisson Binomial Dis-
tribution. In Pacific Journal of Mathematics, volume 10, pages 1181–1197,
1960.

[Can06] Anne Canteaut. Analyse et conception de chiffrements à clef secrète. Habi-
litation à diriger des recherches, Université Pierre et Marie Curie, Paris 6,
september 2006.

[Car69] Leonard. Carlitz. Kloosterman sums and finite field extensions. Acta Arith-
metica, 16 :179–183, 1969.

[CCCF00] Anne Canteaut, Claude Carlet, Pascale Charpin, and Caroline Fontaine.
Propagation characteristics and correlation-immunity of highly nonlinear boo-
lean functions. In Advances in Cryptology - EUROCRYPT’2000, volume
1807 of Lecture Notes in Computer Science, pages 507–522. Springer-Verlag,
2000.

[CCCF01] Anne Canteaut, Claude Carlet, Pascale Charpin, and Caroline Fontaine. On
Cryptographic Properties of the Cosets of R(1,m). IEEE Trans. Inform.
Theory, 47(4) :1494–1513, May 2001.

[CCD00] Anne Canteaut, Pascale Charpin, and Hans Dobbertin. Binary m-sequences
with three-valued crosscorrelation : A proof of Welch conjecture. IEEE Tran-
sactions on Information Theory, 46(1) :4–8, January 2000.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, Bent Functions
and Permutations Suitable For DES-likeCryptosystems. Designs, Codes and
Cryptography, 2(2) :125–156, November 1998.

[CD96] Thomas Cusick and Hans Dobbertin. Some new 3-valued crosscorrelation
functions of binary m-sequences. IEEE Trans. Inform. Theory, 42(4) :1238–
1240, 1996.

[CDDL06] Anne Canteaut, Magnus Daum, Hans Dobbertin, and Gregor Leander. Fin-
ding nonnormal bent functions. Discrete Applied Mathematics, 154(2) :202–
218, 2006.

[Cha04] Pascale Charpin. Normal Boolean functions. Journal of Complexity, 20(2-
3) :245–265, 2004.

[CHN08] Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg. A new technique for mul-
tidimensional linear cryptanalysis with applications on reduced round ser-
pent. In Pil Joong Lee and Jung Hee Cheon, editors, Information Security
and Cryptology - ICISC 2008, volume 5461 of Lecture Notes in Computer
Science, pages 383–398. Springer, 2008.

[Cho10] Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Jo-
sef Pieprzyk, editor, Topics in Cryptology - CT-RSA 2010, volume 5985 of
Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

[CHZ07] Pascale Charpin, Tor Helleseth, and Victor Zinoviev. Propagation characte-
ristics of x-1 and Kloosterman sums. Finite Fields and Their Applications,
13(2) :366–381, 2007.

[CKK+01] Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo
Kang. Improved Impossible Differential Cryptanalysis of Rijndael and Cryp-
ton. In ICISC, volume 2288 of Lecture Notes in Computer Science, pages
39–49. Springer, 2001.



220 BIBLIOGRAPHIE

[Cro05] Paul Crowley. Truncated Differential Cryptanalysis of
Five Rounds. Technical Report 2005/073, eSTREAM,
http ://www.ecrypt.eu.org/stream/papers.html, 2005.

[CS09] Baudoin Collard and François-Xavier Standaert. A Statistical Saturation
Attack against the Block Cipher PRESENT. In CT-RSA-2009, volume
5473/2009 of Lecture Notes In Computer Science, pages 195–210. Springer,
2009.

[CT91] Thomas M. Cover and Joy A. Thomas. Information theory. Wiley series in
communications. Wiley, 1991.

[CV95] Florent Chabaud and Serge Vaudenay. Links between differential and linear
cryptanalysis. In Advances in Cryptology - EUROCRYPT’94, volume 950 of
Lecture Notes in Computer Science, pages 356–365. Springer-Verlag, 1995.

[CV02] Anne Canteaut and Marion Videau. Degree of Composition of Highly Nonli-
near Functions and Applications to Higher Order Differential Cryptanalysis.
In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002,,
volume 2332 of Lecture Notes in Computer Science, pages 518–533. Springer,
2002.

[DES77] FIPS PUB 46-3 national bureau of standard DES. Data Encryption Stan-
dard(DES), 1977.

[DK07] Orr Dunkelman and Nathan Keller. A New Criterion for Nonlinearity of
Block Ciphers . IEEE transaction on information theory, 53(11) :3944–3957,
November 2007.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher
Square. In Eli Biham, editor, Fast Software Encryption, FSE’97, volume
1267 of Lecture Notes in Computer Science, pages 149–165. Springer, 1997.

[DN03] Herbert A. David and H. N. Nagaraja. Order Statistics (third edition). Wiley
series in Probability Theory. SV, 2003.

[Dob98] Hans Dobbertin. One-to-one highly nonlinear power functions on GF (2n).
Applicable Algebra in Engineering, Communication and Computing, 9 :139–
152, 1998.

[Dob99a] Hans Dobbertin. Almost Perfect Nonlinear power functions on GF (2n) : the
Niho case. Information and Computation, 151(1-2) :57–72, 1999.

[Dob99b] Hans Dobbertin. Almost Perfect Nonlinear power functions on GF (2n) : the
Welch case. IEEE Transactions on Information Theory, 45(4) :1271–1275,
1999.

[Dob00] Hans Dobbertin. Almost Perfect Nonlinear Power Functions on GF (2n) : a
new class for n divisible by 5. In Proceedings of Finite Fields and Applica-
tions Fq5, pages 113–121, Augsburg, Germany, 2000. Springer-Verlag.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal : the Rijndael block cipher,
1999.

[DR05] Joan Daemen and Vincent Rijmen. Probability distributions of Correla-
tion and Differentials in Block Ciphers. Cryptology ePrint Archive, Report
2005/212, 2005. http: // eprint. iacr. org/ .

http://eprint.iacr.org/


BIBLIOGRAPHIE 221

[Gal68] Robert G. Gallager. Information Theory and Reliable Communication. John
Wiley and Sons, 1968.

[GG99a] Sololom W. Golomb and Guang Gong. Periodic binary sequences with the
trinomial property. IEEE Trans. Inform. Theory, 45(4) :1276–1279, 1999.

[GG99b] Guang Gong and Solomon W. Golomb. Transform domain analysis of DES.
IEEE Trans. Inform. Theory, 45(6) :2065–2073, 1999.

[Gil97] Henri Gilbert. Cryptanalyse statistique des algorithmes de chiffrement et
sécurité des schémas d’authentification. Thèse de doctorat, Université Paris
11 Orsay, 1997.

[Gol68] Solomon W. Golomb. Theory of transformation groups of polynomials over
GF (2) with applications to linear shift register sequences. Information
Sciences, 1 :87–109, 1968.

[HCN09] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional Ex-
tension of Matsui’s Algorithm 2. In Orr Dunkelman, editor, Fast Software
Encryption, FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 209–227. Springer, 2009.

[Her05] D. Hertel. A Note on the Kasami Power Function. Technical Report 436,
eprint, 2005.

[HN10] Miia Hermelin and Kaisa Nyberg. Dependent Linear Approximations : The
Algorithm of Biryukov and Others Revisited. In Josef Pieprzyk, editor, To-
pics in Cryptology - CT-RSA 2010, The Cryptographers’ Track at the RSA
Conference 2010, volume 5985 of Lecture Notes in Computer Science, pages
318–333. Springer, 2010.

[HP08] Doreen Hertel and Alexander Pott. Two results on maximum nonlinear func-
tions. Des. Codes Cryptography, 47(1-3) :225–235, 2008.

[HX01] Henk D.L. Hollmann and Qing Xiang. A proof of the Welch and Niho conjec-
tures on crosscorrelations of binary m-sequences. Finite Fields and their
Applications, 7(2) :253–286, 2001.

[JP07] Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified)
Boomerang Attack. In Alfred Menezes, editor, Advances in Cryptology -
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
244–263. Springer, 2007.

[JR94] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Linear cryptanalysis using
multiple approximations. In Yvo Desmedt, editor, Advances in Cryptology
- CRYPTO-1994, volume 839 of Lecture Notes in Computer Science, pages
26–39. Springer, 1994.

[Jun01] Pascal Junod. On the Complexity of Matsui’s Attack. In SAC ’01, volume
2259 of Lecture Notes in Computer Science, pages 199–211. Springer, 2001.

[Jun03] Pascal Junod. On the Optimality of Linear, Differential, and Sequential Dis-
tinguishers. In EUROCRYPT ’03, volume 2656 of Lecture Notes in Compu-
ter Science, pages 17–32. Springer, 2003.

[JV03] Pascal Junod and Serge Vaudenay. Optimal Key Ranking Procedures in a
Statistical Cryptanalysis. In Thomas Johansson, editor, Fast Software En-
cryption, FSE 2003, volume 2887 of Lecture Notes in Computer Science,
pages 235–246. Springer, 2003.



222 BIBLIOGRAPHIE

[JW93] Heeralal Janwa and Richard M. Wilson. Hyperplane Sections of Fermat Va-
rieties in P 3 in Char.2 and Some Applications to Cyclic Codes. In Gérard D.
Cohen, Teo Mora, and Oscar Moreno, editors, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, AAECC-10, volume 673 of Lecture
Notes in Computer Science, pages 180–194. Springer, 1993.

[Kas71] Tadao Kasami. The weight enumerators for several classes of subcodes of the
second order binary Reed-Muller codes. Information and Control, 18 :369–
394, 1971.

[KB96] Lars Knudsen and Thomas Berson. Truncated Differentials of SAFER. In
Fast Software Encryption, volume 1039/1996 of Lecture Notes in Computer
Science, pages 15–26. Springer Berlin / Heidelberg, 1996.

[KHCH96] P.V. Kumar, T. Helleseth, A.R. Calderbank, and A.R. Hammons. Large fa-
milies of quaternary sequences with low correlation. IEEE-IT, IT-42(2) :579–
592, 1996.

[Knu95] Lars Knudsen. Truncated and Higher Order Differentials. In Fast Soft-
ware Encryption, FSE’94, volume 1008/1995 of Lecture Notes in Computer
Science, pages 196–211. Springer Berlin / Heidelberg, 1995.

[KR07] Lars .R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Advances in cryptology - ASIACRYPT 2007, volume 4833
of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

[KRW99] Lars R. Knudsen, Matt Robshaw, and David Wagner. Truncated Differen-
tials and Skipjack. In CRYPTO 99, volume 1666/1999 of Lecture Notes in
Computer Science, pages 165–180. Springer-Verlag, 1999.

[KW02] Lars R. Knudsen and David. Wagner. Integral cryptanalysis. In Fast Soft-
ware Encryption - FSE 2002, volume 2365 of Lecture Notes in Computer
Science, pages 112–127. Springer-Verlag, 2002.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Sym-
posium on communication, Coding and cryptography, in honor of J. L. Mas-
sey on the occasion of his 60’th birthday, 1994.

[Lea10] Gregor Leander. Small scale variants of the block cipher PRESENT. Crypto-
logy ePrint Archive, Report 2010/143, 2010. http: // eprint. iacr. org/
2010/ 143 .

[Lea11] Gregor Leander. On Linear Hulls, Statistical Saturation Attacks, PRESENT
and a Cryptanalysis of PUFFIN. In Kenneth G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-
puter Science, pages 303–322. Springer, 2011.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis.
In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, volume 839
of Lecture Notes in Computer Science, pages 17–25. Springer, 1994.

[LHL+02] S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon. Truncated differential crypta-
nalysis of camellia. In Information Security and Cryptology — ICISC 2001,
volume 2288 of Lecture Notes in Computer Science, pages 287–342, 2002.

[LM91] Xuejia Lai and James L. Massey. Markov Ciphers and Differentail Cryp-
tanalysis. In EUROCRYPT-91, Lecture Notes in Computer Science, pages
17–38. Springer-Verlag, 1991.

http://eprint.iacr.org/2010/143
http://eprint.iacr.org/2010/143


BIBLIOGRAPHIE 223

[LP07] Gregor Leander and Alexander Poschmann. On the Classification of 4 Bit
S-Boxes. In Proceedings of the 1st international workshop on Arithmetic
of Finite Fields, volume 4547/2007 of Lecture Notes In Computer Science,
pages 159–176. Springer, 2007.

[Luc01] Stefan Lucks. The Saturation Attack - A Bait for Twofish. In Mitsuru
Matsui, editor, Fast Software Encryption, FSE-2001, volume 2355 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2001.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EURO-
CRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages 386–
397. Springer, 1993.

[Mat94] Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryp-
tion Standard. In CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 1–11. Springer, 1994.

[Mat97] Mitsuru Matsui. New Block Encryption Algorithm MISTY. In Fast Software
Encryption - FSE 1997, volume 1267 of Lecture Notes in Computer Science,
pages 54–68. Springer Verlag, 1997.

[McE87] Robert J. McEliece. Finite Fields for Computer Scientists and Engineers.
Kluwer, Boston, 1987.

[MG00] Marine Minier and Henri Gilbert. Stochastic Cryptanalysis of Crypton. In
Bruce Schneier, editor, Fast Software Encryption, FSE 2000, volume 1978 of
Lecture Notes in Computer Science, pages 121–133. Springer, 2000.

[Min02] Marine Minier. Preuves d’Analyse et de Sécurité en Cryptologie à clé Secrète.
Thèse de doctorat, Université de Limoges, 2002.

[MSAK99] Shiho Moriai, Makoto Sugita, Kazumaro Aoki, and Masayuki Kanda. Secu-
rity of E2 against Truncated Differential Cryptanalysis. In Howard M. Heys
and Carlisle M. Adams, editors, Selected Areas in Cryptography, SAC’99, vo-
lume 1758 of Lecture Notes in Computer Science, pages 106–117. Springer,
1999.

[MSD10] Hamid Mala, Mohsen Shakiba, and Mohammad Dakhilalian. New impos-
sible differential attacks on reduced-round Crypton. Computer Standards &
Interfaces, 32(4) :222–227, 2010.

[MT99] Mitsuru Matsui and Toshio Tokita. Cryptanalysis of a reduced version of
the block cipher e2. In Lars R. Knudsen, editor, Fast Software Encryption,
FSE ’99,, volume 1636 of Lecture Notes in Computer Science, pages 71–80.
Springer, 1999.

[NGG06] Yassir Nawaz, Guang Gong, and Kishan Chand Gupta. Upper bounds on
algebraic immunity of boolean power functions. In Matthew J. B. Robshaw,
editor, Fast Software Encryption, FSE 2006, volume 4047 of Lecture Notes
in Computer Science, pages 375–389. Springer, 2006.

[NGG09] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. Algebraic immu-
nity of S-boxes based on power mappings : analysis and construction. IEEE
Transactions on Information Theory, 55(9) :4263–4273, 2009.

[NK92] Kaisa Nyberg and Lars R. Knudsen. Provable security against differen-
tial cryptanalysis. In Ernest F. Brickell, editor, Advances in Cryptology



224 BIBLIOGRAPHIE

- CRYPTO ’92, volume 740 of Lecture Notes in Computer Science, pages
566–574. Springer, 1992.

[NSZW09] Jorge Nakahara, Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin Wang.
Linear (Hull) and Algebraic Cryptanalysis of the Block Cipher PRESENT.
In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, Cryptology and
Network Security, CANS 2009, Proceedings, volume 5888 of Lecture Notes
in Computer Science, pages 58–75. Springer, 2009.

[Nyb91] Kaisa Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology — EU-
ROCRYPT ’91, volume 547/1991 of Book Series Lecture Notes in Computer
Science, pages 378–386. Springer Berlin / Heidelberg, 1991.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In
Eurocrypt-93, volume 765 of Lecture Notes in Computer Science, pages 55–
64. Springer-Verlag, 1994.

[Nyb96] Kaisa Nyberg. Generalized Feistel Networks. In ASIACRYPT ’96, volume
1163 of Lecture Notes in Computer Science, pages 91–104. Springer, 1996.

[Ohk09] Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Crypta-
nalysis. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-
Naini, editors, Selected Areas in Cryptography, 2009, Revised Selected Pa-
pers, volume 5867 of Lecture Notes in Computer Science, pages 249–265.
Springer, 2009.

[ÖVTcK09] Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight
Block Ciphers Revisited : Cryptanalysis of Reduced Round PRESENT and
HIGHT. In Colin Boyd and Juan Manuel González Nieto, editors, Informa-
tion Security and Privacy, 2009, Proceedings, volume 5594 of Lecture Notes
in Computer Science, pages 90–107. Springer, 2009.

[PSLL03] Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Improving the
Upper Bound on the Maximum Differential and the Maximum Linear Hull
Probability for SPN Structures and AES. In Thomas Johansson, editor, Fast
Software Encryption,FSE 2003, volume 2887 of Lecture Notes in Computer
Science, pages 247–260. Springer, 2003.

[Sel08] Ali Aydin Selçuk. On Probability of Success in Linear and Differential Cryp-
tanalysis. Journal of Cryptology, 21(1) :131–147, 2008.

[SKU+00] Makoto Sugita, Kazukuni Kobara, Kazuhiro Uehara, Shuji Kubota, and Hi-
deki Imai. Relationships among Differential, Truncated Differential, Impos-
sible Differential Cryptanalyses against Word-Oriented Block Ciphers like RI-
JNDAEL, E2. In AES Candidate Conference, pages 242–254, 2000.

[Tez10] Cihangir Tezcan. The Improbable Differential Attack : Cryptanalysis of Re-
duced Round CLEFIA. In Guang Gong and Kishan Chand Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010, volume 6498 of Lecture Notes
in Computer Science, pages 197–209. Springer, 2010.

[THK99] Hidema Tanaka, Kazuyuki Hisamatsu, and Toshinobu Kaneko. Strenght of
MISTY1 without FL Function for Higher Order Differential Attack. In Marc
P. C. Fossorier, Hideki Imai, Shu Lin, and Alain Poli, editors, Applied Alge-
bra, Algebraic Algorithms and Error-Correcting Codes,AAECC-13, volume
1719 of Lecture Notes in Computer Science, pages 221–230. Springer, 1999.



BIBLIOGRAPHIE 225

[Vau03] Serge Vaudenay. Decorrelation : A Theory for Block Cipher Security. Journal
of Cryptology, 16(4) :249–286, 2003.

[Vid05] Marion Videau. Critères de Sécurité des algorithmes de Chiffrement à Clé
Secrète. Thèse de doctorat, Université Paris 6, 2005.

[Wag99] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, volume 1636 of
Lecture Notes in Computer Science, pages 156–170. Springer, 1999.

[Wan08] Meiqin Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In
Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008,
volume 5023 of Lecture Notes in Computer Science, pages 40–49. Springer,
2008.

[ZRHD08] Muhammad Reza Z’aba, Håvard Raddum, Matthew Henricksen, and Ed Daw-
son. Bit-pattern based integral attack. In Kaisa Nyberg, editor, FSE-2008,
volume 5086 of Lecture Notes in Computer Science, pages 363–381. Springer,
2008.

[ZZ95] Yuliang Zheng and Xian-Mo Zhang. The criterion for global avalanche cha-
racterics of cryptographic functions. Journal of Universal Computer Science,
1(5) :320–337, 1995.

[ZZ99] Yuliang Zheng and Xian-Mo Zhang. Plateaued functions. Information and
Communication Security, ICICS’99, 1726 :224–300, 1999.





Table des figures

1.1 Fonction de tour d’un schéma de Feistel . . . . . . . . . . . . . . . . . . . 7
1.2 Fonction de tour d’un Feistel généralisé . . . . . . . . . . . . . . . . . . . . 8
1.3 Fonction de tour d’un SPN . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Fonction de tour de PRESENT . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Fonction de tour de SMALLPRESENT . . . . . . . . . . . . . . . . . . . . 12
1.6 Fonction SubBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Fonction ShiftRows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Fonction MixColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Attaque sur le dernier tour . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Exemple de chemin différentiel sur 3 tours de SMALLPRESENT-[4] . . . . 24
2.2 Attaque différentielle d’un schéma de Feistel. . . . . . . . . . . . . . . . . . 28
2.3 Différentielle d’un schéma de Feistel . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Différentielle impossible sur 4 tours de l’AES . . . . . . . . . . . . . . . . . 40

3.1 Schéma descriptif de l’attaque boomerang . . . . . . . . . . . . . . . . . . 46
3.2 Distingueur pour une attaque intégrale sur 3 tours de l’AES . . . . . . . . 53
3.3 Construction Davis-Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Résultats expérimentaux sur la probabilité d’un chemin différentiel (1) . . 63
4.2 Résultats expérimentaux sur la probabilité d’un chemin différentiel (2) . . 64
4.3 Résultats expérimentaux sur la probabilité d’un chemin différentiel (3) . . 65
4.4 Convergence de la somme des chemins vers la différentielle . . . . . . . . . 66
4.5 Distribution des variablesD[j] pour 8 différentielles sur 5 tours de SMALLPRESENT-

[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Répartition des mauvais candidats . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Probabilité de succès de l’attaque différentielle sur SMALLPRESENT-[8]
spécifiée dans la section 5.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 espace admissible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Diffusion sur 2 tours de SMALLPRESENT-8 . . . . . . . . . . . . . . . . . 130
6.3 Probabilité de succès: Attaque différentielle multiple (1) . . . . . . . . . . . 132
6.4 Probabilité de succès: Attaque différentielle multiple (2) . . . . . . . . . . . 132

8.1 Exemple pour l’intérêt de l’étude du spectre différentiel . . . . . . . . . . . 157





Liste des Algorithmes

1 Cryptanalyse différentielle d’un système de type Feistel . . . . . . . . . . . . 30
2 Cryptanalyse différentielle d’un système de type substitution-permutation . 30
3 Cryptanalyse différentielle tronquée d’un schéma de Feistel . . . . . . . . . . 35
4 Cryptanalyse différentielle impossible d’un système de type substitution-

permutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Cryptanalyse différentielle d’ordre v sur r + 2 tours d’un schéma de Feistel. 44
6 Attaque boomerang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Cryptanalyse linéaire de type 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Cryptanalyse linéaire de type 2 . . . . . . . . . . . . . . . . . . . . . . . . . 50
9 Cryptanalyse “différentielle-linéaire” . . . . . . . . . . . . . . . . . . . . . . 52
10 Attaque intégrale (attaque sur le dernier tour). . . . . . . . . . . . . . . . . 54
11 Cryptanalyse différentielle à clés liés . . . . . . . . . . . . . . . . . . . . . . 56
12 Recherche automatique de chemins différentiels . . . . . . . . . . . . . . . . 62
13 Complexité en données d’une attaque statistique . . . . . . . . . . . . . . . 81
14 Cryptanalyse différentielle multiple d’un système de chiffrement de type

substitution-permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115





Liste des tableaux

1.1 La boîte-S de PRESENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 La permutation de PRESENT . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 cadencement de clés de SMALLPRESENT . . . . . . . . . . . . . . . . . . 13

2.1 Table des différences de la boîte-S de PRESENT. . . . . . . . . . . . . . . 25
2.2 Exemple de chemins différentiel . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Probabilité d’un chemin différentielle: dépendance de la clé . . . . . . . . . 61

5.1 Ordre de grandeur des probabilités pour certaines cryptanalyses statistiques 73
5.2 Comparaison entre les différentes approximations des queues de binomiale . 77
5.3 Comparaison entre différentes estimations de la complexité en données . . 84
5.4 Comparaison entre les différentes formules de complexité en données . . . . 89
5.5 Comportement asymptotique de la complexité en données . . . . . . . . . . 93
5.6 Comparaison entre différentes formules pour la probabilité de succès . . . . 109
5.7 Lien entre la probabilité de succès et la complexité en données . . . . . . . 110

6.1 Complexité en temps d’une attaque différentielle multiple . . . . . . . . . . 117
6.2 Probabilité de succès empirique . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 Les différentielles utilisées dans l’attaque différentielle multiple sur PRESENT.135
6.4 Attaque différentielle multiple sur 18 tours de PRESENT . . . . . . . . . . 137
6.5 Résumé des attaques sur PRESENT. . . . . . . . . . . . . . . . . . . . . . 137

7.1 Fonctions puissances APN connues sur le corps F2n , n impair . . . . . . . . 151
7.2 Fonctions puissances APN connues sur le corps F2n , n pair . . . . . . . . . 151

8.1 Spectre différentiel des permutations puissances différentiellement 4-uniformes160
8.2 Spectre différentiel des non-permutations puissances différentiellement 4-

uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3 Monômes de permutation différentiellement 6-uniformeS . . . . . . . . . . 164
8.4 Spectre différentiel des non-permutations puissances différentiellement 6-

uniformes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5 Resumé sur les monômes différentiellement 4-et 6-uniformes . . . . . . . . 167
8.6 Spectre différentiel des permutations puissances étudiées par Cusick et Dob-

bertin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.7 Spectre différentiel des monômes différentiellement 4-uniformes . . . . . . . 179
8.8 Uniformité différentielle restreinte des fonctions puissances avec exposant

2t − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.9 δ(0) et δ(1) pour les fonctions 2t − 1 avec t = (n+ k)/3 . . . . . . . . . . . 199



232 LISTE DES TABLEAUX

A.1 Différentielles utilisées pour notre attaque différentielle multiple . . . . . . 202
A.2 Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=

{0, 1}, δ(b) ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.3 Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=

{0, 1}, δ(b) ≤ 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.4 Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=

{0, 1}, δ(b) ≤ 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.5 Spectre différentiel des fonctions Gt(x) = x2t−1 sur le corps F2n avec ∀b 6=

{0, 1}, δ(b) ≤ 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



Table des matières

Bibliographie viii

I Les attaques différentielles 1

1 Introduction 3
1.1 La cryptographie symétrique . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Les systèmes de chiffrement par bloc . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Chiffrement de type Feistel et ses généralisations . . . . . . . . . . . 6
1.2.3 Chiffrement de type substitution-permutation . . . . . . . . . . . . 8

1.3 Les différentes primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 La partie de confusion . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 La partie de diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Le cadencement de clé . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Quelques systèmes de chiffrements par bloc . . . . . . . . . . . . . . . . . . 10
1.4.1 PRESENT et SMALLPRESENT-[s] . . . . . . . . . . . . . . . . . . 11
1.4.2 Rijndael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Les attaques statistiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Les attaques statistiques . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.3 Les attaques sur le dernier tour . . . . . . . . . . . . . . . . . . . . 18
1.5.4 Complexité d’une attaque statistique . . . . . . . . . . . . . . . . . 19
1.5.5 Les variables aléatoires étudiées . . . . . . . . . . . . . . . . . . . . 20

2 La cryptanalyse différentielle et ses généralisations 23
2.1 La cryptanalyse différentielle . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Définition d’une attaque différentielle . . . . . . . . . . . . . . . . . 23
2.1.2 Les primitives utilisées pour résister aux attaques différentielles . . 24
2.1.3 Calcul théorique des probabilités d’une différentielle . . . . . . . . . 26
2.1.4 Comment retrouver de l’information sur la clé . . . . . . . . . . . . 28
2.1.5 Quantités importantes dans la cryptanalyse différentielle . . . . . . 30
2.1.6 Les probabilités utilisées . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 La cryptanalyse différentielle tronquée . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 L’attaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 34



234 TABLE DES MATIÈRES

2.2.4 Calcul théorique des probabilités . . . . . . . . . . . . . . . . . . . 36
2.2.5 Attaques existantes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 Lien avec les autres cryptanalyses . . . . . . . . . . . . . . . . . . . 39

2.3 La cryptanalyse différentielle impossible . . . . . . . . . . . . . . . . . . . 39
2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 L’attaque en elle même . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Lien avec les autres cryptanalyses . . . . . . . . . . . . . . . . . . . 41

2.4 La cryptanalyse différentielle d’ordre supérieur . . . . . . . . . . . . . . . . 42
2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 L’attaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4 Lien avec les autres cryptanalyses . . . . . . . . . . . . . . . . . . . 44

3 Autres attaques statistiques 45
3.1 Les attaques “boomerang” . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Les variables aléatoires étudiées . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Lien avec les autres attaques . . . . . . . . . . . . . . . . . . . . . . 46

3.2 La cryptanalyse linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 La cryptanalyse linéaire . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Attaque linéaire de type 1 et de type 2 . . . . . . . . . . . . . . . . 48
3.2.3 Distribution des variables aléatoires . . . . . . . . . . . . . . . . . . 50
3.2.4 La cryptanalyse linéaire multiple et multidimensionnelle . . . . . . 51

3.3 La cryptanalyse différentielle-linéaire . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 L’attaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 L’attaque par saturation ou attaque intégrale . . . . . . . . . . . . . . . . 53
3.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Lien avec les autres cryptanalyses . . . . . . . . . . . . . . . . . . . 54

3.5 Les attaques à clés liées . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Attaque différentielle à clés liées . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Les variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Lien avec d’autres attaques . . . . . . . . . . . . . . . . . . . . . . 56

4 Hypothèses utilisées dans la cryptanalyse différentielle 59
4.1 Les chemins différentiels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Chiffrement de Markov . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 L’algorithme “branch and bound” . . . . . . . . . . . . . . . . . . . 61
4.1.3 Expériences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Les différentielles: somme de chemins . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Théorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Expériences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Les différentielles: dépendance de la clé . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Expérimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



TABLE DES MATIÈRES 235

4.4 L’hypothèse de répartition aléatoire par fausse clé . . . . . . . . . . . . . . 68
4.4.1 Théorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Expériences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Analyse des attaques statistiques 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Les variables aléatoires étudiées . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Complexité des attaques statistiques simples . . . . . . . . . . . . . 72
5.1.3 Les travaux déjà effectués . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Estimation de la loi binomiale . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Comparaison avec les autres approximations . . . . . . . . . . . . . 76

5.3 Complexité en données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Le test d’hypothèses . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Méthode générale pour calculer la complexité en données . . . . . . 79
5.3.3 Travaux relatifs dans le cas de la cryptanalyse linéaire . . . . . . . . 83
5.3.4 Travaux relatifs dans le cas de la cryptanalyse différentielle . . . . . 84
5.3.5 Le comportement asymptotique de la complexité en données . . . . 85
5.3.6 Les résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . 88
5.3.7 Comportement asymptotique . . . . . . . . . . . . . . . . . . . . . 88

5.4 Probabilité de succès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Les statistiques d’ordre . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 La formule de la probabilité de succès . . . . . . . . . . . . . . . . . 95
5.4.3 Preuve de la formule de la probabilité de succès . . . . . . . . . . . 98
5.4.4 Lien avec les formules existantes . . . . . . . . . . . . . . . . . . . . 108
5.4.5 Résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.6 Lien entre la probabilité de succès et la complexité en données . . . 109

5.5 Probabilité de succès dans le cas de la cryptanalyse différentielle . . . . . . 110
5.5.1 Présentation de la nouvelle formule . . . . . . . . . . . . . . . . . . 110
5.5.2 Cryptanalyse différentielle de SMALLPRESENT-[8] . . . . . . . . . 111

6 La cryptanalyse différentielle multiple 113
6.1 La cryptanalyse différentielle multiple . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 L’algorithme décrivant l’attaque . . . . . . . . . . . . . . . . . . . . 114
6.1.3 La complexité en temps et en mémoire . . . . . . . . . . . . . . . . 115

6.2 La statistique étudiée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.1 Les variables aléatoires simples . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Distribution des variables aléatoires simples . . . . . . . . . . . . . 118
6.2.3 Approximation par une loi de Poisson . . . . . . . . . . . . . . . . . 119
6.2.4 Comment vérifier qu’un ensemble de différences est admissible . . . 120
6.2.5 Approximation des queues de la distribution des variables aléatoires 121
6.2.6 Preuve du théorème 6.3 . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.7 Distribution des variables aléatoires Ck . . . . . . . . . . . . . . . . 127

6.3 Complexité en données et probabilité de succès . . . . . . . . . . . . . . . 128
6.3.1 La complexité en données . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.2 La probabilité de succès . . . . . . . . . . . . . . . . . . . . . . . . 129



236 TABLE DES MATIÈRES

6.4 Validation expérimentale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.1 Description de l’attaque . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4.2 Analyse des résultats expérimentaux . . . . . . . . . . . . . . . . . 131
6.4.3 Commentaires sur les figures 6.3 et 6.4 . . . . . . . . . . . . . . . . 131
6.4.4 Validation de la formule de la probabilité de succès . . . . . . . . . 133
6.4.5 Validation de la formule de la complexité en données . . . . . . . . 133

6.5 Attaque sur 18 tours de PRESENT . . . . . . . . . . . . . . . . . . . . . . 133
6.5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

II Propriétés des boîtes-S 139

7 Introduction 141
7.1 Les fonctions booléennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.1.2 Spectre de Walsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2.2 Différentiabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2.3 Non-linéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.4 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.5 Dérivée en un point des fonctions puissances . . . . . . . . . . . . . 149
7.2.6 Remarques sur δ(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.7 Les monômes APN . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Spectre différentiel des monômes 153
8.1 Spectre différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.1.2 Intérêt de l’étude du spectre différentiel . . . . . . . . . . . . . . . . 156

8.2 Fonctions puissances différentiellement 4- et 6- uniformes . . . . . . . . . . 158
8.2.1 Permutations puissances différentiellement 4-uniformes . . . . . . . 158
8.2.2 Non-permutations puissances différentiellement 4-uniformes . . . . . 161
8.2.3 Permutation puissance différentiellement 6-uniformes . . . . . . . . 163
8.2.4 Non-permutations puissances différentiellement 6-uniformes . . . . . 165
8.2.5 Récapitulatif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3 Monômes avec exposant 22k + 2k + 1 . . . . . . . . . . . . . . . . . . . . . 168
8.3.1 Lien entre le spectre différentiel et le spectre de Walsh . . . . . . . 168
8.3.2 Spectre différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Fonctions avec exposant quadratique ou de Kasami . . . . . . . . . . . . . 170
8.4.1 Fonctions puissances différentiellement 2-valuées . . . . . . . . . . . 170
8.4.2 L’exposant quadratique . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.4.3 L’exposant de Kasami . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.4.4 Monômes avec exposant 2m+1 + 2m−1 − 1 sur le corps F22m . . . . . 174
8.4.5 Quelles sont les fonctions différentiellement 2-valuées? . . . . . . . . 175

8.5 Résumé sur les fonctions différentiellement 4-uniformes . . . . . . . . . . . 178
8.6 Les exposants 2t − 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.6.1 Lien avec les polynômes linéaires . . . . . . . . . . . . . . . . . . . 179



TABLE DES MATIÈRES 237

8.6.2 D’autres formulations équivalentes . . . . . . . . . . . . . . . . . . 181
8.6.3 Une propriété de symétrie . . . . . . . . . . . . . . . . . . . . . . . 183
8.6.4 Preuve du théorème 8.9 sur la propriété de symétrie . . . . . . . . . 185
8.6.5 La fonction x 7→ x7 . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.6.6 Preuve du théorème 8.10 sur le spectre différentiel de la fonction

x 7→ x7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.6.7 Quelques classes spécifiques . . . . . . . . . . . . . . . . . . . . . . 194

Appendices 201
A.1 Attaque expérimentale sur SMALLPRESENT-[8] . . . . . . . . . . . . . . 201
A.2 Spectre différentiel des fonctions x 7→ x2t−1 . . . . . . . . . . . . . . . . . . 202

Bibliographie 216


	Bibliographie
	I Les attaques différentielles
	Introduction
	La cryptographie symétrique
	Les systèmes de chiffrement par bloc
	Définition
	Chiffrement de type Feistel et ses généralisations
	Chiffrement de type substitution-permutation

	Les différentes primitives
	La partie de confusion
	La partie de diffusion
	Le cadencement de clé

	Quelques systèmes de chiffrements par bloc
	PRESENT et SMALLPRESENT-[s]
	Rijndael

	Les attaques statistiques
	Introduction
	Les attaques statistiques
	Les attaques sur le dernier tour
	Complexité d'une attaque statistique
	Les variables aléatoires étudiées


	La cryptanalyse différentielle et ses généralisations
	La cryptanalyse différentielle
	Définition d'une attaque différentielle
	Les primitives utilisées pour résister aux attaques différentielles
	Calcul théorique des probabilités d'une différentielle
	Comment retrouver de l'information sur la clé
	Quantités importantes dans la cryptanalyse différentielle
	Les probabilités utilisées

	La cryptanalyse différentielle tronquée
	Définition
	L'attaque
	Les variables aléatoires
	Calcul théorique des probabilités
	Attaques existantes
	Lien avec les autres cryptanalyses

	La cryptanalyse différentielle impossible
	Définition
	L'attaque en elle même
	Les variables aléatoires
	Lien avec les autres cryptanalyses

	La cryptanalyse différentielle d'ordre supérieur
	Définition
	L'attaque
	Les variables aléatoires
	Lien avec les autres cryptanalyses


	Autres attaques statistiques
	Les attaques ``boomerang''
	Description
	Les variables aléatoires étudiées
	Lien avec les autres attaques

	La cryptanalyse linéaire
	La cryptanalyse linéaire
	Attaque linéaire de type 1 et de type 2
	Distribution des variables aléatoires
	La cryptanalyse linéaire multiple et multidimensionnelle

	La cryptanalyse différentielle-linéaire
	Définition
	L'attaque
	Les variables aléatoires

	L'attaque par saturation ou attaque intégrale
	Description
	Les variables aléatoires
	Lien avec les autres cryptanalyses

	Les attaques à clés liées
	Attaque différentielle à clés liées
	Les variables aléatoires
	Lien avec d'autres attaques 


	Hypothèses utilisées dans la cryptanalyse différentielle
	Les chemins différentiels
	Chiffrement de Markov
	L'algorithme ``branch and bound''
	Expériences

	Les différentielles: somme de chemins
	Théorie
	Expériences

	Les différentielles: dépendance de la clé
	Expérimentation

	L'hypothèse de répartition aléatoire par fausse clé
	Théorie
	Expériences


	Analyse des attaques statistiques
	Introduction
	Les variables aléatoires étudiées
	Complexité des attaques statistiques simples
	Les travaux déjà effectués

	Estimation de la loi binomiale
	Estimation
	Comparaison avec les autres approximations

	Complexité en données
	Le test d'hypothèses
	Méthode générale pour calculer la complexité en données
	Travaux relatifs dans le cas de la cryptanalyse linéaire
	Travaux relatifs dans le cas de la cryptanalyse différentielle
	Le comportement asymptotique de la complexité en données
	Les résultats expérimentaux
	Comportement asymptotique

	Probabilité de succès
	Les statistiques d'ordre
	La formule de la probabilité de succès
	Preuve de la formule de la probabilité de succès
	Lien avec les formules existantes
	Résultats expérimentaux
	Lien entre la probabilité de succès et la complexité en données

	Probabilité de succès dans le cas de la cryptanalyse différentielle
	Présentation de la nouvelle formule
	Cryptanalyse différentielle de SMALLPRESENT-[8]


	La cryptanalyse différentielle multiple
	La cryptanalyse différentielle multiple
	Contexte
	L'algorithme décrivant l'attaque
	La complexité en temps et en mémoire

	La statistique étudiée
	Les variables aléatoires simples
	Distribution des variables aléatoires simples
	Approximation par une loi de Poisson
	Comment vérifier qu'un ensemble de différences est admissible
	Approximation des queues de la distribution des variables aléatoires
	Preuve du théorème 6.3
	Distribution des variables aléatoires Ck

	Complexité en données et probabilité de succès
	La complexité en données
	La probabilité de succès

	Validation expérimentale
	Description de l'attaque
	Analyse des résultats expérimentaux
	Commentaires sur les figures 6.3 et 6.4 
	Validation de la formule de la probabilité de succès
	Validation de la formule de la complexité en données

	Attaque sur 18 tours de PRESENT
	Conclusion



	II Propriétés des boîtes-S
	Introduction
	Les fonctions booléennes
	Définition
	Spectre de Walsh

	Fonctions vectorielles
	Définition
	Différentiabilité
	Non-linéarité
	Fonctions puissances
	Dérivée en un point des fonctions puissances
	Remarques sur (0)
	Les monômes APN


	Spectre différentiel des monômes
	Spectre différentiel
	Définition
	Intérêt de l'étude du spectre différentiel

	Fonctions puissances différentiellement 4- et 6- uniformes
	Permutations puissances différentiellement 4-uniformes
	Non-permutations puissances différentiellement 4-uniformes
	Permutation puissance différentiellement 6-uniformes
	Non-permutations puissances différentiellement 6-uniformes
	Récapitulatif

	Monômes avec exposant 22k+2k+1
	Lien entre le spectre différentiel et le spectre de Walsh
	Spectre différentiel

	Fonctions avec exposant quadratique ou de Kasami
	Fonctions puissances différentiellement 2-valuées
	L'exposant quadratique
	L'exposant de Kasami
	Monômes avec exposant 2m+1+2m-1-1 sur le corps F22m
	Quelles sont les fonctions différentiellement 2-valuées?

	Résumé sur les fonctions différentiellement 4-uniformes
	Les exposants 2t-1
	Lien avec les polynômes linéaires
	D'autres formulations équivalentes
	Une propriété de symétrie
	Preuve du théorème 8.9 sur la propriété de symétrie
	La fonction bold0mu mumu xx7xx7xx7xx7xx7xx7
	Preuve du théorème 8.10 sur le spectre différentiel de la fonction xx7
	Quelques classes spécifiques


	Appendices
	Attaque expérimentale sur SMALLPRESENT-[8]
	Spectre différentiel des fonctions xx2t-1

	Bibliographie


