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Overview

In this document, I present my work in the field of symmetric cryptography done during
the period 2008-2011, where I did my research as Phd-student in the team SECRET at
INRIA.

Our results have mainly concern with the analysis and the design of block ciphers.
Since the beginning of 90’s, there exist a lot of statistical attacks against block ciphers.
In the first part of our work, we focus on the generalizations of the so-called differential
cryptanalysis. The second part is devoted to some design criteria for block ciphers.

In the first part, our main interest was the determination of the complexity of statistical
attacks. We notably made an extensive study on the data complexity and the success pro-
bability of most of the statistical attacks on block ciphers. Our results have been presented
in a poster session at EUROCRYPT 2009 [BG09a| and in the international conference
Workshop on coding and cryptography [BG09b|. A complete version was published in the
journal Designs, Codes and Cryptography [BGT11]. Among the statistical attacks, the
differential cryptanalysis and its generalizations have a crucial role because of their impor-
tance for the security of block ciphers. During our cryptanalysis of PRESENT we checked
the hypotheses which are currently done in a differential cryptanalysis. The results and
observations stemming from our experiments have been published in the Workshop on
Tools for cryptanalysis [BG10]. Most recently, we proposed to use “many differentials” in
such a cryptanalysis. We then described more carefully the so-called multiple differential
cryptanalysis and began an overall study of its complexity. A part of our results has been
presented at the international conference Fast Software Encryption-FSE-2011 [BG11|.
Our results in this context have been obtained in collaboration with Benoit Gérard and
Jean-Pierre Tillich.

The second part is dedicated to the study of the S-boxes of block ciphers. The most
important criterion concerning the resistance of a block cipher against differential attacks
is called the differential uniformity of its S-boxes. In this part, we introduce the notion
of differential spectrum of power functions over a finite field and we explain why we have
here a more general criterion which may be of great interest. Some of the results in
this second part have been presented in IEEE International Symposium on Information
Theory- ISIT-2010 [BCC10a| and in The 10th International Conference on Finite Fields
and their Applications Fq10-2011 |BCCllal and published in the International Journal
of Information and Coding Theory [BCC10b| and in IEEE Transactions on Information
Theory [BCC11b]. In these papers, written with Anne Canteaut and Pascale Charpin, we
notably describe the differential spectra of several classes of power functions.



v

Part I

Statistical attacks are the most important attacks against block ciphers. The aim, of
such an attack is to recover information on the secret key. There exist a lot of statistical
attacks. In Chapter 1 we recall the basic knowledge concerning statistical attacks against
block ciphers. Chapters 2 and 3 form a survey of the main statistical attacks on block
ciphers.

Differential cryptanalysis was introduced in the 90’s. This statistical attack exploits
a non-uniform distribution of some differential to recover information on the key. There
exists a lot of generalizations of this attack, namely truncated differential cryptanalysis,
impossible differential cryptanalysis, higher-order differential cryptanalysis, for instance.
Chapter 2 is a survey of the generalizations of differential cryptanalysis.

There are statistical attacks which are more or less related to differential cryptanalysis.
In Chapter 3, we present some of these attacks that can be used against block ciphers. We
describe, in particular, linear cryptanalysis and its generalizations, integral cryptanalysis,
boomerang attack or related-key attack.

In Chapters 2 and 3, we explain the connections between the different attacks. For each
attack, we describe the corresponding algorithm and study the distribution of the random
variables involved in the attack.

In this thesis, we concentrate our attention on differential cryptanalysis. To analyze the
security of a block cipher against differential attack, we need to be able to compute the
probabilities of the best differentials. We present here our algorithm to find the best diffe-
rential trails. Using the best differential trails we obtain an estimation of the probabilities
of the differentials. Generally, this computation is done under some general assumptions
like the wrong-key randomization hypothesis. In Chapter 4, we present our experiments
on the lightweight block cipher PRESENT to verify some of the current hypotheses for
differential cryptanalysis. Our results, from these experimentations, show that classical
assumptions are not far to be true in the case of reduced version of PRESENT. This
analysis have been taken into account when computing in Section 5.5 the formula of the
success probability for differential cryptanalysis.

The complexities of a statistical attack rely on the data complexity, the success pro-
bability, the time complexity and the memory complexity. In order to study the data
complexity and the success probability of a statistical attack, we need to know the dis-
tributions of the random variables involved in the attack. Actually, in a lot of statistical
attacks against block ciphers, as presented in Chapters 2 and 3, the variables follow a
binomial distribution. In Chapter 5, we use a general framework to analyze the data com-
plexity and the success probability of all attacks presented in Chapter 2 and 3. We recall
previous works concerning differential cryptanalysis and linear cryptanalysis. We explain
why they cannot be applied for all statistical attacks. In Section 5.3.2, we present an algo-
rithm which uses a dichotomic search in order to find the data complexity of a statistical
attack for a fixed success probability. This algorithm gives an exact value of the data
complexity, but finding a general formula for the data complexity is more complicated
as the binomial distribution is hard to invert. In Section 5.3, by using an approximation



of the binomial distribution, we propose a formula of the data complexity of statistical
attacks when the random variables follow a binomial distribution. In [Sel0§], a formula
for the success probability is given. This formula uses a normal approximation of the
binomial distribution. In Section 5.4, we present a formula for the success probability of
a statistical attack which does not involve any approximation of binomial distribution.

The so-called truncated differential cryptanalysis uses a set of differentials which are
related through certain properties, to find information of the key of a given block cipher.
On the contrary, for some attacks, we need some differentials that are not necessary re-
lated. We call this attack multiple differential cryptanalysis. When computing the data
complexity and the success probability of multiple differential cryptanalysis we have been
confronted to the fact that the random variables do not follow a binomial distribution any-
more. Therefore, after studying the distributions of the random variables (in Section 6.2),
we derive (in Section 6.3) a formula for the data complexity and the success probability
of multiple differential cryptanalysis. Our results, presented in this chapter, are valida-
ted by our experimentations on SMALLPRESENT (Section 6.4). Using this framework,
in Section 6.5 we propose an attack on PRESENT which improves the best differential
attack on this block cipher.

Part 11

For block ciphers, the resistance to differential cryptanalysis is quantified by the so-
called differential uniformity of the Substitution-box (S-box) used in the cipher [NK92|.

Most notably, finding appropriate S-boxes which guarantee that the cipher using them
resists differential attacks is a major topic for the last twenty years. Power functions, i.e.,
monomial functions, form a class of suitable candidates since they usually have a lower
implementation cost in hardware. Also, their particular algebraic structure makes the
determination of their differential properties easier. However, there are only few power
functions for which we can prove that they have a low differential uniformity.

Chapter 7 is dedicated to the presentation of some known results for Boolean functions,
vectorial functions (especially power functions) and almost perfect non-linear (APN) func-
tions.

In Chapter 8, we introduce the notion of the differential spectrum of power function
that measures the resistance of the cipher to differential cryptanalysis.

The differential spectrum is the same for all APN functions. For non-APN functions,
we can have a large deviation between the differential spectrum of two functions with
same differential uniformity. We begin by explaining our motivation for the study of the
full differential spectra of power permutations (in Section 8.1.2). Further, we study power
functions differentially 4- and 6-uniform. We have done an exhaustive search, for fields
with reasonable size, for all power functions differentially 4- and 6-uniform. The main
results of our experiments are presented, and discussed, in Section 8.2. They indicate that
the number of families which are differentially 4- and 6-uniform is relatively small.
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In Section 8.3, we study the differential spectrum of the function
z = 222 on the field Foar.

Carl Bracken and Gregor Leander proved in |BL10] that these power functions are all
differentially 4-uniform. We provide here the whole differential spectrum of these functions
Other classes of power functions are sometimes differentially 4-uniform. In Section 8.4, we
study the differential spectrum of power functions with a quadratic or a Kasami exponent.
These families of functions have the particularity that the differential uniformity is always
a power of 2 and that the differential spectrum is two-valued.
Another class of differentially 4-uniform functions is the class of inverse functions on the
fields Fo» with n even. Our experiments lead us to the conjecture that, up to equivalence,
all differentially 4-uniform power functions F'(z) = ¢ on Fan belong to one of the classes :
—d=2%142% 11 and n = 4k,
— d =21 ged(t,n) = 2 and ged(2t,n) = 2,
—d=2%"—-2"+1,n#3t, ged(t,n) =2, and n =2 mod 4,
—d=2"—2 and n even.
If this conjecture is true, we have determined in this thesis the differential spectra of all
differentially 4-uniform power functions.

Our study of differentially 6-uniform power functions, led us to the following observa-
tion : almost all these functions are of the form G; = z — 22 1. In Section 8.6, we present
an extensive study of the differential spectrum of this family of functions. In particular,
in Section 8.6.3, we point out a link between the differential spectra of G; and G5 where
s=n—1t+1

In Section 8.6.5, we give the differential spectrum of G3(x) = 27 which is differentially
6-uniform. The last section in this chapter is dedicated to the study of the differential
spectra of other particular exponents in this family.



Introduction générale

Le travail de recherche présenté dans cette thése se situe en cryptographie symétrique.
En particulier, nous nous intéressons a l’analyse et a la conception des systémes de chif-
frement par blocs.

Le début des années 1990 a vu 'avénement d’un certain nombre d’attaques statistiques
pour les systémes de chiffrement par bloc. Durant cette thése, je me suis intéressée aux
généralisations de la cryptanalyse différentielle.

La premiére partie de ce manuscrit est dédiée a la présentation d’un certain nombre
d’attaques statistiques sur les systémes de chiffrement par bloc. Dans le chapitre 5, nous
proposons une étude générale qui permet de calculer la complexité en donnée et la proba-
bilité de succes d'un certain nombre d’attaques statistiques des systémes de chiffrements
par bloc. Ces résultats ont été présentés lors d’une session poster a FUROCRYPT-2009
[BG09a| et dans la conférence internationale Workshop on coding and cryptography WCC-
2009 [BG0O9b]. Une version compléte de ces résultats comprenant ’analyse de la probabilité
de succeés a été publiée dans le journal Designs Codes and Cryptography [BGT11]. Le fil
conducteur de cette partie reste ’analyse de la cryptanalyse différentielle et de ses généra-
lisations. Des travaux plus récents nous ont permis en utilisant plusieurs différentielles de
généraliser la cryptanalyse différentielle et la cryptanalyse différentielle tronquée. Dans
ces travaux, nous étudions la complexité d’une attaque différentielle multiple. La ma-
jeure partie de ces résultats a été présenté dans la conférence internationale Fust sofware
encryption-FSE-2011 [BG11]. Ces travaux sur la cryptanalyse différentielle n’auraient pas
été complets sans une analyse des hypothéses communément utilisées pour calculer la com-
plexité d'une attaque différentielle multiple. Les résultats expérimentaux concernant ces
travaux ont été quant a eux présentés au “Workshop on Tools for Cryptanalysis” |[BG10].
Les résultats obtenus dans ce domaine sont le travail d’une collaboration avec Benoit
Gérard et Jean-Pierre Tillich.

La seconde partie de cette thése est dédiée a 1’étude des critéres sur les boites-S qui
permettent de prémunir les systémes de chiffrement par bloc contre les attaques différen-
tielles. A la suite d’une étude approfondie de la résistance des boites-S de ces systémes de
chiffrement par bloc, nous avons introduit un nouveau critére, plus précis que 'uniformité
différentielle, nous permettant de mesurer la vulnérabilité des boites-S aux attaques diffé-
rentielles. Ainsi, avec Anne Canteaut et Pascale Charpin, nous avons introduit la notion de
spectre différentiel et étudié le spectre différentiel de différentes classes de fonctions puis-
sances. La plupart des résultats présentés dans cette section ont été soit présentés dans
les conférences internationales IEEE International Symposium on Information Theory-
ISIT-2010 |BCC10a| et The 10th International Conference on Finite Fields and their
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Applications Fq10-2011 [BCCl1a| ou publiés dans les journaux International Journal of
Information and Coding Theory |[BCC10b| et IEEE Transactions on Information Theory
[BCC11b].
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Premiére partie

Les attaques différentielles






Chapitre 1

Introduction

La cryptographie est traditionnellement utilisée pour dissimuler des messages aux yeux
de certains utilisateurs. Cette utilisation a aujourd’hui un intérét d’autant plus grand que
les communications via internet circulent dans des réseaux dont on ne peut garantir la
fiabilité et la confidentialité. Désormais, la cryptographie sert non seulement a préserver
la confidentialité des données mais aussi a garantir leur intégrité et leur authenticité.

Soit Alice et Bob, deux interlocuteurs qui veulent s’échanger des messages chiffrés. Il
existe deux grandes familles de cryptographie, la cryptographie asymétrique et la crypto-
graphie symétrique.

La cryptographie asymétrique est aussi appelée cryptographie a clé publique. Dans ce
modeéle, Alice choisit une clé publique et la clé privée correspondante et diffuse la clé
publique. Bob peut alors, a I’aide de cette clé publique, chiffrer les messages de son choix
et les envoyer a Alice qui est la seule & pouvoir les déchiffrer (car elle est la seule a posséder
la clé privée).

La cryptographie a clé publique consiste alors a construire un systéme de chiffrement
pour lequel il est “dur” en connaissant la clé publique de retrouver la clé privée.

A T'opposé de la cryptographie asymétrique, il y a la cryptographie symétrique. Celle-ci
est aussi appelée cryptographie a clé secrete. Dans ce modele, Alice et Bob partagent la
méme clé. C'est-a-dire que la méme clé est utilisée pour le chiffrement et le déchiffrement.
Dans ce modele, chaque couple d’interlocuteurs a alors besoin de posséder son propre jeu
de clé pour pouvoir s’échanger des messages chiffrés.

Dans cette thése, nous nous intéressons uniquement a la cryptographie symétrique.
Dans cette famille, nous pouvons distinguer plusieurs constructions différentes.

1.1 La cryptographie symétrique

Dans la famille de la cryptographie symétrique, nous pouvons distinguer plusieurs
méthodes de chiffrement, d’intégrité ou d’authentification. Nous détaillons ici briévement
certaines de ces constructions.



4 1.1 La cryptographie symétrique

Les systémes de chiffrement a flot

Les systémes de chiffrement a flot sont aussi appelés chiffrement a la volée. Dans un
systéme de chiffrement a flot, la clé utilisée est une suite chiffrante que l'on additionne
bit & bit au message clair. La sécurité des systémes de chiffrement a flot repose alors sur
le comportement aléatoire de la suite chiffrante. Les systémes de chiffrement a flot sont
des systémes de chiffrement rapides et bien adaptés pour les implémentations matérielles
courantes.

Les systémes de chiffrement par bloc

Parallelement aux systémes de chiffrement & flot, ou le chiffrement se fait a la volée,
on définit ce que 'on appelle systéme de chiffrement par bloc.

Pour chiffrer un message en utilisant un systéme de chiffrement par bloc, on découpe
ce message en blocs! et on applique une fonction de chiffrement F & chacun de ces blocs.
Cette fonction de chiffrement est paramétrée par une clé secréte K. Un mode opératoire
nous permet alors de définir le lien entre le clair et le chiffré d’'un bloc avec ceux des
autres blocs. Dans la suite de cette thése, on étudie plus particuliérement cette famille
de systémes de chiffrement symétrique. Ainsi une étude plus détaillée sur les systémes de
chiffrement par bloc est donnée dans les chapitres suivants.

Les fonctions de hachage

Une fonction de hachage est une fonction qui prend en entrée une chaine de longueur
arbitraire finie et qui retourne un haché de longueur fixe 2. Soit h une fonction de hachage :

h : {0,1}* — {0,1}™ ot m est la taille du haché et {0,1}* signifie ensemble des
chaines binaires de taille quelconque.

Les fonctions de hachage ne sont pas des systémes de chiffrement puisqu’elles ne néces-
sitent pas 'utilisation d’une clé. Et pourtant, on les classe naturellement dans la famille
des algorithmes symétriques car la plupart du temps, elles sont construites a partir de
primitives dérivées de systémes de chiffrement par bloc ou de systémes de chiffrement a
flot.

Code d’authentification de message

Ce type d’application cryptographique est plus connue sous le nom anglais "message
authentification code” ou encore sous 'abréviation MAC. Les codes d’authentification
permettent d’assurer 'intégrité du message ainsi que de 'authentifier. Lors de ’envoi du
message on y ajoute un code d’authentification qui est 'empreinte du message obtenue
grace & un haché paramétré par une clé.

Dans cette thése on s’intéresse plus particuliérement aux systémes de chiffrement par
bloc, et en particulier & la primitive utilisée pour chiffrer un bloc.

1. Dans la pratique, les blocs sont de taille comprise entre 64 et 256 bits.
2. Pour les fonctions de hachage classiques le haché est compris entre 128 et 512 bits
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1.2 Les systémes de chiffrement par bloc

1.2.1 Définition

Chiffrement par bloc

Définition 1.1. Soit X un message clair de taille m. Soit K la clé utilisée pour chiffrer
ce message. Nous notons () le nombre de bits de cette clé. Un systéme de chiffrement
par bloc E est une fonction qui dépend de la clé et du message :

E: F)xFp — Fp
(K,X) — Y =EK,X).

La clé K wutilisée pour chiffrer les messages est appelée clé maitre. Lorsque celle-ci
est fixée, on note Ex le systéme de chiffrement paramétré par la clé K :

Ex: FI' — Fp
X — Ex(X)¥ E(K, X)

Afin de pouvoir déchiffrer de fagon unique les messages chiffrés obtenus, on demande
a la fonction de chiffrement Ex d’étre une bijection de ’espace F5'.

Définition 1.2. Soit K une clé maitre. Soit Ex un systéme de chiffrement paramétré par
K. La fonction de déchiffrement notée Dk est la fonction réciproque de Ey :

Dg: FP — Fp
Y = Dg(Y)

Par la définition méme de la fonction de déchiffrement, si X est un message de F*
et Dk est la fonction de déchiffrement associée a la fonction de chiffrement Ex, on a la
propriété suivante :

Dk (Ek(X)) = X.

Systéme de chiffrement itératif

Les systémes de chiffrement par bloc actuels sont itératifs. C’est-a-dire qu'une méme
fonction est utilisée plusieurs fois de fagon itérative avec une clé différente a chaque tour.
Chaque clé est appelée clé de tour. Il est courant d’utiliser un algorithme de cadencement
de clé pour dériver les clés de tour a partir de la clé maitre.

Définition 1.3. Un algorithme de cadencement de clé reli¢ au systéme de chiffre-
ment itératif est une fonction qui permet a partir d’une clé maitre K de dériver des clés
de taille égale ou inférieure. Ces clés sont appelées clés de tours. On note par K; la clé
du tour numéro 1.

La structure de l'algorithme de cadencement de clé est détaillée dans la section 1.3.3.
Les fonctions que I'on appelle fonctions de tour sont des fonctions paramétrées par les
clés de tour K; (et donc indirectement par la clé maitre K).
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Définition 1.4. Soit m le nombre de bits du message clair. Soit K; une clé de tour dérivée
d’une clé maitre K. Une fonction de tour au tour i (1 <i <r) paramétrée par la clé de
tour K; est une fonction définie de la facon suivante :

FK.Z

7

Fy — F7
X = Fg(X).

Un systéme de chiffrement itératif est alors la composition de ses fonctions de tour.

Définition 1.5. Soit K une clé maitre. Soient (K,--- K,) les clés de tour dérivées de
la clé maitre par un algorithme de cadencement de clés. Soient (F,); les fonctions de
tour paramétrées par les clés de tour. Le systeme de chiffrement itératif Ex utilisant la
fonction de tour F est défini par

EK:FKTOFK,A,lO“’OFKQOFKl-

Dans les cryptanalyses, nous avons besoin d’é¢tudier un nombre réduit de tours du
systéme de chiffrement. Par abus de notation, nous notons par Fy la composition de j
tours de la fonction de tour. On a

J
Fye = Fg, 00 Fg,

ot (Kj,---Ky) sont les clés de tour dérivées de la clé maitre K.

Dans les systémes de chiffrement par bloc itératifs, les deux principales familles sont :
les primitives utilisant les schémas de type Feistel et les primitives utilisant les schémas
de type substitution-permutation. La suite de cette section est dédiée a la présentation de
ces deux types de systémes de chiffrement.

1.2.2 Chiffrement de type Feistel et ses généralisations

Les schémas de Feistel ont été introduits par Horst Feistel au début des années 70,
pour la conception de systéme de chiffrement LUCIFER. Ce systéme de chiffrement a servi
de base a la conception du systéme de chiffrement trés connu "data encryption standard”
(DES) |[DEST77| qui a été standardisé en 1977. Par la suite de nombreux algorithmes ont
repris cette structure qui a pris le nom de son auteur.

Dans un schéma de Feistel simple, le message de taille m (m pair), est divisé en deux

parties de taille m /2. Nous notons par Xég) et Xéd) les deux parties du message clair. Le

message clair est alors la concaténation de X((]g ) et X((]d) 3

X = X |1xg”.
De la méme fagon, nous notons Xi(g ) et XZ-(d) les deux parties de I’état interne apreés ¢ tours

du systéme de chiffrement. La fonction de tour d’un schéma de Feistel classique (voir
figure 1.1) est alors définie de la fagon suivante :

3. les notations (g) et (d) sont utilisées pour symboliser les parties gauche et droite.
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Définition 1.6. Un chiffrement de Feistel est un systéeme de chiffrement par bloc
itératif opérant sur des bloc de taille m, m pair. Au tour i, la fonction de tour, paramétrée
par la clé K;, est définie par

Fx.: FI?xFM? o F0/? x Fo/?

[

(XX = (07, Xx)

K3 2

ot (9) (d)
d
Xig = Xi—17

X9 =x9 ¢ (X9 K,

i—1

et f est une fonction interne non nécessairement inversible.

Dans un schéma de Feistel pour déchiffrer il suffit d’utiliser le méme processus en
inversant ’ordre des clés de tour. En effet pour les schémas de Feistel sur r tours, on a la
propriété simple que Xﬁ)l = Xi(g) et Xi(f)l = Xi(d) @ f(Xi(g)7 K;).

Ainsi dans un schéma de Feistel on ne demande pas nécessairement & la fonction
interne f d’étre une permutation.

) (d)
X% X

g

K;

Ly

Y>~f<
X/ X

FIGURE 1.1 — Fonction de tour d’un schéma de Feistel

Il y a de nombreuses généralisations des schémas de Feistel.

Le schéma de Feistel généralisé introduit par Kaisa Nyberg en 1994 [Nyb94|( "Generalized
Feistel Network") fait partie de cette grande famille. Il divise le message en parties plus
petites. Chaque partie du message constitue une branche de la fonction de tour du Feistel.

Définition 1.7. Soit m = 2Xs. Soit X [’état interne du systéme de chiffrement. On note
par X = (M, 2N e découpage de X en mots de taille s. Soit X fonctions internes
définies par f; : F5 — F5 pour (1 < j < X). Soit X Uentrée de taille 2s\ divisée en 2\
blocs de s bits. La sortie de la fonction de tour d’un schéma de Feistel généralisé
est notée Y et est définie pour 7 =1---2X\ par

@ = xU g fj(X(2s—j) ® Ki(j)) pour j =1---\

()

Z(j) — X(J) pourj =\+ 1, ,2)\
vy — ,06-1 pour j =2,...,2\
vy ey

Le cas particulier d’un schéma de Feistel généralisé divisé en 8 branches est décrit dans
la figure 1.2.

Un autre exemple de généralisation des schémas de Feistel consiste a utiliser des
branches de tailles différentes. C’est le cas par exemple du systéme de chiffrement Misty
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K
&— h |-o-
K>

b f2 D~

K3

b f3 D -

&) fa b -

2(2) 2(3) 2(4) z<°> Z(G)

FIGURE 1.2 — Fonction de tour d'un schéma de Feistel généralisé comme introduit par
Kaisa Nyberg [Nyb94| (cas particulier ou le message est divisé en 8)

[Mat97| qui comporte un schéma de Feistel interne de taille 16 bits divisé en 7-+9 bits et
une fonction interne différente suivant le nombre de bits.

Il existe de nombreuses autres généralisations des schémas de Feistel. Ceux-ci com-
portent principalement ’avantage d’utiliser une primitive similaire pour le chiffrement et
le déchiffrement.

1.2.3 Chiffrement de type substitution-permutation

Une autre grande famille de systémes de chiffrement itératif que nous allons étudier
sont les schémas de type substitution-permutation (SPN :"Substitution Permutation Net-
work").

Définition 1.8. Un systéme de chiffrement par bloc itératif est dit de type substitution-
permutation si la fonction de tour peut se décomposer en trois grandes étapes : une
étape dite d’ajout de clé, une étape de substitution qui est non-linéaire et une étape de
permutation qui est linéaire.

Afin de permettre le déchiffrement la fonction de tour doit étre une bijection.

La figure 1.3 représente les trois étapes importantes de la fonction de tour d’un systéme
de chiffrement de type substitution-permutation.

Cette définition trés large nous permet de faire rentrer un grand nombre de systémes
de chiffrement dans la catégorie des SPN.

L’exemple le plus connu de systéme de chiffrement de ce type est “Rijndael”. Plusieurs
versions ont été standardisées par le NIST en 2000 [DR99| sous le nom de "Advanced
encryption standard” (AES). Une description de cet algorithme est donnée dans la sec-
tion 1.4.2.

Outre ’AES, dans cette thése nous nous sommes particuliérement intéressés au sys-
téme de chiffrement PRESENT [BKL*07]. Tout au long de ce manuscrit nous faisons
référence a ce systéme de chiffrement de type substitution-permutation. Une description
de cet algorithme est faite dans la section 1.4.1.
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Ajout de clé

Substitution

Permutation

FIGURE 1.3 — Fonction de tour d’'un SPN

1.3 Les différentes primitives

Les systémes de chiffrements par bloc comportent en général deux parties. Une partie
de confusion et une partie de diffusion.

1.3.1 La partie de confusion

La partie de confusion du systéme de chiffrement est la seule partie non-linéaire du
systéme de chiffrement par bloc. Dans un systéme de chiffrement de type substitution-
permutation elle correspond a la partie de substitution. Dans cette thése on s’intéresse
aux systémes de chiffrement pour lesquels I’état interne de la partie de substitution est
divisé en mots de petite taille*. Une application non-linéaire est appliquée en paralléle a
chacun de ces mots. Cette application non-linéaire qui peut étre la méme ou étre différente
pour chacun des mots du systéme de chiffrement est appelée boite-S. Dans les systémes
de chiffrement de type substitution-permutation la fonction de tour doit étre bijective
afin de pouvoir déchiffrer. Ainsi les boites-S qui composent ce systéme de chiffrement sont
toujours bijectives. Dans les systémes de chiffrement de type Feistel nous n’avons pas
besoin de cette contrainte de bijectivité. Pour le DES par exemple les boites-S sont de 6
bits vers 4. Mais pour des soucis d’implémentation la plupart des systémes de chiffrement
comportent des boites-S inversibles.

Il existe plusieurs facons de définir les boites-S. On peut, par exemple, comme dans
le cas de 'AES (section 1.4.2), la définir en identifiant 'espace vectoriel Fy au corps fini
Fyn et définir une permutation sur ce corps fini. L’autre méthode tout aussi utilisée pour
définir une boite-S est de donner I'image point par point de la fonction (c’est le cas par
exemple de la définition de la boite-S de PRESENT donnée dans le tableau 1.1).

Dans la premiére partie de cette thése on s’intéresse trés peu a la fagcon dont sont
construites les boites-S. On admettra donc que 1’on posséde une table avec les correspon-
dances entre les entrées et les sorties. La deuxiéme partie de cette thése est entiérement
consacrée a I’étude de certaines propriétés de ces fonctions (voir partie IT).

4. de ordre de 4 ou 8 bits pour les systémes de chiffrement actuels.
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1.3.2 La partie de diffusion

Dans un systéme de chiffrement de type substitution-permutation cette partie de dif-
fusion correspond & la permutation. Il existe plusieurs maniéres de diffuser I'information
entre les tours.

Dans le systéme de chiffrement PRESENT (voir la description de PRESENT dans la
section 1.4.1), la permutation effectuée est une permutation dite “bit @ bit”.

Un autre exemple de permutation que 'on peut citer est la permutation dite “mot a
mot” qui mélange des ensembles de bits de taille fixe. C’est ce type de permutation qui
est faite dans la fonction “ShiftRows” et “MixColumns” de I’AES (voir la description de
I’AES dans la section 1.4.2).

Pour les schémas de Feistel, les deux types de permutations citées précédemment sont
utilisés dans la partie linéaire de la fonction interne.

1.3.3 Le cadencement de clé

Dans les systémes de chiffrement par bloc itératifs, pour chaque tour, la fonction de
tour F est paramétrée par une clé de tour K; (1 <i < r). Les concepteurs des systémes
de chiffrement actuels aimeraient que les clés de tours soient indépendantes entre elles
pour pouvoir obtenir des critéres de sécurité pour leur systéme de chiffrement contre les
attaques connues. Or cela nécessiterait que la clé maitre soit la concaténation de toutes
les clés de tours. En pratique cela n’est pas possible car la taille de la clé maitre serait
alors beaucoup trop grande. Dans les algorithmes de chiffrement par bloc la taille actuelle
des clés maitres ne dépasse pas 256 bits®. Les clés de tour sont alors dérivées de la clé
maitre par un algorithme de cadencement de clé.

Dans cette thése on ne s’intéresse qu’aux systémes de chiffrements par bloc ou la clé

de tour est ajoutée par un “ou” exclusif. Ce type de systéme de chiffrement est appelé
"key-alternating cipher” [DRO5].

1.4 Quelques systémes de chiffrements par bloc

A Theure actuelle, il existe une grande variété de systémes de chiffrement par bloc.
Mon attention durant cette thése s’est porté plus particulierement sur deux systémes de
chiffrement de type substitution-permutation.

Le premier est I’AES, puisque c’est le standard du NIST actuellement trés répandu et
trés utilisé.

Le second est I'algorithme de chiffrement PRESENT. En effet grace a sa structure simple
a comprendre et les différentes versions réduites existantes, nous avons pu mener un certain
nombre d’expérimentations sur ce systéme de chiffrement. Ce systéme de chiffrement est
trés étudié a I’heure actuelle.

5. Les critéres de sécurité actuels recommandent des clés de taille supérieure a 80 bits
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1.4.1 PRESENT et SMALLPRESENT-[s]
Le systéme de chiffrement PRESENT

Le systéme de chiffrement PRESENT |BKL07] a été introduit a la conférence CHES ©
en 2007. Ce systéme de chiffrement fait partie de la nouvelle génération des systémes de
chiffrement par bloc qui sont dits & bas cott ( "lightweight block cipher"). 11 chiffre des blocs
de 64 bits au moyen d’'un algorithme qui suit le modele d’un schéma de type substitution-
permutation. Il existe deux versions qui dépendent de la taille de la clé maitre (80 bits ou
128 bits). Ce systéme de chiffrement qui utilise 32 clés de tours se décompose en 31 tours
avec un ajout de clé supplémentaire a la fin du dernier tour. La fonction de tour Fk, au
tour 7 (1 < i < 31) se décompose de la fagon suivante :

Ajout de la clé de tour : Cette étape consiste en I'addition bit & bit de la clé de tour et de
I’état interne.

La substitution : Pour cette partie de substitution, 1’état interne de 64 bits est divisé en
mots de 4 bits. Les 16 mots sont modifiés par passage dans une petite boite-S. La
boite-S de PRESENT, qui est la méme pour les 16 mots, effectue une bijection de
[F3. Dans la suite de cette thése on utilise le préfixe Ox pour indiquer une notation
hexadécimale (notation en base 16). Par exemple le chiffre 13 est représenté par 0xd
et le chiffre 52 = 3 - 16 4 4 est représenté par 0x34. La boite-S de PRESENT, notée
S, est définie dans le tableau 1.1.

X 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 Oxa O0xb Oxc Oxd Oxe Oxf
S(x) Oxc 0x5 0x6 Oxb 0x9 0x0 Oxa Oxd 0x3 Oxe Oxf 0x8 0x4 0x7 Ox1 0x2

TABLE 1.1 — La boite-S de PRESENT

La permutation : La permutation est une permutation bit a bit. Elle consiste a changer
la place des bits de I’état interne. Dans le tableau 1.2 décrivant la permutation, la
valeur i correspond a la position du bit et P(i) correspond & sa position apres la
permutation (0 <1 < 63).

o1 (234|567 8|9 |10]11 1213|1415
i) 0 |16(32]48 | 1 | 173349 | 2 |18 |34 (50| 3 | 19|35 |51

]

(

i 161718192021 [22[23[24[25 262728293031
PG) | 4]20]36]52] 5 [21|37 |53 6 [22|38 |54 7 [23]39]55

2

(

]

(

32133134 (35|36 |37 38|39 |40 |41 |42 |43 | 44 | 45|46 | 47
i) 8 |24]40 56| 9 | 25|41 |57 |10 |26 |42 |58 |11 |27 |43 |59
48 149 150 | 51 | 52 [ 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63
i) (|12 128 |44 60|13 129 |45 |61 |14 |30 |46 |62 |15 |31 |47 |63

TABLE 1.2 — La permutation de PRESENT

La fonction de tour de PRESENT est représentée sur la figure 1.4.

6. CHES : "Cryptographic Hardware and Embedded Systems"
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g

S15| | S14| | S13| | S12] | S11| | S10| | S9| | S8 | | ST | |S6||S5||S4||[S3||S2||S1|]|S0O

FIGURE 1.4 — Fonction de tour de PRESENT

Soit X I’état interne aprés ¢ — 1 tours du systéme de chiffrement. Soit K; la clé du tour
1. Les différentes étapes de la fonction de tour s’enchainent de la fagon suivante :
— Addition de la clé de tour : Y = X @ K;.
— Substitution : Soit Y = (Y63 ... V() le découpage bit a bit de Y. On applique
la boite-S & chacun des mots de 4 bits. Pour 0 < j < 150n a :

(748 i 42) Z(eit) Z ()] — Gy ni+8) Y (ni+2) Y (nitl) )],

— Permutation : I’état a la sortie de la fonction de tour est alors P(Z) ou P est la
permutation définie dans le tableau 1.2.

Les versions réduites : SMALLPRESENT-|s]

Les systémes de chiffrement SMALLPRESENT-[s] (0 < s < 16) sont des versions
réduites de PRESENT. Les spécifications sont données dans [Leal0|. La boite-S utilisée
pour le systéme de chiffrement est la méme que celle de PRESENT (tableau 1.1). La
valeur de s nous donne le nombre de boites-S utilisées pour le chiffrement. Ainsi comme la
boite-S transforme des mots de 4 bits, la taille du message clair est 4s bits. La permutation
utilisée est une mise & ’échelle de celle utilisée pour PRESENT. Les fonctions de tour
de SMALLPRESENT-[4] et SMALLPRESENT-[8] sont représentées sur la figure 1.5. Ces
deux versions sont utilisées dans les chapitres suivants pour mener des expérimentations.
SMALLPRESENT-[4] chiffre des message de 16 bits e¢ SMALLPRESENT-|[8| chiffre des
messages de 32 bits.

T EE19999

53“52“51“50 S?“SG"85“54“53“82“81“50

Fany
Fany
T
Fany
T

FIGURE 1.5 — Fonction de tour de SMALLPRESENT-[4] et SMALLPRESENT-[3].
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Les algorithmes de cadencement de clé

Comme nous ’avons défini dans la définition 1.3, un algorithme de cadencement de clé
sert & dériver des clés de tours & partir d’une clé maitre K. Dans la version de PRESENT
présentée en 2007, deux algorithmes de cadencement de clé sont décrits. Un pour des clés
de 80 bits et un pour des clés de 128 bits. Nous décrivons ici l'algorithme de cadencement
de clé pour une clé maitre de 80 bits.

Le registre de clé K est représenté bit a bit par KK ... KO Au tour i, les 64
bits de la clé de tour K; = Ki(GS)Ki(GQ) e Ki(o) correspondent aux 64 bits les plus & gauche
du registre K. Ainsi au tour ¢ nous avons K; = K; % K;(62 ... [, = K@) (78 ... (16),
Par la suite le registre est mis a jour de la facon suivante :

1. [K(79)K(78) ... K(61) f(60) L K(O)] = [K(18)K(17) e KO (T9) L K(20)K(19)] (ro-
tation de 19 bits),

2. [KM) KT KT KT6)] = S[K ) KT8 KT [(76)]  (passage des 4 bits de poids fort
dans la boite-S),

3. [KIW K8 17 16 g (19)] = [ (19 g (18) O K 16) [ 15)) @ compteur  (ajout d’un
compteur).

La valeur de compteur est donnée par le numéro du tour.

L’algorithme de cadencement de clé pour la clé de 128 bits est décrit dans [BKL107].

Lorsqu’il introduit SMALLPRESENT-[s|, Gregor Leander propose d’utiliser les clés
de 80 bits pour toutes les versions réduites. Pour nos expérimentations (voir chapitre 4,
chapitre 5 et chapitre 6) nous avons trouvé intéressant de mettre aussi a 1’échelle la
clé maitre et 'algorithme de cadencement de clé, c’est-a-dire d’avoir des tailles de clé
maitre du méme ordre de grandeur que le nombre de bits du message. Durant cette
these on s’est intéressé plus particuliérement & deux des versions réduites de PRESENT :
SMALLPRESENT-[4] et SMALLPRESENT-[8|. Pour cette raison dans le tableau 1.3
nous décrivons 'algorithme de cadencement de clé que nous avons utilisé pour des clés
maitres de 20 bits et 40 bits.

Clé de 20 bits :

(KON K8 KOO — [KOKO) ... K& O] rotation de 7 bits
(KU KO8 g0 6] — gk 19 g (18) ¢ (17 [ (16)] passage dans la boite-S
[KOKOKOIKWOK®)]  — [KOKO KO KO K] @ compteur ajout du compteur

Clé de 40 bits :

[KCVKE® ... KOKO] = [KAOKO)  02) D] rotation de 11 bits
[KBNKE) KB GO] — GG [ 68) (37 [ (36)] passage dans la boite-S
[KOWKOO KO KE M) — KOV K KO K K] @ compteur  ajout du compteur

TABLE 1.3 — Algorithmes de cadencement de clé pour SMALLPRESENT-[4] et
SMALLPRESENT-[§].
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1.4.2 Rijndael

Rijndael est un standard de chiffrement par bloc. Il a été inventé par Vincent Rijmen
et Joan Daemen. En 2000 certaines versions ont été choisies par le NIST pour devenir
I'"Advanced Encryption Standard” (AES). Dans la norme NIST FIPS 197 il permet de
chiffrer des blocs de 128 bits au moyen d’une clé maitre de taille variable : 128, 192 ou
256 bits. Le nombre d’itérations de la fonction de tour dépend de la taille de la clé : le
standard précise que pour la clé de 128 bits on applique 10 fois la fonction de tour (sans
le dernier “MixColumns”), alors qu’il faut 14 tours si on utilise la clé de 256 bits Un mot
de 128 bits est découpé en 16 mots de 8 bits et est représenté sous forme d’une matrice
4 x 4 d’octets.

La fonction de tour est décomposée en 4 opérations simples sur la matrice :

SubBytes : C’est une opération de substitution qui consiste & appliquer parallélement a
chaque octet de ’entrée une boite-S. Ici la boite-S est une permutation de I'espace
vectoriel F5. Elle identifie chaque mot de 8 bits & un élément du corps

Fos = Fo[X]/(X® 4+ X'+ X3+ X +-1)

par l'isomorphisme suivant :

7

8 )

(.f(),l‘l, ...,.Z'7) S FQ — @IZXZ
1=0

Les opérations effectuées sur les polynémes sont définies modulo le polyndéme irré-
ductible X8 + X% 4+ X3 + X + 1. Cette boite S est composée de la fonction inverse
dans le corps fini Fos :

x € Fgs > 224

avec la fonction affine dans I'espace vectoriel F3 (bijective) décrite ci dessous :

[ o ] 1 000111 1] [ax] [1]
U1 11000111 T 1
Vs 11100011 T 0
ys | |11 110001 T3 | o | 0
wl 11111000 T4 0
Us 01111100 T5 1
U 00111110 T 1

| 0001 111 1] |a] [0
Zo,0 : Zo,1 : Zo,2 : 20,3 : : :

L © | boiteS: | 1 o
Z1,0 | T11 T2 . }

I _ _ | inversion | _ | _ _ o
720‘1'21‘3?22‘1‘23 + | | |

77’ ‘7;‘ 7 ‘7; fonction | _ ‘77‘ _ ‘77

1 r 1 X 1 r 1
T30 | T31 | T3z | T33 affine [ [ [
| | | | | |

FIGURE 1.6 — Fonction SubBytes
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ShiftRows : C’est une rotation des lignes de la matrice : la ligne 1,
0 <i < 3 est décalée de i octets vers la gauche.

| | | | | |
0,0 | To,1 | To,2 | 10,3 | | |
-1 - -~ - B I R

T1,0 | Ti1 | T12 | P13 \ \ I
décalage | | |
| | | de 2 octets | | |

T2,0 | T2,1 | €22 | X233 Z22 | X233 | X2,0 | T21
I I I I I I
T30 | T31 | T32 | T33 | | |
| | | | | |

FIGURE 1.7 — Fonction ShiftRows

MixColumns : C’est une transformation linéaire appliquée en paralléle aux 4 colonnes de
la matrice. Chaque colonne subit alors la transformation suivante :

Yo o' a+1 1 1 Zo
yo| 1 « a+1 1 1
Yo 1 1 « a+1 Ty
Y3 a+1 1 1 o' T3

oll v est racine de X® + X* 4+ X3 4+ X + 1 et zg, ..., 23, Yo, ..., y3 sont des octets en
entrée et en sortie respectivement.

1 I 177 7| mélange [ -1
T10 | T11 | P12 | T13 | des octets ‘

T30 | T31 | T32 | T33 |

FIGURE 1.8 — Fonction MixColumns

AddRoundKey : C’est I'insertion de la clé de tour par un ou exclusif bit & bit.

1.5 Les attaques statistiques

1.5.1 Introduction

Attaquer un systéme de chiffrement par bloc consiste en général a retrouver de I'infor-
mation sur la clé ayant servi a chiffrer. Si nous excluons les attaques physiques, il existe
deux grandes familles d’attaques structurelles sur les systémes de chiffrement par bloc :
les attaques algébriques et les attaques statistiques.

L’approche algébrique consiste a essayer de reconstruire le systéme de chiffrement
comme un polynéme qui dépend de la clé. On peut aussi décrire I'algorithme par un
systéme d’équations qui dépend du message clair, du chiffré correspondant ainsi que des



16 1.5 Les attaques statistiques

bits de la clé. Cette méthode qui n’est pas trés efficace pour les systémes de chiffrement
par bloc actuels peut étre alliée a d’autres méthodes pour retrouver de l'information sur la
clé d’un systéme de chiffrement comportant plus de tours. Un mélange entre 1’observation
d’un phénoméne statistique combiné avec une attaque algébrique peut étre utilisé. On
obtient alors des équations algébriques probabilistes. Si on prend 'exemple de I'attaque
différentielle” qui sera décrite dans la section 2.1 on peut la combiner avec une attaque
algébrique. C’est le cas par exemple de 'attaque différentielle algébrique introduite & FSE
en 2009 par Martin Albrecht et Carlos Cid [AC09].

L’approche statistique consiste, a partir de I’observation d’un comportement non-aléatoire
du systéme de chiffrement par bloc, a retrouver de I'information sur la clé. C’est ce type
d’attaque qui est détaillé dans les parties suivantes.

Dans un premier temps avant de chercher a retrouver de I'information sur la clé nous
avons besoin de définir la notion de distingueur.

Définition 1.9. On appelle distingueur un algorithme qui cherche par un jeu de ques-
tions/réponses a distinguer un systéme de chiffrement particulier d’une permutation idéale
c’est a dire ayant le comportement d’une permutation tirée au hasard selon la distribution
uniforme.

Les attaques statistiques peuvent alors étre divisées en deux parties. Les attaques dites
“faibles” qui consistent & observer un comportement non-aléatoire d’un systéme de chiffre-
ment sans donner d’information sur la clé utilisée (ces attaques sont appelées "distingui-
shing attacks”). Et les attaques plus “fortes” qui consistent a retrouver de I'information
sur la clé utilisée pour chiffrer. Dans beaucoup d’attaques statistiques la premiére étape
consiste a construire un distingueur avant de pouvoir récupérer de I'information sur la clé.

Afin de pouvoir distinguer le systéme de chiffrement d’une permutation aléatoire nous
récupérons de U'information venant de différents couples de messages clairs/chiffrés obte-
nus avec la méme clé. La maniére dont ces couples sont obtenus détermine le contexte
dans lequel les attaques peuvent s’appliquer. Ainsi on distingue différents types d’at-
taques. On peut citer, par exemple les attaques a clairs connus et les attaques a clairs
choisis. Le premier type d’attaque nécessite juste de pouvoir récupérer les messages clairs
avec les chiffrés correspondants. Dans les attaques a clairs choisis 'attaquant doit pouvoir
demander les chiffrés correspondant aux messages clairs de son choix.

1.5.2 Les attaques statistiques

Il existe un grand nombre d’attaques statistiques. Les chapitres 2 et 3 détaillent cer-
taines de ces attaques sur les systémes de chiffrement par bloc. La présentation qui est
faite ici se veut générale.

Supposons que nous avons réussi a extraire une propriété particuliére P pour le systéme
de chiffrement que nous sommes en train d’étudier. Une attaque statistique que j’appelle

“classique” consiste & tester une partie des clés pour savoir laquelle est la bonne 8.

7. La cryptanalyse différentielle fait partie de la famille des attaques statistiques

8. La plupart des attaques statistiques que nous nous présentons dans cette thése peuvent étre qua-
lifices de ce que jappelle “classique”. La seule qui ne l'est pas est attaque linéaire de type 1 (voir
section 3.2)
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Dans cette thése on se limite aux attaques statistiques qui consistent a faire la dis-
tinction entre deux types de clés : on suppose en effet que la propriété étudiée a un
comportement non-idéal pour la clé testée correspondant & la clé utilisée pour chiffrer
et qu’elle a un comportement idéal si la clé testée n’est pas celle qui a été utilisée pour
chiffrer. Cette hypothése est appelée hypothése de répartition aléatoire par fausse clé®.

Nous allons donc faire la distinction entre les clés utilisées.

Notation 1.1. Dans le contexte ou la clé maitre est fivée mais inconnue de [’attaquant,
nous notons par K* la clé maitre utilisée pour chiffrer. On appelle sous-clé ou clé candidate
un ensemble de bits de taille n que nous testons. Une clé candidate est notée k. Si cette
clé candidate est celle qui correspond a la clé maitre K*, nous la notons k*. Dans le cas
contraire nous gardons la notation k.

Dans les cryptanalyses statistiques usuelles on se limite a I’étude d’un test d’hypothéses
binaire. Les deux hypothéses sont les suivantes :

(1.1)

Ainsi dans les attaques statistiques de ce type nous devons comparer deux distributions
de probabilités : si le candidat testé correspond la bonne sous clé, le systéme de chiffrement
présente un biais statistique par rapport a une permutation idéale. Nous noterons par p,
la probabilité de I’événement correspondant a la bonne clé.

On suppose que pour toutes les autres sous clés testées la propriété P étudiée sur
le systéme de chiffrement a un comportement idéal. Nous notons par p la probabilité de
I’événement pour toutes les autres clés. Cette seconde probabilité est égale a la probabilité
que la propriété apparaisse dans le cas idéal.

Cette modélisation qui consiste a dire que “toutes les variables aléatoires correspon-
dantes aux mauvais candidats ont le méme comportement” repose sur I’hypothése de
répartition aléatoire par fausse clé.

H, : Le candidat testé correspond & la clé maitre K™.
H : Le candidat testé ne correspond pas a la clé maitre.

Dans une attaque statistique classique, afin de distinguer le bon candidat des autres
lattaquant a a sa disposition des couples clairs/chiffrés. Un échantillon est alors composé
d’un certain nombre de ces couples clairs/chiffrés. La taille de I’échantillon dépend du type
de cryptanalyse. Nous la détaillons dans les chapitres suivants. On peut toutefois retenir
qu'un échantillon peut étre égal & un couple clair/chiffré (voir le cas de la cryptanalyse
linéaire dans la section 3.2), peut étre égal a deux couples clairs/chiffrés (voir le cas de
la cryptanalyse différentielle dans la section 2.1) ou encore bien plus (voir par exemple le
cas de la cryptanalyse différentielle tronquée dans la section 2.2).

Nous notons par N le nombre d’échantillons dont I’attaquant dispose. A partir de ces
échantillons, I'attaquant est capable de générer N variables aléatoires binaires Xy; Xg; - -+ ; Xy
qui sont définies par

(1.2)

X, 1 si la propriété P est observée pour 1’échantillon i ;
10 sinon.

Pour résumer nous avons les notations suivantes :

9. ou "Wrong-key randomisation hypothesis” en anglais
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Notation 1.2. Soit H et H, les hypothéses définies en (1.1). Soit X; la variable aléatoire
correspondant a l’échantillon numéro 1. Les probabilités étudiées sont les suivantes :
— Si la clé testée est celle utilisée pour chiffrer, le phénomene apparait avec probabilité

Dy. Ainsi

p. ¥ P[X, =1H,].

— Si la clé testée n’est pas celle utilisée pour chiffrer, le phénoméne apparait avec
probabilité p. Ainsi
p ¥ PIX; =1|H].

Supposons que nous ayons a notre disposition un certain nombre de couples de mes-
sages clairs/chiffrés. Ce nombre de messages noté Npc est proportionnel au nombre
d’échantillons N. Soit Fx« le systéme de chiffrement par bloc sur lequel on a observé
un biais statistique.

Une attaque statistique se décompose alors en les trois phases suivantes :

Distillation : Dans un premier temps, a partir des N échantillons a disposition,
on extrait de 'information sur les clés candidates k que 'on teste.

Analyse : A partir de cette observation, on calcule la chance de chaque clé can-
didate k et on génére la liste £ des ¢ candidats les plus probables.

Recherche exhaustive : Pour chaque sous clé dans la liste ordonnée £ on teste
toutes les clés maitres correspondantes jusqu’a ce que la bonne soit trouvée.

Ces trois phases, communes a toutes les attaques statistiques, sont légérement diffé-
rentes selon le type d’attaque statistique. Une description plus précise de ces phases est
faite lors de la présentation de chaque attaque statistique dans les chapitres suivants. On
peut cependant décrire plus en détail les attaques statistiques appelées attaques sur le
dernier tour.

1.5.3 Les attaques sur le dernier tour

Dans les attaques statistiques sur le dernier tour on retrouve en général de I'informa-
tion sur certaines des clés de tour. Ces clés de tour sont en général des clés du ou des
derniers tours du systéme de chiffrement. Pour simplifier les explications nous supposons
ici que l'on cherche a retrouver de l'information sur la clé du dernier tour. On note par
k* la clé candidate correspondant a la clé maitre K* et par k toutes les autres clés (ceci
conformément aux notations de la section précédente). En général on n’attaque pas 'algo-
rithme de chiffrement en entier mais une version réduite de celui-ci. Supposons que nous
ayons une propriété particuliere P sur r tours du systéme de chiffrement qui arrive avec
probabilité p,. Alors on peut en général attaquer r + 1 tours de la fagon suivante :

1. On récupére les messages chiffrés que I'on obtient aprés r + 1 tours du
systéme de chiffrement.

2. Pour chaque sous-clé candidate, on déchiffre partiellement le dernier tour.

3. Si la clé utilisée pour déchiffrer est la méme que celle utilisée pour chiffrer
on retrouve le distingueur observé sur r tours du systéme de chiffrement.
Dans le cas contraire, c¢’est-a-dire si la clé utilisée pour déchiffrer est diffé-
rente de celle utilisée pour chiffrer, on peut supposer que ’'on observe un
comportement tout autre, proche de ’aléatoire.
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Il semble raisonnable de supposer que pour les mauvais candidats les variables aléatoires
correspondantes ont un comportement presque idéal. Puisque dans le cas contraire cela
pourrait signifier que I’on peut faire une attaque sur plus de tours.

Ce type d’attaque est résumé dans la figure 1.9.

/ Echantillon \

r—=—n r—- =" r—- -
! ! ! ! ! !
" I
X' Fg, 00 Fg — | Fr 1 Y
! ! ! ! ! !
! ! ! ! ! !
/ /
X' Fg o0 0 Fg |~ | —Fp, Yt
! ! ! ! ! !
! ! ! ! ! !
. X | Fg, 00 Fg |~ g 1 Y
L — — J L — — 4 L - — 4

FIGURE 1.9 — Attaque sur le dernier tour

1.5.4 Complexité d’une attaque statistique

Certaines quantités ont besoin d’étre calculées afin de pouvoir déterminer la puissance
d’une attaque statistique. Dans cette section, nous présentons les principaux outils d’ana-
lyse des attaques statistiques. Nous utilisons les mémes notations que dans les sections
précédentes.

Définition 1.10. Dans les attaques statistiques, nous avons besoin de définir les quantités
sutvantes :

La complexité en données : C’est le nombre de couples de messages
clairs/chiffrés dont on a besoin pour obtenir de linformation sur la clé.
Ce nombre de messages est noté Npc.

La probabilité de succés : C’est la probabilité que la clé candidate k* soit dans
la liste L des sous clés que 'on garde lors de la phase d’analyse. On note
Ps la probabilité de succes de l'attaque.

Ps=Plk* € L].

La complexité en temps : C’est le nombre d’opérations effectuées par l’algo-
rithme pour retrouver de l’information sur la clé.

La complexité en mémoire : C’est la place mémoire dont a besoin [’algo-
rithme pour stocker les quantités nécessaires a [’attaque.

Il existe plusieurs fagons de définir la taille de la liste des clés gardées. Dans cette
thése, on en utilise deux. La premiére facon consiste a fixer un seuil et a accepter tous les
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candidats dont la statistique étudiée a une valeur supérieure au seuil. La seconde consiste
pour une taille de liste fixée ¢, a accepter les ¢ clés candidates les plus probables. Dans la
premiére méthode nous n’avons pas un controle direct sur la taille de la liste contrairement
a la seconde méthode. Dans le chapitre 5, les deux méthodes sont utilisées afin de calculer
la complexité en données et la probabilité de succés d’une attaque statistique.

Les trois premiéres quantités de la définition précédente sont reliées entre elles. Par
exemple il est assez facile de voir que pour une complexité en données fixée, si on augmente
la taille de la liste alors la probabilité que la clé candidate k* soit dans la liste augmente
et ainsi la probabilité de succés augmente.

Dans la plupart de ces attaques afin de déterminer les candidats les plus probables on
utilise souvent un compteur pour chaque sous clé testée. Ainsi la complexité en mémoire
d’une attaque statistique est souvent reliée au stockage de ces compteurs. Pour ’étude de
la complexité en temps des attaques statistiques, la phase d’analyse est souvent négligeable
par rapport aux deux autres phases. La taille de la liste £ détermine en général laquelle
des deux étapes parmi la phase d’analyse ou la phase de recherche exhaustive est la plus
coliteuse.

Dans les chapitres 2 et 3 nous décrivons un grand nombre d’attaques statistiques

connues des systémes de chiffrement par bloc. Une étude détaillée des complexités sera
faite pour certaines cryptanalyses statistiques dans les chapitres suivants. Avec Benoit
Gérard et Jean-Pierre Tillich, nous nous sommes intéressés a la complexité d’un certain
nombre d’attaques statistiques. Ce travail détaillé dans le chapitre 5 nous a permis de
trouver une formule générale de la complexité en données et de la probabilité de succes
d’une certaine classe d’attaques statistiques.
Dans le chapitre 6 nous présentons une autre attaque statistique appelée cryptanalyse
différentielle multiple. Avec Benoit Gérard nous avons étudié le cas particulier de cette
attaque, et nous avons notamment extrait une formule pour la complexité en temps,
en données, en mémoire ainsi qu’'une formule pour calculer la probabilité de succés de
I’attaque.

1.5.5 Les variables aléatoires étudiées

Pour chacune des attaques statistiques que nous présentons dans cette thése (voir cha-
pitre 2 et chapitre 3), nous avons besoin d’étudier la distribution d’un certain nombre de
variables aléatoires afin d’obtenir un distingueur optimal pour chaque type d’attaque mais
aussi dans le but d’étudier la complexité en données et la probabilité de succeés!'®. Dans
cette section nous faisons une description préliminaire générale des variables aléatoires
que nous utilisons par la suite.

Supposons que 'attaquant ait en sa possession N échantillons composés d’un certain
nombre de couples clair /chiffré. Suivant le type d’attaque statistique, la propriété P est ob-
servée pour un échantillon composé de un ou plusieurs couples clair/chiffré. Pour 1’échan-
tillon numéro ¢, dans la section précédente nous avons défini la variable aléatoire X; qui
prend les valeurs 0 ou 1 selon que la propriété est observée pour I’échantillon en question

10. Le calcul de la complexité en données et de la probabilité de succeés de ces attaques est fait dans le
chapitre 5.
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ou pas. Dans la réalité, pour des attaques sur le dernier tour !' pour chaque échantillon on
inverse le dernier tour avec toutes les clés candidates possibles et pour chaque échantillon
on regarde si la propriété P est vérifiée. Les variables aléatoires simples que nous étudions
dépendent alors des clés candidates. Nous notons par C; j les variables aléatoires simples
que nous étudions. Elles sont définies par

1 si la propriété P est observée pour 1’échantillon
Cik = numéro ¢ et pour la clé candidate £ ; (1.3)
0 sinon.

Dans les cryptanalyses statistiques sur les derniers (ou premiers) tours on veut distinguer
le candidat correspondant a la clé maitre des autres. La maniére la plus classique consiste
alors, pour une clé candidate fixée, & sommer les variables aléatoires simples. Les variables
aléatoires que 1’on obtient sont notées C, et sont définies par

N
Cr =) Cis (1.4)
=1

Dans la plupart des attaques statistiques c’est la distribution de ces variables aléatoires

qui est étudiée afin de déterminer la complexité en données et la probabilité de succés de
I’attaque. Le chapitre 5 est dédié a 1’étude de ces quantités dans le cas particulier ou les
variables C}, suivent des lois binomiales.
L’étude de la distribution de ces variables aléatoires dans le cas d’'une généralisation de
la cryptanalyse différentielle que nous avons appelée “cryptanalyse différentielle multiple”
(dans ce cas les variables aléatoires C} ne suivent pas une loi binomiale) conduit & une
formule de la complexité en données et de la probabilité de succés (voir chapitre 6) pour
cette attaque.

11. Cela marche de la méme fagon pour des attaques sur le premier tour






Chapitre 2

La cryptanalyse différentielle et ses
généralisations

Depuis 'avénement de la cryptanalyse différentielle au début des années 90 beaucoup
de variantes de cette cryptanalyse ont été introduites. La cryptanalyse différentielle, la
cryptanalyse différentielle tronquée, la cryptanalyse différentielle impossible et la crypta-
nalyse différentielle d’ordre supérieur font partie de ces généralisations. Dans ce chapitre
nous présentons ces attaques. Nous détaillons les faiblesses des algorithmes de chiffrement
par bloc contre ces différents types d’attaques ainsi que le lien entre ces attaques.

2.1 La cryptanalyse différentielle

2.1.1 Définition d’une attaque différentielle

La cryptanalyse différentielle est une des premiéres attaques statistiques. Elle a été
introduite en 1990 par Eli Biham et Adi Shamir dans le but de casser le DES [BS90, BS91].
Cette attaque statistique sur les systémes de chiffrement par bloc exploite la mauvaise
propagation des différences & l'intérieur du systéme de chiffrement.

Définition 2.1. Soit I}, : 5 — F5' v tours d’un systéme de chiffrement itératif para-
métré par une clé K. Une différentielle sur r tours de ce systéme de chiffrement est un
couple (ag, a,) € F* x FY' de différence en entrée et de différence en sortie apreés r tours.

Définition 2.2. Soit F} : FY' — FJ' r tours d’un systéme de chiffrement itératif parameé-
tré par une clé K. Soit (ag,a,) une différentielle sur r tours du systéeme de chiffrement.
On définit la probabilité d’une différentielle (ag, a,) par :

def - r
Play — a;]) = Pxx [F(X)® Fip(X @ ap) = a,],
ot Px x [-] signifie que la probabilité est calculée en moyenne sur tous les messages en
entrée et sur toutes les clés possibles.

Il existe plusieurs fagons de passer de la différence en entrée a la différence en sortie.
On appelle chemin différentiel la suite des différences intermédiaires.

Définition 2.3. Un chemin différentiel surr tours d’un systéme de chiffrement itératif
avec fonction de tour Fic : B — F est un (r+1)-uplet (Bo, Br, -+ B, By) € (FP)TY
de différences intermédiaires a chaque tour.
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FIGURE 2.1 — Exemple de chemin différentiel sur 3 tours de SMALLPRESENT-[4]

La probabilité d’'un chemin différentiel est définie de la fagon suivante :

Définition 2.4. En utilisant les notations de la définition 2.3 on définit la probabilité
d’un chemin différentiel 5 = (5o, 51, ,Br—1,5:) € (]Fgl)(rﬂ) par :

P8 = Pxx [Fi(X) @ Fi(X @ o) = B Vi] .

Exemple 2.1. La figure 2.1 nous donne l’exemple d’un chemin différentiel sur 3 tours
de SMALLPRESENT-[}]. Comme la boite-S est de taille 4, il est pratique d’utiliser la
notation hexadécimale pour décrire un message ou une différence. Un nombre en hexa-
décimal est représenté par la notation 0x. La figure 2.1 représente le chemin différentiel
(0x1101,0x00dd, 0x0030, 0x0220), c’est-a-dire qu’en entrée du premier tour, les boites-S
50,52, 53 sont actives! avec différence en entrée 0x1. Nous supposons ici que la diffé-
rence en sortie aprés passage dans les boites-S est 0x3. Au second tour, les boites actives
sont SO et S1 avec différence en entrée 0xd, et ainsi de suite.

2.1.2 Les primitives utilisées pour résister aux attaques différen-
tielles

Dans un systéme de chiffrement par bloc itératif, c’est la partie de confusion de la
fonction de tour qui joue le plus grand réle dans la résistance du systéme de chiffrement
contre les attaques différentielles. Cette partie de substitution est composée de boites-S
qui sont appliquées en paralléle au message divisé en petits blocs.

Dans le contexte de la cryptanalyse différentielle on dit qu'une boite-S est active si les
deux messages en entrée de la boite-S étudiée possedent une différence non-nulle.

Dans les attaques différentielles classiques la partie de diffusion joue un role dans la
diffusion des différences. Cette partie a pour but de toujours garder un nombre suffisant de
boites-S actives sur plusieurs tours. En revanche cette partie de diffusion ne joue aucun réle
dans le calcul des probabilités du chemin différentiel. C’est-a-dire que pour une différence
donnée celle-ci passe cette partie de diffusion avec probabilité 1.

La probabilité d’une différentielle sur un tour du systéme de chiffrement est donc
déterminée par les propriétés des boites-S. Afin de prémunir le systéme de chiffrement

1. On dit qu’une boite-S est active s’il y a une différence non-nulle en entrée de la boite-S.
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contre les attaques différentielles on demande aux boites-S d’étre différentiellement \-
uniforme avec A\ petit.

Définition 2.5. Soit f : F§ — F une fonction. On note par 6(a,b) le nombre de x tels
que f(x) + f(z +a) = b. C’est-a-dire

def

0(a,b) = #{2|f(x) + f(z + a) = b}

pour (a,b) un couple de différences dans F5\{0} x F% . Soit X la valeur mazimale des
d(a,b) :
A = max d0(a, b).
a#0, b

On dit alors que f est différentiellement A-uniforme.

Il est facile de voir que d(a,b) est toujours pair et donc que la valeur minimale de
A est 2. Les fonctions qui sont différentiellement 2-uniformes sont dites "almost perfect
non-linear"(APN). Le but de cette partie n’est pas de rentrer en détail dans I’étude des
propriétés de ces boites-S. Une étude plus détaillée sera faite dans la seconde partie de
ce manuscrit (voir partie II). Ce qu’il faut retenir pour le moment c’est que pour une
boite-S donnée on s’intéresse aux valeurs d(a,b) afin de déterminer la probabilité d'une
différentielle d'un systéeme de chiffrement. On appelle alors table des différences le tableau
a deux dimensions qui nous donne les valeurs d6(a, b) pour toutes les différences en entrée
et en sortie de la boite-S. On obtient alors par exemple le tableau 2.1 pour la boite-S
du systéme de chiffrement PRESENT (section 1.4.1). On peut y lire par exemple que
§(0x1,0x3) = 4.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 Oxa Oxb Oxc 0xd Oxe Oxf
0x0 | 16 - -
0x1 -
0x2 -
0x3 -
0x4 -
0x5 -
0x6 -
0x7 -
0x8 - -
0x9 -
Oxa -
0xb -
Oxc -
Oxd -
Oxe - - - - 2
oxf| - 4 - - 4 - - - - - - - - - 4 4

- 4

N

1
B

1
S
DN i~ 1
SR
1

N DN
N DO 1
] N
[\ NI
| 1
DO DN DN DN
] NN
N DO LI
N N
NN N DN
PO R O
LI
NI
| I |

DN DN = DN !

S

)

1

1

[\
[\

1

W

1

[N R

N N
DN = DN NN
NI NC R !

N 1 DN

I N

[ ()
NN
[\ DN =~ DN DO
N NN
N NN DN

N DN
N
N 1NN

[\ [N

[ 1

TABLE 2.1 — Table des différences de la boite-S de PRESENT.

La probabilité d’une différentielle (a, b) pour une boite-S est alors donnée par la valeur

d(a,b)
25

si la boite-S est une permutation de F3.
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2.1.3 Calcul théorique des probabilités d’une différentielle

Dans la pratique il n’est pas facile de calculer la probabilité exacte d’une différentielle.
Dans cette thése nous faisons la distinction entre la valeur calculée de la probabilité
d’une différentielle et la vraie valeur de cette probabilité en moyenne sur les clés et sur
les messages. Cette section est dédiée a la présentation des hypothéses communément
admises pour calculer la probabilité d'un chemin différentiel puis d’une différentielle.

Pour cela nous définissons les notations suivantes permettant de distinguer les proba-
bilités calculées théoriquement, les probabilités expérimentales et les probabilités exactes
ou réelles d'un chemin différentiel et d’une différentielle.

Notation 2.1. Soit un chemin différentiel 5 = (Bo,- -, 5;) la probabilité théorique de ce
chemin est notée P'[B] et la probabilité réelle est notée P [B]. La probabilité dite réelle
correspond a la probabilité obtenue en moyenne sur les messages et les clés.

Sous certaines hypothéses que nous détaillons ci dessous on peut estimer la probabilité
d’un chemin différentiel. Pour cela nous avons besoin de définir la notion de chiffrement
de Markov qui a été introduite par Xuejia Lai et James Massey dans [LM91].

Définition 2.6. [LM91] Un systéme de chiffrement itératif avec fonction de tour F' est
de Markov relativement a la cryptanalyse différentielle si la probabilité de la différence en
sortie connaissant la différence en entrée est indépendante de la clé utilisée pour chiffrer.

Proposition 2.1. [LM91] Supposons que le systéeme de chiffrement E est de Markov.
Supposons aussi que les clés de tours sont indépendantes et uniformément distribuées.
Alors la séquence des différences Bo, - -+ , B, forme une chaine de Markov. Dans ce cas
particulier la probabilité du chemin différentiel § = (Bo, - ,5,) se calcule de la fagon
sutvante :

Pg] = H Pxx [F(X)® F(X ® Bi_1) = Bi, Vi].

Hypothése 2.1. Pour récapituler, les hypothéses communément utilisées pour calculer la
probabilité théorique d’un chemain différentiel sont

— Le systéme de chiffrement est de Markov pour la cryptanalyse différentielle.

— Les clés de tour sont indépendantes.

— Les clés de tour sont uniformément distribuées dans [’espace des clés.

Ces hypothéses ne sont pas toujours vérifiées ; ainsi, la probabilité théorique d’un che-
min différentiel est souvent différente de sa probabilité réelle en moyenne sur les messages
et sur les clés. Dans le chapitre 4 nous détaillons la validité de ces hypotheéses.

Connaissant tous les chemins qui composent une différentielle ainsi que leur proba-
bilité, il est assez facile de passer de la probabilité des chemins & la probabilité d’une
différentielle, puisque cette probabilité est égale a la somme des probabilités des chemins
qui la composent.

Proposition 2.2. La probabilité d’une différentielle est égale a la somme des probabilités
des chemins qui la composent.

Plag—=al= > P
ﬁ:(a()aﬂly"' 767‘7170/7‘)
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Preuve : A clé fixée, ce résultat provient du fait que si les messages X et X @ ag suivent
un chemin différentiel, ils ne peuvent pas suivre un autre chemin différentiel. Ainsi les
événements étudiés sont disjoints. O]

Exemple 2.2. Nous reprenons les notations de [’exemple 2.1. Dans cet exemple nous
étudions la différentielle (0x1101,0x00dd) sur 3 tours de SMALLPRESENT-[4].

Un des chemins composant la différentielle est donné dans l’exemple 2.1. Le calcul de
la probabilité théorique de ce chemin sous les hypotheses décrites précédemment se fait de
la facon suivante :

— Au tour 1 nous avons 3 boites-S avec différence en entrée 0x1 et différence en sortie

0x3.

— Au tour 2 nous avons 2 boites-S avec différence en entrée 0xd et différence en sortie

0x2.

— Au tour 8 nous avons 1 boite-S avec différence en entrée 0x3 et différence en sortie

0x6.
D’aprés la table des différences de PRESENT (tableau 2.1) nous avons que la probabilité
pour une boite-S de passer d’une différence en entrée 0x1 a une différence en sortie 0x3
est % = 272 Au total nous avons 6 boites-S actives (différence en entrée non nulle) avec
probabilité de transition 514 = 272 (voir tableau 2.1) donc la probabilité théorique de ce
chemin différentiel est

P"[(0x1101,0x00dd, 0x0030, 0x220)] = (272)% = 2712,

Pour calculer la probabilité de la différentielle, nous avons besoin de calculer la pro-
babilité théorique de tous les chemins la composant (en utilisant la méme méthode que
celle expliquée ci-dessus). La probabilité de chacun de ces chemins est résumée dans le
tableau 2.2.

60 51 52 63 ‘ P! [(50751752753)]

0x1101 0x00dd 0x0030 0x220 2-12
0x1101 0x0Ocdd 0x0070 0x220 216
0x1101 0x09dd 0x0070 0x220 216
0x1101 0x0ddd 0x0070 0x220 2715
0x1101 0xd00d 0x0090 0x220 213

TABLE 2.2 — Chemins différentiels composant la différentielle (0x1101,0x00dd) pour le
systéme de chiffrement SMALLPRESENT-|4]

Compte tenu des probabilités théoriques des chemins composant la différentielle
(0x1101, 0x00dd)
la probabilité théorique de cette différentielle est
9-12 4 9=13 | 915 4 9 916 _ 9—11,1926.

Une étude approfondie du calcul de ces probabilités est détaillée dans le chapitre 4.
On verra qu’il est assez compliqué voir impossible en général de trouver tous les chemins
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qui composent une différentielle. En déterminant la probabilité de certains chemins nous
avons une borne inférieure sur la probabilité de la différentielle. Dans le chapitre 4 nous
décrivons aussi un algorithme pour trouver les chemins qui composent une différentielle
ainsi que leur probabilité.

2.1.4 Comment retrouver de ’information sur la clé

Une attaque différentielle se comporte différemment suivant le type de systéme de chif-
frement par bloc. En effet dans un chiffrement de type substitution-permutation c¢’est une
cryptanalyse de type attaque sur le dernier tour, alors que dans un systéme de chiffrement
de type Feistel, 'attaque est sensiblement différente et les quantités que I’on regarde aussi.
Comme la premiére attaque différentielle a été faite sur le DES qui est un chiffrement de
Feistel de 16 tours, nous allons dans un premier temps détailler les attaques différentielles
sur ce type de systéme de chiffrement.

Attaque différentielle sur les systémes de chiffrement de type Feistel

Dans cette partie nous expliquons le principe de 'attaque différentielle pour les sché-
mas de Feistel classiques (ceux définis dans la section 1.2.2). Le principe de I'attaque pour
les généralisations du schéma de Feistel reste sensiblement le méme.

FIGURE 2.2 — Attaque différentielle d’'un schéma de Feistel.
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Supposons que nous avons une différentielle sur r tours
(a0, a0®), (a2, af®))

(voir figure 2.2). Dans une attaque différentielle sur un schéma de Feistel, on récupére les
messages chiffrés sur » + 1 tours. Dans ce type de systéme de chiffrement on connait la
différence a!” en entrée de la fonction interne f du tour r ainsi que la valeur du message
avant ajout de la clé. Si la caractéristique différentielle est bien celle espérée alors on
connait aussi la différence a la sortie de la fonction f. Cette différence est agfi)l ®a?. Le
détail des valeurs connues par 'attaquant est donné dans la figure 2.3.

FIGURE 2.3 — Détails de ’étape de recherche de clé pour une différentielle sur un schéma
de Feistel. (Les valeurs connues sont en gris)

Dans le cas d’'un schéma de Feistel on peut utiliser un crible au tour r» + 1 pour
supprimer des mauvaises paires. Ce crible est défini pour une différentielle

(00, 00®). (a2, "))

T T

de la fagon suivante :

Agicve = {(a(g)Hafﬂd)) ’ P {affl) ? a9 @ afﬂg)] £ 0} _ (2.1)

C’est-a-dire Ag;epe correspond & toutes les différences possibles aprés un tour de chiffrement
quand la différence en entrée de ce tour est (aﬁg), aﬁd)). Il est d’usage dans les systémes de
type Feistel d’enlever la permutation finale.

Le principe de I'attaque qui consiste a retrouver la clé du dernier tour d’un schéma de

Feistel classique est résumé dans 1’algorithme 1.

Attaque différentielle sur les systémes de chiffrement de type substitution-
permutation

Les attaques différentielles sur les schémas de type substitution-permutation sont des
attaques sur le dernier tour (ou les derniers tours). Elles prennent en compte une caracté-
ristique différentielle sur r tours pour faire une attaque sur r + 1 tours et ainsi retrouver
une partie de la clé du (r + 1)éme tour.

A la différence des attaques sur les schémas de Feistel on ne connait pas la valeur du
message avant ’entrée dans les boites-S mais seulement la valeur du message en sortie.

Dans le cas d’un systéme de type substitution-permutation un crible est aussi utilisé
pour supprimer un certain nombre de mauvaises paires. Ce crible est défini pour une
différentielle (ag, a,) de la fagon suivante :
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Algorithme 1 : Cryptanalyse différentielle d'un systéme de type Feistel (attaque
sur le dernier tour).

Entrée : N couples (X, X' = X @ ag) et les chiffrés correspondants
(Y = Ex«(X),Y' = Eg« (X))
Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser une table C' de 2" compteurs a 0 ;
Pour chaque couple (X, X’) tel que X & X' = q, faire
Si Ex+(X) ® Ex«(X @ ag) € Agjeve alors
Pour chaque sous clé candidate k faire
Calculer d = f(YM @ k) @ f(Y'") @ k);
Si d&al), =a alors C[k] « C[k] +1;
Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ex(X) alors retourner K;

Aicve ={a| P [ar — a] £ 0} (2.2)

L’algorithme 2 résume cette attaque.

Algorithme 2 : Cryptanalyse différentielle d'un systéme de type substitution-
permutation (attaque sur le dernier tour).

Entrée : N couples (X, X' = X @ ag) et les chiffrés correspondants
(Y = Ex«(X),Y' = B« (X))

Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser une table C' de 2" compteurs a 0 ;
Pour chaque couple (X,X @ ag) faire
Si Ex+(X) ® Ex«(X ® ag) € Agjepe alors

Pour chaque sous clé candidate k faire

Caleuler d = F; ' (Eg«(X)) ® F, ' (Ex-(X"));
L Si d=a, alors C[k] + C[k] + 1,

G‘Ténérer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k € £ faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ex(X) alors retourner K;

2.1.5 Quantités importantes dans la cryptanalyse différentielle

Dans la cryptanalyse différentielle, un échantillon est composé de deux messages ayant
une différence fixée ainsi que des chiffrés correspondants. Nous rappelons les notations
communément utilisées dans cette thése : la complexité en données de I'attaque est notée
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par Npc alors que le nombre d’échantillons est noté par N. Ainsi dans le cas de la
cryptanalyse différentielle nous avons Npe = 2N.

Le rapport signal sur bruit Pour évaluer le nombre de couples clair/chiffré Npc dont
nous avons besoin pour une attaque différentielle, une quantité importante a été introduite
par Eli Biham et Adi Shamir [BS90]. Cette quantité s’appelle le rapport signal sur bruit.

Définition 2.7. Le rapport entre le nombre de bonnes paires et la moyenne du nombre
de clés cochées est appelé le rapport signal sur bruit. Cette quantité est notée S/N.

Cette quantité peut étre calculée assez facilement si on introduit les définitions sui-
vantes. On suppose que l'on veut retrouver n bits de clés. Soit o le nombre moyen de
cases cochées pour les paires gardées (c’est-a-dire les paires qui passent le crible) et soit
£, le nombre moyen de cases cochées pour toutes les paires. Soit p, la probabilité de la
différentielle lorsque 'on déchiffre avec la bonne clé. Cette probabilité est différente sui-
vant le type de systéme de chiffrement. Avec ces notations la bonne clé est comptée p, N
fois. Le rapport signal sur bruit devient alors

S/N:N-a-B/Q”: a-f

L’étude basique du calcul de la complexité en données faite par Eli Biham et Adi Shamir
est directement reliée a la valeur du rapport signal sur bruit. Dans la plupart des attaques
existantes on suppose que si le rapport signal sur bruit est suffisamment grand (de I'ordre
de 13) alors la complexité en données est de pi. Le détail de ce calcul est donné par

exemple dans la theése de Henri Gilbert [Gil97]?. Durant cette thése, avec Benoit Gérard
[BG10| nous avons mené une étude compléte de la complexité en données de certaines
attaques statistiques et en particulier celle de la cryptanalyse différentielle. Un autre
travail avec Jean-Pierre Tillich [BGT11], nous a permis de trouver une formule générale
pour la probabilité de succés d’une attaque statistique. Le détail de cette étude est donné
dans le chapitre 5.

2.1.6 Les probabilités utilisées

L’étude classique pour calculer la complexité en données d’une attaque différentielle
repose sur le calcul du rapport signal sur bruit [BS90, BS91].

Nous allons dans le chapitre 5 utiliser une autre méthode pour calculer la complexité en
données et la probabilité de succés d’une cryptanalyse différentielle. Pour cela nous avons
besoin d’étudier les valeurs des probabilités des compteurs définis dans les algorithmes 1
et 2 pour la bonne et les mauvaises sous-clés.

Distribution des variables aléatoires

Définition 2.8. Soit Ex« un systéme de chiffrement par bloc itératif avec fonction de
tour F. Soit (ag,a,) la différentielle étudiée sur r tours du systéme de chiffrement. Sup-
posons que l’on cherche a retrouver de linformation sur la clé du tour r+1. Les variables

2. Cette étude repose sur une approximation de la distribution des variables aléatoires par une loi de
Poisson.
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aléatoires utilisées dans le cadre de la cryptanalyse différentielle pour un message fixé et
une clé fixée sont définis par

oo def [ 1 s F N (Eg-(X)) & F, (B (X @ ag)) = a,
XETY 00 sinon.

Ces variables aléatoires suivent des distributions différentes suivant la valeur de la clé.

L’hypothése communément faite dans la cryptanalyse différentielle est que les variables
aléatoires correspondant aux mauvaises clés suivent toutes la méme distribution. Cette
hypothése est appelée hypothese de répartition aléatoire par mauvaise clé

Hypothése 2.2 (Hypothése de répartition aléatoire par fausse clé). Soit Ex- : Fy* — FJ

un systéme de chiffrement par bloc paramétré par la clé K* avec fonction de tour F.

B B D si k= k*,
Px [F Y (Ex-(X)) ® Fy {(Bx-(X @ ag)) = a,] = { p=gis pour k# k*,

Sous cette hypothése on obtient que pour un message fixé les variables aléatoires C'x
suivent une loi de Bernoulli avec probabilité p, dans le cas ou la clé candidate correspond
a la bonne sous clé, Dans le cas contraire ces variables suivent une loi de Bernoulli avec

probabilité p = om 1"
Les compteurs étudiés dans le cas de la cryptanalyse différentielle correspondent & la

somme des Cy, :
Ck = E OX,k~
X

Théoriquement le compteur Cj est incrémenté avec probabilité p, si k = k* et avec
probabilité p dans le cas contraire.

La probabilité p, correspondant au compteur relié a la bonne clé dépend quant a elle
de la valeur de la probabilité de la différentielle étudiée (P [ag — a,]) mais est différente
suivant le type de systéme de chiffrement étudié. Par la suite nous détaillons la valeur de
cette probabilité dans le cas d’un systéme de chiffrement de type Feistel et d’un systéme
de chiffrement de type substitution-permutation.

Détail des probabilités dans le cas d’un chiffrement de Feistel Afin de com-
prendre le principe dans le cas d’un schéma de Feistel nous avons besoin de revenir sur la
description de 'attaque sur le dernier tour donnée dans la section 2.1.4. Pour une paire
de messages qui passe le crible I'attaquant fait une hypothése sur la clé du dernier tour
utilisée pour chiffrer. Ainsi il connait donc la valeur des messages en entrée de la fonction
interne et en sortie de cette fonction interne. Soit a = f(z@k)® f (x@cu(«d) @k) la différence
en sortie de la fonction interne.
(9) (9)

Le compteur est incrémenté si a®a,”” = a,7;. Deux cas se présentent alors ; en effet la

valeur aﬁg ) nest pas connue par l'attaquant mais arrive avec une probabilité supérieure a

/ /
une autre valeur aﬁg )" Donc en appliquant la fonction interne on peut obtenir affﬁl a partir

/
de a @ affgl mais aussi avec d’autres valeurs a’ & aﬁfﬁl Ainsi le compteur correspondant a
la bonne clé est incrémenté avec la probabilité suivante :

ps =P [aid) —2ad al9 = agﬂ)l} +P [a,(fi) = o @ a9 = afi)l] (2.3)

T T
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Proposition 2.3. Soit (ag, a,) la différentielle étudiée. On se place dans le contexte d’une
attaque sur le dernier tour d’un schéma de Feistel classique comme celle présentée dans
lalgorithme 1. Soit p la probabilité qu’un compteur correspondant & une mauvaise clé soit
mcrémenté

p=P[Cxr=1k#k]~2"™

La probabilité que le compteur correspondant a la bonne clé soit incrémenté est :

pe = Plag — a,] + p. (2.4)

Détail des probabilités dans le cas d’un chiffrement de type substitution-
permutation Dans un systéme de type substitution-permutation le compteur corres-
pondant & la bonne clé est incrémenté avec une probabilité différente de celle dans le
cas d'un systéme de type Feistel. Dans ce cas précis, pour une paire qui passe le crible,
on déchiffre en testant toutes les clés possibles. Pour la bonne sous-clé le compteur est
incrémenté si et seulement si on obtient la différence a, en déchiffrant. Ce phénomeéne
apparait avec la méme probabilité que la probabilité de la différentielle.

Proposition 2.4. Considérons une attaque sur le dernier tour d’un schéma de type
substitution-permutation comme présentée dans l’algorithme 2. Soit p la probabilité qu’un
compteur correspondant a une mauvaise clé soit incrémenté. La probabilité que le compteur
correspondant a la bonne clé soit incrémenté est égale a la probabilité de la différentielle.

ps = Plag — a,]. (2.5)

2.2 La cryptanalyse différentielle tronquée

La cryptanalyse différentielle tronquée [Knu95| est une généralisation de la cryptana-
lyse différentielle. Dans le cas de la cryptanalyse différentielle tronquée, on ne tire pas de
I'information & partir d’une seule différence mais d’un ensemble de différences. Soit Ay
un ensemble de différences en entrée et A, un ensemble de différences en sortie. Dans le
cas de la cryptanalyse différentielle tronquée I'attaquant s’intéresse a la probabilité pour
un couple de messages en entrée ayant une différence dans Ay d’obtenir une différence
entre les messages chiffrés dans A,.. La cryptanalyse différentielle tronquée a servi a casser
de nombreux systémes de chiffrement par bloc. Dans la section 2.2.5, nous donnons des
exemples de systémes de chiffrement ayant montré des faiblesses contre cette attaque.
Ces exemples tendent a montrer les différentes variantes de la cryptanalyse différentielle
tronquée et de la difficulté de trouver une formalisation générale pour définir cette cryp-
tanalyse. Une premiére formalisation a été faite dans [MSAK99|. Nous présentons ici une
généralisation de celle ci en utilisant les notations communément utilisées dans cette thése.

2.2.1 Définition

Définition 2.9. Soit Ex un systéme de chiffrement par bloc (E : F} — FY'). Une dif-
férentielle tronquée de ce systéme de chiffrement est un couple formé par un ensemble
de différences en entrée Ay C Fy' et un ensemble de différences en sortie A, C F3'.
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Définition 2.10. Soit Ex un systeme de chiffrement par bloc itératif comprenant r tours.
Soit (Ao, A,.) une différentielle tronquée de ce systéme de chiffrement. La probabilité de
cette différentielle tronquée est définie par

P[4y — A, Y Px g [Ex(X) + Ex(X ®a) € AJa € Ay].
Comme dans le cas de la cryptanalyse différentielle oti I'on définit un chemin différen-
tiel, on peut aussi dans le cas de la différentielle tronquée parler de chemin différentiel
tronqué.

Définition 2.11. Soit Ay et A, un ensemble de différences en entrée et en sortie de r
tours d’un systéme de chiffrement par bloc itératif. Un chemin différentiel tronqué rela-

tif a (Ao, A,) est défini comme un ensemble d’ensembles de différence a chaque tour :
(By, By, -+, B,) tel que By = Ag et B, = A, 3.

De la méme fagon que dans le cas de la cryptanalyse différentielle on peut définir la
probabilité d'un chemin différentiel tronqué.

Définition 2.12. Soit E un systéme de chiffrement par bloc itératif avec fonction de tour
F. Soit B = (By, By, -+, B.) un chemin différentiel tronqué. La probabilité de ce chemin
est

P[B = (By,By, - ,B)] < Pxx [Fi(X)+ Fje(X +a) € B;Vi=1---r|a € By .
ou F est la notation communément utilisée pour Fi, o---o Fg, ot Ki--- K, sont les
clés de tours correspondant a la clé maitre K.

2.2.2 L’attaque

Dans cette partie nous décrivons 'attaque différentielle tronquée d’un systéme de
chiffrement par bloc. Un certain nombre d’attaques différentielles tronquées ont été faites
sur des systémes de chiffrement de type Feistel (comme par exemple I'attaque sur E2
[MSAK99|). Soit un systéme de chiffrement avec une différentielle tronquée (Ao, A,). Le
crible pour les schémas de Feistel classiques qui peut étre appliqué afin de diminuer la
complexité en temps de 'attaque est défini de la fagon suivante :

Agicve = {(a(9)||a(d))|a(d) e agd) ot P aﬁd) ? v e a9 @ Agg)] £ 0}

L’algorithme 3 décrit le principe de 'attaque différentielle tronquée pour les schémas
de Feistel classiques. Il peux étre facilement adapté en fonction du systéme de chiffrement.

Pour les systémes de chiffrement de type SPN I’algorithme est similaire a 1’algorithme
utilisé pour la cryptanalyse différentielle.

2.2.3 Les variables aléatoires utilisées dans la cryptanalyse diffé-
rentielle tronquée
Définition 2.13. Soit Ex« un systeme de chiffrement par bloc itératif avec fonction de

tour F. Soit (Ao, A,) la différentielle tronquée étudiée sur r tours du systéme de chiffre-
ment. Supposons que l’on cherche a retrouver de l'information sur la clé du tour r+1. Les

3. ou By = Ay signifie que les ensembles étudiés sont égaux élément par élément.
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Algorithme 3 : Cryptanalyse différentielle tronquée d’un schéma de Feistel

Entrée : Npc couples de messages clairs-chiffrés (X,Y) avec Y = Ex«(X)
Sortie : La clé K* utilisée pour chiffrer les messages
Initialiser une table C' de 2" compteurs a 0.
Pour chaque aq € Ay faire
Pour chaque couple (X, X') tel que X & X' = a¢ faire
Si Ex+(X) ® Ex«(X @ ag) € Agjeve alors
Pour chaque sous clé candidate k faire
Calculer d = f(YD @ k) @ f(Y'D @ k),
Si dgal?, € AY alors C[k] « C[k] +1;

Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque £ € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ek(X) alors retourner K;

variables aléatoires utilisées dans le cadre de la cryptanalyse différentielle tronquée pour
un message fizé et une clé fixrée sont définies pour ay € Ay par

Xk 0 swnon.

(o) def { 1 si FyYEg(X))® F, ' (Ex+ (X ®ap)) € Ay,

Puis on définit les variables

def a
Cxi = Y O%.

ap€Agp

Les variables aléatoires Cﬁ?,%) suivent des distributions différentes suivant la valeur de
la clé. Comme dans la cryptanalyse différentielle, I'hypothése communément faite dans la
cryptanalyse différentielle tronquée consiste a dire que les variables aléatoires correspon-
dant aux mauvaises clés suivent toutes la méme distribution.

Hypothése 2.3. Hypothése de répartition aléatoire par fausse clé
Soit #A, le cardinal de A,. Soit Ex- : ] — F' un systéme de chiffrement par bloc avec
fonction de tour F.

B B Dy si k=k*,
Px [Fk HEg- (X)) ® Fy HExr-(X @ ag)) € AT} - { p= % pour k # k*.

Sous cette hypothése on obtient que pour un message fixé les variables aléatoires C'x
suivent une loi de Bernoulli avec probabilité p, dans le cas ou la clé candidate correspond
a la bonne sous clé. Dans le cas contraire ces variables suivent une loi de Bernoulli avec
probabilité p ~ #A,27™.

Les compteurs étudiés dans le cas de la cryptanalyse différentielle tronquée corres-
pondent a la somme des variables aléatoires C'x, :

Cr €Y Oxe
X
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Lemme 2.1. Soit les variables aléatoires définies dans la définition 2.13. Sous ’hypothese
que les variables aléatoires Og?f;ﬁ) sont indépendantes les variables aléatoires Cy suivent des
lois binomiales de paramétres (N#Ag, ps) ou (N#Ag,p).

Preuve : Nous allons faire la preuve dans le cas ou la clé candidate n’est pas la bonne
clé. La preuve pour le compteur correspondant a la bonne clé se fait de la méme fa-
con. Nous avons que les variables aléatoires Cﬁ?f,? suivent une distribution de Bernoulli
de paramétre p. Sous 'hypothése d’indépendance de ces variables aléatoires, les variables
aléatoires C'y, suivent une loi binomiale de paramétres #A4, et p. Les variables aléa-
toires (', sont la somme des variables aléatoires définies précédemment. Maintenant sous
I’hypothése d’indépendance de ces variables aléatoires, comme elles ont toutes la méme
probabilité, nous avons que les variables aléatoires C} suivent des lois binomiales de pa-

rameétre (N#Ag, p). O

2.2.4 Calcul théorique des probabilités

Lien avec la probabilité d’une différentielle La probabilité d’une différentielle tron-
quée peut étre calculée a partir des différentielles qui la composent. En effet elle correspond
a la somme des différentielles qui la composent divisée par le nombre de différences en
entrée.

Proposition 2.5. Sous [’hypothése que toutes les différences en entrée sont uniformément
réparties dans Uespace Ay, c’est-a-dire que P |aglag € Ao] = P lai]ar € Ao]. On obtient
que la probabilité d’une différentielle tronquée est égale a la somme des probabilités des
différentielles qui la composent divisée par le cardinal de Aq.

Pxx [E(X)® E(X ®ap) € Addag € 4] = Y Pxx [E(X)® E(X @ ag) = a,|ag € Ao
ar€A,

_ #LA Y Pxx [E(X)® E(X ®ap) € A,]

- ﬁ S Y Pk [E(X) @ B(X @ ag) = a,).

ao GAO ar EAT

Preuve : Pour des raisons de simplicité nous allons démontrer cette proposition dans le
cas ou les espaces de différences en entrée et en sortie sont réduits & deux éléments. Pour
cela nous notons Ay = {ag, a1} et A, = {by, b1 }. Pour simplifier les écritures nous utilisons
la notation non standard suivante :

P[A,|A) Y Pxx [Ex(X) ® Ex(X @ ag) € Aylag € Ag].

La premiére égalité se montre facilement. En effet, comme pour un couple de message
fixé, la différence en sortie est unique les événements P [b;| Ag] pour i = 0,1 sont disjoints
donc :

PIA|A) = PlbyUby|A]
= Plbo|Ag] + P [br]Ao] .
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La seconde égalité est un peu moins facile a prouver

P[A|Ay] = P[A/]aoVUa]
PA, N (apUay)]
P lag U a,]
P(ArNag) U (A, Nay)
P lao] + P [a4]
P[Arao] Plag] + P[Ar|aa] P a]
P lap] + P |aq]
P[A.|ao) + P [A,|a1] P |a]
P [ao] + P [a1]
P[A,|ag) Plag] + P [Ar|ai] P lao]
2P [ao]

_ % S P,

a={ap,a1}

La troisieme égalité se déduit facilement & partir des deux premiéres. O

Pour calculer la probabilité théorique d’une différentielle tronquée on n’est pas obligé
de passer par la probabilité théorique des différentielles qui la composent. En général on
préfére calculer la probabilité d’une différentielle tronquée quand on ne peut pas avoir
une bonne estimation de la probabilité des différentielles. En utilisant les propriétés des
chaines de Markov pour la différentielle tronquée nous pouvons avoir une estimation de
la probabilité d’une différentielle tronquée.

Chiffrement de Markov

Si le systéme de chiffrement est de Markov pour la cryptanalyse différentielle (défi-
nition 4.2), la probabilité d'un chemin différentiel peut étre obtenue en multipliant les
probabilités de transition de chaque tour (voir proposition 2.1). Dans ce paragraphe nous
allons montrer que méme si le systéme de chiffrement est de Markov pour la cryptanalyse
différentielle il n’est pas toujours vrai qu’il soit de Markov pour la différentielle tronquée
c’est-a-dire que l'on ne peut pas toujours estimer la probabilité d’un chemin différentiel
tronqué en multipliant les probabilités de transition de chaque tour.
Si on reprend la définition d’un chiffrement de Markov donné dans le cas de la cryptanalyse
différentielle on obtient la définition suivante :

Définition 2.14. Un systeme de chiffrement itératif est de Markov relativement a la
cryptanalyse différentielle tronquée si la probabilité que la différence en sortie soit
dans un espace de sortie, connaissant la différence en entrée dans un espace de différence
en entrée, est indépendante de la clé utilisée.

Proposition 2.6. Soit E = F" un systéme de chiffrement par bloc itératif. Supposons que
E est un chiffrement de Markov pour la différentielle tronquée. Alors pour tout chemin
différentiel tronqué (By, By, ,B,) on a

PX,K [FIZ((X) @F;((X @a) S BZ|CL € Bo} = HPX’K [FK(X) +FK<X@G) € B,|(l S Bi—l] .

=1
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Remarque 2.1. Un systeme de chiffrement peut étre de Markov pour la cryptanalyse
différentielle et ne pas l’étre pour la cryptanalyse différentielle tronquée. Supposons que
nous ayons un chemin différentiel tronqué sur deuz tours (By, By, By) d’un systéme de
chiffrement avec fonction de tour F. On note par Fz la composition de deuz fois la
fonction de tour. Soit les probabilités

po = Pxk |[Fx(X)® Fx(X ®a)€ By et Fp(X)® Fi(X ®a) € Bsla € By
P11 = PX’K[FK(X>@FK(X@I))EB2|Z?EBl]nyK[FK<X)@FK(X@a)GBHCLEB(]]

P2 = ZPX’K [FK(X)@FK<X@[)) € BQ] 'PX,K [FK(X)@FK(X@G) :b|a€ Bo]
be By

Alors on a que la probabilité du chemin différentiel tronqué est égale a py. St le systéme
de chiffrement est de Markov pour la cryptanalyse différentielle tronquée alors p1 = po
et s’il est de Markov pour la cryptanalyse différentielle alors ps = po. En général pi est
différent de py. Ce qui est encore plus compliqué est que p1 n’est ni une majoration ni une
minoration de ps.

2.2.5 Attaques existantes

La plupart des attaques différentielles tronquées sont effectuées sur des systémes de
chiffrement “orientés mot”.

Souvent les mots manipulés sont des mots de la taille des boites-S composant le sys-
téme de chiffrement (Par exemple 'AES est un systéme de chiffrement “orienté mot”
contrairement & PRESENT).

Dans ce type de chiffrement par bloc, il est facile de déterminer des chemins différentiels
tronqués. Contrairement & la cryptanalyse différentielle ces chemins différentiels dépendent
en général de la partie de diffusion de la fonction de tour. Les attaques différentielles
tronquées peuvent étre trés différentes suivant le systéme de chiffrement étudié.

Ainsi la premiére attaque différentielle tronquée faite par Lars R. Knudsen pour cryp-
tanalyser le DES [Knu95| prend en compte un chemin différentiel tronqué sur 4 tours du
DES avec probabilité 1. La sortie de ce chemin différentiel tronqué nous indique que pour
une différence en entrée fixée, 2 boites-S du dernier tour ne sont pas actives.

Dans E2 et Camellia [MSAK99, LHL"02|, les attaques différentielles tronquées re-
posent quant a elles sur le fait qu'une boite-S soit active ou non active. Ce type d’attaque
différentielle ne dépend pas de la boite-S utilisée dans le systéme de chiffrement mais
plutét d’une mauvaise diffusion des différences a travers les tours le composant. Ici cette
idée que les boites-S ne jouent pas un role important dans la cryptanalyse différentielle
tronquée est entretenue par le fait que la différence relative entre E2 et Camellia est dans
le nombre de couches non linéaires par tour. En effet, dans E2 la structure de la fonction
de tour est décomposée en 4 parties : 2 passages dans les boites-S, une partie linéaire
qui mixe les octets entre eux et une addition de clé. Dans Camellia la permutation est
sensiblement la méme mais pour gagner en temps d’exécution les concepteurs ont choisi
d’enlever une des deux couches non-linéaires. La complexité des attaques différentielles
tronquées entre les deux systémes de chiffrement reste la méme.

Pour SKIPJACK [KRW99], les différentes attaques différentielles tronquées peuvent
casser jusqu’a 30 tours (des 32 tours) du systéme de chiffrement. Elles sont trés différentes
de celle de E2 et CAMELLIA puisqu’elles étudient la propagation d’une différence a
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travers les tours. C’est-a-dire que la différence en sortie est déterminée par la valeur
en entrée mais est valable quelle que soit cette valeur en entrée. L’attaque différentielle
tronquée sur SAFER [KB96] est sensiblement du méme type que celle sur SKIPJACK.

La cryptanalyse “stochastique” de CRYPTON |[MGO00| peut elle aussi étre vue comme
une cryptanalyse différentielle tronquée. La particularité ici est que la probabilité de la
différentielle tronquée est calculée & 'aide de matrices de transition et repose sur des
propriétés de chaine de Markov pour la cryptanalyse différentielle tronquée. Cette dif-
férentielle tronquée a aussi la particularité que la troncature n’est pas faite sur tous les
mots de la taille des boites-S mais seulement sur une partie de ces mots. Ici I’ensemble
des différences en entrée et ’ensemble des différences en sortie sont composés seulement
de 16 éléments alors que les boites-S sont définies sur 8 bits (au lieu des 2% éléments que
comporte une boite-S).

Il existe d’autres attaques différentielles tronquées. Certaines attaques dites différen-
tielles peuvent aussi se classer dans la catégorie des attaques différentielles tronquées.

2.2.6 Lien avec les autres cryptanalyses

Contrairement a ce que 'on peut penser il y a de grosses différences entre une cryp-
tanalyse différentielle et une cryptanalyse différentielle tronquée. Ainsi un systéme de
chiffrement peut résister a la cryptanalyse différentielle car les boites-S qui le composent
ont de bonnes propriétés différentielles. En revanche il peut comporter des faiblesses pour
la cryptanalyse différentielle tronquée si la permutation “orientée mot” posséde de mau-
vaises propriétés de diffusion.

On peut remarquer que les systémes de chiffrement sur lesquels il existe des attaques
différentielles tronquées sont aussi souvent vulnérables aux attaques différentielles im-
possibles (section 2.3). Par exemple il existe des attaque différentielles impossibles sur
SKIPJACK [BBS99|, SAFER [BEA0S], CRYPTON|CKK™01]|, et E2 [SKU"00]. La cryp-
tanalyse différentielle tronquée ne s’applique pas trés bien aux systémes de chiffrement
a flot. Il existe tout de méme une différentielle tronquée sur le systéme de chiffrement a
flot SALSA [AFK™08| mais ce systéme de chiffrement a flot est proche d’un systéme de
chiffrement par bloc. Les attaques différentielles tronquées servent aussi faire des attaques
sur les fonctions de hachage basées sur des systémes de chiffrement par bloc.

2.3 La cryptanalyse différentielle impossible

2.3.1 Définition

La cryptanalyse différentielle impossible & été introduite par Eli Biham, Alex Biryu-
kov et Adi Shamir en 1999 pour cryptanalyser Skipjack [BBS99|. L’idée principale de
la cryptanalyse différentielle impossible est de trouver une différentielle (a1,a,) qui ne
peut jamais arriver, c’est-a-dire une différentielle telle que P [a; — a,] = 0. Plus généra-
lement on pourrait parler de chemin différentiel tronqué impossible puisque cette idée de
différentielle impossible s’applique souvent dans ce cas comme le montre ’exemple sui-
vant. On a alors une différentielle tronquée (A1, A,.) qui est impossible : c’est-a-dire que
P[A; — A ]=0.

Pour la recherche de chemins différentiels impossibles I'attaquant cherche un chemin
différentiel tronqué avec probabilité 1 pour un certain nombre de tours du systéme de
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chiffrement et un chemin différentiel tronqué avec probabilité 1 pour un certain nombre
de tours de I'inverse de la fonction qui n’est pas en adéquation avec la sortie de la premiére.

Exemple 2.3. L’attaque différentielle impossible peut s’effectuer sur un grand nombre
de systemes de chiffrement par bloc itératif “orientés mots”. L’exemple le plus connu
d’attaque différentielle impossible est celui donné sur 4 tours de ’AES par [CKK*01]. Le
motif de cette attaque est représenté sur la figure 2.4.

X[0]0]0 X10]0]0 X10]0]0 X[0/0/0 X XXX
0/0/0/0|S5B jojojolo|MC xlolo]o]SB 000 x|MCIX|X|X|X
0[0[0]0| 5g[0]0]0/0] AR |X|0]0]0]| sR |[0]0/X|0] AR | X|X|X X
ojojolo 0jojolo Xxlojofo 0]x]0]0 XIXIX|X
------ Contradiction - - ----
0?70 07[7]? 0?[?7]? 07[?7]? 0?77
7[?]0|?[SR7o 2 [7|? | AR [o|? |7 |7 |SR7Y?[72]?][0] AR [?]7]?]0
210[7 2 lgg1 (01722 hre-1012 27 lgp[22]0]7 ] [?2[7]0]?
720?717 0]7]7]? 0]?]?]? 710[?7]? 710177

FI1GURE 2.4 — Différentielle impossible sur 4 tours de ’AES ou X symbolise une différence
non nulle qui peut étre différente et “?” n’importe quelle différence.

Ce motif a été utilisé par la suite dans de nombreuses attaques contre I’AES.

2.3.2 L’attaque en elle méme

L’attaque différentielle impossible est différente de 'attaque différentielle dans le sens
ol ce n’est pas une attaque sur le dernier tour. En effet dans la cryptanalyse différen-
tielle impossible la différentielle regardée se situe au milieu du systéme de chiffrement et
Iattaquant doit faire des suppositions sur la clé des premiers et derniers tours.

Dans cette section nous donnons ’exemple d’une attaque différentielle impossible d’un
systéme de chiffrement de type SPN ou l'on cherche a retrouver la clé du premier et du
dernier tour. Nous supposons que nous avons trouvé une différentielle impossible (A1, A,.)
ou A; et A, sont des ensembles de différence aprés un tour du systéme de chiffrement
et aprés r tours®. Afin de pouvoir détailler I'algorithme utilisé pour I'attaque nous in-
troduisons les notations suivantes pour la clé du premier tour : les clés du premier tour
sont notées par h et la clé du premier tour correspondant a la clé utilisée pour chiffrer
est notée h*. Pour les clés du dernier tour on utilise les notations communément utilisées
jusque ici (c’est-a-dire k et k*). On a besoin ici de définir 'ensemble des différences en
entrée que I'on doit utiliser pour obtenir une différence dans A; aprés un tour ainsi que
le crible utilisé pour supprimer des paires de messages chiffrés :

A = {ﬁ%eADP@;ﬂﬁ¢o}

Amw:{ﬂmEmmP?4¢@

4. On suppose ici que c’est une différentielle tronquée. Ce qui est souvent le cas dans les attaques
impossibles.
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L’attaque différentielle impossible sur un systéme de chiffrement de type substitution
permutation utilisant ce cadre est décrite dans l’algorithme 4.

Algorithme 4 : Cryptanalyse différentielle impossible d'un systéme de type
substitution-permutation.

Entrée : Npe couples de messages clairs-chiffrés (X,Y) avec Y = Ex«(X).
Sortie : La clé maitre K* utilisée pour chiffrer les échantillons.
Pour chaque q¢ € Aj faire
Pour chaque couple (X, X') tel que X & X' = ag faire
Si Ex«(X) ® Ex«(X ® ag) € Agjeve alors
Pour chaque sous clé du dernier tour k faire
Si YY) F,Y(Y') € A, alors
Pour chaque sous clé du premier tour h faire
L Si F,(X) @ Fr(X') € Ay alors
| Rejeter la sous clé h pour la clé k.

Pour les clés (h, k) restant faire

Pour chaque clé maitre K correspondant aux sous clés (h, k) faire
| Si Ex(X)=Y = Ek+(X) alors retourner K;

2.3.3 Les variables aléatoires utilisées dans les attaques différen-
tielles impossibles

Lors de I'attaque comme présentée dans l'algorithme 4, nous n’avons pas besoin de
stocker des compteurs pour chaque clé regardée. Il suffit d’avoir une liste de toutes les clés
et de les supprimer au fur et & mesure des tests effectués. Pour une étude classique de la
complexité en donnée (voir chapitre 5) des attaques statistique nous avons en revanche
besoin de connaitre la distribution des variables aléatoires utilisées dans les attaques
différentielles impossibles.

Définition 2.15. Soit k une clé candidate pour le dernier tour et h une clé candidate
pour le premier tour. Dans le cas de la cryptanalyse différentielle impossible comme définie
dans la section 2.3.2, les variables aléatoires étudiées sont

L F(X)® Fy(X) € A
Cx (h) = e N (Y)e F (YY) € A

0 sinon.

Les compteurs que nous regardons alors sont Cij, 1) = Doy Cx,(nk)- En utilisant cette
définition la liste des clés gardées pour la recherche exhaustive de la clé maitre correspond
aux clés (h, k) telles que Cp ) = 0.

2.3.4 Lien avec les autres cryptanalyses

Du point de vue de 'attaque en elle méme la cryptanalyse différentielle impossible
est sensiblement différente d’une cryptanalyse différentielle classique par le fait que 'at-
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taquant cherche en méme temps a retrouver la clé des premier et dernier tours mais aussi
par le fait que dans l'attaque différentielle impossible usuelle les tests effectués sont 1a
non pas pour incrémenter le compteur correspondant a la bonne clé mais pour éliminer
les mauvaises clés.

En ce qui concerne la recherche de la caractéristique différentielle impossible il s’avére
que celle ci est assez proche de la recherche de chemin différentiel tronqué. D’ailleurs on
peut remarquer que les systémes de chiffrement qui sont sensibles aux attaques différen-
tielles tronquées sont souvent sensibles aux attaques différentielles impossibles.

Dans la cryptanalyse différentielle impossible on cherche par le milieu deux chemins
qui arrivent avec probabilité 1. Or lors d'un passage d’une différence dans les boites--
S une probabilité arrive. Pour contourner cette probabilité reliée aux propriétés de la
boite-S nous considérons des mots de la taille de la boite-S. La méthode la plus classique
consiste a dire que 8’il y a une différence non nulle en entrée d’une boite-S alors celle ci
subsiste a la sortie. C’est une des raisons pour laquelle les systémes de chiffrement qui
comportent des faiblesses contre les attaques différentielles tronquées comportent aussi des
faiblesses contre les attaques différentielles impossibles. Ces deux attaques reposent sur
des propriétés de mauvaise diffusion dans les systémes de chiffrements par bloc “orientés
mots”.

2.4 La cryptanalyse différentielle d’ordre supérieur

2.4.1 Deéfinition

La cryptanalyse différentielle d’ordre supérieur sur les systémes de chiffrement par
bloc a été introduite par Xuejia Lai en 1994 [Lai94| puis par Lars R. Knudsen en 1995
dans le but de cryptanalyser le DES [Knu95|.

Dans la cryptanalyse différentielle classique 1’étude porte sur I'analyse de la différence
entre deux messages clairs et deux messages chiffrés. Pour la cryptanalyse différentielle
d’ordre supérieur le principe reste le méme mais au lieu d’étudier la dérivée a ’ordre un
de la fonction, on s’intéresse aux dérivées d’ordre supérieur.

Définition 2.16. [Lai9j] Soit f une fonction de Fy dans F3. Soit ay, as, ..a, des vecteurs
indépendants de FY . La dérivée d’ordre v de f relativement a (a1, az,- - ,a,) est la fonction
définie par :
D<a17...7av>f : IF%U — F;
T D actaray ] (@ F Q)

ot {ay, -+ ,a,) symbolise le sous espace vectoriel engendré par les vecteurs ay,as, -+ , a,.

Par exemple la dérivée a l'ordre deux suivant les valeurs a et b d’une fonction f au
point z est notée D, Dy f(x) et vaut :

D.Dyf(x) = Du(f(z) @ f(z D))
= fe)afzab)@dfrda)® f(xBadb).
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Dans cet exemple on voit que 'on a besoin de connecter 'image par la fonction f aux
points x,x G a,x B b,z ® a & b. Ainsi les messages clairs doivent former un espace affine
de taille 2¥ si on étudie une différentielle d’ordre v.

Comme pour I'étude de la cryptanalyse différentielle la dérivée d’ordre supérieur est
définie de fagon probabiliste. Mais dans la plupart des attaques différentielles d’ordre su-
périeur existantes, les attaquants utilisent des différentielles d’ordre supérieur avec proba-
bilité égale a 1. On parle alors de cryptanalyse différentielle d’ordre supérieur déterministe.

Soit deg(f) le degré algébrique d’une fonction f. Le fait de dériver une fois la fonction
f fait baisser son degré d’au moins un. Ainsi on a la propriété suivante :

Proposition 2.7. Soit f une fonction de FY dans F3. Soit V' un sous espace de F3 de
dimension deg(f) +1 on a

Dy f(x) =0 pour tout x € F3.

L’étude de la résistance d’un systéme de chiffrement aux attaques différentielles d’ordre
supérieur est souvent directement reliée a I’étude du degré du systéme de chiffrement.

2.4.2 L’attaque

Les attaques différentielles d’ordre supérieur ont pour l'instant été principalement
appliquées sur des systémes de chiffrement ayant une structure de schéma de Feistel
comme par exemple Misty [Mat97]. Pour cela 'algorithme 5 décrit 1'attaque dans le but
de retrouver la clé des deux derniers tours d’un schéma de Feistel en supposant que 'on
ait trouvé une différentielle d’ordre supérieur sur les r tours précédents.

On verra dans le chapitre 5, que dans le cas général d’une attaque différentielle d’ordre
supérieur déterministe (c’est-a-dire qui arrive avec probabilité égale a 1) il suffit souvent
d’utiliser un seul échantillon.

2.4.3 Les variables aléatoires utilisées dans les attaques différen-
tielles d’ordre supérieur

Comme dans toutes attaques statistiques, afin d’évaluer la complexité en donnée nous
avons besoin de définir les variables aléatoires que nous étudions

Définition 2.17. Soit Ex un systeme de chiffrement avec clé maitre K et fonction de
tour F'. Dans le cas de la cryptanalyse différentielle d’ordre supérieur comme définie dans
la partie précédente, les variables aléatoires étudiées sont :

ST DyF Y (Eg(X)) =0
XE7Y 0 sinon.

Les compteurs que nous regardons alors correspondent a la somme des variables aléa-

toires simples :
Ck - Z CX,k-
X
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Algorithme 5 : Cryptanalyse différentielle d’ordre v sur r + 2 tours d’un schéma

de Feistel.
Entrée : Npc = 2'N. Les N échantillons sont composés de 2V messages clairs

X;+V =(X;1,--- X;ov) o0t V est un espace vectoriel avec dim(V) = v et
i correspond au numero de ’échantillon 1 < i < N et les messages chiffrés
correspondants : (Y1, Y, v)

Sortie : La clé maitre K* utilisée pour chiffrer les échantillons

Initialiser une table C a 0. ;

Pour chaque structure faire

Pour chaque message dans une structure faire

Pour chaque sous clé du dernier tour k..o correspondant a K, o faire

(25, 29) + (V.5 ® [V @ k). V.9
Pour chaque sous clé de l’avant dernier tour k.1 correspondant a
K, faire

Caleuler t;; = (29 @ kyy1) ;

Si) i ti;® zﬁ-) = 0 alors

L Clhrsalkrso] + +;

Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de compteur
C Eria|[ys2];
Pour chaque candidat k,y1||k,1o € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ek+(X) alors retourner K;

2.4.4 Lien entre la cryptanalyse différentielle d’ordre supérieur
et d’autres attaques

Il existe différentes variantes de la cryptanalyse différentielle d’ordre supérieur. Dans la
section 3.4, nous détaillons le lien avec les attaques intégrales. Mais il existe aussi un lien
avec les “zero-sum” appliquées principalement aux fonctions de hachage. En 2009, Jean
Phillipe Aumasson et Willi Meier ont trouvés des distingueurs sur certaines fonctions
de hachage de la compétition SHA-3 [AMO09]. Ces distingueurs, qu'’ils ont appelés "zero-
sum distinguisher”, utilisent des propriétés des dérivées d’ordre supérieur de la fonction
étudiée. Ce type d’attaque avait déja été introduit en partie par Lars Knudsen et Vincent
Rijmen dans le cas des cryptanalyses a clés fixées [KRO7]. La différence principale de
ces attaques avec les attaques différentielles d’ordre supérieur est qu’elles ne peuvent
étre utilisées que dans le cas ol la permutation ne dépend d’aucun parameétre secret car
dans ce cas précis on peut utiliser les propriétés des différentielles d’ordre supérieur en
commengant par le milieu du systéme de chiffrement (c’est-a-dire un état intermédiaire).
Une étude plus approfondie de ce type de distingueur a été faite par Christina Boura et
Anne Canteaut [BC10]. Ces travaux ont permis d’appliquer ce nouveau type d’attaque a
un certain nombre de fonctions de hachage.



Chapitre 3

Autres attaques statistiques

Dans le chapitre précédent, nous avons détaillé un certain nombre d’attaques statis-
tiques relatives a la cryptanalyse différentielle. Le nombre d’attaques statistiques sur les
systémes de chiffrement par bloc est élevé ; nous avons présenté celles dont le nom com-
porte le mot “différentiel” dans le chapitre précédent. Dans ce chapitre nous présentons
d’autres attaques statistiques qui ont soit un lien avec la cryptanalyse différentielle, soit
un lien avec la cryptanalyse linéaire que nous détaillons ici.

La liste des attaques statistiques que nous présentons ici ne se veut pas exhaustive. Elle
illustre la quantité d’attaques qui sont utilisées sur les systémes de chiffrement par bloc
et parfois sur des fonctions de hachage.

3.1 Les attaques “boomerang”

L’attaque boomerang a été introduite en 1999 par David Wagner [Wag99| et a été
utilisée par la suite pour attaquer un certain nombre de systémes de chiffrement par bloc.
C’est une généralisation de la cryptanalyse différentielle mais qui ne s’applique pas tout a
fait au méme contexte puisque 'attaque boomerang est une attaque a messages clairs et
chiffrés choisis. C’est-a-dire que 'attaquant doit pouvoir obtenir les chiffrés des messages
clairs de son choix mais il doit aussi pouvoir obtenir les messages clairs correspondant a
des chiffrés de son choix.

3.1.1 Description

Dans la plupart des attaques boomerang la sous clé que 'on cherche a retrouver est
celle du premier tour. Ainsi nous allons décrire 'attaque dans ce cas.

Soit E un systeme de chiffrement que 'on décompose en trois parties Ey, E; et la
fonction de tour F': E = E; 0 Eyo F.

Supposons que 'on ait extrait une différentielle a — a pour la fonction Ej, et une
différentielle b — b pour la fonction E;tavec les probabilités suivantes :

p*—P[a—ui] g« = P b—>5]
FEy E;l
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FIGURE 3.1 — Schéma descriptif de ’attaque boomerang

Pour attaquer le systéme de chiffrement, nous considerons un ensemble de quatre
messages clairs X, X', Z, Z' et leur messages chiffrés correspondant Y, Y’, T, T". Dans une
attaque boomerang nous voulons que la paire (X, X’) suive la différentielle a — a sur la
partie Ey et que les couples X, Z et X', Z’ suivent la différentielle b — b sur Bt Alors
on espére que la paire (Z, Z') suive la différentielle @ — a sur E; ! Un schéma descriptif
est donné dans la figure 3.1.

Soit Ag I'ensemble défini par Ay = {aO‘P [ao ? a] # 0}. L’attaque boomerang utili-

sant ces différences est résumée dans ’algorithme 6.

3.1.2 Les variables aléatoires étudiées

Soit Cx et C} les variables aléatoire définies dans la section 1.5.5. Dans le cas des
attaques boomerang les variables aléatoires simples C'x ;, valent :

1 si Fi(X) @ Fi(X') = a et
CX,k = Ey (E;(}F(EK* (X) D b)) D F (E;{l (EK* (X/) ® b)) —a

0 sinon.

Comme dans beaucoup d’attaques statistiques, les variables aléatoires C}, permettant de
générer la liste des clés gardées correspondent & la somme de ces variables aléatoires
simples.

Dans le cas ou la clé candidate testée est égale a la bonne sous clé k*, la variable

aléatoire Cy- suit une loi binomiale de paramétre N et p2qg2.

3.1.3 Lien avec les autres attaques

Naturellement ’attaque boomerang est une généralisation de la cryptanalyse différen-
tielle puisqu’elle utilise des propriétés différentielles sur des versions réduites du systéme
de chiffrement (FEy) et (E;). L’attaque boomerang est aussi beaucoup utilisée pour les
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Algorithme 6 : Attaque boomerang

Entrée : N échantillons composés de deux messages clairs et de deux messages
chiffrés
Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser une table C' de 2" compteurs a 0 ;
Pour chaque q¢ € Aj faire
Pour chaque couple (X, X' )avec X' = X @ a, faire
Récupérer les chiffrés correspondants Y = Ex«(X) et Y/ = Eg«(X');
Soit T=Y @bet T =Y D b;
Récupérer les clairs correspondants Z = E.(T) et Z' = Eg-(T');
SiZ®Z € A alors
Pour chaque sous clé candidate k faire
Calculer d = Fi,(X) & Fi(X');
Calculer d' = Fi,(Z) & Fp(Z');
Si d=aetd =aalors C[k]+ Clk]+ 1;

Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k£ € £ faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ek+(X) alors retourner K;

fonctions de hachage : on peut citer par exemple I'attaque boomerang sur SHA-1 faite
par Antoine Joux et Thomas Perrin [JPO7].

3.2 La cryptanalyse linéaire

La cryptanalyse linéaire qui fait partie de la famille des attaques statistiques est assez
différente des attaques vues jusqu’ici, puisque qu’elle reléve de I'étude des propriétés de
non linéarité du systéme de chiffrement.

3.2.1 La cryptanalyse linéaire

La cryptanalyse linéaire a été introduite par Mitsuru Matsui a Eurocrypt en 1993
[Mat93].

Définition 3.1. Soit (7, k,v) € FJ x F} x T un triplet ot w est appelé masque d’en-
trée, x masque de clé et v masque de sortie!. Soit F' la fonction de tour d’un

systeme de chiffrement par bloc paramétré par une clé K. Une approximation linéaire
sur r tours, relative a ce triplet, est

(X7K) — <7T7X> D <’€7K> - <77FIT(<X)>7

ot {a,b) désigne le produit scalaire dans les corps de caractéristique 2.

1. On rappelle que 2 désigne le nombre de bits de la clé maitre
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Définition 3.2. Soit (7, K, ), un triplet définissant une approximation linéaire. La pro-
babilité de cette approximation est :

1
Pxxc [(m, X) @ (8, K) = (7, Fe(X))] = 5 + <. (3.1)
La variable € est appelé le biais de ’approximation linéaire. C’est un réel positif ou négatif
de valeur absolue plus petite que 0.5

Il est bien évident que les approximations linéaires avec un biais nul ne sont pas
intéressantes pour une cryptanalyse linéaire classique car cela correspond au cas de la
distribution uniforme 2.

C’est la connaissance de I’évaluation de ’équation linéaire en certains points qui va
nous permettre de tirer de 'information sur la clé utilisée pour chiffrer. Dans les attaques
linéaires on n’a pas besoin de choisir les couples clair/chiffré utilisés pour récupérer cette
information. On dit alors que la cryptanalyse linéaire est une attaque & clairs connus?.
Dans la pratique, lorsque 'on effectue une cryptanalyse linéaire, la clé que 'on cherche a

retrouver est fixée. Ainsi si on se place a clé fixée la probabilité est

1
P [(m, X) ® (k, K) = (7, Fr(X))] = 5 + ek (3.2)
Dans la pratique le biais peut étre différent suivant la clé utilisée pour chiffrer. En théorie
on fait I’hypotheése que le biais est le méme pour toutes les clés. Cette hypothése est appelé
hypothése d’indépendance a clé fixée.

Hypothése 3.1. Hypothése d’indépendance a clé fixée Soit (m,k,7) un triplet
définissant une approximation linéaire. Dans les attaques linéaires classiques on suppose
que toutes les clés possédent le méme biais pour une approximation linéaire donnée, c¢’est-
a-dire :

Px [(m, X) @ (r, K) = (v, Ex(X))] = Pxx [{T, X) @ (8, K) = (7, Ex (X))]

3.2.2 Attaque linéaire de type 1 et de type 2

Dans son premier papier, Mitsuru Matsui présente plusieurs méthodes pour effectuer
des cryptanalyses linéaires. Ses méthodes sont décrites dans les algorithmes 1 et 2 de
[Mat93|. Par la suite dans la littérature les cryptographes ont repris ces attaques en les
nommant attaque de type 1 et de type 2 pour faire référence aux deux premiers algorithmes
proposés par Mitsuru Matsui. L’attaque de type 3 que nous ne présenterons pas ici est
une combinaison des deux précédentes attaques.

Attaque de type 1

Dans cette attaque on cherche a tirer de 'information a partir des chiffrés directement
(cest-a-dire Fx = FJ;). Cette attaque retrouve en général la valeur de 1 bit de la clé
maitre. Le reste de 'attaque se fait par une recherche exhaustive des bits de la clé.

2. On peut quand méme en tirer certaine informations. Cela a fait 'objet de travaux récents.
3. Contrairement a la cryptanalyse différentielle et ses généralisations qui sont des attaques a clairs
choisis
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Pour une clé maitre K* fixée, dans une attaque de type 1 on s’intéresse a la valeur

suivante : ]

Px [(m, X) @ (v, Exc (X)) = 5 + (—1)"Ee
Supposons que l'on ait & notre disposition N couples clairs chiffrés (X;,Y;) avec YV =
Ex+(X), dans une attaque de type 1 on compte le nombre de paires (X,Y’) qui vérifient
I'équation (m, X) @ (v,Y) = 0. Nous notons par C' la variable aléatoire correspondant a

la somme des variables aléatoire simple C'y :

w1 s (mX)®(Y)=0 )
CX_{O sinon. et C_EX:CX'

Contrairement aux attaques que nous avons présentées jusqu’ici, dans la cryptanalyse
linéaire de type 1, on ne cherche pas a retrouver la clé du dernier tour mais de I'information
sur un bit de la clé maitre. Ainsi comme on étudie la distribution d’un compteur pour une
clé fixée, on n’utilise pas la notation classique C}, définie dans la section 1.5.5. Cependant
I’analyse de la complexité en donnée faite dans le chapitre 5 reste valable.

A partir de ces compteurs on définit le biais empirique d’une approximation linéaire
pour la clé utilisée pour chiffrer par é = % — % On s’intéresse alors aux signes du biais
empirique € et du biais théorique € : si les deux biais ont le méme signe alors (k, K*) = 0

sinon (k, K*) = 1. L’algorithme 7 décrit cette attaque.

Algorithme 7 : Cryptanalyse linéaire de type 1 pour un triplet (m, k,~)
Entrée : N couples clair/chiffré (X,Y) avec y = Ej(x;).
Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser un compteur C' a 0;
Pour chaque message clair X faire
| Si(m, X)® (v,Y) alors C «- C + 1,

Si €€ > 0 alors

| (k,K*) =1
Sinon
| (k,K*) =0.

Faire une recherche exhaustive de la clé maitre.

Attaque de type 2

L’attaque de type 2, porte aussi le nom d’attaque linéaire sur le dernier tour. En effet
dans cette attaque on va chercher a retrouver de I'information non pas sur la clé maitre
directement mais sur la clé du dernier tour*. On rappelle les notations qui sont utilisées
dans les chapitres précédents. Soit K* la clé utilisée pour chiffrer. La clé du dernier tour
correspondant a la clé maitre est notée k* alors que toutes les autres clés candidates sont
notées k. Soit un systéme de chiffrement £ comportant r + 1 tours Fx = Fg''. Soit ¢ le
biais théorique d’une approximation linéaire sur r tours du systéme de chiffrement :

Pexcl{m, X) @ (s, K) = (v, Fi(X))] = 5 +=

4. La méme méthode peut étre appliquée pour retrouver la clé des premiers tours et des derniers tours
combinés
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Supposons que nous ayons N couples de messages clairs, messages chiffrés (X,Y =
E3(X)). Pour chaque clé du dernier tour on calcule les compteurs

Crh=> (r.X)e (v, F (V)L

i=1

Afin de distinguer la bonne sous clé des autres on fait '’hypothése que la valeur ‘% — %|
pour k # k* est proche de 0. Cette hypothese est appelée hypothése de répartition aléatoire
par fausse clé.

Hypothése 3.2. Répartition aléatoire par fausse clé Soit K* la clé maitre utilisée
pour chiffrer. Pour toutes les sous clés k ne correspondant pas a la clé maitre on a

_ . 1
PX [<7T7X>EB<’€>K>:<77Fk1(EK(X>>>}25
La bonne sous clé se distingue alors par le fait que |C]’\“f — %‘ R €.

L’algorithme 8 décrit cette attaque.

Algorithme 8 : Cryptanalyse linéaire de type 2 pour un triplet (r, &, ) définissant
une approximation linéaire sur r tours. Cas ot Eg- = F}}tl

Entrée : N clairs X et les chiffrés correspondant Y = E7(X)
Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser une table C[k] a 0;

Pour chaque message clair X faire

Pour chaque sous clé k faire

L Si (m, X) @ (v, F;,'(V;)) = 0 alors

| Clk] < Clk] + 1;
GTénérer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k£ € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ex(X) alors retourner K;

3.2.3 Distribution des variables aléatoires

La complexité en données, la probabilité de succés et le gain d’une attaque ont été
beaucoup étudiés dans le cas de la cryptanalyse linéaire, en particulier par Pascal Junod
[JunO01] et par Ali Aydin Selguk [Sel08]. Ces résultats reposent sur I’étude de la distribution
des compteurs utilisés dans ces cryptanalyses.

Si on reprend le cas particulier de la cryptanalyse linéaire de type 2, 'attaque consiste
alors a distinguer deux distributions. Dans le cas de la bonne sous clé la variable aléatoire
Cj+ suit une loi binomiale de parameétres N et p, avec p, = %4— ¢ alors que pour toutes les
autres clés les variables aléatoires C) suivent une loi binomiale de paramétres N et p avec
p= % Contrairement au cas de la cryptanalyse différentielle ot ’étude de la complexité
en données et de la probabilité de succés peut étre difficile, ici cette étude est simplifiée
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par I'utilisation d’une approximation gaussienne de la loi binomiale. Cette approximation
gaussienne peut se faire grace au jeu de paramétres que 'on manipule ici. Ainsi dans
[JunO01], une étude du gain est donnée en utilisant cette approximation gaussienne et dans
[Sel08] une formule de la probabilité de succés est aussi extraite de cette approximation.

3.2.4 La cryptanalyse linéaire multiple et multidimensionnelle

Les attaques linéaires ont été améliorées suivant deux directions. Ainsi on peut distin-
guer la cryptanalyse linéaire multiple de la cryptanalyse linéaire multidimensionnelle.

La cryptanalyse linéaire multiple a été introduite dans un second article de Mitsuru
Matsui [Mat94| qui utilisait deux approximations linéaires sur le DES puis a été reprise
dans de nombreux articles notament [JR94, JV03, BCQO4]. Dans l'analyse de la distri-
bution des variables aléatoires on considére que les approximations sont statistiquement
indépendantes®. Les complexités de ce type d’attaque ont déja été beaucoup étudiées
en particulier par Pascal Junod et Serge Vaudenay dans [JV03| et par Alex Biryukov,
Christophe de Canniére et Mickaél Quisquater dans [BCQO04|.

L’introduction de la cryptanalyse différentielle multidimensionnelle est quant a elle
plus récente puisqu’elle a été introduite dans de nombreux articles écrits par Joo Yeon
Cho, Miia Hermelin et Kaisa Nyberg [CHN08, HCN09, HN10|. L’objectif principal de cette
approche est de s’affranchir de I’hypothése faite dans la cryptanalyse linéaire multiple que
les approximations linéaires sont indépendantes. Ainsi dans le cas de la cryptanalyse
linéaire multidimensionnelle, les compteurs sont définis pour chaque approximation. On
obtient alors des vecteurs de 0 et de 1 selon que 'approximation est vérifiée pour une clé
ou pas. L’étude théorique repose alors sur la distribution de ces vecteurs.

3.3 La cryptanalyse différentielle-linéaire

3.3.1 Définition

La cryptanalyse “différentielle-linéaire” a été introduite en 1994 par Susan K. Lang-
ford et Martin E. Hellman dans [LH94| dans le but de monter une attaque sur 8 tours
du DES qui améliore la meilleure attaque différentielle et la meilleure attaque linéaire.
Cette attaque comme son nom l'indique est un mélange de I'attaque linéaire et de 'at-
taque différentielle classique. Les différentes attaques différentielles-linéaires combinent la
connaissance d’'une différentielle sur les premiers tours du systéme de chiffrement avec une
approximation linéaire sur la fin du systéme de chiffrement.

Afin de décrire cette attaque nous reprenons les notations définies dans la section 2.1
et la section 3.2 concernant la cryptanalyse différentielle et la cryptanalyse linéaire.

Définition 3.3. Soit (ag,r,7) € Fy x FY x F3* un triplet, ot ag est une différence
entre deux messages clairs, v est un masque en sortie et Kk un masque sur la clé. Soit
F' la fonction de tour d’un systeme de chiffrement par bloc paramétré par la clé K. Une

5. Ce qui n’est pas le cas dans la pratique.



52 3.8 La cryptanalyse différentielle-linéaire

approximation différentielle-linéaire sur r tours est alors définie par
X = (7, Fr(X)) & (7, Fr(X ® ag)) = (k, K).

Pour une clé fixée, la probabilité d’une approrimation différentielle-linéaire est alors défi-
nie par

P {3, F(X) @ (n, K) = (3, F(X @ a0))] = 5 + 2,

ot sous l’hypothése d’indépendance a clé fixée (voir hypothése 3.1) le biais e est le méme
pour toutes les clés.

3.3.2 L’attaque

L’attaque en elle méme étant assez simple a comprendre puisque c’est une combinaison
d’attaques déja connues, nous allons juste donner I'algorithme la décrivant (voir 1'algo-
rithme 9) dans le cas d’une attaque sur le dernier tour (c’est-a-dire le cas ott Eg- = Fjtt).

Algorithme 9 : Cryptanalyse “différentielle-linéaire” sur le dernier tour utilisant
le triplet (ao, k,7) définissant une approximation différentielle-linéaire sur r tours.
(Ege = FItY

Entrée : N couples (X, X' = X @ ag) et les chiffrés correspondants

(Y = Ex«(X),Y' = Ex-(X & ap))

Sortie : La clé maitre K* utilisée pour chiffrer les échantillons

Initialiser une table C[k] a 0;

Pour chaque couple (X, X & ao) faire
Pour chaque sous clé k faire

L Si (v, ;YY) @ (v, F, ' (Y")) = 0 alors

| Clk] « Clk] + 1;

Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de |C’ [k] — ﬂ‘ ;

2
Pour chaque k € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ekg+«(X) alors retourner K;

Dans le cas de la cryptanalyse “différentielle-linéaire”, on ne peut pas utiliser de crible
pour supprimer un certain nombre de paires car la caractéristique différentielle n’apparait
que sur les premiers tours du systéme de chiffrement. De la méme facon on ne peut pas
utiliser un masque sur ’entrée car la caractéristique linéaire n’apparait que sur la seconde
partie du systéme de chiffrement.

3.3.3 Les variables aléatoires

Les variables aléatoires simples (voir section 1.5.5) utilisées pour les attaques différentielles-
linéaires sont définies par

Osz{ 1 si (0 F N (Ex (X))@ (7, F (B (X @ ag))) =0

0 sinon .
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FIGURE 3.2 — Distingueur pour une attaque intégrale sur 3 tours de ’AES

Les variables aléatoire étudiées C}, correspondent a la somme de ces variables aléatoires
simples et suivent une loi binomiale de paramétre (N, 1 + ¢) dans le cas ou k = k* ou
une loi binomiale de paramétre (N, %) dans les autres cas. Comme pour la cryptanalyse
linéaire de type 2, on obtient alors que la distribution de ces variables aléatoires peut étre
approchée par une loi gaussienne.

3.4 L’attaque par saturation ou attaque intégrale

La cryptanalyse intégrale a été introduite par Joan Daemen, Vincent Rijmen et Lars
R. Knudsen dans [DKR97]®. Suite au papier de Stefan Lucks en 2001 [Luc01] elle prend
le nom d’attaque par saturation. Puis, a FSE en 2002, Lars R. Knudsen et David Wagner
[KWO02| la renomment attaque intégrale.

3.4.1 Description

L’attaque intégrale s’applique relativement bien aux systémes de chiffrement “orientés
mots“. Il s’agit de “saturer” un ou plusieurs mots, c¢’est-a -dire de faire prendre & une partie
du message toutes les valeurs possibles et d’utiliser les propriétés induites par la fonction
itérée pour créer un distingueur sur la sortie.

De fagon générale, soit A 'espace des différences en entrée que 'on veut saturer (c’est-
a~dire faire prendre toutes les valeurs). Pour un message fixé en entrée, on fait varier tous
les bits correspondant & A. Dans une attaque intégrale on s’attend a ce que la somme de
tous les chiffrés correspondant a ces #A messages clairs soit égale a 0 sur un sous espace.

Exemple 3.1. Dans cet exemple nous présentons un distingueur bien connu sur 8 tours de
I’AES. Ce distingueur permet de monter une attaque sur 6 tours de I’AES. Le distingueur
est représenté sur la figure 3.2. Soit un ensemble A qui contient 256 mots a chiffrer, ou
les mots sont tous égaux sur 120 bits et prennent toutes les valeurs possibles sur l’octet en
haut a droite. Si on regarde I’évolution des octets actifs aprés 3 tours on observe que la
somme des 256 sorties est égale a 0 sur un octet. Ce distingueur s’applique a toutes les

6. Cette attaque a été mise en place sur les systéme de chiffrement SQUARE. En référence a ce papier
certains la nomment “square attaque”.
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boites-S en entrée.

Pour simplifier la compréhension de 'attaque qui permet de retrouver une partie de
la clé d'un systéme de chiffrement dans le cadre d’une attaque intégrale, I’algorithme 10
se restreint & la recherche de la clé du dernier tour. Cet algorithme peut évidemment se
généraliser facilement pour retrouver la clé du premier ou des premiers tours et/ou la clé
des derniers tours.

Algorithme 10 : Attaque intégrale (attaque sur le dernier tour).

Entrée : N échantillons ot un échantillon est composé de #A messages X @ a avec
a parcourant A et les chiffrés correspondants Y, = Ex+(X & a).

Sortie : La clé maitre K* utilisée pour chiffrer les échantillons
Initialiser une table C' de 2" compteurs a 0 ;
Pour chaque échantillon faire
Pour chaque sous clé candidate k faire

d=0;

Pour chaque a € A faire

| Calculer d =d & F,'(Y,);
Si d est égal a 0 sur la partie étudiée alors Clk| < C[k] + 1;

Générer une liste £ de ¢ candidats ayant les plus grandes valeurs de C[k] ;
Pour chaque k € L faire

Pour chaque clé maitre K correspondant a la clé k faire
| Si Ex(X)=Y = Ek+(X) alors retourner K;

3.4.2 Les variables aléatoires

Soitt A un espace de différences en entrée que l'on fait varier et M la fonction qui
permet de tronquer la sortie sur les bits qui nous intéressent. Les variables aléatoires
utilisées dans une cryptanalyse intégrales sont définies par

1 s @ M(F,;I(EK*(X @ a)) —0,
CX,k = a€A
0 sinon.

Comme pour la cryptanalyse différentielle d’ordre supérieur déterministe, les variables
aléatoires C'x j~ suivent des lois de Bernoulli avec probabilité 1 alors que pour les autres
candidats les variables aléatoires C'x  suivent des lois de Bernoulli de parametre ﬁ ol
# M est la taille de la troncature. Les variables aléatoires qui nous intéressent pour former
la liste des clés gardées correspondent a la somme de ces variables aléatoires simples :

Ck - Z CX,k-
X

3.4.3 Lien avec les autres cryptanalyses

Lien avec la cryptanalyse différentielle d’ordre supérieur La cryptanalyse inté-
grale peut étre vue comme une attaque différentielle d’ordre supérieur (voir section 2.4).
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La différence entre ces deux types d’attaques vient principalement de la maniére de trou-
ver un distingueur sur la fonction.

Dans la cryptanalyse d’ordre supérieur on s’intéresse au degré algébrique du systéeme de
chiffrement. Cette propriété est directement reliée au degré algébrique des boites-S com-
posant le systéme de chiffrement.

Dans la cryptanalyse intégrale des systémes de chiffrement orientés mot on s’intéresse
plus aux propriétés de diffusion du systéme de chiffrement, puisque quand on sature une
boite-S en entrée alors la sortie est aussi saturée (si la boite-S est une permutation).

Lien avec la cryptanalyse linéaire multiple La cryptanalyse intégrale a aussi été
appliquée sur des systémes de chiffrement qui n’étaient pas orientés mots. On peut ci-
ter par exemple 'attaque par saturation sur PRESENT faite par Baudoin Collard et
Frangois-Xavier Standaert [CS09]. La meilleure attaque linéaire multiple sur PRESENT
peut cryptanalyser 26 tours (|Chol0]) et I'attaque par saturation [CS09] est assez proche
puisque elle permet de retrouver de 'information sur la clé si le systéme de chiffrement
est réduit & 24 tours”. La question s’est alors posée de savoir pourquoi PRESENT était
vulnérable “autant” a ’attaque par saturation qu’a ’attaque linéaire multiple. Une étude
faite par Gregor Leander en 2011 [Leall] montre le lien entre ces deux types d’attaques.
L’auteur introduit alors une nouvelle famille d’attaques incluant la cryptanalyse linéaire
multiple et les attaques par saturation.

3.5 Les attaques a clés liées

Je ne pouvais pas faire une étude des attaques statiques sans parler rapidement des

attaques a clés lices®. Ces attaques sont moins puissantes que les attaques précédentes
car elle supposent que 1’on a en sa possession un certain nombre de messages clairs et les
chiffrés correspondants pour différentes clés.
La famille des attaques a clés liées est trés large. L’idée est, connaissant le lien entre
plusieurs clés de retrouver une de ces clés. Les plus connues sont les attaques différentielles
a clés liées [Bih94]. Dans les attaques différentielles a clés liées, on suppose que l'on a en
possession d'un certain nombre de paires de messages clairs avec une différence donnée
ag et les chiffrés correspondants par deux clés différentes liées, K et K + vy. Dans cette
section nous détaillons le principe de I'attaque différentielle & clés liées.

3.5.1 Attaque différentielle a clés liées

L’attaque différentielle a clés liées a été introduite par Eli Biham [Bih94|. Elle est
utilisée pour montrer des faiblesses d’un certain nombre de systémes de chiffrement et est
relativement efficace sur certaines des versions de ’AES. La derniére attaque différentielle
a clés lices peut casser 10 des 14 tours de 'AES avec clés de 256 bits [BDK110].

Définition 3.4. Soit Ex un systéme de chiffrement par bloc qui chiffre des messages de m
bits avec un clé maitre K de taille Q2. On appelle caractéristique différentielle a clés
liées le triplet (ag, a,,o) ot ag € F5* correspond a une différence entre deux messages en

7. Au lieu des 31 de la description de PRESENT
8. "related key differential attacks"
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entrée, a, € FJ' correspond a une différence entre les deux messages chiffrés avec des clés
ifférentes e correspond a la différence entre les deux clés que ['on utilise.
d tes et v € FY dalad tre les d l I’ til

L’algorithme 11 décrit cette attaque dans le cas ot 'on a trouvé une caractéristique
différentielle a clés liées de la forme (ag, a,7o).

Algorithme 11 : Cryptanalyse différentielle & clés liées.

Entrée : N couples (X, X' = X @ ag) et les chiffrés correspondants respectivement
parlesclés K et K' =K@ :Y = Ex(X) et Y = Ex/ (X')

Sortie : La clé maitre K
Initialiser une table C' de 2?"® compteurs 4 0 ;
Pour chaque couple (X,X @ ay) faire

Pour chaque couple de sous clés candidates (k, k') faire

Calculer d = F;, ' (Y) @ F,' (Y');
L Si d=a, alors C|(k, k)] < C[(k, k)] + 1;

Générer une liste £ des ¢ candidats ayant les plus grandes valeurs de C[(k, k)] ;

Pour chaque (k, k') € L faire
| Rechercher la clé maitre correspondante.

3.5.2 Les variables aléatoires

Dans une attaque différentielle a clés liées avec paramétres (ao, ar, o), les variables
aléatoires simples que nous étudions sont les suivantes :

1 si FY(Ex(X))® F,' (E X ®ag)) = a,
CX,(kW):{ 0 sinon. k (Ex(X)) ( KEB’Y()( 0)) (3.3)

Les variables aléatoires qui nous intéressent dans les attaques différentielles a clés liées
correspondent & la somme des variables aléatoires simples :

Clrpy = Z CX (k1)
X

Ces variables aléatoires suivent des lois binomiales avec des parameétres différents si les
candidats (k, k') correspondent aux clés maitres (K, K') ou non. L’ordre de grandeur des
parameétres étudiés est le méme que dans les attaques différentielles classiques.

3.5.3 Lien avec d’autres attaques

Il existe d’autres versions des attaques a clés liées. On peut citer par exemple les
attaques boomerang a clés liées. Le principe est alors un mélange entre les attaques
différentielles a clés lices et les attaques boomerang (voir section 3.1).
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Application aux fonctions de hachage

F1GURE 3.3 — Construction Davis-Meyer

Les attaques différentielles a clés liées sur les systémes de chiffrement par bloc peuvent
aussi étre utilisées sur les fonctions de hachage utilisant des systémes de chiffrement
par bloc comme primitives. Par exemple dans le cas des fonctions de hachage utilisant le
construction Davis-Meyerla fonction de compression prend en entrée la valeur de chainage
et la clé du systéme de chiffrement par bloc est alors composée d’un bloc de message que
I'on veut hacher (voir figure 3.3).

Dans les attaques par collision, on cherche alors deux valeurs de chainages h et h’ =
h+ ag et deux messages X et X’ = X + vy qui donnent une différence nulle aprés passage
dans la fonction de compression c’est-a-dire une différence a, = ay a la sortie du systéme
de chiffrement par bloc.






Chapitre 4

Hypothéses utilisées dans la
cryptanalyse différentielle

Dans le chapitre 2, nous avons détaillé les attaques différentielles et leurs générali-
sations. En particulier nous avons expliqué que la probabilité de succes d’une attaque
différentielle repose sur la probabilité de la différentielle utilisée pour attaquer le systéme
de chiffrement. L’attaquant doit trouver une bonne estimation de cette probabilité.

Afin de calculer la probabilité d’un chemin différentiel ou d’une différentielle, beaucoup
d’hypothéses sont communément utilisées. L’idée de ce chapitre est de vérifier la validité
de ces hypothéses sur des versions réduites du systéme de chiffrement PRESENT (voir
section 1.4.1) appelées SMALLPRESENT. Les expérimentations que nous faisons dans ce
chapitre sont faites sur SMALLPRESENT-[4] ! et sur SMALLPRESENT-[§] 2.

4.1 Les chemins différentiels

Nous allons d’abord vérifier les hypotheéses sur les chemins composant les différentielles.

Définition 4.1. Un chemin différentiel surr tours d’un systéeme de chiffrement itératif
avec fonction de tour Fy : FY* — F3 est un (r+1)-uplet, (5o, f1,-+ , Br_1, Br) € (]F;”)(T“),
de différences intermédiaires a chaque tour.

La probabilité d’un chemin différentiel 5 = (6o, 51, - , B1, By) € (FP)"HY st -

def i i .
P[ﬁ] = PX,K [FK(X) @FK(X @50) = B, Vl} .

Calculer la valeur exacte de la probabilité d’un chemin différentiel n’est pas possible
pour un systéme de chiffrement par bloc. En effet, ce calcul nécessite de chiffrer tous les
messages avec toutes les cléé. Par exemple on aurait une complexité de O (2!12+128) dans
le cas de 'AES avec une clé de 128 bits ou encore une complexité de O (20478%) dans le

cas de PRESENT.

Dans ce chapitre, on note par P'[f] la probabilité théorique d'un chemin différentiel et
par P"[(] la probabilité réelle obtenue par une moyenne sur les messages et sur les clés.

1. SMALLPRESENT-[4] permet de chiffrer des messages de 16 bits.
2. SMALLPRESENT-|8] permet de chiffrer des messages de 32 bits.
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4.1.1 Chiffrement de Markov

Pour calculer la probabilité théorique d’un chemin différentiel, une des hypothéses
communément utilisée est que le systéme de chiffrement est de Markov (voir définition 4.2).
Cette hypothése consiste a dire que les différences a chaque tour sont indépendantes. La
probabilité d'un chemin différentiel s’obtient en multipliant les probabilités de chaque
tour.

Définition 4.2. [LM91] Un systéme de chiffrement itératif avec fonction de tour F' est
de Markov relativement a la cryptanalyse différentielle si la probabilité de la différence en
sortie, connaissant la différence en entrée, est indépendante de la clé utilisée pour chiffrer.

Soit 5 = (6o, f1,- -, Br) un chemin différentiel. Sous I’hypothése que le systéme de
chiffrement est de Markov, la probabilité théorique du chemin différentiel se calcule de la
facon suivante :

Proposition 4.1. [LM91] Supposons que le systéme de chiffrement itératif avec fonction
de tour F' est de Markov. Supposons aussi que les clés de tours sont indépendantes et
uniformément distribuées. Alors la séquence des différences By, - -+ , B, forme une chaine
de Markov. Dans ce cas particulier la probabilité du chemin différentiel f = (5o, -+ , By)
se calcule de la facon suivante :

P8 = || Pxx [Fx(X) ® Fi(X ® Bio1) = B, Vil

i=1

L’hypothése que le systéme de chiffrement est de Markov n’est pas vraie en général (les
expérimentations que nous avons faites sur SMALLPRESENT-[4] et que nous détaillons
ci-aprés le montrent). En effet, lors de nos expérimentations sur SMALLPRESENT-|4]
nous avons remarqué une dépendance des clés pour certains des chemins.

La probabilité d’'un chemin différentiel peut étre influencée par la clé utilisée pour
chiffrer. Pour illustrer ce phénomeéne, étant donné un chemin différentiel, nous introduisons
des compteurs pour chaque clé :

1 | |
Tx = 5#{)( ceFMFA(X)DFL(X+6)=0 ¥V 1<i<r},

Tyl = #HK[Tk = j}- (4.1)

Soit ) le nombre de bits de la clé maitre. La valeur exacte de la probabilité réelle d'un
chemin différentiel est alors :

P [6] _ 27m7179 Z Ty = 27mflfﬂ ZT[]] ..
KEeF$} J

Nous donnons ici un exemple de chemin différentiel sur SMALLPRESENT-[4] ou 'on
observe une dépendance de la clé qui fait que P*[3] # P" [3].

Exemple 4.1. Nous avons trouvé un chemin différentiel sur 3 tours de SMALLPRESENT-
[4] tel que la probabilité théorique est différente de la probabilité réelle.
Soit = (0x1101, 0xdd, 0x30, 0x220) ce chemin différentiel. Ce chemin différentiel était
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déja étudié dans la section 2.1. Ainsi la figure 2.1 représentait ce chemin et [’exemple 2.2
donnait le calcul de la probabilité théorique de ce chemin qui est de P'[3] = 27'2. Nous
nous sommes intéressés a la probabilité du chemin différentiel pour une clé fixée. Le ta-
bleau 4.1 nous donne le nombre de couples de messages clairs qui suivent ce chemin pour
une clé fizée. On observe alors sur cet exemple que la probabilité de ce chemin différentiel

% n’est pas la méme pour toutes les clés. Comme cet exemple est petit nous ne distin-
guons que 3 classes de clés mais dans la réalité ce nombre de classes peut étre beaucoup
plus itmportant. En utilisant les résultats du tableau 4.1 nous pouvons calculer la probabilité

Les valeurs T'[j] pour le chemin
B = (0x1101, 0xdd, 0x30, 0x220)

T[j] = #{K[Tk = j}
TABLE 4.1 — Expérimentations sur SMALLPRESENT-[4]

i | 0 8 16
T[j] | 131072 524288 393216

expérimentale de ce chemin différentiel :

0 x 131072 4+ 8 x 524288 + 16 x 393216 _12.68
920 » 916 =2 ’

Ce résultat illustre que la probabilité théorique d’un chemin différentiel peut étre diffé-

rente de la probabilité expérimentale pour une clé ou en moyenne sur les clés. Le probléme
est que pour un systeme de chiffrement classique nous ne pouvons pas faire une recherche
exhaustive pour trouver la probabilité exacte d’un chemin différentiel. Quand il construit
une attaque différentielle, ’attaquant ne connait pas la clé maitre utilisée pour chiffrer
donc il ne peut pas non plus connaitre la probabilité exacte d’un chemin différentiel.
Une autre remarque que [’on peut faire sur cet exemple est que le chemin étudié est impos-
sible pour certaines clés. L’existence de chemins différentiels impossibles est assez classique
pour les systemes de chiffrement par bloc itératifs . L’existence de chemins impossibles sur
un petit nombre de tours induit forcément des chemins impossibles sur plus que 3 tours
du systéme de chiffrement. Si le nombre de tours n’est pas trop grand on peut trouver ces
chemins impossibles en écrivant les équations dépendant des bits des messages clairs, de
la clé et des chiffrés. Malheureusement la complexité de ce systeme, qui est non linéaire
apres passage dans les boites-S, explose trés vite.

4.1.2 L’algorithme “branch and bound” pour trouver les chemins
différentiels

Dans le but de trouver les meilleurs chemins différentiels, nous utilisons un algorithme
récursif. Cet algorithme connu dans le cas de la cryptanalyse linéaire [BCQO04| peut s’ap-
pliquer de la méme facon pour la cryptanalyse différentielle. Soit Bproba—chemin Un€ borne
sur la probabilité des chemins que nous voulons garder. L’algorithme consiste & construire
un arbre de toutes les différences possibles et a couper les branches pour lesquelles on sait
que la probabilité aprés r tours sera plus grande que la borne donnée. Les algorithmes de
ce type sont appelés algorithmes “branch and bound”.

La racine de I'arbre que I'on construit est la différence en entrée et les feuilles sont les
différences aprés r tours. Au niveau i, chaque noeud contient la différence aprés ¢ tours
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ainsi que la probabilité du chemin différentiel défini & partir de la racine de 'arbre. Dans
la réalité on ne peut pas stocker tous les chemins différentiels. L’astuce consiste alors, a
couper les branches de I'arbre avant la fin, si ’on sait que la probabilité du chemin sera
supérieure a la borne que 'on s’est fixée. Pour faire cela nous construisons une table des
meilleures probabilités pour chaque tour : [q1, 2, - - , ¢;]. (¢; est la probabilité du meilleur
chemin sur ¢ tours). Imaginons que nous voulons trouver les chemins sur r tours tels que
la probabilité de ces chemins soit supérieure a Bpioba—chemin- AU Niveau 7 nous gardons
seulement les chemins avec probabilité p, tele que p. - ¢r—i > Bproba—chemin- L’algorithme
12 résume ce principe.

Algorithme 12 : Recherche automatique de chemins différentiels
Entrée : Un systéme de chiffrement, une différence en entrée ¢y, une borne
Biproba—chemin SUr la probabilité d’'un chemin
Sortie : Chemins avec différence en entrée dg, avec probabilité plus grande que
Biroba—chemin, €t leurs probabilités
Add-Trail(T , i)
Sit= ROUND alors

Si PB S Bproba—chemin alors
| afficher
fin si

fin si
Sinon
Pour chaque b;,, faire
Si PT(bZ — bi—l—l) 7é 0 and szw . PT’(bz — bi+1) < Bproba—chemin alors
biv1(T) <= bia
PT = PT . P?“((Sl — bi+1)
Add—Traﬂ(T = ((50, bl, s ,bi+1, 0, cee ),Z + 1)
fin si
fin pour
fin si
Add-Trail(T = (6,0,---,0),0)

Cet algorithme simple peut étre adapté suivant les usages que l'on veut en faire.
Pour augmenter la rapidité de la recherche de chemin on peut par exemple imposer des
contraintes sur la recherche. Les meilleurs chemins différentiels étant souvent ceux avec
peu de boites-S actives, on peut, par exemple, limiter le nombre de boites-S actives par
tour.

Cet algorithme peut aussi étre adapté pour trouver des différentielles tronquées (voir
section 2.2) ou encore d’autres types de chemins pour d’autres types d’attaques statis-
tiques.

4.1.3 Expériences

Nos expériences sur SMALLPRESENT-[4] nous ont permis d’observer qu’en général la
probabilité théorique des chemins différentiels correspondait & la probabilité des chemins
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différentiels prise en moyenne sur les clés. Pour cela nous avons fait des expérimentations
en utilisant différents algorithmes de cadencement de clé.

Dans les figures 4.1, 4.2 et 4.3, nous avons calculé les différences entre log(P![f5]) et

log(P" [3]) pour 500 chemins différentiels aléatoires pour 5 tours de SMALLPRESENT-[4].

— Dans la figure 4.1, nous supposons que les clés de tour sont obtenues par I'algorithme
de cadencement de clés défini dans la section 1.4.1 & partir d’'une clé maitre de 20
bits. Pour nos expérimentations, nous avons calculé les probabilités moyennes a
partir des 220 clés maitres possibles.

— Dans la figure 4.2, nous supposons que toutes les clés de tour sont identiques, c¢’est-
a-dire égales a la clé maitre. Nous avons calculé la moyenne des probabilités en
utilisant toutes les 2'° clés possibles afin d’obtenir la valeur P [3].

— Dans la figure 4.3, nous supposons que les clés de tour sont obtenues a partir d’une
clé maitre de 80 bits en utilisant ’algorithme de cadencement de clé défini dans la
section 1.4.1. Dans ce cas précis, nous ne pouvons pas calculer la moyenne sur les
280 clés possibles. La valeur obtenue pour P" [3] est calculée a partir d’'une moyenne
sur 220 clés.

400 ' ; . T
Pt [B] =2
350 =270 e .
n 2723 ,,,,,,,,,,,,
% 300 | | rr=ae
= 250 .
)
g 200 t i
<]
,-; 150 .
o 100 - .
=
50 i
0 P st T - /5/}5\—:\ T
-04 -0.2 0.2 0.4

log(P" [5]) — log(P* [A])

FIGURE 4.1 — Nombre de chemins en fonction du log(P" [8]) — log(P* [8]) : cas de la clé
maitre de 20 bits.

On remarque ici, au travers de ces expériences, que le phénoméne de dépendance d’un
chemin différentiel vis a vis des clés n’est pas le méme suivant ’algorithme de cadencement
de clé. En effet dans la figure 4.2 quand la clé maitre est utilisée comme clé de tour pour les
5 tours, la dépendance de la clé est plus importante que dans la figure 4.3 ou I'algorithme
de cadencement de clé avec une clé maitre de 80-bit est utilisé. Nous pouvons remarquer
que sur 5 tours de SMALLPRESENT-[4] seulement 166 = 96 bits de clés sont utilisés ce
qui fait que les bits de la clé maitre sont utilisés en moyenne un peu plus d’une fois. Dans
ce cas on est proche d’avoir des clés indépendantes (condition nécessaire pour 1'utilisation
des chaines de Markov).

L’algorithme de cadencement de clé pour une clé maitre de 20 bits semble le plus
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FIGURE 4.2 — Nombre de chemins en fonction de log(P" [(]) — log(P? [f]) : cas ou toutes
les clés sont identiques.

approprié ici (voir section 1.4.1). En effet on rappelle que PRESENT est un systéme de
chiffrement qui chiffre des messages de 64 bits avec une clé maitre de 80, c’est-a-dire que
% = % des bits de la clé maitre sont utilisés & chaque tour. Le rapport est le méme si on
prend une clé maitre de 20 bits pour un systéme de chiffrement de 16 bits.

Pour cet algorithme de cadencement de clé, les expériences montrent qu’en moyenne
le nombre de paires de messages qui satisfont un chemin différentiel est proche de la pro-
babilité théorique.

Nous pouvons observer que ce comportement est de plus en plus mauvais quand la pro-
babilité du chemin diminue

4.2 Les différentielles : somme de chemins

4.2.1 Théorie

Les meilleures différentielles (celles avec grandes probabilités) comportent des chemins
avec de grandes probabilités. La probabilité d’une différentielle se calcule aisément a partir
de la probabilité des chemins qui la composent.

Lemme 4.1. Soit (ag, a,) une différentielle sur r tours d’un systéme de chiffrement. Soit
D« la probabilité de la différentielle

=P [ — T] .
p ap P a
La probabilité de la différentielle est égale a la somme des probabilités des chemins qui

la composent.
/8:(607/81 ----- 57‘71167")
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FIGURE 4.3 — Nombre de chemins en fonction de log(P" [3]) — log(P*[f]) : cas de la clé
maitre de 80-bits.

Dans la section 4.1.1, nous avons montré que dans certains cas la probabilité d’'un che-
min différentiel pouvait en pratique étre différente de la probabilité théorique. Cependant,
il semble (dans le cas de PRESENT) y avoir certaines symétries qui font qu’en général
il n’y pas de grande différence entre la probabilité théorique d'une différentielle (obtenue
en sommant tous les chemins) et la probabilité estimée de celle-ci en prenant la moyenne
sur toutes les clés.

Malheureusement, pour certains systémes de chiffrement ot le nombre de chemins est
important, plus le nombre de tours augmente moins il est facile de trouver tous les chemins
différentiels et donc il devient impossible de calculer la probabilité d'une différentielle.
Dans les cryptanalyses courantes, on utilise souvent une borne inférieure de la probabilité
d’une différentielle. Cette borne est obtenue en considérant les chemins différentiels les
plus probables ou les plus facilement calculables.

4.2.2 Expériences

Puis illustrer la section précédente, nous avons fait des expériences sur 9 tours de
SMALLPRESENT-[§] .

Pour une différentielle (ag, a,.), nous avons calculé la somme de la probabilité théorique
d’un certain nombre de chemins composant la différentielle (ag, a,.). Dans nos expériences
sur SMALLPRESENT-[8], nous avons calculé la probabilité effective d'une différentielle
en effectuant une moyenne sur 250 clés et sur tous les messages clairs. Sur la figure 4.4
nous avons dessiné la différence entre la valeur théorique et la valeur expérimentale pour
4 différentielles. Nous remarquons que, naturellement, plus on prend de chemins plus la
probabilité obtenue est proche de celle de la différentielle.

En regardant les résultats de la figure 4.4, nous pouvons nous demander & partir de
combien de chemins, nous avons une bonne estimation de la probabilité de la différentielle.
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log(P* [ag = ar]) — log(3_5 P* [5])

o 0xa0a0000 — ]
0x11110000--—-
3 L . . , 0x22220000 -
32 34 36 38 40 49 A4 A6 18
—log(P" [B])

FIGURE 4.4 — Convergence de la somme des chemins vers la différentielle

Dans le cadre de nos expérimentations sur SMALLPRESENT-[4] (voir [BG10]), il avait
suffi de prendre des chemins avec probabilité supérieure a 272 pour avoir une bonne
estimation de la probabilité de la différentielle. Ici sur SMALLPRESENT-[8] on voit que
prendre tous les chemins différentiels avec probabilité supérieure a 2748 nous donne une
erreur de 0.2 dans le logarithme de la probabilité de la différentielle.

Dans le chapitre 6, nous faisons une attaque sur PRESENT. Afin d’estimer la probabilité
de nos différentielles nous avons cherché avec 'algorithme de “branch and bound” tous
les chemins différentiels avec probabilité supérieure a 2% ayant 3 boites-S actives. Nous
savons trés bien que prendre seulement ces chemins ne donne pas une bonne estimation
de la probabilité de la différentielle mais un calcul exact demanderait beaucoup trop de
ressources.

4.3 Les différentielles : dépendance de la clé

Dans la section 4.1.1, nous avons vu que la probabilité d’un chemin différentiel pouvait
étre dépendante de la clé. Suivant cette remarque il est logique de dire que la probabilité
d’une différentielle est elle aussi dépendante de la clé. Dans leur article en 2005, Vincent
Rijmen et Joan Daemen [DRO5| ont dit qu’en régle générale, pour une différentielle fixée,
le nombre de clés pour lesquelles la différentielle avait une certaine probabilité suivait une
répartition binomiale.

Dans cette section nous avons voulu vérifier expérimentalement dans le cas de PRESENT
si cette hypothése était vérifiée.

Nous considérons ici une différentielle fixée (ag, a,). Pour une clé fixée K nous notons
par Dy le nombre de paires de messages clairs avec différence ay qui ont une différence
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a, entre leur chiffrés.

© 1 T T
Dic © S#H{X|Fie(X) + Fi(X +ag) = a,}.

Nous nous intéressons & la distribution des

DJj] = #{K|Dx = j}.

Vincent Rijmen et Joan Daemen ont montré que :

La distribution des variables D[j] o #{K|Dy = j} est proche d’une loi binomiale.

Ce résultat vient d’une approximation de la loi hypergéométrique de la distribution des
variables D[j] par une loi binomiale. Dans le chapitre 5, nous avons utilisé ce résultat afin
d’avoir une bonne approximation de la probabilité de succes dans le cas de la cryptanalyse
différentielle.

Cependant nous avons voulu vérifier si, dans le cas de PRESENT, les variables aléatoires
D[j] suivent bien une distribution binomiale.

4.3.1 Expérimentation

Nous avons fait des expérimentations sur 5 tours de SMALLPRESENT-[4] pour vérifier
si les variables DJ[j] ont bien une distribution binomiale. Ces expérimentations ont été
faites a I’aide de 'algorithme de cadencement de clé pour une clé maitre de 20 bits. Dans
ces expérimentations nous avons calculé la répartition des variables Dg. Sur la figure 4.5
nous remarquons que les variables Dy suivent bien une distribution binomiale.

200000 . . .
150000 1
Ef 100000 -
50000 .

0

20

FIGURE 4.5 — Distribution des variables D[j] pour 8 différenticlles sur 5 tours de
SMALLPRESENT-|4]
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Cette observation pourra étre prise en compte au moment de calculer la probabilité de
succes d’'une attaque différentielle. Dans le chapitre 5, nous donnons une formule générale
de la probabilité de succés d'une attaque statistique simple. La derniére section de ce
chapitre (voir section 5.5) est dédiée a la présentation de la formule de la probabilité
de succés d'une attaque différentielle. Cette formule tient compte du fait que pour une
différentielle fixée, cette différentielle n’a pas la méme probabilité suivant la clé maitre
utilisée.

4.4 L’hypothése de répartition aléatoire par fausse clé

4.4.1 Théorie

Dans beaucoup d’attaques statistiques, afin d’étudier la complexité de I'attaque, il est
souvent supposé que le phénoméne observé a un comportement uniforme pour toutes les
clés candidates qui ne correspondent pas a la clé maitre. Dans la section 2.1, nous avons
écrit cette hypothese pour le cas de la cryptanalyse différentielle. Nous rappelons ici cette
hypothése.

Hypothése 4.1 (Hypothése de répartition aléatoire par mauvaise clé). Soit Ex- : Fy* —
F* un systéme de chiffrement par bloc paramétré par la clé K* avec fonction de tour F'.
On suppose que

Px [Fy (Exe- (X)) @ Fy N (Ere (X @ ap)) = a,] = { P sik = k",

p= le_l pour k # k*.

4.4.2 Expériences

Pour faire ces expériences, nous avons monté des attaques sur différents nombres de
tours de SMALLPRESENT-[8]. Dans chacune de nos expériences nous avons utilisé la
différentielle

(ap,a,) = (0x7,0x0a0a0000).

Cette différentielle est celle avec la meilleure probabilité sur 7 tours. Pour toutes les paires
qui passent le crible, nous avons déchiffré sur un tour et regardé le nombre de messages
pour lesquels le compteur Cx ; est incrémenté. Ici nous définissons le compteur suivant :

1
Pour une différentielle et une clé maitre fixée, nous nous sommes intéressésx aux valeurs
Wil = #{kIW), = j}.

Nous avons mené des expérimentations pour différentes clés maitres aléatoires et pour un
nombre de tours variable. D’aprés nos expérimentations, la clé maitre influence peu le
résultat. Le résultat de nos expérimentations est représenté sur la figure 4.6.

On peut y voir qu’au bout de 7 tours la distribution des mauvaises clés est plus éparse
que lorsque I'on regarde sur plus de tours. De plus lorsque que 'on regarde la probabilité
moyenne de la différentielle pour les mauvaises clés, on se rend compte qu’au bout de 7
tours celle-ci n’est pas uniforme. Par contre pour plus de tours on retrouve qu’en moyenne,
pour les mauvaises clés la probabilité de la différentielle est proche de 27™ = 2732,
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FIGURE 4.6 — Répartition des mauvais candidats. Expérimentation sur

SMALLPRESENT-[8]

Le fait que pour les mauvaises clés la distributions des W[j] semble étre binomiale,
n’influence pas vraiment la probabilité de succes de I'attaque puisque dans chaque attaque
on teste toutes les clés candidates. Ce qui est important ici ¢’est que si on effectue la
moyenne sur les clés, la probabilité de la différentielle pour les mauvais candidats est
proche de la valeur théorique 27,

Les résultats des expérimentations que nous avons présentées dans ce chapitre montrent
que les hypotheéses faites jusqu’a présent dans les attaques différentielles sont pas tout a
fait vérifiées (au moins dans le cas de PRESENT). Toutefois, le fait de faire ses hypothéses
n’influence pas vraiment les compléxités des attaques.






Chapitre 5

Complexité en données et probabilité
de succés des attaques statistiques
simples

Dans les chapitres 2 et 3 nous avons détaillé un certain nombre de cryptanalyses sta-
tistiques. Pour évaluer la puissance d'une attaque statistique nous avons besoin d’étudier
les complexités en temps, en mémoire, en données ainsi que la probabilité de succes. Il est
facile a partir des algorithmes donnés dans les chapitres 2 et 3, d’en déduire la complexité
en temps et en mémoire de chacune des attaques statistiques présentées. Ce chapitre est
donc dédié a I'étude de la complexité en données et de la probabilité de succes d’un
certain nombre d’attaques statistiques comme la cryptanalyse linéaire, la cryptanalyse
différentielle, la cryptanalyse différentielle tronquée, la cryptanalyse différentielle d’ordre
supérieur et les autres attaques présentées dans les chapitres 2 et 3.

5.1 Introduction

5.1.1 Les variables aléatoires étudiées

Les attaques statistiques sur les systémes de chiffrement par bloc sont des attaques
qui consistent a distinguer plusieurs distributions de probabilités. Dans la plupart des
attaques actuelles! on se limite & distinguer deux distributions. Les attaques statistiques
que nous avons présentées dans les chapitres 2 et 3 comportent un certain nombre de
similitudes. En effet le calcul de la complexité de I’étape de distillation (qui consiste a
extraire de l'information pour chaque échantillon et pour chaque candidat k testé) se
résume souvent a étudier la distribution des variables aléatoires?. Nous notons par Cx
la variable aléatoire pour la clé k£ et le message X. Dans les attaques décrites dans les
chapitres 2 et 3 nous avons décrit le cas particulier des variables aléatoires pour chaque
type d’attaque.

Par exemple dans le cas de la cryptanalyse différentielle classique (voir section 2.1) les

1. En tout cas celles présentées dans les chapitres 2 et 3
2. Par abus de langage on identifie les termes compteur et variable aléatoire.
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variables aléatoires simples sont définies par

oo 1 s R (ER(X)) @ FU (B (X @ ) = ar,
XET sinon.

Dans les attaques étudiées ici ces variable aléatoires suivent des lois de Bernoulli de
paramétre p, si k = k* et p sinon.

Afin de déterminer les candidats les plus probables, nous étudions la distribution de
la somme de ces variables aléatoires simples.

Ch=> Cxp et  Cp=> Cxp (5.1)
X X

Définition 5.1. Nous appelons attaque statistique simple les attaques statistiques
ot les compteurs étudiés afin de déterminer les clés les plus probables suivent des lois
binomiales avec seulement deux distributions de probabilités.

— On note par Cy la variable aléatoire correspondant a la bonne sous clé. Soit N le
nombre d’échantillons utilisés pour faire une attaque, cette variable aléatoire suit
une loi binomiale de paramétre (N, py).

— On note par Cy (k # k*) les variables aléatoires qui correspondent aux candidats
qui ne sont pas la bonne sous clé. Ces variables aléatoires suivent une loi binomiale
de paramétre (N, p).

Remarque 5.1. Les attaques présentées dans les chapitres 2 et 3 sont des attaques statis-
tiques simples. On verra plus en détail dans le chapitre 6 un exemple d’attaque statistique
(la cryptanalyse différentielle multiple) qui ne fait pas partie des attaques statistiques
simples. L’étude de la complexité en données et de la probabilité de succes de cette attaque
est alors différente et demande une analyse différente.

5.1.2 Complexité des attaques statistiques simples

Dans ce chapitre nous voulons introduire une étude générale de la complexité en don-
nées et de la probabilité de succés des attaques statistiques simples. Des travaux ont
déja été menés pour des cas particulier comme la cryptanalyse linéaire. L’étude générale
de la complexité en données et de la probabilité de succés pour ’ensemble des attaques
statistiques simples est quant & elle compliquée car les probabilités étudiées sont trés dif-
férentes suivant le type d’attaque. En effet dans le cas de la cryptanalyse linéaire nous
avons p = 1/2 et p, = p + . Ainsi I’étude classique de la complexité en données reléve
d’une approximation gaussienne de la loi binomiale. Malheureusement cette approxima-
tion ne peut pas étre utilisée dans le cas de la cryptanalyse différentielle car dans ce cas
les probabilités étudiées sont de 'ordre de grandeur suivant : p = 2™ et p, est beaucoup
plus grand que p. Dans ce cas la on sait qu'une approximation par la loi de Poisson de
la loi binomiale peut étre utilisée [Gil97]. L’ordre de grandeur des paramétres pour un
certain nombre d’attaques statistiques simples est donné dans le tableau 5.1. Ce tableau
illustre bien la variabilité des parameétres étudiés en fonction du type d’attaque.

5.1.3 Les travaux déja effectués

Comme dit précédemment, des travaux portant sur I’étude de la complexité en données
notamment de la cryptanalyse linéaire et différentielle ont déja été effectués auparavant.
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Type de cryptanalyse D
Cryptanalyse différentielle 2™ | \p avec A grand
Cryptanalyse différentielle tronquée 27t | A\p avec \ petit
Cryptanalyse différentielle impossible 27! 0
Cryptanalyse différentielle d’ordre supérieure(déterministe) | 27¢ 1
Cryptanalyse linéaire 1/2 1/2+4¢
Cryptanalyse différentielle-linéaire 1/2 1/2+¢

TABLE 5.1 — Ordre de grandeur des probabilités pour certaines cryptanalyses statistiques.

Ces travaux reposent essentiellement sur l'utilisation d’une approximation de la loi bi-
nomiale par une loi de Poisson pour la cryptanalyse différentielle [BS90| ou par une loi
normale pour la cryptanalyse linéaire [Jun01, BJV04, Sel08|. Les sections 5.3.3 et 5.3.4
détaillent le cas particulier de ces deux cryptanalyses. Dans ce chapitre pour calculer la
complexité en données dans le cas général d’une attaque statistique simple nous avons
besoin d’utiliser une approximation de la loi binomiale qui marche quels que soit les
parametres de la cryptanalyse.

5.2 Estimation de la loi binomiale

Les variables aléatoires utilisées dans la plupart des attaques statistiques présentées
dans les chapitres 2 et 3 suivent des lois binomiales. Comme la complexité en données des
attaques statistiques est souvent trés grande, cette loi est souvent difficile & manipuler.
En conséquence, le calcul de la complexité en données et de la probabilité de succés de
nombreuses attaques statistiques se base souvent sur une approximation de celle-ci par
une loi normale ou de Poisson. Cette section est donc consacrée a la présentation d'une
autre estimation des queues de la loi binomiale.

Définition 5.2. Soit X, une variable aléatoire qui suit une loi binomiale de paramétres
N et p. La fonction densité est définie par

P[X = LTNJ]:( N

LTle_ N—|7N|
P Y

ou 0 <7 <1.

5.2.1 Estimation

Une quantité, nommé divergence de Kullback-Leibler, joue un réle important dans
notre approximation des queues de la loi binomiale.

Définition 5.3. La divergence de Kullback-Leibler [CT91]

Soit P et Q deux distributions de probabilités qui suivent une loi de Bernoulli avec para-
metres respectifs p et q. La divergence de Kullback-Leibler entre ces deux distributions est
définie par

D (pllg) = pln <§> +(1—p)ln G;Z) : (5.2)

Nous utilisons la convention Oln% =0 et plng§ = oco.
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A partir de cette définition, nous obtenons une approximation de la fonction densité de
la loi binomiale, en utilisant I’approximation de Stirling pour les coefficients binomiaux :

Lemme 5.1. Approximation de Stirling appliquée aux coefficients binomiaux
[AS64] Soit N un nombre entier. Soit T' un nombre entier compris entre 0 et N/2. Une
bonne approximation du coefficient binomial entre N et T est :

()~ mmn () G bomeem)]

Cette approximation des coefficients binomiaux nous permet de donner une bonne
approximation de la fonction de densité de la loi binomiale.

Lemme 5.2. Soit Cy, une variable aléatoire qui suit une loi binomiale de paramétre (N, p).
Soit 7 un nombre réel tel que 0 < 7 <1 (T est appelé le seuil relatif). Nous avons :

P[C, = |TN]|] = EENG%TB?Q_NMﬂM[1+C)(f%)}‘ (5.3)

ot D (7||p) est la divergence de Kullback-Leibler définie en (5.2)
Preuve : Nous rappelons que la fonction densité de la loi binomiale est :

PG =1rN)) = (| ) =

Nous écrivons
pTN(l . p)NfTN _ eTNln(p)ﬁ»(N*TN) 1n(1,p).

Nous utilisons I"approximation de Stirling donnée dans le lemme 5.1 pour T'= | N7| :

N o 1 —N7In(t)—(1—7) In(1—7) L
(uw) “\ 2Nl n)° Oy

En combinant ces résultats nous obtenons

1 T 1—7 1
P(Ck = LTNJ) = m . e_N[Tln<E)+(1—T)ln<ﬂN)] [1 + 0 (m>:| '
O]
A partir de notre approximation de la fonction densité de la loi binomiale, nous en dédui-
sons une approximation de la fonction de répartition. Tout d’abord nous introduisons un
nouveau lemme qui nous donne un encadrement de la somme de termes consécutifs de la
densité de la loi binomiale.

Lemme 5.3. Soit C), une variable aléatoire qui suit une loi binomiale de paramétres N
et p. Soit A et B deux entiers tels que 0 < A < B < N. Soit v, et v_ deux réels définis

par
def 1 — P B A+1
= — INax
T+ N_B+1' N—A)’

def 1—p . B A+1
N—B+1'"N—A)"
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Nous avons :

1 — B4t B ] — AB-At
= - = < =il < = -+ .
P(Cy = B]—— < ; PC,=1] < P[Cy =Bl —— T (5.4)
11/ - | | 1/yB-AH
PGy = Al ——— S ;P Ce=i]< P[Cy=A—/" o (5.5)

Preuve : Le lien entre deux valeurs consécutives de la fonction de densité de la loi binomiale
est le suivant :

’ l—p 4 : _
PCy,=1—1] P N—z’—l—lp[ck i], pour 0 <i < N
Ce qui conduit a :
S PiCi=i = PlC=B][1+L=PB (1-p)"B---(A+1)
: ' ) p(N—B+1) pBAN —B+1)--- (N — A)

Chaque terme de la somme est majoré par 7. et est minoré par 7°.. Nous en déduisons
que :

B—A B B—A
PlCk=DB]Y + <> P[Ci=i]<P[C,=B]) +.
=0 i=A =0

Ceci prouve (5.4). Les mémes arguments sont utilisés pour prouver (5.5).
[l

A partir de cette approximation de la fonction densité de la loi binomiale nous pouvons
déduire une approximation de la fonction de répartition de cette loi. Le théoréme suivant
est connu dans un autre contexte [AG89]. Sa preuve découle des deux lemmes précédents.

Théoréme 5.1. Soit p, et p deux nombres réels tel que 0 < p < p, < 1 et soit T un seuil
relatif tel que p < T < py. Soit Cy et Cy deux variables aléatoires qui swivent une loi
binomiale avec parametres respectifs (N, p) et (N, p.). Alors,

1 —
P[Cy,>7N] ~ (L= p)vr e ND(llp), (5.6)
N—=oo (1 —p)y/20N(1 —T)
et
W _PVIZT  NDGp).
N—=oo (p, — T)V2TNT
Preuve : Ce théoréme se prouve facilement & partir des lemmes 5.2 et 5.3. Nous nous

concentrons sur la preuve de (5.6), 'assertion (5.7) se prouve de la méme fagon. Dans un
premier temps, remplacons le A du lemme 5.3 par [TN] de telle sorte que

P[Cy- < TN] (5.7)

B N
Ck>TN chk—l Z Ck—l ZP[Ok:Z]
i= i=B+1
) @)

Nous appliquons le lemme 5.3 a la somme (1) en choisissant B tel que :
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— la somme (2) est négligeable par rapport a (1),
— et vy et y_ soient proches.
Dans ce cas particulier nous avons

B

1
P =i ~P =|[N71|] ———. 5.
>~ P(Ck=i] ~ P[0, = [N7]] g7 (53)
i=A
. 1—p A+1
Sous I'hypothése que v_ est proche de v, nous pouvons prendre v = —— N A (dans
p J——
le cas contraire il suffit de faire I’analyse avec v, ). Dans ce cas particulier nous avons
1 1-p@Atl) (1-pAr]
1—1/y- (1=p)=p(N—A) N(r—p)[1+52]
o d=p
(T —p)

L’équation (5.6) se déduit donc a partir de cette observation conjuguée avec les résultats
de (5.8) et du lemme 5.2. Une étude similaire peux étre effectuée pour prouver 'expression
(5.7). O

5.2.2 Comparaison avec les autres approximations

Afin d’illustrer les résultats donnés dans le théoréme 5.1, avec Benoit Gérard, nous
avons fait des expérimentations pour un grand nombre de paramétres. Nous avons pu
observer que cette approximation est assez précise pour des valeurs de parameétre vrai-
ment trés différentes, que p soit petit ou non ou que 7 soit proche de p ou non. Cette
approximation de la fonction de répartition comporte alors une grosse différence avec les
approximations précédentes de la loi binomiale. En effet I’approximation de Poisson ou
I’approximation gaussienne ne sont valables que pour certaines tranches de paramétre.
Par exemple dans le cas de la cryptanalyse différentielle la probabilité p est vraiment
petite. Dans le cas de la cryptanalyse différentielle, I'approximation de Poisson est juste
mais elle n’est plus valide dans le cas de la cryptanalyse linéaire ou p est égal a 1/2.
Dans le cas de la cryptanalyse linéaire, I’approximation gaussienne est bonne. Elle a été
utilisée dans beaucoup d’études sur la complexité en données ou la probabilité de succes
d’une cryptanalyse linéaire ([Jun01, Jun03, JV03, BJV04, BV08, Sel08|). Cependant cette
approximation gaussienne n’est pas bonne dans le cas de la cryptanalyse différentielle.
Explication du tableau 5.2
Pour illustrer les propos du paragraphe précédent, nous avons fait des expérimentations
afin de comparer les différentes approximations des queues de binomiale. Nous avons
choisi de prendre un nombre d’échantillons assez petit (N = 22%) afin de pouvoir calculer
les valeurs exactes des queues de la loi binomiale. Puis nous avons comparé ce résultat
avec les approximations de Gauss, de Poisson et avec notre approximation donnée par le
théoréme 5.1. Nous avons fait ces calculs pour différentes valeurs de p et p,. Comme le
nombre d’échantillons n’est pas trés grand, nous n’avons pas pu prendre des parameétres
de cryptanalyses réelles mais nous avons essayé d’avoir des parameétres du méme ordre
de grandeur que ceux utilisés dans les attaques différentielles, linéaires ou différentielles
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tronquées. L’idée principale qui ressort de ces expérimentations est celle décrite ci-dessus,
c’est-a-dire que pour la cryptanalyse linéaire I'approximation gaussienne est bonne, que
dans le cas de la cryptanalyse différentielle 'approximation de Poisson est bonne mais
que dans d’autres cas on ne sait pas quelle approximation utiliser. Notre approximation
quant a elle est valable pour un grand nombre de valeurs pour les paramétres p, et p.

Binomiale Poisson Gauss Théoréme 5.1

Crypt. Linéaire : p
p=0.5 p
p. =0.5+2710

[Cp>7N] | 812-107° | 3.84-107% | 8.12-107° | 8.62-107°
[Crh <TN] | 297-107% | 9.14-1072 | 2.97-107% | 3.58-10"2

Crypt. Différentielle :

g P[Cy>7N] | 203-10°% | 2.03-1073 | 8.84-1075 | 1.97-1073

;’__ 5-20 P[Cy <7N] | 327-10°% | 3.27-107% | 6.66-1073 | 3.33-1073

Crypt. D‘H'_T;f’fq“ee(l) " P[Cy>7N] | 9.29-107° | 1.46-10~* | 9.23-105 | 9.90 1075
) P ol o4 P[Cy <7N] | 9.80-10° | 1.55-10~* | 9.89-1075 | 1.04-10"*

Crypt. Diff. Tronquée(2) :
p= 2715
pe=15.2"1

P 7N] | 5.05-107° | 5.06-107° | 3.17-107° | 5.34-107°
P[Cy, <7TN] | 437-107* | 4.38-107* | 5.45-107* | 4.67-107*

TABLE 5.2 — Comparaison entre les différentes approximations des queues de binomiales.

« T N e e
Ces valeurs ont été calculées pour N = 2% et 7 = Pe TP g parameétres utilisés ici sont

ceux d’'une attaque linéaire, d'une attaque différentielle, ou encore deux cas particuliers
d’attaque différentielle tronquée

5.3 Complexité en données

Afin de calculer la complexité en données nous avons besoin de définir le contexte dans
lequel nous allons nous placer.

5.3.1 Le test d’hypothéses

Pour calculer la complexité en données d’une attaque statistique simple nous avons
utilisé un test d’hypotheéses statistiques. La problématique dans les attaques statistiques
simples est de pouvoir distinguer les compteurs C} correspondant aux mauvaises clés du
compteur Cy+ correspondant a la bonne clé dans le cas ot les compteurs suivent des lois
binomiales. Dans le contexte du test d’hypothéses consistant & distinguer entre les deux
distributions il nous faut donc définir un seuil 7" et comparer les compteurs a ce seuil.
Ainsi si Cy > T alors on ajoute la clé k a la liste £ des clés admissibles; dans le cas
contraire on rejette le candidat :

Si Cp > T alors k € £ sinon k ¢ L.
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Les hypothéses que 1'on regarde alors sont

— H, : Le candidat suggéré correspond a la bonne sous clé £*;

— H : Le candidat suggéré n’est pas la bonne sous clé, k # k*.
Supposons que nous avons une attaque qui utilise N échantillons. L’attaquant cherche a
savoir si la clé qu’il a sélectionnée est la bonne ou pas. Dans ce contexte 'attaquant peut
faire deux types d’erreur. Il peut accepter une mauvaise clé ou rejeter la bonne clé. Ces
deux types d’erreurs sont communément appelées erreur de premiére espéce et erreur de
seconde espéce ou encore erreur de non détection et de fausse alarme.

Définition 5.4. Dans le contexte d’un test d’hypotheéses comme défini précédemment, les
probabilités d’erreurs étudiées sont :
La probabilité de non-détection : Comme son nom l’indique cette erreur correspond
au cas ou l'attaquant décide de rejeter la bonne clé. On note par a la probabilité de
non-détection.

a=Plk¢Lr].

La probabilité de fausse alarme : Cette erreur correspond au cas ot l'attaquant dé-
cide d’accepter un mauvais candidat. On note par B la probabilité de fausse alarme.

B=PlkeLlk+#k].

Pour l'instant dans la description du test d’hypothéses nous avons supposé que la
statistique étudiée correspondait & la somme de variables aléatoires suivant une loi de
Bernoulli (ce qui est le cas des attaques présentées dans les chapitres 2 et 3). Nous allons
justifier I'utilisation de cette statistique.

Justification de 'utilisation de cette statistique

Un résultat bien connu permettant de distinguer les deux distributions regardées est
le test de Neyman-Pearson.

Lemme 5.4. [CT91]Test de Neyman-Pearson :
Supposons que le but de notre analyse consiste a distinguer entre deux hypothéses k = k*
et k # k* a Uaide de N variables aléatoires (Cx ) x. St nous utilisons un test de la forme

P[CX1k7 . -;CXN,k‘k — k‘*]
P [Cxhs- - Cxpyilk # k*]

> ¢t

qui nous donne des probabilités d’erreur o et 8, alors aucun autre test ne peut améliorer
en méme temps la probabilité de non-détection et de fausse alarme.

Il est bien connu en théorie des probabilités que la statistique C, qui consiste a prendre
la somme des variables aléatoires qui suivent des lois de Bernoulli indépendantes de pa-
ramétre p est une statistique exhaustive3. Ainsi utiliser le test de Neyman-Pearson pour
distinguer les deux hypothéses est équivalent a comparer la somme des variables aléatoires
regardées a un seuil fixé. Les variables aléatoires regardées sont alors définies par :

Cr = Z Cx k. (5.9)
X

3. Le terme statistique exhaustive intuitivement signifie que la statistique contient I’ensemble de 1'in-
formation sur les paramétres de la loi de probabilité.
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Nous allons donc par la suite utiliser cette statistique pour calculer la complexité en
données des attaques statistiques. La liste des clés gardées par 'attaquant est alors définie

de la facon suivante :

LYk, C.>T).

5.3.2 Meéthode générale pour calculer la complexité en données
d’une attaque statistique

Les probabilités de non-détection et de fausse alarme (voir définition 5.4) jouent un

role important dans la complexité d’une cryptanalyse statistique.

— Pour une cryptanalyse, la taille ¢ de la liste £ des clés gardées augmente si on
diminue le seuil T" puisque 'on accepte plus de candidats. La complexité en temps
de 'attaque étant souvent reliée a la taille de la liste £, celle-ci varie sensiblement
en fonction de .

— De la méme facon si on augmente la valeur du seuil, on accepte moins de candidats.
On a alors un plus grand risque de passer a coté de la bonne clé (dans ce cas
l'attaque échoue). La probabilité de non-détection « est alors directement reliée a
la probabilité de succes de l'attaque.

D’ou l'intérét pour le cryptanalyste de fixer la probabilité de non-détection et de fausse
alarme pour étudier les complexités d’une attaque donnée.

Etant données des probabilités d’erreurs fixées, cette section est dédiée au calcul du

nombre d’échantillons nécessaire a la cryptanalyse. Le contexte dans lequel nous nous
placons dans cette section est le suivant :

Contexte. Soit Cy (resp. Ci) une variable aléatoire qui suit une loi binomiale avec
parameétres N et p (resp. p.). Dans le contexte du test d’hypothéses défini précédemment,
les probabilités de non-détection et de fausse alarme, pour un seuil donné T', sont définies
par P(Cy- <T) et P(Cr > T).

Soit bng et b, * deux nombres réels donnés (0 < byg, b < 1). Le probléme consiste &
trouver un nombre d’échantillons N et un seuil T tels que les probabilités d’erreurs soientt
plus petites que les bornes données b,q et bg,. Ceci est équivalent & trouver une solution
(N, T) au systéme d’inéquations suivant :

S bnd7
> (5.10)

bta.-

{ P[Cy < T
PC, >T]

En pratique, résoudre ce systéme d’inéquations est assez compliqué.

La continuité, approximation de la loi binomiale

Les quantités regardées ne sont pas continues puisque la loi binomiale est discréte.
Donc, nous avons besoin de trouver une approximation des probabilités d’erreurs qui
prennent en entrée des parameétres IV et 7 ot le seuil relatif 7 est la quantité égale a % (nous
avons 0 < 7 < 1). Une bonne approximation des probabilités d’erreur peut étre donnée
par exemple par les formules du théoréme 5.1. Comme il existe d’autres approximations

4. byq correspond & une borne pour la probabilité de non détection et bg, & une borne pour la probabilité
de fausse alarme
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de la loi binomiale, nous allons dans un cas général définir deux fonctions Gua(N,7) et
Gta(N, T) qui sont des estimations des probabilités de non-détection et de fausse alarme.
Dans le but de trouver une solution au systéme (5.10), on demande & ces estimations
des probabilités de non-détection et de fausse alarme d’étre des fonctions décroissantes
en fonction des deux variables N et 7. De cette facon, le probléme consistant a trouver le
nombre d’échantillons nécessaires a la cryptanalyse pour des probabilités d’erreur fixées
se résume a trouver N et 7 tels que

{ Ghna(N, 7)

bnd:
Gr(N, 7) (5.11)

bea.

IAIA

Description de P’algorithme

Pour un seuil relatif 7 donné, nous définissons les quantités N,q(7) et Ng,(7) comme
les valeurs vérifiant les équations :

Gnd(Nua(7),7) = bna et Gea(Nea(T), T) = bpa. (5.12)

Dans le cas ot 'une des valeurs N,4(7) ou Ng,(7) est plus grande que 'autre, nous devons
changer la valeur du seuil relatif dans le but de rapprocher les quantités Nyq(7) et N, (7)
I'une de l'autre. D’un autre c6té, pour un nombre d’échantillons fixé, si on diminue la
valeur du seuil relatif 7 alors on accepte plus de candidats. Dans ce cas la probabilité de
non-détection diminue alors que la probabilité de fausse alarme augmente. La méthode
que nous avons utilisée pour calculer la complexité en données d’une attaque statistique
est basée sur I'observation faite dans le lemme suivant.

Lemme 5.5. Soit G,q(N,T) et Gy(N,T) deuzx fonctions qui dépendent des parameétres N
et T, définies sur [0,400[ X [p,ps], avec les propriétés suivantes :
— pour un sewil T, ces deux fonctions sont décroissantes en N,

— pour N fixé, G,4(N,T) est croissante en T,
— pour N fizé, G(N,T) est décroissante en T,
- 1 N >1, I N >1

]Vl£n>0 Gnd( aT) = 5 ]Vl£n>0 Gfa( 77_) = 4,

- ]&gnoo Gua(N, 1) = A}l_I)IlOO Gro(N, 1) = 0.
Soient bpq et by, les bornes sur les probabilités d’erreurs 0 < bpg, b, < 1. Soit le seuwil
relatif T compris entre p et p.. Soient les quantités N,q(7) et Ny (7) définies par (5.12)
telles que
Gni(Npa(7),7) = bpa et Gr(Np(T),7) = by,

Nous introduisons une nouvelle quantité N (1) qui est égale au mazimum de N,4(T) et de
Nfa(T) N
N(7) = max(Npa(T), Na(7)).

Cette quantité représente la valeur minimale de N telles que le couple (N, 1) soit solution
de (5.11). Alors, pour p < m < p,,
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(1) st Npg(m) > Ny(m), alors, pour tout 7 > m, N(1) > N(m),

(11) si Npa(m) < Ny (m), alors, pour tout 7 < m, N(1) > N(m).

Preuve : Nous allons prouver la propriété (i). La propriété (ii) se montre de la méme fagon.
Nous voulons prouver que si Nyq(m) > Ng(m), alors, pour tout 7 > m, N(7) > N(m).
Puisque Nya(m) > Ne.(m), nous avons Gua(N(m), m) = by et Ge(N(m), m) < bg,. En
utilisant les propriétés de croissance et de décroissance des fonctions Gq et G, nous pou-
vons dire que pour 7 > m, nous avons Guq(N(7),7) > by et G (N(m),7) < bg,. Puisque
les fonctions étudiées sont décroissantes en N, nous en déduisons que N(7) > N(m). O

A partir de ces observations nous en déduisons l'algorithme 13, ci aprés, qui est basé
sur une recherche dichotomique en 7.

Algorithme 13 : Calcul de la valeur exacte du nombre d’échantillons nécessaire a
une cryptanalyse statistique simple et du seuil relatif correspondant.

Entrée : Des probabilités d’erreurs (bnq, br.) et les probabilités (p., p) relatives a

notre attaque.

Sortie : N et 7 : le nombre minimum d’échantillons et le seuil relatif
correspondant nécessaire pour atteindre des probabilités d’erreur plus
petites ou égales & (byq, bra)-

Initialiser 7,,;, & p et Tee & Py

Faire

<« Tmin + Tmazx
Changer la valeur de 7 & ———;

Calculer Nyq(7) vérifiant VN > Npqg(7)
Calculer Ng,(7) vérifiant VN > N, (7),
Si Nya(1) > Npo(7) alors

,Gna(N, T
Gra(N,7) < by
Sinon

L Tmin = T,

tant que N,4(7) # Np(7) ;
Retourner N = N, ( ) = Np(7) et 1

Détail d’implémentation

Supposons que nous ayons choisi d’utiliser pour G, et Gpq les approximations définies
dans le théoréme 5.1. Un moyen simple de calculer les valeurs de Ni,(7) et Nyq(7) &
chaque étape de 'algorithme 13 consiste a faire une recherche dichotomique sur N. Cette
méthode peut étre améliorée en fixant certaines quantités. En effet si on fixe la probabilité
de non-détection a byq, I’équation (5.7) peut se récrire :

1 PV 1 —T
N D(rllpa) <bnd<p* — T)\/27TNT) '

Nous pouvons utiliser une méthode du point fixe pour calculer V. Le détail des conditions
d’utilisation de cette méthode est présenté dans la section 5.3.5. Cette méthode peut étre
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utilisée en commencant l'itération au point . La méme méthode peut étre utilisée

1
D(||p+)
pour le calcul de Ng,(7) en prenant la fonction (provenant de I’équation (5.7))

_ 1L (1—p)V/T
T = 5! (z)fa(T_p) 27TN(1—7)>

et en partant du point m.

Il est aussi possible de calculer N en partant de la loi binomiale directement ou d’une
approximation assez fidéle de celle-ci. La loi binomiale n’étant pas continue, elle ne satisfait
pas les conditions du lemme 5.5 et donc une solution peut ou ne peut pas exister. Donc
si on utilise la loi binomiale elle méme on autorise une certaine marge d’erreur sur les
probabilités de non détection et de fausse alarme que I’on veut atteindre. L’autre probléme
soulevé par cette méthode est le temps mis par 'algorithme pour calculer les valeurs
intermédiaires de N. Nous allons cependant voir comment calculer de maniére efficace la
fonction de répartition de la loi binomiale.

Calcul efficace des queues de la loi binomiale

Pour calculer efficacement les queues de la loi binomiale nous utilisons I’approximation
de Stirling donnée dans le lemme 5.1. Si Cy+« suit une loi binomiale avec paramétres N et
Px, IOUS avons

1—p, T B
Ce qui nous donne :
(1-p)-T (1—p)* T(T-1)
PO*<T — PC*:T'
(G <1 [ ][mmN—T+U+ﬁ4N—T+mN—T+m+

o o e (lep T (N-T)!
= P[Cy =T] 121( D ) (T —i)! (N —T +1)!

— (]j\_{)p*T(l —p)N T ET: (1 ;*p*)i (Tjil i)l (]\(7]\1;?2)'

=1

En utilisant 'approximation de Stirling donnée dans le lemme 5.1 nous obtenons :

o ND(xlle) I 1 p\' T (N—T)
Pl <Tl= QW(l_%T';( ) a et

(5.13)

L’astuce nécessaire pour pouvoir calculer les queues de la loi binomiale consiste a remar-
quer que le terme dominant est le dernier terme. En conséquence, nous commencons avec
ce terme et nous ajoutons les suivants jusqu’a avoir atteint une certaine précision. Cette
estimation est précise quand N et T sont assez grand. Quand T est petit ® nous pouvons
utiliser la formule exacte de la loi binomiale. La méme méthode peut étre utilisée pour
calculer I'erreur de fausse alarme.

5. C’est le cas dans les attaques différentielles classiques
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5.3.3 Travaux relatifs dans le cas de la cryptanalyse linéaire

Beaucoup de travaux concernant ’étude des complexités des attaques linéaires ont été
fait auparavant. Certaines de ces études avaient déja exhibées le terme polynomial ou le
terme exponentiel des formules données dans le théoréme 5.1. Nous allons donc revenir
rapidement sur ces méthodes.

Le comportement exponentiel des queues de la loi binomiale

Les queues de la loi binomiale sont bien connues pour décroitre exponentiellement
en N. Le bon terme exponentiel (c’est-a-dire celui donné par le théoréme 5.1) a déja
été donné dans plusieurs articles. Par exemple, dans [BJV04, BV0S|, le but des auteurs
était de déterminer une formule asymptotique pour le meilleur distingueur, c¢’est-a-dire le
distingueur qui maximise la quantité |1 — a — | ot v et 5 sont les probabilités d’erreurs
définies dans la définition 5.4. De leur étude sur la complexité en données ils déduisent le
résultat suivant :

max(a, §) = 27NV Cher(p-p) (5.14)

oit f(N) = g(N) signifie que f(N) = g(N)e®™) et Cp,, est I'information de Chernoff
[CT91]. Dans le cas général ou p,,p ¢ {0, 1}, ce type de distingueur a une région d’accep-
tation de la forme décrite par le lemme 5.4 avec t égal & 1. Dans ce contexte, la valeur du
seuil relatif 7 satisfait 'égalité D (7||p.) = D (7||p). Cependant, dans notre contexte la va-
leur de la divergence de Kullback-Leibler est égale a I'information de Chernoff Ch.,(ps, p)
multipliée par In(2) (voir [CT91, section 12.9]). Donc le terme exponentiel des équations
(5.6) et (5.7) est le méme que celui donné par 1'équation (5.14) :

o = e*ND(THp*) f 27Ncher(p*7p) et ﬁ o e*ND(THp) = 27Nche'r(p*vp).

Dans les cas ot p, = 0 ou p, = 19 le seuil relatif 7 est égal & p, et la probabilité de non
détection est alors égale a 0. Dans ce cas on a

max(a, 3) = B8 = o~ ND®:lIp) = 9=NCher(p+.p)

Cette égalité se déduit directement de la définition de la divergence de Kullback-Leibler.

Le comportement exponentiel N - D (7||p) est pris en compte dans le théoréme 5.1. Mais
(1-p)v7
(t—=p)\/27N(1—71)
qui n’est pas négligeable. Prendre en compte seulement le terme exponentiel comme dans
I'équation (5.14) est trop grossier dans certains cas comme le montre le calcul de la
complexité en données faite avec ces approximations pour différentes cryptanalyses dans

le tableau 5.3.

dans ce théoréme nous avons aussi en complément un terme polynomial

Le comportement polynomial des queues de la loi binomiale

Dans [BJV04], un terme polynomial est pris en considération. Cependant ce terme
polynomial est seulement bon pour les tranches de paramétres ot une approximation

6. C’est le cas par exemple de la cryptanalyse différentielle impossible ou de la cryptanalyse différen-
tielle d’ordre supérieur.
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gaussienne des queues de la loi binomiale peut étre utilisée. Dans ce cas le nombre d’échan-

tillons est :

2.4 (240)?
D (p.|Ip)

ot ®! est 'inverse de la fonction de réparation d’une variable aléatoire qui suit une loi
gaussienne. Par exemple cette formule donne une estimation plutdét mauvaise dans le cas
de la cryptanalyse différentielle. En général cette formule est trop optimiste comme le
montrent les résultats expérimentaux donnés dans le tableau 5.3.

N =~ (5.15)

log,(N) | (5.6) & (5.7)|[BIVO04] | [BVOS]

Linéaire p*zoéfd‘;lb%faﬂ b]j;odi 47.57 47.88 AT.57 | 49.58
Linéaire F* :z?jié:égi 2 bff:£§01 5010 | 50.13 50.10 | 51.17
Différentielle ijof% 75;20‘611 56.30 56.77 54.44 | 57.71
Différentielle p*bn:d 1:850(2)156 bfz%_ggl 58.30 58.50 56.98 | 59.29
Ditffiféﬁzue p*bfdfg@ﬁ{w bzz?)._ol; 2632 | 2635 | 2628 | 27.39

TABLE 5.3 — Comparaison des estimations de log, (V) en utilisant 1’algorithme 13 avec la
loi binomiale (valeur exacte), les estimations (5.6) & (5.7) et les estimations de [BJV04,

BV0S)

5.3.4 Travaux relatifs dans le cas de la cryptanalyse différentielle

Pour la cryptanalyse différentielle on ne peut pas utiliser 'approximation gaussienne
de la loi binomiale. Dans [BS90], la loi binomiale est approchée par une loi de Poisson.
Le détail du calcul de la complexité en données est présenté dans la theése d’Henri Gilbert
[Gil97|. Nous donnons ici le détail de ce calcul.

Pour la cryptanalyse différentielle il est supposé que p, est suffisant loin de p. Ainsi a
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partir du moment ou pour une clé fixée, la différence a, aprées avoir déchiffré le dernier
tour apparait au moins une fois alors cette clé est un candidat potentiel. Ainsi dans la
cryptanalyse différentielle, il est classique de fixer le seuil 7" & 1. Dans ce cas précis on ne
peut donc pas vraiment controler la probabilité de fausse alarme on va donc s’intéresser
au calcul de la complexité en données pour une probabilité de non-détection trés faible
de Tordre de 0,01 (c’est-a-dire une probabilité de succeés proche de 99%). Si on écrit la
formule de la probabilité de non-détection en utilisant ’approximation binomiale on a

0 .
Np,)"
Gndzze_Np*( P-) = e Vpe,

2!
i=0

Pour une probabilité de succés supérieure a 99%, on obtient donc une complexité en
données :

4.
N =~ 6.
D«

5.3.5 Le comportement asymptotique de la complexité en don-
nées

Le but ici est de trouver un critére simple pour comparer la puissance de deux at-
taques statistiques. Les parameétres de I'attaque que nous allons utiliser afin de calculer
la complexité en données sont les probabilités p, et p :

— ps : probabilité que le phénomeéne observé arrive pour la bonne clé £*.

— p : probabilité que le phénomeéne apparaisse pour une autre clé k # k*.

Comme détaillé dans la section 5.3.2, ce calcul consiste a résoudre un systéme d’in-
équations en N, 7. Au vu de sa complexité, ce systéme est difficile a résoudre. Nous avons
donc décidé de fixer le seuil relatif 7 afin de trouver une formule asymptotique de la
complexité en données.

Une premiére approximation

Comme nous avons dit dans la section 5.3.1, la probabilité de fausse alarme joue
un role important dans le calcul de la complexité en temps d'une attaque statistique.
Sous I’hypothése que la complexité en données ne varie pas beaucoup en fonction de la
probabilité de fausse alarme, nous fixons le seuil relatif a p,. Cette hypothése nous donne
une probabilité de non-détection de 'ordre de 1/2. Nous pouvons alors utiliser la formule
(5.7) donnée dans le théoréme 5.1 pour obtenir une approximation relativement précise
du nombre d’échantillons N nécessaire a une cryptanalyse statistique simple.

Théoréme 5.2. Soit p, (resp. p) la probabilité que le phénomeéne observé arrive pour la
bonne sous clé k* (resp. pour les mauvaises sous clés). Pour un seuil relatif T fizé a p.,
une bonne approrimation du nombre d’échantillons N nécessaire pour distinguer les deux
distributions des compteurs avec une probabilité de fausse alarme plus petite ou égale @
by est :

roet 1 n Vsa n(—In(v
AT [1 ( D(p*||p)> +0.51n (— In bfa))], (5.16)
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pour

def (pe — p)\/2m(1 — py) . def 1 N _ln(ybfa) -1
- U-nvh t 9‘[”2ln<ubfa>1 ( D<p*||p>>] - GBI

L’erreur de cette approximation est encadrée par :

6-1) ln(e)]
In(N’) ’

N’gNoogN’{1+

ol N4 est la valeur obtenue par l’algorithme 13 en utilisant les approximations des pro-
babilités d’erreurs données par les équations (5.6) et (5.7).

Preuve : Le seuil relatif 7 est fixé a p,. De cette facon on sait que la probabilité de
non-détection est proche de % Nous voulons controler la probabilité de fausse alarme by,.
L’équation (5.6) nous donne

_ In(wbuV'N) Y (P« —p)y/27(1 —p*). (5.18)

D (p.lp) (1—p)y/p=

La formule (5.18) nous suggere d’utiliser la fonction contractante f suivante :

def _ln(bea\/E)
1= =D )

N ~

In(vbs,)
D (p.|lp)
Cela nous donne une séquence (N;);>o avec N;11 = f(N;). La limite de cette fonction N
peut étre vue comme le nombre d’échantillons nécessaires a la cryptanalyse. Puisque f
est décroissante, la suite (1V;);>o forme une suite alternée. Les termes consécutifs de cette
suite satisfont : No; 1 < N, < Ny;. La fonction f peut se récrire

Nous appliquons cette fonction itérativement en commencant par le terme Ny =

€ ln(ybfa> def 1
f(z) = a—bln(x) avec a S VR () I —
D (p.lp) 2D (p.|lp)

Notre choix du premier terme N, se justifie par le fait qu’il est égal & a. Nous voulons
maintenant montrer que le second terme /N; nous donne une bonne approximation de N.

Ny = f(No) = a— bIn(Ny) — D; lln <L> + 0.51n(—ln(vbfa))] ,

(:]lp) D (p.Ip)
Comme N; < Ny, < Ny, on va exprimer Ny en fonction de N;
Ny = f(M)

= NQ — bln(No) + bln (N()/Nl)
= N1 + bln (N()/Nl)

Soit 8 comme défini dans le théoréme :
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Alors

Ny bln(a) In(a)
1 — 14—
Ny + a * 21n(vbg,)

L’encadrement de N, devient :

N, < N < Ny {1 + blnm .
N

Dans le but de prouver que N; est une bonne approximation de N, nous nous concentrons
sur bIn(f)/N; et nous le comparons & 1. Puisque N; /b = a/b—1In(a), nous allons chercher
une borne pour a/b. Nous avons §N; = Ny, ce qui implique que a/b = 61In(a)/(0 — 1).
Puisque f est une fonction décroissante, Ny > N; nous donne N;/b > In(Ny)/(0 — 1).
(60—1) ln(@)} ot

Pour conclure nous avons Ny < N; [1 * In(NVy)

Ny < No < N, {1+%}

ou Nj est égal a la valeur N’ donnée dans le théoréme. O]
Cette approximation du nombre d’échantillons nécessaire est assez précise : en effet nous
avons estimé la complexité en données de certaines attaques connues (voir tableau 5.4)
et observé que 6 est toujours compris entre 1 et 7. De plus, pour by, = 2732, les valeurs
observées de 6 sont plus petites que 2. Dans le tableau 5.4 nous avons comparé la valeur
de N’ avec la vraie valeur de N. Ces expérimentations montrent que N’ est proche de la
vraie valeur de N et valident expérimentalement le fait que € est compris entre 1 et 7.

Le comportement asymptotique

La formule donnée dans le théoréme 5.2, pour calculer le nombre d’échantillons néces-
saire & une cryptanalyse reste cependant assez compliquée. A partir de cette formule nous
déduisons une formule plus simple qui nous donne le comportement asymptotique d’une
cryptanalyse statistique simple.

Lemme 5.6. En utilisant les notations du théoreme 5.2, In(2/7D (p.||p)) est une bonne
approzimation de In(v) ot v est donné par (5.18).

Preuve : Ceci se fait facilement a partir du développement limité de D (p.||p). O

A partir de ce lemme, on déduit donc une bonne approximation de N'.

Lemme 5.7. En utilisant les notations du théoréme 5.2, une bonne approximation de N’

est :
of In(24/mby,
N def ( VT f ) (5.19)

D (p.llp)
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Preuve : Dans I'expression de N’ donnée dans le théoréme 5.2 il est facile de voir que le

> . Ainsi une

14 bfa

terme 0.5In (— In(vbg,)) est négligeable par rapport au terme In <—
D (p.lp)

bonne approximation de N’ devient :

1

IO In(v) — 1/2In(D (p.||p)) + In(br)] -

De plus, par le lemme 5.6, nous avons qu’une bonne approximation de In(v) est In(2y/7D (p.||p)).
Ainsi on obtient qu'une bonne approximation de N’ est donnée par :

1

I [In(2v/7) + In(bg,)] -

]

N" est essentiellement une fonction décroissante en fonction de la divergence de
Kullback-Leibler entre p, et p. On peut donc en conclure que comparer la complexité
en données de deux attaques statistiques peut se résumer a la comparaison entre les
divergences de Kullback-Leibler correspondantes.

5.3.6 Les résultats expérimentaux

Nous avons fait un certain nombre d’expérimentations dans le but de prouver que
Iestimation N’ donnant le nombre d’échantillons nécessaire a 'attaque est plutot bonne
et devient encore meilleure quand la probabilité de fausse alarme tend vers 0 (voir ta-
bleau 5.4).

La valeur N’ est une approximation. Pour avoir une valeur plus précise de la complexité
en données d’une attaque statistique et afin de pouvoir la comparer avec la complexité en
données d’autres attaques, 'algorithme 13 peut étre utilisé.

Rappelons que la quantité N’ donne le nombre d’échantillons et non le nombre de
messages clairs nécessaire a la cryptanalyse. Dans le cas de la cryptanalyse linéaire ces
deux quantités sont égales. Mais dans le cas de la cryptanalyse différentielle le nombre
de messages clairs est égal au double du nombre d’échantillons. A partir du nombre
d’échantillons il est assez facile d’en déduire la complexité en données en multipliant cette
quantité par un facteur dépendant du type de cryptanalyse.

Les résultats donnés dans le tableau 5.4 montrent que N” donne une estimation moins
précise de la complexité en données d’'une attaque statistique. Néanmoins cette estimation
refléte bien le comportement asymptotique de la complexité en données d’une attaque
statistique (c’est-a-dire en 1/D (p.||p)).

5.3.7 Comportement asymptotique pour certaines cryptanalyses
statistiques simples

Nous avons vu dans le lemme 5.7 que le nombre d’échantillons d’une cryptanalyse
statistique simple dépend essentiellement de la divergence de Kullback-Leibler. Elle est
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p p- logy(N)  logy(N')  logy(N") 0

L 05 05+1.19-2721 | 4232 42.00 (—0.32) 42.60 6.48

bp=2"%| DL 05 05-+173-2°6 | 1126 11.15(—0.11) 11.52 2.28
D 2%  187.2°% 54.57 54.68 (+0.11) 54.82 .14

D' 27 153.2°% 27.14 26.80 (—0.34) 26.94 3.56

TD 2716 1.18.2716 23.85 23.66 (—0.19) 24.13 3.87

p P- logy(N)  logy(N')  logy(N") 0

L 05 05+1.19-2721 | 43.62 43.54 (—0.08) 4379 2.89

bn=2"1| DL 05 05-+173-25 | 1254 1252(—-0.02) 1271 1.53
D 2%  187.2°% 55.85 55.94 (+0.09) 56.02 3.14

D' 27 153.2°% 28.27 28.05(—0.22) 28.14 2.09

TD 2716 1.18.2°16 25.15 25.11 (—0.04) 25.33 2.07

P P- logy(N)  logy(N')  logy(N") 0

L 05 05+1.19-2720 | 4478 44.76 (—0.02) 44.88 1.42

bn=2732| DL 05 05-+173-2% | 1370 13.69 (—0.01) 13.80 1.25
D 261 187.2°5 56.98 57.06 (+0.08) 57.11  2.00

D' 27 153.2°% 20.13  29.17 (+0.04) 29.23 151

TD 216 1.18.2716 26.31 26.30 (—0.01) 2642 1.48

TABLE 5.4 — Comparaison entre les deux estimations N’ et N” et la vraie valeur de la
complexité en données pour différentes valeurs de 3, p et p, avec une probabilité de non
détection proche de 0.5. La colonne de # est mise ici pour illustrer le fait que dans le
théoréme 5.2 onal <6 <7.

différentielle/différentielle tronquée.

L : Attaque linéaire sur le DES retrouvant 26 bits de clés [Mat94].
DL : Attaque différentielle-linéaire sur le DES [LH94].

D : Attaque différentielle du DES [BS93].

D’/TD :Autres attaques Paramétres d’ordre de grandeur d’une cryptanalyse
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dominée par D (p,||p)”". Dans cette section nous allons estimer la quantité D (p,||p) "

pour en extraire le comportement asymptotique de la complexité en données de plusieurs
attaques statistiques. Nous allons voir que nous retrouvons alors les résultats connus de
la complexité en données pour certaines cryptanalyses comme la cryptanalyse linéaire.
Le tableau 5.5 donne le comportement asymptotique de la complexité en données dans le
cas des cryptanalyses linéaire, différentielle-linéaire, différentielle, différentielle tronquée,
différentielle d’ordre supérieur, différentielle impossible. Nous présentons ici le détail des
calculs.

Expansion de Taylor de la divergence de Kullback-Leibler

Pour extraire les résultats dont nous avons besoin, nous introduisons quelques calculs
intermédiaires qui sont essentiellement des développement limités de la divergence de
Kullback-Leibler. Dans un premier temps, rappelons la définition de cette quantité :

lﬂmmﬂzmm(%)+mfmgm<i_?).

Une premiére expansion de cette divergence nous donne le résultat suivant :

Lemme 5.8. Soit 0 < a <b <1 tel que O (2=2) = O (b— a). Alors,

b b—a (b—a) (a —0b)3 4
D (bl|la) =b [111 (5> -+ 21— 1) + Sb(l—b)Q] +0((b—a)?)

Preuve : En utilisant un développement limité, nous avons :

(1—b)ln(i:2> - —(1—b)1n(1+li:°;)

(a—b)?  (a—b)
2(1—0b) ' 3(1—0b)

= a—b+

+0((b—a)?).

En conséquence,

D (bl|la) = bln( )—F(l—b)ln(i:Z)

Lemme 5.9. Soit ¢ > 0 un nombre réel tel que O (£) = O (=) = O (e). Alors,

g? e3(1 — 2a)

Dla+elle) = 2a(1 —a) * 3a%(1 —a)?

Preuve : En utilisant le lemme 5.8, nous avons

2 3

£ S 5 5
D(a+ella) = (ate) [ln(1+a> _a+€+2(a+€)(1—a—€) C3(ate)(1—a—e)? +O (")
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Puisque €/a = O (g), nous pouvons faire le développement limité du logarithme pour
avoir :

62 63 9 62

Tﬂ+@_a+6+2(a+s)(l—a—e)
4

_3<“+€><i3—a—e>2 w0 (G)] roe

D(a+ella) = (a+e) [2—

B e2a e3(1 — 2a) g4
= (a+e) [2&2(a o0 —a—2)  32(0—aRate) ° <a4>] +O ()
_ g2 N e3(1 — 2a) Lo

2a(1—a) 3a*(1—a)?

La cryptanalyse linéaire

Nous rappelons que dans le cas de la cryptanalyse linéaire les variables aléatoires
étudiées suivent des lois binomiales de paramétres N et p = 1/2 dans le cas d’une mauvaise
sous clé ou de paramétres N et p, = p+ ¢ pour le bon candidat (e, le biais, est petit). Un
résultat bien connu dt a Matsui [Mat93| est que la complexité en données d’une attaque
linéaire est de lordre de e72. Or

Lemme 5.10. Pour un jeu de parametres donné par la cryptanalyse linéaire nous avons
D(p+ellp) =22+ O (£%).

Preuve : Cela découle directement du lemme 5.9 avec a = p = % O]
Ainsi nous retrouvons bien le résultat connu sur le comportement asymptotique de la
complexité en données d’une cryptanalyse linéaire.

La cryptanalyse différentielle

Dans le cas de la cryptanalyse différentielle p, et p sont tous les deux assez petits mais
la différence p, — p est dominée par p,. Dans le cas de la cryptanalyse différentielle, le
rapport p,/p est grand, et I'on obtient 'extension suivante de la divergence de Kullback-
Leibler :

Lemme 5.11. Pour un jeu de parametres donné par la cryptanalyse différentielle nous
avons

D (p.lp) = p.In (%) fpt 0 ().

Preuve : Cela découle directement du lemme 5.8. Comme le rapport p,/p peut étre grand,

la premiére partie en In (%) ne peut pas étre simplifiée. O

Ainsi dans le cas de la cryptanalyse différentielle le comportement asymptotique du

nombre d’échantillons est |

ps In(p./p) + 1]
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La valeur asymptotique de la complexité en données que 'on obtient est différente de
la complexité en données asymptotique donnée par Eli Biham et Adi Shamir [BS91| qui
est pi*. Cette nouvelle formule prend en compte le rapport p,/p. Ce qui est logique, car
intuitivement, plus ce rapport est grand plus la complexité en données est petite.

La cryptanalyse différentielle linéaire

Cette attaque présentée dans la section 3.3 posséde le méme type de paramétres que
pour la cryptanalyse linéaire (c’est-a-dire p = 1/2 et p, = p + ¢). Ainsi un nombre
d’échantillons nécessaire a ’attaque est le méme que pour la cryptanalyse linéaire. Comme
dans le cas de la cryptanalyse différentielle un échantillon est composé de deux messages.

La cryptanalyse différentielle tronquée

Il existe plusieurs types de cryptanalyses différentielles tronquées. Dans certaines cryp-
tanalyses différentielles tronquées les paramétres p, et p sont du méme ordre de grandeur
que pour le cas de la cryptanalyse différentielle classique. Ce cas ne nous intéresse pas ici
puisque le comportement asymptotique du nombre d’échantillons sera alors le méme que
celui de la cryptanalyse différentielle. Le type de cryptanalyse différentielle tronquée que
nous étudions ici correspond au cas ou p, et p sont petits et p, = p + ¢ ol € est petit.
Dans ce cas on a :

Lemme 5.12. Pour un jeu de parametre donné par la cryptanalyse différentielle tronquée

nous avons

82

20,

Preuve : Cela découle directement du lemme 5.9. O

D (p«||p) =~

La cryptanalyse différentielle impossible

Ce cas est un peu particulier. En effet dans notre analyse nous avons toujours supposé
que p, est plus grand que p. Or ici p, = 0. En réalité le cas p, < p a été traité par |[Tez10].
Dans cet article, il est montré que la preuve de la formule de la complexité en données
peut aussi étre faite dans le cas ou p, < p. Par convention

D(0]lp) = —In(1—p) =p+ O (p°).

1
Ainsi le nombre d’échantillons pour une cryptanalyse différentielle impossible est —.

La cryptanalyse différentielle d’ordre supérieur

Dans cette attaque, présentée dans la section 2.4, la probabilité p, est égale a 1. Et

D(1llp) =In() > 1

En fait dans les attaques différentielles d’ordre v, un seul échantillon est souvent suffisant a
une cryptanalyse mais un échantillon est composé de 2 messages clairs donc la complexité
en données est de 2°.
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Comportement asymptotique | Comportement asymptotique

Attaque du nombre du nombre
d’échantillons messages clairs
Linéa; 1 1
Ineaire 5 o 9/ N2
2(p« — p)? 2(p« — p)?
1 2
Différentielle
ps In(ps/p) + pu P« In(ps/p) + ps
. . o 1 1
Différentielle-linéaire YA —
Différentielle tronquée LQ p—’y2 <y <2
(p* - p) (p* - p)
. . . . 1 2
Différentielle impossible - —
p p
. . 1 2Y
Différentielle d’ordre v —— —
Inp Inp

TABLE 5.5 — Comportement asymptotique de la complexité en données de certaines at-
taques statistiques.

5.4 Probabilité de succés

Pour le calcul de la complexité en données d’une attaque statistique simple, nous avons
eu besoin de fixer la probabilité de succés (1 — «) afin d’en déduire une formule asympto-
tique simple. Dans cette section, nous allons utiliser une autre méthode pour calculer la
probabilité de succés d’une attaque pour une complexité données. Dans ’approche faite
dans la section 5.3, en fixant la probabilité de fausse alarme nous ne savons pas exac-
tement quelle est la taille de la liste des clés gardées. Dans ’approche que nous allons
utiliser ici nous allons fixer la taille de cette liste.

5.4.1 Les statistiques d’ordre

Dans le modeéle ‘“taille de liste fixée”, la problématique n’est pas de décider si une
clé candidate est probable ou pas ou pas mais de distinguer les clés candidates les plus
probables parmi ’ensemble des clés candidates. Soit 2" le nombre total de toutes les clés
candidates possibles : la bonne sous clé k* plus les 2" — 1 sous clés incorrectes que nous
notons ki, ..., kon_1. La liste £ des clés candidates les plus probables est de taille fixée £.
Dans cette liste sont gardées ¢ clés candidates les plus probables (la bonne sous clé peut
y étre ou non). La cryptanalyse réussit si la bonne sous clé fait partie de la liste des clés
gardées.
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Définition 5.5. La probabilité de succés d’une attaque statistique simple est égale a
la probabilité que la sous clé k* fasse partie de la liste des clés gardées.

Ps ¥ pPlkrer].

L’étude que nous présentons ici nous conduit a une formule simple qui est une bonne
estimation de la probabilité de succes. Cette formule est une fonction du nombre d’échan-
tillons N nécessaire a la cryptanalyse, du nombre total des clés regardées 2" et de la taille
de la liste ¢ des clés gardées. Cette section repose sur des arguments venant de la théorie
des statistiques d’ordre que nous présentons ici.

Notation 5.1. Les variables aléatoires correspondant aux compteurs Cy, sont notées par

(¥i)o<icon—1. La phase d’analyse consiste a trier les clés et a garder les ¢ candidats les
plus probables.

Nous définissons donc les variables aléatoires triées : la 1éme plus grande valeur des
variables 1; est notée : ;.

g est la variable aléatoire correspondant a la clé k*.
Dans le modéle des statistiques d’ordre nous nous intéressons a la distribution de ¥,

puisque si nous gardons une liste de taille £ la bonne clé est dans la liste si et seulement
si Yy > W,. La probabilité de succes de 'attaque est alors

Soit G la fonction de répartition des variables ;(i # 0) :
Gz)=P[py <z|=---=Ppy_1 < 1z].
Il est bien connu (voir [DN03|) que G(¥,) suit une loi béta avec paramétres N — ¢ — 1 et

¢ — 1. Nous notons par h la fonction densité de la loi béta et par g, la fonction g.(x) =
P [tbo = |z]]. Nous pouvons alors écrire,

Py = Zg*(i)~P[\I/g < i

G(4)
= Zg*(i). /0 h(t) dt. (5.20)

A T’aide des définitions présentées dans cette section nous avons trouvé une formule simple
pour calculer la probabilité de succés d'une attaque statistique.
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5.4.2 La formule de la probabilité de succés

En 2008, Selguk dans [Sel08|, a utilisé une approximation gaussienne de la loi bino-
miale pour exhiber une formule pour la probabilité de succeés d’une attaque statistique.
Il s’est en particulier intéressé au cas de la cryptanalyse linéaire et de la cryptanalyse
différentielle. L’approximation gaussienne étant bonne dans le cas de la cryptanalyse li-
néaire, son approximation de la probabilité de succés est plutot bonne dans ce cas. En
revanche, dans le cas de la cryptanalyse différentielle, comme ’approximation normale de
la loi binomiale n’est pas bonne, la formule exhibée pour la probabilité de succés n’est
pas trés bonne comme Ali Aydin Selguk le dit lui méme. Ici nous exhibons une formule
générale de la probabilité de succés d’une cryptanalyse statistique, laquelle ne dépend
pas d’une approximation de la loi binomiale. Nous utilisons une approximation seulement
pour le calcul du terme d’erreur. Pour trouver sa formule de probabilité de succes, Selguk
suppose que la distribution de la féme statistique d’ordre (¢ est la taille de la liste des
clés gardées) tend vers une loi normale. Dans notre analyse, nous utilisons directement le
fait que la /-éme statistique d’ordre suit une loi béta.

Le résultat que nous avons trouvé est basé sur le fait que la loi béta est concentrée
autour du point
def 2" — L —1

O on_2

Nous avons besoin de définir quelques notions avant de donner le résultat principal de

cette section.

Définition 5.6. Soit G la fonction de répartition de la loi binomiale avec parametre
(N, p). Cette fonction est définie par la formule suivante

def N\ N—i
= 11— .
G(x) Zj (@ )p (1-p)
Nous définissons linverse de cette fonction G=% par
G~ Hx) = min{t|G(t) > x}.

Remarque 5.2. Comme la lot binomiale n’est pas continue il est facile de voir que
G Y(G(z)) peut étre différent de x. Soit g la densité de la loi binomiale de paraméetre
(N,p). La définition de G implique que

G 1(x) G (z)-1
Z glx) >z et Z g(z) < z.
i=0 i=0

En conséquence, nous pouvons borner le terme d’erreur par
GG z) —z < g(G(2)). (5.21)
La preuve du théoreme suivant est donnée dans la section 5.4.3.

Théoréme 5.3. Soit Ps la probabilité de succeés d’une attaque statistique qui garde £ clés
sur un total de 2". Soit N le nombre d’échantillons que mous avons a notre disposition.
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La probabilité que le compteur correspondant a la bonne clé soit a la iéme place dans la
liste des clés gardées est notée par g.(i) :

i) = () - pr

Soit G la fonction de répartition des compteurs correspondants aux autres clés. Nous
notons par G=! Uinverse de cette fonction définie dans la définition 5.6. Soit to o 1—%,

le point de concentration de la loi béta. Et soit

B = G (), (5.22)
5 Zg*(i), (5.23)

df pp«(N+1)—B
R I (5.24)

Si tg > % alors

2
PS:1—5+O<5(1+9) %Jr%fr%)

Les hypothéses faites au début du théoréme précédent sont nécessaires afin de prouver
le théoréme. Pour les cryptanalyses usuelles, ces conditions sont toujours respectées. Le
paragraphe suivant explique plus en détail ce que signifie chacune de ces conditions.

Discussion sur les conditions du théoréme 5.3

Les valeurs prises par 6 : Pour les tranches de paramétres que nous utilisons dans le cas
des cryptanalyses statistiques, 6 est petit. Il est difficile d’obtenir la vraie valeur de
cette constante. Celle-ci dépend de 'ordre de grandeur des paramétres p et p,. Nous
avons calculé I'ordre de grandeur de cette valeur pour les cryptanalyses citées dans
les chapitres 2 et 3. Nous avons remarqué que la valeur de 6 est la plus grande quand
on se place dans le cas de la cryptanalyse linéaire (p = 1/2 et p, = p + ¢). Nous
détaillons donc rapidement le calcul permettant de nous donner I'ordre de grandeur
de cette valeur.

Dans le cas de la cryptanalyse linéaire, I’approximation gaussienne de la loi binomiale
est trés bonne. Nous allons donc I'utiliser pour obtenir 1’ordre de grandeur de 6. Soit
® la fonction de répartition de la loi normale :

qer [ e/
O(z) = / N du.

En utilisant les notations du théoréme 5.3 et par I'équation (5.22) il peut étre vérifié

que
B~ pN + &1 (A\)y/Np(1 - p).

A partir de la définition de § donnée dans l'équation (5.23), on a ®~1()\) ~

A—0F
/—2In(\). De la méme fagon
B ~p,N —®8)\/Np.(1—p,).
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On a aussi ®71(§) ~ +/—2In(d). En rassemblant toutes ces remarques nous

A—0+
obtenons

g~ PYVANP(—p)  [—1n(d)
P« xy/Np(1l—p) —1In(A)
Pour obtenir cette formule nous avons aussi utilisé le fait que p. =~ p ( ce qui est
vrai dans le cas de la cryptanalyse linéaire).

A propos de § : Nous pouvons remarquer que § peut étre vu comme une approximation
de 1 — Pg et donc que cette valeur est souvent de l'ordre de 0.05.

A propos de ty : Pour ne pas avoir une complexité en temps trop grande nous avons
14
besoin que 1 — ty ~ on reste petit, par exemple 107°. Dans le cas ot 1 — ty = 107°
et 6 = 0.05 on obtient alors 6 =~ 0.5.

Condition non restrictive : Dans le théoréme 5.3 nous avons supposé que

(-1 1
< -. 5.25
2n—2 7 4 ( )

Cette inégalité signifie que nous gardons au plus 1/4 des clés. Dans la plupart des
attaques statistiques connues on accepte mois d’un quart des clés donc cette condi-
tion n’est pas restrictive.

Expression du terme d’erreur dans la formule de la probabilité de succeés

Dans le théoréme 5.3 nous avons exhibé le terme d’erreur de notre formule par rapport
a la vraie valeur de la probabilité de succes. Ce terme d’erreur est égal a

N

Po— > g.i).

i:G_l(lf Qeniflg)

Ce terme d’erreur décroit quand 2" et ¢ tendent vers l'infini mais est aussi décroissant
avec 0. Rappelons que 6 ~ 1 — Pg, donc, le terme d’erreur induit par notre formule
décroit quand la probabilité de succeés augmente.

Lien avec la complexité en données

Dans la section 5.3 nous avons utilisé une autre méthode pour calculer la complexité
en données d'une attaque statistique. En utilisant des outils venant du modéle test d’hy-
pothéses (voir section 5.3.1) nous avons extrait une formule de la complexité en données
qui dépend de la probabilité de non-détection « et de la probabilité de fausse alarme f.
Cette derniére correspond a la probabilité d’accepter un mauvais candidat dans la liste
L des clés gardées. Dans ce cas il semble naturel de prendre g = ¢/2". D’autre part, «
correspond a la probabilité de rejeter la bonne sous-clé et a peut étre choisi de telle sorte
que o = 1 — Ps. Si nous utilisons ’équation (5.10) pour exprimer « en fonction de 3, nous

obtenons
G 1(1-B8)-1

a= Z 9x(1).

=0
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En utilisant les valeurs suggérées pour les probabilités d’erreurs « et (3, nous obtenons

G~ t(1-¢/n)—-1

Ps=1— > g.)

=0

ce qui correspond au résultat donné par le théoréme 5.3.

5.4.3 Preuve de la formule de la probabilité de succés

Le théoréme 5.3 est difficile et long & prouver. Pour cette raison nous dédions toute
une section a sa preuve. Dans un premier temps, nous donnons une idée de la preuve :
Idée de la preuve du théoréme 5.3

L’idée principale consiste a décomposer la somme

N

en effectuant un encadrement autour de G~'(t) o o est défini par

qef 20— € —1

0 on _9

Soit € > 0 un réel, nous avons

N G(3)
Py = Zg*(i)/o h(t) dt

G~ t(to—e)—1 G(4) G~ t(to)—1 G(3)
D SR ACN B IOF S SEFACY RIOY
. i=0 0 i=G—1(tg—e) 0
X h ;e g
N G(3)
+ Y g.) / h(t) dt . (5.26)
=G (to) 0
&

Le troisiéme terme de la somme (5.26) (celui noté C') est :

N

G(3) N
3 g*(i)/o ey dt= )

i:G_l(to) iZG_l(to

N 1

g.(1) — g.(7) h(t) dt.
w0 3wl [

i=G—1(to) G()

Au regard de la valeur de C, nous montrons que la probabilité de succés de I'attaque est
essentiellement concentrée en
N
> g.(i)
G—1(

= to)
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et que les autres termes de (5.26) sont négligeables.

N G (to—e)—1 G(i)
Pi— Y o) = Y a0 / h(t) dt
i=G~1(to) i=0 0

S

G~1(to)—1 G(3) N 1

+ > ) / ht)ydt— > g.(i) / h(t) dt

i=G—1(to—e) 0 i=G—1(to) G(i)

S5 5

Le premier argument pour prouver que ces termes sont négligeables est que la loi béta est
concentrée autour de ty. Ce qui signifie que les intégrales avec des domaines suffisamment
loin de ty sont négligeables. C’est le cas de I'intégrale définie par S, mais aussi pour une
partie de la somme S3 que nous notons Sy .

G~ (to+e)—1 1 N 1

Ss= Y g*(i)/ ht)dt+ ) g*(i)/ h(t) dt .
i=G—1(to) G(7) i=G—1(to+e) G(i)

54 S5

J/

Pour résumer, nous avons maintenant un terme d’erreur S; + S, — S, — S5 avec S; et S;
négligeables grace aux propriétés de la loi béta.

Par la suite nous donnons le détail de la preuve qui montre que les termes S, et Sy sont
négligeables. Cette preuve qui repose sur deux lemmes est longue et fastidieuse. On peut
aisément ignorer cette partie pour lire directement la fin de la preuve du théoréme.

Les quantités S; et S; sont négligeables.

Concentrons nous sur S, — Ss. On a

|SQ — S4| S max(Sg, 54)

G_l(to)—l G_l(to—‘ré‘)—l
< max | > (i), Y g(i)
i=G~1(tg—¢) i=G~1(to)

L’argument ici est que la somme tend vers 0 et est négligeable par rapport a §. Les lemmes
suivants justifient les arguments donnés précédemment. Avant d’avoir une estimation des
queues de la loi béta nous introduisons un lemme intermédiaire.

Lemme 5.13. Soit f(t) une fonction définie sur |0, 1] qui est 4 fois différentiable. Suppo-
sons que cette fonction atteint sa valeur minimale 0 au point tg G]%, 1] et que f"(to) > 0.
Soit X un nombre réel positif. Alors, pour e € (0,1 —ty), on a

to+e A P(to+e) 1 1 f///(t(]) ) \/_ \/_ \
e dt = e — + T4+ o0 (\/T)| e Tdr
/to /0 QTf//(to) 3 f"2(t0) to ( )
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et
to - f(to—e) 1 1 fm(to) B
M) g L M
/toge dt /0 [ 2 F(ia) + 3 £ (ko) + AT+ 0 (\/;) e "Tdr.
et V2 5F P (o)
oi o g (Mg 40w

Preuve : En remplacant 7 par f(¢) dans f 10 =M dt nous obtenons :

tote f(toi&)
/ e MWt = / I(T)e *dr

to 0

1

p . Dans un premier temps nous exprimons ¢t — t; comme une
PO li—prr)
fonction de 7 en utilisant ’expansion suivante de f.

" (3) (4)
ity = L0 gy L2 e Sy o (- ).

avec I(1) =

Sans perte de généralité, nous supposons que t > ty et nous en déduisons donc le com-
portement asymptotique de ¢t — .

3) -1
(t—to)* = ;f((t?) [1 + éj;,,éio)) (t - 112 J;”(( )) (t—to)* 4+ o ((t — to)Q)} (5.27)
. 2T
Ce qui nous donne ¢ — tg Ft0) 1+ 0O (V7).

En remettant cette quantité dans I’équation (5.27) cela nous donne :

P V2 fO(t) )
= ) ll 6 YTt m]‘

En allant itérant une nouvelle fois on obtient :

e 21 \/_f?’)(to) _Q f® (to) = - lf(4)(to)7_ o(r
o= f”(to)[ MEREORE [1 6 f”(_to)3/2\/_]\/—+6f”(to)2 wo
. V2 [ (1) o) 1wy
e f”(to)[ 5 gV (ot 5 ey ) 7 o
Nous obtenons finalement :
[ [ VE %) o () 5w
W [1 s Y (G~ oy )70 629

Nous pouvons utiliser la méme méthode pour le cas ot ¢ < ty. Nous obtenons alors :

[HQﬂ@(to)ﬁ () Ot0) 5 [y Ja B

6 f"(to)? 12 f"(to)2 36 f(to)? - (5.29)

t—t():—

f”(to)
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A partir de I'expression de ¢ — ¢, en fonction de 7 nous pouvons calculer I(7). Nous
utilisons le développement limité suivant :

f(3) (to)
2

f(4) (to)
6

fI(t) = f"(to)(t — to) + (t —to)* + (t—to)*+ o0 ((t—to)*).

Ce qui nous donne 'expression suivante pour f%(t) :

PO " P O W P el )
- P ”ifﬁ)é?i)“ 0+ O o)
e o () S ot
- P f”((to))2+<3 Tty MW”)%““‘“)' (530

Nous allons maintenant remplacer la valeur de ¢ — t, donnée par 1’équation (5.28) dans
la formule précédente. Le premier terme de (5.30) s’écrit alors :

1 L[ V) () _ 5 /0w ]
Ploi—t) — Vapimr [1 6 YT (12f~<t02 6f( i) ”]

1 f(g)(to) < () O>2> 4o p=
e o+ (0 =) s o)

Le troisiéme terme de (5.30) devient :

SP (to)? t —to f(g)( 0)? (4) V2
(5t~ 210 e = (V") i o0
Comme I(7) = L , en rassemblant ces deux équations nous obtenons :
F) 1)

e 1 B O (to) V2 J@(to)? a4 4 olr
10 = s 37t | A () (5 ey (t°))f+ (7).

Dans le cas ot t < ty, en utilisant I’équation (5.29), nous obtenons

(3) (3) 2
0= e i s (7

2f(to)r  3f"(t0)? 24" (to)>/? - 35 (to)) VT +o(T).
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Lemme 5.14. Soit h la fonction de densité de la loi béta avec paramétres (2" —(—1,0—1) :

M@®(T-1y(?:f)¢ﬂflu_nf¥

Le maximum de h est atteint au point

qef 20— € —1

0 on _9

_ def {—1
Soite = z -
oite = z ST

. Siz=o0 <\/Z> et £ € [1,2"/2], nous avons :

to+e 11 e
h(t)dt =1 — 4+ — .
/t (t) +O<€2+2n+ . )

0—¢€

Preuve : Nous appliquons, d’abord, ’approximation de Stirling au coefficient binomial :

on _ 9 B i on _ 9 2" —(—1/2 on _ 9 {—1/2 L 1 +O i_i_l
t—1) Vor\on—v—1 (-1 12(¢ —1) on 2 )"

Nous simplifions I'expression :

on _p_1 (-1

Cela nous conduit & définir une nouvelle fonction A

2m — 2
(—D@2—(-1)

h(t) = Cyn g - e =DPWID - ayec Cyny= (27— 1) - \/2 (
T

Alors ~ 1 1 1
h@:h@-l—ﬁwjﬁ+0(ﬁ+ﬁ”.

La structure de h suggeére d’utiliser le lemme 5.13 avec A = 2" — 2 et f(t) = D (to||t).
Alors,

1 1 1
"(to) = — = >0,
J(to) P to(1 — o)
2 2 2o — 1
Ot = — = 2 _ 9 20~
ko) (1—t0)? 2 tg(1 —t0)*’
6 6 3t2 — 3t + 1
WDt)= —— 1+ = — 6%
Pl =025 " = “aa—wp
1362 — 13tg + 1
et Ato = 0 0+ .
61/2t0(1 — to)

Puisque f”(t9) > 0 and f(to) = f'(to) = 0, nous pouvons appliquer le lemme 5.13 sous les

deux contraintes z = o <\/Z) et £ < 2"/2. La premiére contrainte vient du fait que ¢ doit
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étre petit vis a vis de 3. Cette condition est vérifiée par notre choix final de z. La seconde
contrainte vient de la restriction sur ¢, et signifie que nous gardons au plus une clé sur deux
ce qui est actuellement le cas pour les cryptanalyses statistiques. Par intégration par par-
ties il est facile de calculer les trois intégrales suivantes. Soit @ un nombre réel, nous avons :

o [Jett2dt = /m—eaV?+ O (e a?).

° foa etdt=1—e"

Q'

° foa et /2 gt =

—eat O (e ta ).

En appliquant ce résultat au lemme 5.13, nous avons :

to+e e~ M (tote)
/ e MO g = + O
to V 2Af”( M F(to) f(to + €)

if ( 0) +0O lf(?’ (to) e—)\f(to-i-a)
3A f2(to) A f2(to)
Ato T €_>\f(t0+€)

+ X X—FO(AtU \ f(t0+5))

et,

/to ef)\f(t) G T Lo —/\f(to—a)
to—e V 2/\f//( )\\/f// t() to — 6)

L fO(to) (_f( '(to) —Af(to—a>>
T G O

At() —Af(to—e)
+ 2/\ )\ +O (AtoeT f(t()—&)) .

Additionner les deux intégrales nous donne :

to+e 9 —A(f(to—e) —Af(to+e))
/ e MO dt = //ﬂ- +0 (e —/i’_ - )
to—e A" (to) Aef”(to)

1 f(s)(tﬂ) —Af(to—e —Af(to+e

N % \/§ +O<Ato Filtg) (e M0 1 e—Af(to+s))>

= s [ VT

L0 aftto—e) 4 ~Mltote) 1 P (to) 7 D
+ O <)\ [e Af 4 e Mto+ } Lf”(t) 301 )—|—At05 f'(to)| ) -
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Nous remplagons maintenant A et les dérivées de f par leur vraie valeur :

to+e _ to+e
/ h(t) dt = / Clyn g~ " =2D0ollt) ¢
t t

0—E 0—€
2rto(1 —t 13t2 — 13ty + 1
= COyny- 2mto(1 — to) 0 0+ R
’ ) 12(27 — 2)to(1 — to)
o 1 1363 — 13ty + 1

= g [1+ 12(2" — 2)to(1 —to)] o

1362 — 13t + 1
= |1 1 0 R
{ o 2} { TR R0 —to)] *
1362 — 13t + 1 1
=1 : O|=—|)+R
LTI/ T (2n) M
avec
Cont  srpg _ to(1 —ty) 2 1363 — 13tg + 1
R=0O ) f(to—e) Af(tote) 220 — 1 0 .
(zn (e e i (s 12to(1 — 1) ©

Dans R, la somme entre les crochets est dominée par le premier terme. Ce terme
fo(l—to) (1= 8/2)0/2"

~

3 2\/2/2”

est de l'ordre v/¢/z. Nous obtenons alors

z 2"

R = O <\/ZO27L’2 [e—(Q”—Q)D(tOHto—&) + 6—(2"—2)D(t0|t0+8)}>

_ O ( \/z OQn ee—(Qn_Q)D(t()Hto—E) |:1 + 6—(2”—2)[D(t0to—E)—D(tU|to+6)]j|> )
z-2" ’

En utilisant le lemme 5.9 nous avons

2ng? 220/2"
2" —2)D (tolltg — e) = R .
( )D (tollto — ) 2t —e)(1 —tg =¢) 2

Et 5/—302”5 R~ = O (1). On en déduit donc que :

1
V2T

z

—22/2
RO (6 / [1 +e(2"2)[D(tot05)D(t0||t0+5)]}> i

En utilisant le méme développement limité que le précédent nous avons

D(tollto =€) = D(tllto +2) = 57— 8)(512_ ot 3(t§3§15)_2(21t0—t02?5)2
2 3 - B
2(to + 5)(51 —ty—¢) * 3(t()€_|E15)2(21t0_ tfi) £)? +0 (")
- SO
or ol —to) Ve 2¢(1 — 21&0)22.

=~ 7, donc D (to”to — 8) —D (to”to +€) ~

€ 3¢
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2V0 — 1(1 = 2t5)2°  22°
3¢ 3V

e~ (2"=2)[D(to|lto—e)=D(tollto+e)] — (6_3\2/3!7) ]

Et (2" —2) [D (to||to — &) — D (tol|to + ¢)] =
Alors,

.2
Et en conséquence R = O (e -~ /2>.

Pour conclure cette preuve nous avons

tote 13t2 — 1315 + 1 1 e #/2
ht)dt = |1 0 —
/toa (t) [ T e, 9\
1 1 1
[1_ 12(6—1) +0 (2_”+£_2>}

13t —1 1 1 1 e #2
= 1—(1—ty) =2 +O<—+—+ >

12ty (—1 2" on 2

11 e
= 1+0(5+=
* (€2+2” z )

]

La seconde partie de la preuve du théoréme 5.3 consiste a exprimer S comme une
fonction de 6 = 1 — Pg. Cette preuve peut étre faite de la méme fagon pour 5j.

Lemme 5.15. Soit § = Zic’:ol(t(’)_lg*(i). Soit ¢ = 2= pour une certaine valeur de z

ot z = o(\/1) quand ¢ tend vers Uinfini. Si X < 1,alors

Gil(to)—l

Sp= Y g*(¢)=0<\/ze_il).

i=G~1 (tofs)

Preuve : Dans un premier temps, afin de simplifier les formules, nous notons par B et B,
les valeurs B & F~1(t,) et B. % F~(ty — ¢). Dans le cas ot B = B, il 0’y a aucun
terme dans la somme. Le lemme est alors prouvé. A partir de maintenant nous supposons

que B > B, + 1.

La preuve de ce lemme 5.15 est basée sur le lemme 5.3. Nous utilisons donc le coefficient
suivant
et (1-p)-B
p-(N—B+1)

Afin de prouver ce lemme, dans un premier temps nous allons prouver que

(5.31)

(8- B0 -1 =07 (5.32)

Afin de prouver cette équation nous remarquons en utilisant le lemme 5.3 que

i fi)=0 <1f_(113}7) =0 (7%) . (5.33)

i=B+1
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Et,

f(B) _ %

(PP - < D 0 (5.34)

- i=B:+1

ou v_ est défini par
def 1-— P B BE +2
_ = — 1mMin
7 D N—-B+1 N—B. -1

Comme nous avons supposé qu , nous avons B > Np. Pour /¢ suffisament grand

B. > Np. En conséquence pour E sufﬁsament large nous avons v_ = . A partir de

I’hypothése que nous avons faite sur e, nous savons que ZZBEH fi)=o (ZfiBH f(z))

quand ¢ tend vers I'infini. Ceci est possible si 7Z?7P¢ — 1 tend vers 0 quand ¢ tend vers

infini. Ceci implique que 4?75 — 1 ~ (B — B.)(7~ — 1) quand ¢ tend vers l'infini. La
méme remarque peut étre faite en remplagant «_ par v (puisque _ coincide avec v pour
¢ suffisamment large). En mettant toutes ces remarques ensemble et en utilisant (5.34) et
(5.33) nous obtenons

B )

)

car v = O (1). Alors, nous pouvons exprimer les sommes apparaissant dans cette fraction
comme fonction de ¢ et ¢ :

(B-B)(y—1) ~ AP -1

o

i=B:+1

(
_ O(ZZ 511 £0)
Ez B+1f i)

et

i=B+1

Finalement, nous obtenons

(B - B.)(y—1) :0(1ft0 {H(’)(ﬂfg))]).

Nous pouvons vérifier que O (@) = O(1). En remplagant les valeurs de ¢ et ¢, par

leur vraie valeur nous obtenons

B0 -1 =0(=).
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Maintenant que nous avons prouvé 'assertion (5.32) nous pouvons nous concentrer de
nouveau sur la preuve du lemme 5.15. Nous pouvons une nouvelle fois utiliser le lemme 5.3
pour obtenir les expressions suivantes

a0 - o(2)

ifo(z‘) = O(<1 W ) fo(B )> (5.36)

1=Be¢

Nous avons

L=y % = O((B-B)(l—))
= 0(0(y—1)(B - B))

= o).

ounf =0 (11 Z?) En remettant ce résultat dans 1'équation (5.36) et en utilisant le fait que

5 Zf:ol fo(7) nous obtenons :

B
z
i 0
>l =0 (97755
et nous avons prouvé le lemme 5.15 O

Preuve du théoréme

A partir des lemmes que nous venons de prouver nous pouvons revenir sur la preuve
du théoréme 5.3.
Preuve : Rappelons que nous voulons borner supérieurement ’erreur suivante :

Ps— > g.(i) =51+~ Si—Ss.
’iZG_l(to)

Nous commencons par borner Sy et Sj :

G~ (tp—e)

s = 3 g*(i) /0 “ ) di < /0 ) .

=0

S5 = 0.(i) / U de < /t ")

G(Z) o+e

Mz

=G~ 1 t0+ )

Or, |S1— 55| <S1+855<1— tOJrE g(t) dt. Donc, en utilisant le lemme 5.14 nous avons :

1 1 —22/2
151—551—0<£2+—+6 > (5.37)

z



108 5.4 Probabilité de succes

Pour montrer que Sy est négligeable nous utilisons le lemme 5.15. Une preuve peut étre
faite de la méme maniére pour montrer S, est négligeable. Nous avons alors

1Sy — Syl = O (5%) . (5.38)

En ajoutant les équations (5.37) et (5.38), nous obtenons

N 6—z2/2

. 1 1 z
PS— Z g*(z):(’)<£—2+2—n+ > +5ﬁ)

=G~ 1(to)

La derniere étape de la preuve consiste a choisir une valeur particuliére pour z. En prenant

z de la forme z = 4/In (5%) nous obtenons

N

, In(¢/6%) 1 1
i=G~1(tg)

Le choix de z que nous avons pris vérifie bien la condition réclamée dans les lemmes

etait <2 — 0 (5=
qui étai = <7Z>

z

]

5.4.4 Lien avec les formules existantes

Le calcul de la probabilité de succeés d'une attaque différentielle ou linéaire avait déja
été fait par Selguk [Sel08]. Cette étude reposait sur I'hypothése que la distribution des
statistiques d’ordre étudiée convergeait vers une loi normale.

Description des travaux de Selguk

Nous rappelons ici un des théorémes principaux de article [Sel08|.

Théoréme 5.4. Soit ¢, la fonction densité de la loi gaussienne de moyenne Np, et de
variance Np.(1 — p,). Soit =1 linverse de la fonction de répartition de la loi normale
de paramétre Np et Np(1 —p). Alors une bonne approzimation de la probabilité de succes
est

Py~ /@ h 6.(x) dz. (5.39)

~1(1—¢/2m)

On peut remarquer que la formule donnée dans le théoréme 5.3 et la formule de la
probabilité de succés donnée par Selguk sont trés similaires. En effet les fonctions ® et
¢, sont des approximations de G et g,. Ainsi la formule de Selguk est bonne lorsque 1'ap-
proximation gaussienne l'est. Le probléme de l'utilisation de ’approximation gaussienne
est soulevé par Selcuk lui-méme lors de ’étude de la complexité en données d’une attaque
différentielle. Les résultats expérimentaux montrent que son approximation de la proba-
bilité de succés est bonne dans le cas de la cryptanalyse linéaire mais est trés loin de la
réalité pour la cryptanalyse différentielle.
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5.4.5 Résultats expérimentaux

Nous avons fait des expérimentations afin de comparer notre formule de la probabilité
de succeés avec celle donnée par Selguk (voir théoréme 5.4). Nous avons aussi comparé
cette formule avec la vraie valeur de la probabilité de succés. Cette valeur a pu étre
calculée en utilisant une astuce simple qui permet de calculer la densité de la loi béta
avec une grande précision. Dans le cas de la cryptanalyse linéaire comme ’approximation
gaussienne est bonne, notre formule de la probabilité de succés donne le méme résultat
que la formule de la probabilité de succeés donnée par Selguk. Cependant dans le cas de
la cryptanalyse différentielle, la formule donnée par Selcuk est trop optimiste alors que
notre formule donnée par le théoréme 5.3 est proche de la vraie valeur de la probabilité de
succes. Les résultats de certaines des expérimentations que nous avons faites sont donnés
dans le tableau 5.6 et illustrent bien le phénomeéne décrit ci dessus.

Type Parametres Notre estimation | Estimation de [Sel08]

de Probabilités N =2% Pg de Pg de Pg

cryptanalyse 2n = 220 (5.22) (5.39)

Linéaire b = pp+=104g = =215 | 0.8681 0.8681 0.8681

Lineaire | " 51043 e r=210 | 04533 0.4533 0.4533
— 564

Différentielle pp - 3_47_2 (=215 | 0.8257 0.8247 0.9050
— 564

Différentielle pp - 22,47,2 =219 | 0.8250 0.8247 0.9050

TABLE 5.6 — Comparaison entre les équations (5.22) et (5.39) avec la vraie valeur de la
probabilité de succes.

5.4.6 Lien entre la probabilité de succés et la complexité en don-
nées

Nous avons mené d’autre expérimentations dans le but de montrer que quand nous
choisissons N de la forme

hmeyE )
V= D)

(ce choix est guidé par la formule donnée dans le théoréme 5.2) alors la probabilité de
succes de I'attaque dépend essentiellement de la valeur de ¢ et est indépendante du type de
cryptanalyse. Pour illustrer ce propos nous avons calculé dans le tableau 5.7 plusieurs va-
leurs de probabilité de succés pour un nombre total de clés fixé & 27 = 23, pour différentes
valeurs de taille de liste ¢ et pour différents types de cryptanalyses. Ces probabilités de
succeés ont été calculées a I’aide de la formule donnée dans le théoréme 5.3. Les valeurs cal-
culées dans le tableau 5.7 pour plusieurs valeurs de ¢ montrent que la probabilité de succes
dépend essentiellement de la valeur de c¢ et est indépendante du type de cryptanalyse.
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c=1 c=15 c=2
Paramétres L l l
910 925 940 910 925 940 910 925 940

e = pp+:194g g—24 0.5855 0.5922 0.6012 | 0.9799 0.9606 0.9169 | 0.9998 0.9988 0.9902
e = pp_i_:l%g 9—11 0.5856  0.5924 0.6013 | 0.9800 0.9606 0.9170 | 0.9998 0.9988 0.9903
. 10::1;7.320_30 0.5802 0.5847 0.6117 | 0.9766 0.9580 0.9105 | 0.9998 0.9985 0.9880
». 1;:1;7'420,40 0.5802 0.5847 0.5981 | 0.9766 0.9580 0.9105 | 0.9998 0.9985 0.9880
;1::22:6;0 0.5496 0.5976 0.5300 | 0.9078 0.8936 0.8054 | 0.9928 0.9783 0.9292
212222__3229 0.6421 0.7058 0.6817 | 0.9381 0.8936 0.8875 | 0.9959 0.9880 0.9832

TABLE 5.7 — Probabilité de succés pour différents paramétres avec 2" = 200 et N =
_In(2/7-4/2")
D(p«llp) -

5.5 Amélioration de la formule de la probabilité de suc-
cés dans le cas de la cryptanalyse différentielle

Dans la section précédente nous avons vu que la formule de la probabilité de succés
que nous donnons dans le théoréme 5.3 est bonne et assez proche de la vraie formule
lorsque I'on utilise la loi binomiale. Cependant dans le cas de la cryptanalyse différentielle
nous avons remarqué expérimentalement que pour une différentielle fixée, les clés suivaient
aussi une distribution binomiale (voir section 4.3). Cette hypothése n’a pas été prise en
compte dans notre analyse générale de la probabilité de succes.

Dans cette section nous présentons les résultats d’'une attaque expérimentale que nous
avons fait sur SMALLPRESENT-[8]. En utilisant la remarque que nous avons faite dans
la section 4.3, nous donnons une formule de la probabilité de succés plus précise dans le
cas de la cryptanalyse différentielle.

5.5.1 Amélioration de la formule de la probabilité de succés dans
le cas de la cryptanalyse différentielle
L’observation faite dans la section 4.3 que la répartition des clés suit une distribution

binomiale peut étre prise en compte dans le calcul de la probabilité de succes d’'une attaque
différentielle.

On commence par rappeler que dans la section précédente nous avons montré que la
probabilité de succés (voir théoréme 5.3) est proche de

G—(to)—1

- Z g*(i)v

=0
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ot GG est la fonction de répartition d’une loi binomiale de paramétres (N, p.) et g, est la
densité d’une loi binomiale de paramétres (N, p.). Nous notons ici par Ps(p.) cette quan-
tité. A partir de maintenant comme la distribution des différences est différente suivant
les clés nous notons par Ps(q) la quantité suivante

ol g, est la densité d’une loi binomiale avec parameétres N et g.

Proposition 5.1. En utilisant les notations précédentes, la probabilité de succeés d’une
attaque différentielle utilisant une seule différentielle avec probabilité p, est :

P-3 py (o) = ()] (5.40)

=0

Dans la section suivante, nous validons expérimentalement cette nouvelle formule. Et
nous montrons que la formule donnée dans la proposition 5.1 est plus exacte que la formule
donnée dans le théoréme 5.3.

5.5.2 Cryptanalyse différentielle de SMALLPRESENT-[§]

Nous présentons ici une cryptanalyse différentielle simple sur SMALLPRESENT-[8].
Dans cette cryptanalyse nous utilisons la différentielle suivante sur 7 tours du systéme de
chiffrement :

(ap, a7) = (0x7,0%x2a2a0000).

Cette différentielle arrive avec probabilité

Py = 2—24.885
* .

Afin de faire une attaque rapide, nous n’inversons qu’un seul tour de clé. Comme au

dernier tour nous avons 4 boites-S actives nous avons 2'¢ clés candidates. Dans notre
attaque, nous avons choisi de ne garder que £ = 2% candidats (voir algorithme 2).
Afin de mesurer la probabilité de succés expérimentale nous avons fait 200 expérimenta-
tions. Les résultats expérimentaux sont donnés dans la figure 5.1. Sur ce méme graphique
nous avons aussi dessiné la courbe de la probabilité de succés obtenue par la formule don-
née dans le théoreme 5.3 et la courbe de la nouvelle formule de la probabilité de succés
que nous avons obtenue aprés avoir pris en compte la distribution binomiale des clés.

Dans le cas de la cryptanalyse différentielle les formules théoriques de la probabilité de
succes ne donnent pas toujours de bons résultats. Ceci peut s’expliquer facilement pas le
fait que comme p, et p sont éloignées, G(ty) (ot tp = 1 — 2{7—_12) est souvent égal a 0 et
donc les formules de la probabilité de succés sont plus ou moins indépendantes de la taille
de la liste des clés gardées.

Cependant dans ce graphique on remarque que la courbe de la probabilité de succes

obtenue grace a la proposition 5.1 est plus proche des résultats expérimentaux.
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FIGURE 5.1 — Probabilité de succés de I'attaque différentielle sur SMALLPRESENT-|§|
spécifiée dans la section 5.5.2

Dans ce chapitre, nous avons étudié la complexité en données et la probabilité de succes
d’une attaque statistique dans laquelle les variables aléatoires suivent une loi binomiale.
Un certain nombre des généralisations de la cryptanalyse différentielle rentrent dans ce
contexte. On peut cependant réfléchir & d’autres types de cryptanalyses qui généralise-
raient la cryptanalyse différentielle et qui ne rentrent pas dans ce contexte.

Dans le chapitre suivant nous présentons une nouvelle généralisation de la cryptanalyse
différentielle tronquée. Dans cette attaque, les variables aléatoires étudiées ne suivent
pas des distributions binomiales. Une autre étude de la complexité en données et de la
probabilité de succés est alors nécessaire.



Chapitre 6

La cryptanalyse différentielle multiple

Dans le chapitre 2 nous avons vu qu’il existait un certain nombre de variantes de la
cryptanalyse différentielle. Certaines de ces cryptanalyses tirent de I'information a partir
de plusieurs différentielles. Nous présentons ici une généralisation de ces attaques. Ce
chapitre a pour objet nos travaux avec Benoit Gérard dont les principaux résultats ont
été présentés a FSE 2011 [BG11|.

Nous avons introduit la cryptanalyse différentielle multiple dans le but d’avoir une at-
taque plus performante que 'attaque différentielle classique ou que I'attaque différentielle
tronquée.

L’idée de la cryptanalyse différentielle multiple consiste a exploiter I'information fournie
par plusieurs différentielles n’ayant pas forcément de lien direct entre elles. Dans la cryp-
tanalyse différentielle classique, celle introduite par Eli Biham et Adi Shamir, 'attaquant
exploite de l'information venant de plusieurs différentielles ayant la méme différence en
sortie. Dans les attaques différentielles tronquées classiques l'attaquant exploite des dif-
férentielles telles que pour chaque différence en entrée étudiée I’ensemble des différences
en sortie est le méme. La notion de différentielle multiple que nous introduisons dans ce
chapitre regroupe ces deux types d’attaques.

Dans ce chapitre nous abordons le probléme en prenant les différentielles qui ont les
meilleures probabilités.

Contrairement aux autres généralisations de la cryptanalyse différentielle décrites dans
le chapitre 2, les variables aléatoires étudiées ici ne suivent pas une loi binomiale. Ainsi
I’étude que nous avons faite dans le chapitre 5 pour calculer la complexité en données et
la probabilité de succeés d’une attaque statistique simple ne s’applique pas ici. Dans ce
chapitre aprés avoir présenté la cryptanalyse différentielle multiple, nous étudions la distri-
bution des variables aléatoires qui sont impliquées dans ’attaque afin de pouvoir calculer
la complexité en données et la probabilité de succeés d'une attaque différentielle multiple.
Comme nous 'avons fait régulierement dans les chapitres précédents, nous testons cette
attaque sur une version réduite de PRESENT.

6.1 La cryptanalyse différentielle multiple

Dans un premier temps nous posons les notations de ce chapitre.
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6.1.1 Contexte

Dans la cryptanalyse différentielle multiple, étudiée avec Benoit Gérard, nous cher-
chons a exploiter de I'information a partir d’'un certain nombre de différences.
Nous notons par A I’ensemble des différentielles que 'attaquant cherche & exploiter.

AY L(ag, a,) € FP x FT'},

ou a, est une différence aprés r tours.

Une facon naturelle d’ordonner ces différentielles consiste a regrouper toutes les dif-
férentielles qui ont la méme différence en entrée. Nous notons par Ay l'ensemble des
différences en entrée qui sont comprises dans A :

A() déf {(10, E'CLT, (CLQ, CLT) S A}

Soit # A le nombre de différences en entrée ; nous indexons les éléments de Ay :
AO = {ao(l), .. ,ao(#AO)}.

Donc, pour une différence en entrée fixée ap® € Ay (i € {1..#40}), nous définissons
I’ensemble des différences en sortie correspondantes AD par :

AD 1 (00D, a,) € A},

r

L’ensemble des différentielles A qui sont impliquées dans 'attaque différentielle multiple
peut alors s’exprimer

A= {(ao(”, o)

P=1.. #A, andj:l...#A@}.

On ne peut pas parler de différentielles sans les associer a leurs probabilités. Soit F' la
fonction de tour d’un systéme de chiffrement avec clé maitre K, F}; correspond a r tours
de ce systéme de chiffrement Ainsi nous notons par pSf’J ) la probabilité de la différentielle
Gy (@GN .
(0™, ar™7) - y | y
P = Pxxc [Fr(X) + Fe(X +ao) = af?] .

La probabilité théorique d’une différentielle peut étre obtenue grace & un algorithme
“branch and bound” (voir algorithme 12)

6.1.2 L’algorithme décrivant ’attaque

L’attaque différentielle multiple est assez similaire a 'attaque différentielle classique
(voir algorithme 2). Nous présentons l’algorithme dans le cas d’une attaque sur le dernier
tour d’'un systéme de chiffrement de type substitution-permutation. L’attaque consiste
alors a déchiffrer partiellement les Npc messages chiffrés en utilisant toutes les clés pos-
sibles du dernier tour et & compter le nombre d’occurrences des différentielles dans A. En
d’autres termes, nous comptons le nombre de paires de messages clairs avec différence en
entrée ag™® € Ay qui conduisent & une différence dans Agj) aprés r tours. Comme dans
Iattaque différentielle classique, dans le but de réduire la complexité en temps de 'at-
taque, un crible est utilisé pour supprimer certaines paires de messages. La particularité
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ici est que ce crible dépend de la différence en entrée. Ainsi pour chaque différence en
entrée ap” nous définissons un crible A Ce crible consiste en toutes les différences

sieve”*

possibles aprés un tour sachant que les différences précédentes appartenaient a Ag) :
- @ _
Vi Ag,.= U {a\P[ar?a}}.
areAﬁ.”

L’attaque différentielle multiple qui consiste & ajouter le nombre d’occurrences de
chaque différentielle est décrite dans ’algorithme 14.

Algorithme 14 : Cryptanalyse différentielle multiple d'un systéme de chiffrement
de type substitution-permutation

Entrée : Npc couples de clairs/chiffrés (X;,Y;) avec YV; = Fg«(X;)

Sortie : La clé K* utilisée pour chiffrer les messages

Initialiser une table C' de 2" compteurs a 0.

Pour chaque ¥ € A, faire
Pour chaque paire de messages (Xq, Xp) tel que X = X, @ ao"? faire
SiY,®Y, € Ag?m alors

Pour chaque sous clé candidate k faire
Calculer § = F, 1(Y,) @ F, ' (V);
Si s e AY alors
| Clk]  C[k] + 1;

Générer une liste £ des ¢ candidats avec la plus grande valeur de C[k] ;
Pour chaque k € L faire

Pour chaque clé maitre possible K correspondant & k faire
| Si Ex(X)=Y = Ex+(X) alors retourner K;

Cet algorithme va nous servir de support pour calculer la complexité en temps et en
mémoire d’une attaque différentielle multiple. Dans le chapitre 2, nous n’avons pas pris
le temps de détailler la complexité en temps des attaques différentielles et différentielles
tronquées. Ces deux cryptanalyses sont des cas particulier de la cryptanalyse différentielle
multiple, la section suivante est dédiée a I’étude de ces deux complexités.

6.1.3 La complexité en temps et en mémoire

Afin de comparer une attaque statistique & une autre en plus de la probabilité de
succes et de la complexité en données, il est aussi intéressant de comparer la complexité
en temps et en mémoire. Dans cette section nous détaillons donc briévement le calcul de
ces complexités dans le cas de I'attaque présentée dans 'algorithme 14. La complexité en
temps d'une attaque statistique peut se découper en trois phases importantes® :

Phase de distillation : Pour chaque paire de différences en sortie qui passe le crible,

I’attaquant doit inverser partiellement la fonction de tour pour toutes les clés can-
didates possibles.

1. Ces trois phases sont décrites dans le chapitre 1 dans la section 1.5
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Phase d’analyse : Pour les variables aléatoires étudiées, les trier afin de garder une
liste des candidats les plus probables.

Phase de recherche exhaustive : Pour toutes le clés candidates qui sont dans la
liste il faut tester toutes les clés maitres correspondantes afin de trouver la bonne.

Complexité en temps de la phase de distillation

Nous analysons dans un premier temps la complexité en temps de la phase de disti-
lation. Pour ceci nous avons besoin d’introduire un certain nombre de notations. Nous
notons par S, (resp. S,11) le cardinal maximum des différences possibles en sortie (resp.
le cardinal maximum du crible) :

S, max{#AD} et Sy, o max{#A

sieve}‘
Pour calculer la complexité en données nous nous plagons dans le pire des cas, c’est-a-dire
que nous allons supposer que tous les cribles ont la méme taille, égale a S, ;.

Soit m le nombre de bits de la sortie de la fonction de chiffrement. Nous notons par
Psieve 1@ probabilité maximale sur toutes les différences en entrée Ay qu'une paire passe le
crible :

—-m
Dsieve = 2 Sr—i—l-

Quand I’ensemble des différences en sortie n’est pas réduit a un élément, nous avons besoin
de vérifier si une différence appartient a un certain ensemble. En supposant que I’ensemble
A est trié, cette étape peut se faire a ’aide d’un recherche dichotomique. La complexité
en temps de cette vérification est alors en O (log(#A)).

Dans I’algorithme 14, le nombre de paires a tester est

N = #AoNpc /2.

Pour chaque paire nous devons vérifier les paires qui passent le crible. Ceci peut se faire
avec une complexité de N log(S,41).

Cependant, on peut réduire la complexité en temps de cette étape lorsque les cribles
A% se ressemblent.

L’inversion partielle de la fonction de tour doit étre faite pour toutes les paires qui
passent le crible et pour toutes les clés candidates possibles. Donc, la complexité de la

phase de distillation est en
O (2" Npsieve) déchiffrements/chiffrements

et
@ (Z"NZ_WSTH log(1 + Sr)) comparaisons

Complexité en temps de la phase d’analyse

L’étape consistant a extraire la liste £ des ¢ candidats les plus probables peut étre
faite en temps linéaire, en fonction du nombre 2" de clés testées.
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Complexité en temps de la phase de recherche exhaustive

La derniére partie de I’algorithme correspond & une recherche exhaustive des bits
restant de la clé maitre. Cette étape qui peut étre cotiteuse nécessite
2Q
O (Z . 2—n) applications de la fonction de chiffrement
ou () correspond au nombre de bits de la clé maitre.
Il est difficile de prédire laquelle de ces étapes est la plus cotiteuse. En effet suivant les
paramétres de I'attaque (notamment le nombre de clés testées et la taille de la liste des

clés gardées) la complexité en temps de la phase de distillation peut étre plus ou moins
importante que la complexité en temps de la phase de recherche exhaustive.

Le tableau 6.1 donne le détail de la complexité en temps. Les termes correspondant aux
étapes avec une complexité en temps négligeable sont omis ici,

Chiffrement  Dechiffrement partiel Comparaisons

O (£2%7) O (2" N Psieve) O (2"N27™S, 1 log(1+S,))

TABLE 6.1 — Complexité en temps d'une attaque différentielle multiple. Les quantités .S,
(resp. S,41) correspondent au nombre maximum de différences pour une différence en
entrée dans Ay aprés r tours (resp. (r + 1) tours).

La complexité en mémoire d’une attaque est essentiellement due au stockage des comp-

teurs, des paires de messages qui passent le crible et au stockage des cribles Asme

6.2 La statistique étudiée

L’étude de la complexité en données et de la probabilité de succés d’'une attaque diffé-
rentielle multiple comme définie précédemment nécessite la connaissance de la distribution
des variables aléatoires utilisées. Cette section est dédiée a la définition des variables aléa-
toires impliquées et a 1’étude de leur distribution.

6.2.1 Les variables aléatoires simples

Dans cette section, nous rappelons que Fx est un systéme de chiffrement avec fonction
de tour F. Nous supposons que le systéme de chiffrement est composé de r + 1 tours et
que 'on cherche & retrouver de I'information sur la clé du r + 1éme tour.

Définition 6.1. Nous notons par C, o) x les variables aléatoires simples pour une diffé-

rence en entrée ay\?) fizée et ensemble des différences en sortie AW correspondant. Pour
un message clair donné X et pour une clé candidate donnée k nous avons

Co(”Xkdéf{ 1 s F];1<EK*(X>) EBF (EK*(QJEBCLO )) GAT 7

a0t 0 sinon.
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Définition 6.2. En utilisant les notations de la définition 6.1, nous obtenons les variables
Cx i ou Cyyy x Selon que l'on somme sur les messages clairs ou sur les différences en

entrée :
#Ao

CXk— E a0, X k>
Copd k = E Cood X k-

Les variables aléatoires qui nous intéressent dans le cas de notre cryptanalyse sont
alors les suivantes :

Définition 6.3. En utilisant les notations de la définition 6.1 et de la définition 6.2, les
variables aléatoires que nous regardons dans le cas de notre cryptanalyse sont

1
Cp, = 3 XX: Cx i (6.1)

ou de maniére équivalente,
Cy = Z a0 k- (6.2)

Afin de déterminer la distribution des variables aléatoires définies dans la définition 6.2,
nous commencons par une petite discussion sur la meilleure fagon de sommer.

6.2.2 Distribution des variables aléatoires simples

On note par p'™) la probabilité suivante
p9) = Px [F (B (X)) @ F (Bxe (X @ ag®)) = al? [k # k7]

En utilisant I’hypothése de répartition aléatoire par fausse clé définie dans le cas de la
cryptanalyse différentielle (voir hypothése 2.1), nous obtenons que les variables aléatoires
simples C, ) xx (voir définition 6.2) suivent une loi de Bernoulli de paramétre

% € (@) i j .
pl) Z#A (d) sik =k,
et

. @ 4
p(z) Z#A (0:9) #A,(f) 2-m sinon.

Il existe deux moyens de sommer ces variables aléatoires simples. On peut sommer
sur les messages clairs. A ce moment la on obtient les variables aléatoires C, ) ;. Ces
variables aléatoires sont alors une somme de variables de Bernoulli avec méme parameétre.
Sous une hypothése d’indépendance, ces variables aléatoires suivent une loi binomiale de
paramétres Npc/2 et p@ ou py) suivant la clé candidate.

On rappelle que les variables aléatoires que nous utilisons dans notre cryptanalyse cor-

respondent a la somme des variables aléatoires simples C, ) x ;- Le probléme qui se pose
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alors est que l'on ne peut pas définir aisément la distribution de la somme de variables
binomiales qui n’ont pas la méme probabilité. Pour cette raison, pour trouver la distribu-
tion des variables aléatoires CY, nous avons choisi de sommer d’abord sur les différences
en entrée avant de sommer sur les messages clairs. Ce choix est purement théorique et ne
change rien au principe de 'attaque ni a la puissance de celle-ci. De cette facon on obtient
que les variables aléatoires C,. (k) sont identiquement distribuées.

6.2.3 Approximation par une loi de Poisson

Les variables aléatoires C, ) x j sont des variables aléatoires indépendantes qui suivent
des lois de Bernoulli avec paramétres différents. La somme des ces variables aléatoires ne
suit alors pas une loi binomiale. Cependant grace a un résultat de Le Cam [Cam60] nous
pouvons dire que la distribution des variables aléatoires Cx; est proche d'une loi de
Poisson.

Théoréme 6.1. [Cam60] Soit C, i) x un ensemble de #AO variables aléatoires indépen-
dantes qui suivent des lois de Bernoulli de parameétre p¥. Soient

#Ao
def
Cxpi = g Cao Xk

et
#Ao '
=30
i=1
Alors, pour tout ensemble A C {0,1,...,#A0}, nous avons
)\a - #40

<2

Il est facile de vérifier que dans notre contexte les variables aléatoires C' (), x  SOnt
indépendantes puisque pour une clé fixée et un message fixé la connaissance des valeurs
Fr(X) @ Fi(X @ ap™) ne nous donne pas d’information sur les Fi(X) ® Fi(X @ 6) si
) # ao(i).

P[Cx,k GA]—Z

acA

A partir de ce théoréme nous pouvons donc déduire que la distribution des variables
aléatoires C'x i, est proche d’une distribution de Poisson avec parameétre Zfﬁo p@.

Lemme 6.1. En utilisant le théoréme 6.1 nous avons que

— La distribution des variables aléatoires Cx - est proche d’une loi de Poisson de

paramétre Zfﬂio .

— La distribution des variables aléatoires Cxj pour k # k* est proche d’une loi de
Poisson de parameétre ijo p@.

Comme la loi de Poisson est stable par addition, si ’'on somme des variables aléatoires
indépendantes, nous voulons pouvoir en déduire que ) | C'x j suit une loi de Poisson avec

parameétre % . Z#AO p@. Si l'on regarde plus en détail, cela n’est pas le cas puisque
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chaque différentielle est comptée deux fois et en conséquence les variables aléatoires C'x
sont dépendantes. Dans le cas de la cryptanalyse différentielle classique (une seule diffé-
rence en entrée) il est facile de voir que pour avoir des variables aléatoires indépendantes
il suffit de sommer sur la moitié des messages. Quand le nombre de différences augmente,
pour pouvoir sommer sur seulement la moitié des messages il faut alors que I’ensemble
des différences en entrée posséde une certaine propriété.

En effet s’il existe un ensemble X' de cardinalité Npc/2 tel que pour tout X et X’ dans
X il n’existe pas de différence en entrée ao® tel que x = 7’ P ao®™, alors nous avons
que er +Cxp = %Zx Cx 1 = Ck. Un ensemble de différence en entrée qui vérifie cette
condition est dit admissible.

Définition 6.4. L’ensemble des différences en entrée Ay est dit admissible s’il est tel
qu’il existe un ensemble X de Npc/2 messages clairs qui vérifient :

Va™ € Ag,Vz € X,z @ ag'” ¢ X. (6.3)

Pour la suite de notre analyse on suppose que l’ensemble des différences en entrée
Ag est admissible. Si on est en possession d’un certain nombre de différences en entrée il
est facile de voir si Ay est admissible ou non. L’explication sur la fagon de vérifier qu'un
ensemble est admissible est donnée dans la section 6.2.4.

Pour la suite de notre analyse, afin d’étudier la distribution des variables aléatoires CY
nous avons besoin de supposer que les variables aléatoires (C'y x).cx sont indépendantes.

Hypothése 6.1. Soit Ay un ensemble de différences en entrée admissible comme défini
dans la définition 6.4. Soit X un ensemble de taille Npc/2 qui vérifie I’équation (6.3).
Alors, les variables aléatoires (Cy )zex sont indépendantes.

Des expérimentations montrent que I'hypothése précédente est souvent vraie.
En conséquence en supposant I’hypothése 6.1 vérifiée nous obtenons que la distribution
des variables aléatoires (Cy) est proche d'une loi de Poisson.

Lemme 6.2. D’aprées le lemme précédent, si l’on se place sous [’hypothése 6.1 nous avons
que
— La distribution des variables aléatoires Cy« est proche d’une loi de Poisson de para-
metre Npe S # Ao .
— La distribution des wvariables aléatoires Cy pour k # k* est proche d’une loi de
Poisson de paramétre N% ngo p).

Nous introduisons ici les quantités suivantes qui vont jouer un role important dans la
suite de notre analyse de la cryptanalyse différentielle multiple.

pos Tt e T A2
’ # Ao # Ao # Ao
Ces notations sont utilisées dans la section 6.2.5

6.2.4 Comment vérifier qu’un ensemble de différences en entrée
Ay est admissible

Dans la section précédente, afin de pouvoir sommer des variables indépendantes, nous
avons supposé que ’ensemble des différences en entrée vérifiait certaines propriétés . Pour
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admissible Non-admissible
1) (1)
0x1 %0 0x2 0 %0
e 2 ap® 2 ®
3 3
0x7 e 0x4 ap® | 0 e 4 |a®
( a
0x3 %o 0x0 ao® | 0x %o X0 | ap®
ap® ) ) )
0x5 0x6 0
X 2D X X G X

FIGURE 6.1 — Exemple de graphe : 1 biparti et 'autre non. ap™™ = 0x3, a¢® = 0x5 et
ap® = 0x2. {ag™W, ap®} est admissible. {ag™, ap®, a®} n’est pas admissible.

autant, plus 'ensemble des différences en entrée est grand, plus il est difficile de vérifier
facilement si cet ensemble est admissible. Nous présentons ici une méthode efficace pour
vérifier si 'ensemble des différences en entrée est admissible.

Nous rappelons ici la définition d’'un ensemble admissible. Un ensemble Aq est ad-
missible s’il existe un ensemble X de Npc/2 messages clairs tel que Yao® € Ay, Vo €
X x®a & X.

Cette condition s’exprime par I'existence d'un graphe biparti?. Les sommets de ce graphe
représentent ’ensemble des messages X et les arétes I’ensemble des différences en en-
trée. La figure 6.1 montre sous forme de représentation d’un graphe deux ensembles de
différences : un admissible (le graphe est biparti) 'autre non (le graphe n’est pas biparti).

L’existence d’un tel graphe est équivalente a la non-existence de cycles de poids impairs
dans le graphe, c’est-a-dire que la somme d’un nombre impair de a¢® n’est jamais égale
a 0.

Nous pouvons tester efficacement cette condition si nous redéfinissons le probléme dans
un contexte de théorie des codes. Soit M la matrice définie de la facon suivante : chaque
colonne de M correspond a la décomposition binaire des différences dans Ag. Dire que
chaque combinaison d’un nombre impair de colonnes est non-nulle est équivalent & dire
que le dual du code engendré par la matrice M n’a que des mots de poids de Hamming
pair. Cette condition est équivalente au fait que le code contient le vecteur tout & un. Elle
peut se vérifier en un temps polynomial en utilisant une élimination gaussienne. Il suffit
en effet de calculer la forme systématique du code, c’est-a-dire d’exprimer M sous forme
systématique : M’ = (I]|U) ou I est la matrice identité.

Vérifier que Ag est admissible peut alors se faire en vérifiant que

1...1)-U=(1...1).

6.2.5 Approximation des queues de la distribution des variables
aléatoires C},

Dans la section 6.2.3 nous avons montré que les variables aléatoires ('}, avaient une
distribution proche d’une loi de Poisson. D’aprés le théoréme de Le Cam (voir théo-

2. En théorie des graphes, un graphe est dit biparti s’il existe une partition de son ensemble de sommets
en deux sous-ensembles U et V telle que chaque aréte ait une extrémité dans U et l'autre dans V.
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réme 6.1), la borne d’erreur que nous avons en utilisant une approximation de Poisson est
relativement petite (de Pordre de 1071). Cet ordre de grandeur sur I’erreur reste cependant
important si 'on regarde les queues de la fonction de répartition de la distribution des
variables aléatoires Cy. Cette hypothése, que I'erreur pour 'approximation des queues des
variables aléatoires C}, est assez grande a été vérifiée expérimentalement. Une discussion
sur ces expérimentations est faite dans la section 6.4.

Pour avoir une bonne estimation de la distribution des queues des variables aléatoires C}
nous avons utilisé un autre résultat qui nous donne une bonne estimation pour les queues
de la distribution de ces variables aléatoires.

Théoréme 6.2. [Gal68, chapitre 5] Soit Cy, =, Cy i une somme de M variables aléa-
toires discrétes, indépendantes et uniformément distribuées. Soit s — pu(s) le logarithme
de la fonction génératrice des moments de chaque Cy . On note par pi' et p’ les dérivées
d’ordre 1 et 2 de p. Alors, pour s > 0,

/ 1 1
PlC, > // SYM = eMlu(s)=sp'(s)] +o (_) )
| (5)M] |s|v/7T2M p" () VM
En utilisant le résultat de ce théoréme et en calculant le logarithme de la fonction
génératrice des moments dans le cas particulier olt les variables aléatoires C,, ) yx ; suivent
des lois binomiales nous déduisons le théoréme suivant.

Théoréme 6.3. Soit C, = > Cxy une somme de % variables aléatoires discrétes,
indépendantes et identiquement distribuées. Nous définissons les fonctions G_(1,q) et
G (7,q) pour T et q des nombres réels dans [0, 1] avec T # q par :

~ o) e —ND(rl) ¢/ 7) 1
G-(7.9) (q— T)\/27TTN " \/SWTN] ’ (6.4)

~ g e -ND(l) | - (1—q)v7 1
Crlra) = (T — q)y/27N (1 —7) " \/871'7']\7] . (6.5)

Alors, les queues de la fonction de répartition des variables aléatoires Cy sont égales

PN = G [Lro(P20)],

P[Cy>7N] = Gi(r,p) [1+O (p_T)] .

p
Preuve : La preuve de ce théoréme est compliquée et nécessite I'introduction de lemmes
intermédiaires. La section 6.2.6 est dédiée a la preuve de ce théoréme. n

6.2.6 Preuve du théoréme 6.3

Afin de pouvoir utiliser les résultats du théoréme 6.2 nous avons calculé le logarithme
de la fonction génératrice des moments des Cx ;. Nous avons que

#Ao
CX,kJ - E Cao(i)X,k'
=1
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ot les variables aléatoires C, ) x j suivent des lois de Bernoulli de paramétre p™ ou pg)
suivant la valeur de k. Pour plus de simplicité, dans la suite de cette section nous notons
par ¢; la valeur de p® ou de pg). Pour simplifier les notations nous notons par d le cardinal
de l'espace des différences en entrée Aj : d = #Ay. Afin de prouver le théoréme 6.3 nous

introduisons les notations suivantes :

d 2 —
def D1 U def Y ;G | def 7(1—-1q)
= &=17 = &=t In|{ —= 6.6
d ) ma d ) (q(l _ 7_) ( )

Les autres notations utilisées sont celles du théoréme 6.2.
Le logarithme de la fonction génératrice des moments des Cx ; dans notre contexte vaut :

d
Zln(l — ¢ + qe’) .
i=1

Pour s ¢ U;{log < )} ses dérivées sont alors égales a

d

is) = Zq— (67

I —qi +qe’

iy = 3 Al (63)

i=1 1 —q; + Qzes)

La fonction p’ est continue pour un voisinage de sy. Soit s, la valeur réelle telle que
1 (s,) = dr. Le but de cette preuve consiste & montrer que s, est proche de sy. D’aprés
(6.8), on a
s_ (s
B d i
2imt gt

On note f la fonction suivante :

d
f(S) d:ef In (d’]’) —1In (Z ﬁ) .

i=1

On a f(s,) = s,.
Nous pouvons tout d’abord remarquer que V s on a p”(s) = p/(s)(1 — f'(s)). En
utilisant ce résultat sur s, et le théoréme 6.2 nous arrivons a la formule suivante :

PIC. > drNpe /2] = eNpc/2[u(sr)—srdr] 1 o 1 .
= pel?) [\sr\\/QﬂdTNDC/Q(l — f'(sr)) * (W)]
(6.9)

Nous avons besoin de quantifier I'erreur faite en remplagant sy par s, dans 1’équation
(6.9) mais nous avons besoin dans un premier temps de calculer f(sg) — So.

Lemme 6.3. En utilisant les notations précédentes, on a

T —

Fo) = s =" =m0 (T @ - ma))
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Preuve : Nous pouvons d’abord extraire sy a partir de la formule.

d .
f(S()) = In (dT) —1In <Z 1_%(1_7_%680>

=1
B dr d qi
= () (; (=@ - i+ o —q)r)
A-@7y | (1-4 ¢
1“((1—T>q> 1 ( d ;u—qi)(l—ﬂqm(l—q)r)
= s9—1In 1zd:qu 1-4
" d=" 1)1 -ng+a(-0r )"

Nous obtenons alors

_ 1y 1-g _ Ia(l-9 1
fleo)=o0 = o Ezqi'qm—q)w(l—ﬂ)__1n<3;q(1—7)'1+—%‘<T—q'>

Il

|
—
B
[]=
'Q\"“Q
[]=
—

ﬂ
&
i)

]|
| — |

|
»Q\l&.Qw
—_
+
o
7N

ﬁ
S|

i)
—

|
Lw]] =
| IS |
~_
~_—

Lemme 6.4. En utilisant les notations précédentes nous avons
—q m m
s, =50+ O (7’__2(] (¢ - mQ)) et f'(s0) = 7'?2 +o0 (7’_—22) .
q q q
Preuve : Le développement en série de Taylor de f est
f(sr) = f(s0) + (sr = 50).f'(50) + O (f"(s0) (51 = 50)*) -
f(s0) — So)
1—f'(s0) )
2,50

-1
Par déﬁnition, f/(So) = Z?:l % . [Z?:l k(him] et e = T/q_ + o0 (T/Q)
Donc,

Donc, comme f(s,) = s,., nous avons s, = sg + O (

f'(s0) = [zd: gie® (1 + 0(1))] : [zd: g (1 - 0(1))] _
= [d;mg +o (d—j—mg)l (dg)~! [1 + 0o (1) ]

q q
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Ce résultat donne f'(so) = 772 + o <T—Z}22). En utilisant le fait que —1_;(80) =0(1) et le
lemme 6.3, nous obtenons que
f(s0) — 50 T—q
= O|l—"Z— )= O|— (7 — :
Sy = So + (1 = (o) 50 + 7 (@° — mg)
[

Lemme 6.5. En utilisant les notations précédentes nous avons

u(sy) = dln(i_q>+0(d(7—%q>'(q2—m2)max(7—q,7)>a

1= () = 1T+OT(—maX<;q”><q2m2>).

Preuve : En utilisant le lemme 6.4 nous avons

e’r =% x 60<T6;2q'(62_m2)) =e® ll +0 (T 4. (¢ - m2))} :

q2
Donc,

d

u(sr)zgln(l—qﬂr%‘f&) — gln(l—Qi+Qi€SO {1+O<T%q-(§2—mz))D
- izd;ln([l—Qi+Qi€SO] {1+O<q;TTq_2q-(q2—m2))})

d _
= Y (g +qe?)+0 (dT- qu (7 —m2)> .
i=1

Et finalement, u(s,) = u(so) + O (dT A m2)>. Cependant,

q2

d
plso) = D In(l—gi+qe”)
= Zln (1=q)a(1—7)+ ¢l —q)7)—dn (g1l — 7))

= 3 (- ga—ar +gr) —dln (g1 7).

i=1
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Et,

w(sy) = iln (Q(l—r)+q,~(7_q)) —dln(l_f>

= dln

Donc pu(s,) = dln(1=2) + (9(

lemme est donnée par un developpement en série de Taylor de f'(s,) :

(q — mg)max(T — q, T )> La seconde partie du

o) = £+ Olsa =) = 722+ 0 (L0 =) ).

Donc

1= s = a-n [rro (S22 o (T - )

Preuve du théoréme 6.3

A partir de I’équation (6.9), du lemme 6.4 et du lemme 6.5, nous donnons une preuve
du théoréme 6.3. Dans cette partie nous supposons que 7 est plus grand que ¢. Nous
considérons d’abord le terme exponentiel.

1—¢q 1—¢q
eNoe/2ulsr)—srdr] - _ em{Nnyzdm(T—ﬁ)—wa¢2m<f( ‘D)dT
— T

q(1 =)
+0 <NDC/2d7' Z q(q —mﬁ)}
l {1 +0 (Nﬁq‘z Yq - mz))} . (6.10)
Puis nous considérons le terme polynomial
1 — -1
s Va7 = il + 0 (T - ma) )

-1

X \/m\/1—7+0<q (2 —m2)>]

— |soy/2rrN(I=7) {1+O(q (@ —m2))”_1.
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Comme nous avons supposé que 7 est plus grand que ¢, nous avons que sy est positif, et
donc

V2rrN(1 - f' - 1+O(6L2(‘72_m2)>
[ST TN~ f (Sr))} B S0/ 2nTN(1 —7)
(T R G I
- (r—@)2rTN(I—7) {1+27(1—Q)+ ( T )}
VTl —g) L (L
(T—q_)\/ZWN(l—T)+\/87TT+ (\/T> (6.11)
Pour conclure, nous remplagons les termes (6.10) et (6.11) dans (6.9) et nous obtenons
_ VT(l—q) Lo (A 1
PIG 27N = [(7’ — Q)\/QFN(l —7) * V81T N (\/T * \/NDC/2>]

x e NPEID) (1 4+ O (Nﬁq‘2 Y@ - mg))]

~ND(lD) VT(1 =7 1 (L
[(T —§)\/2nN(1 — 1) T et (\/T)

La formule pour P [C) < 7N] s’obtient de la méme fagon en supposant cette fois ci que
7 <q.

6.2.7 Distribution des variables aléatoires C},

En combinant les résultats du théoréeme 6.1 avec ceux du théoréme 6.3 nous proposons
une définition pour la fonction de répartition de variables aléatoires CY

Définition 6.5. Soit Gpyisson(T,q) la fonction de répartition de la loi de Poisson avec
parameétre gN. Soit G_(7,q) et G4(7,q) les deuzx queues de distributions définies dans le
théoreme 6.3. Nous définissons la fonction G(,q) par

G_(1,q) siT<q—3-+/q/N,
1—Gy(r,q) siT>q+3-q/N,

GPoisson (7-7 q> simon.

G(r.q) <

Proposition 6.1. Soit G(7,q) la fonction définie dans la définition 6.5. Soit p, et p les
parametres de l’attaque :

Zi,j pSfJ) #A
Ps = — €

Nous proposons les estimations suivantes de la fonction de répartition des variables aléa-
toires C, et Cix :
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— La fonction de répartition correspondant a la variable aléatoire Cy« est proche de

def

G.(1) = G(1,ps).
— La fonction de répartition correspondant a la variable aléatoire Cj, est proche de

G(r) € G(r,p).

6.3 Complexité en données et probabilité de succés

6.3.1 La complexité en données

Pour le calcul de la complexité en données d’une attaque différentielle multiple, nous
supposons que ’ensemble Aq est admissible et que 'hypotheése 6.1 est vérifiée. L’expression
de la fonction de répartition des variables aléatoires est déterminée par la proposition 6.1.
Pour le calcul de la complexité en données nous utilisons le contexte du test d’hypothéses
(voir section 5.3.1) Dans la section 5.3.5, afin de calculer la complexité en données de
I’attaque nous avons fixé le seuil 7 & p,, c’est-a-dire que nous calculons une approximation
de la complexité en données pour une probabilité de succés proche de 50%. Il s’avére que
dans le cas ou p, est suffisant loin de p (p, > p+3-+/p/N), on se place dans le contexte ot
la fonction de répartition des variables aléatoire C}, est proche de la fonction de répartition
définie dans la proposition 6.1. La fonction 1 — G, (7, ¢) est similaire a celle que nous avons
utilisée dans la section 5.3. En utilisant la méme méthode que dans la section 5.3, nous
obtenons une estimation de la complexité en données.

Théoréme 6.4. Soit ¢ la taille de la liste des clés gardées. Soit 2" le nombre de clés
candidates qui sont testées dans notre attaque. Pour une probabilité de succés proche de
0.5, la complexité en données d’une attaque différentielle multiple quand les variables
aléatoires étudiées correspondent a la somme des variables aléatoires simples est :

In(2/7t/2")
#A0D(p.llp)

Preuve : Dans la section 5.3, nous avons étudié la complexité en données d’une attaque
statistique simple. Dans la preuve du théoréme 5.2, afin de déterminer la complexité en
données d’une attaque statistique simple, nous avons approché la queue de la loi binomiale

par
—ND(|lp) (1 —p)/T .
(T —p)/21rN(1—17)

Dans le théoréme 6.3 nous avons montré que la queue de la fonction de distribution des
variables aléatoires Cy (voir définition 6.3) est égale a

N=-2

e (6.12)

Nl o~ e NDGll) (1-qv7 1
PlC 2 7] N—roo (T —q)\/2rN(1— 1) " V8TTN | (6.13)

Nous utilisons donc ici la méme méthode pour déterminer le nombre d’échantillons
d’une attaque différentielle multiple dans le cas ou la statistique étudiée correspond &
la somme des variables aléatoires. Pour les mémes raisons que celles spécifiées dans la
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preuve du théoréme 5.2, nous pouvons fixer le seuil relatif 7 & p, 3. Sous cette condition,
le nombre d’échantillons N peut alors étre trouvé en résolvant I’équation en N

o~ ND(llp) . (1-p)/T n 1 _ L
(tr—p)V2rN(l—7) V87N

n

Dans les attaques différentielles multiples on a p, > p + 31/p/N.
De la méme facon que pour la preuve du théoréme 5.2 une bonne estimation de N
peut étre trouvée en utilisant une méthode du point fixe pour 1’équation :

o~ NDpllp) [ (L= P)v/p 1 ] _ !
on

(p« — p)/27N(1 — p.) * V8TTN on

Comme pour la preuve de théoréme 5.2, on obtient que N est alors proche de
Ll (22 05 n(— In(ue/2m) (6.14)
— n SIn(—In(v .
D(p.||p) D(p«||p)
def (p« — p)y/87(1 — pa)ps

2. (1—p) + (e — VI s

ou v

Le lemme 5.6 nous dit que In(2y/7D(p.||p)) est une bonne estimation de In(r). Ce qui
implique que N est proche de

In(2y/7 ;)

D(p:llp)

On compléte la preuve en remarquant que le nombre de messages clairs Npo = O

2N
#Ao0 "

6.3.2 La probabilité de succeés

Dans le théoréme 6.5 ci-aprés, nous donnons une formule de la probabilité de succes
d’une attaque différentielle multiple dans le cas ou la statistique étudiée correspond a la
somme des variables aléatoires simples. Ce résultat est prouvé en utilisant des arguments
similaires a ceux utilisés dans la preuve du théoréme 5.3.

Théoréme 6.5. Soit G.(x) (resp. G(x)) Uestimation de la fonction de répartition des
variables aléatoires Cy (resp. Cy) comme définie dans la proposition 6.1. La probabilité
de succes, Pg, d’une cryptanalyse différentielle multiple ot la statistique étudiée correspond
a la somme des variables aléatoires simples est donnée par

—1
Ps~1-G, [G—l (1 - %) - 1} (6.15)

ou la pseudo-inverse de G est définie par G~ (y) = min{z|G(x) > y}.

3. On rappelle ici que cette condition nous donne une probabilité de succés proche de 0.5.



130 6.4 Validation expérimentale

FIGURE 6.2 — Diffusion sur 2 tours de SMALLPRESENT-[8].

6.4 Validation expérimentale

Dans cette section nous validons expérimentalement les résultats théoriques présentés
dans la section 6.3. Dans le but de valider expérimentalement la formule de la probabilité
de succes donnée dans le théoréme 6.5 nous faisons une attaque différentielle multiple
sur 11 tours de la version réduite de PRESENT appelé SMALLPRESENT-[8] . Une
description de PRESENT et SMALLPRESENT-[8] est faite dans la section 1.4.1%.

6.4.1 Description de 'attaque

L’attaque que nous présentons ici utilise des caractéristiques différentielles sur 9 tours
de SMALLPRESENT-[8] et a pour but de retrouver de I'information sur les clés des deux
derniers tours. Cela donne alors une attaque sur 11 tours.

Dans le but d’estimer empiriquement la probabilité de succes, nous avons itéré 250
fois cette attaque pour 'algorithme de cadencement de clé utilisant des clés de 80 bits ou
des clés de 40 (voir section 1.4.1). Pour limiter la complexité en temps de 'attaque nous
avons limité¢ le nombre de bit de clés a retrouver a 32 bits (pour les 2 derniers tours).
Dans ce but nous avons pris des différences aprés 9 tours de la forme 0x?7770000. Cette
structure nous permet dans le cas de SMALLPRESENT-[8] de retrouver 16 bits des deux
derniéres clés. La figure 6.2 montre la diffusion sur 2 tours du systéme de chiffrement
quand la différence en sortie est 0x77770000.

Il apparait clairement que les meilleures différentielles s’obtiennent quand il n'y a
qu’une boite-S active au premier tour. Pour cette attaque expérimentale nous avons décidé
de réduire '’ensemble des différences en entrée a une seule boite-S.

L’ensemble des différences en entrée que nous avons pris est alors le suivant :
Ay = {0x3, 0x5, 0x7, 0xB, 0xD, OxF}.

Il est assez facile de vérifier que cet ensemble est admissible car nous pouvons par exemple
séparer I’ensemble des messages clairs en les messages pairs et les messages impairs. Notre

4. On rappelle que SMALLPRESENT-|8]| est la version pour chiffrer des messages de 32 bits.
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attaque utilise 55 différentielles sur 9 tours de SMALLPRESENT-[8|. La probabilité de
chaque différentielle pour les deux algorithmes de cadencement de clés (celui avec 40 bits
et celui avec 80 bits) a été estimée par une moyenne sur 250 clés. Les 55 différentielles
ainsi que l'estimation de leurs probabilités sont données dans le tableau A.1 qui se trouve
en section A.1. Pour chacune de nos attaques, nous avons décidé de garder une liste £ de
taille £ = 2'2 clés les plus probables pour les deux derniers tours.

6.4.2 Analyse des résultats expérimentaux

Soit H.(z) et H(x) les estimations de la fonction de répartition des variables aléatoires
Cy~ et C. La probabilité de succes théorique d’une attaque est

Ps=1-H, {H—1<1— g_l)—l},
o — 2

H et H, variant en fonction des variables aléatoires étudiées. Dans ce chapitre nous avons
montré que les variables aléatoires C}, suivaient une distribution hybride, c¢’est-a-dire que
les fonctions H et H, étaient égales aux fonctions G et GG, définies dans la proposition 6.1.
Cependant pour valider cette théorie vous avons comparé notre formule de la probabilité
de succés avec d’autres formules utilisant d’autres fonctions de répartition.

Dans les figures 6.3 et 6.4, nous comparons la probabilité de succés expérimentale
obtenue grace & une moyenne sur 250 expérimentations avec différentes formules de pro-
babilités de succés théorique. Comme nous 'avons dit dans la section 5.4, la formule de
la probabilité de succés donnée par Ali Aydin Selguk est sensiblement la méme que la
notre. La différence réside principalement en ’estimation de la distribution des variables
aléatoires.

Ainsi dans les figures 6.4 et 6.4 nous représentons la probabilité de succeés dans le cas
ou les fonctions G et G, sont les fonctions de répartition :

— d’une loi Normale (Formule proche de celle de Ali Aydin Selguk [Sel08§]) ;

— d’une loi de Poisson;

— de la loi hybride définie par sa fonction de répartie dans la proposition 6.1.

6.4.3 Commentaires sur les figures 6.3 et 6.4

Si on analyse les figures 6.3 et 6.4, on remarque qu’il est clair que 'utilisation de ’ap-

proximation normale pour analyser la probabilité de succés d’une attaque différentielle
multiple n’est pas bonne. D’ailleurs cette remarque a déja été faite par Ali Aydin Selguk
dans son article [Sel08] pour le cas de la cryptanalyse différentielle simple.
Dans la cryptanalyse différentielle simple, la loi de Poisson est une bonne approximation
de la distribution des variables aléatoires Cy~ et Ci. Pour autant comme le montrent les
résultats, dans le cas de la cryptanalyse différentielle multiple cette approximation est
moins bonne que 'approximation hybride que nous définissons dans la définition 6.5.
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1 i ,;;’/'/'/7<’
0.8 , |
w 0.6 F 7/// |
0.4 [ |
. théoréme 6.5
02}~ Poisson —————-
Normale[Sel08] -~~~
0 Experimentale
28 285 29 295 30 305 31 315
logy (V)

FIGURE 6.3 — Comparaison des différentes formules de la probabilité de succés avec la
valeur expérimentale de celle-ci. (Expériences faites avec I’algorithme de cadencement de

clé de 40 bits))
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FIGURE 6.4 — Comparaison des différentes formules de la probabilité de succés avec la
valeur expérimentale de celle-ci. (Expériences faites avec I'algorithme de cadencement de

clé de 80 bits))
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6.4.4 Validation de la formule de la probabilité de succés

Quand le rapport 57— 53
sentiellement d’une bonne approximation de l’estimation de la queue de distribution des
variables aléatoires. Or la queue de la loi de Poisson ne constitue pas une bonne approxi-
mation de la distribution des variables aléatoires. D’ot1 'importance de notre approche
hybride qui est la plus pertinente ici. Nos résultats expérimentaux justifient 'utilisation
de cette approche. En effet, comme dans la figure 6.3, la courbe représentant la probabilité
de succes expérimentale et celle représentant la probabilité de succes théorique obtenue
en utilisant notre approximation de la probabilité de succés donnée dans le théoréme 6.5
sont proches, on peut estimer que notre approximation de la distribution des variables
aléatoires est correcte.

=L ot petit, la précision du calcul de G—1 (1 — e—_1) dépend es-

6.4.5 Validation de la formule de la complexité en données

En utilisant les mémes expérimentations, nous pouvons aussi confirmer la pertinence
du théoréme 6.4. En effet, dans le chapitre 5 nous avons conjecturé (voir section 5.4.6)
que prendre N de la forme

Iyl

conduit & une probabilité de succes de 50% pour ¢ = 1, 80% pour ¢ = 1.5 et de 90% pour
¢ = 2. Dans la tableau 6.2, nous donnons les valeurs de la probabilité de succés empirique
pour ces différentes valeurs de N. Ces calculs ont été faits pour des clés maitres de 40 bits
et de 80 bits.

N =-2 (6.16)

TABLE 6.2 — Probabilité de succes empirique calculée a partir de N donné par (6.16).

c=1.0 c=15 |  ¢=20
taille de la clé | 40-bit  80-bit | 40-bit  80-bit | 40-bit  80-bit
N 228.92 229.06 229.50 229.65 229.92 230.06
Ps 055 047 | 083 075 | 092 088

6.5 Attaque sur 18 tours de PRESENT

Dans les sections précédentes nous avons décrit le principe de la cryptanalyse différen-
tielle multiple et étudié les différentes complexités de celle-ci. Comme il est précisé dans la
partie expérimentale (voir section 6.4) la formule de la probabilité de succes de I'attaque
est bonne lorsque 'on a une bonne estimation de la probabilité des différentielles. Nous
avons donc voulu appliquer cette approche en effectuant une cryptanalyse d’une version
réduite du systéme de chiffrement PRESENT (voir section 1.4.1). Depuis 2008 il y a eu un
certain nombre de cryptanalyses de ce systéme de chiffrement. Parmi ces attaques on peut
notamment citer I'attaque faite par Meiqin Wang dans [Wan08]. Cette cryptanalyse sur
16 tours permet de retrouver de I'information sur la clé des 2 derniers tours (c’est le méme
principe que celui utilisé pour notre attaque expérimentale sur SMALLPRESENT-(§]).
Pour faire cette attaque Meiqin Wang utilise de I'information venant de 24 différentielles.



134 6.5 Attaque sur 18 tours de PRESENT

Afin d’estimer la probabilité de chacune de ces différentielles sur 4 tours, Meigin Wang
étudie la probabilité du meilleur chemin sur 4 tours avec la méme différence en entrée
et en sortie pour pouvoir les itérer facilement. En utilisant cette méthode, elle obtient
une borne inférieure sur la probabilité des différentielles qu’elle utilise. Nous détaillons
certains problémes que nous avons relevés dans I'attaque de Meiqin Wang.

Quelques remarques sur ’attaque faite par Meiqin Wang

Une des différentielles sur 14 tours de PRESENT utilisées par Meigin Wang dans son
attaque est la suivante :

(do, d14) = (0x0700000000000700, 0x0000000900000009).

La probabilité de cette différentielle est obtenue en itérant 3 fois un chemin différentiel
sur 4 tours et en ajoutant 1 tour au début et & la fin. En utilisant notre algorithme de
“branch and bound”, nous avons quelques remarques a propos de ce chemin :
— Le chemin utilisé sur 4 tours n’est pas le meilleur chemin sur 4 tours. En effet le
meilleur chemin sur 4 tours a une probabilité 272, Le chemin choisi par Meigin
Wang est le suivant :

(0x4004, 0x900000009, 0x10100000000, 0x200000000000500, 0x4004).

La probabilité théorique de ce chemin est 2718,

Le choix de Meigin Wang pour ce chemin peut étre justifié par le fait que nous avons
remarqué que ce chemin est le meilleur chemin qui peut étre itéré(c’est-a-dire les
différences en entrée et en sortie aprés 4 tours sont les mémes)

— En utilisant notre algorithme de recherche automatique de chemins, nous avons
vu qu’il existe beaucoup de chemins sur 14 tours avec probabilité 27%2. Bien str
nous n’avons pas pu faire une recherche exhaustive sur les 26 — 1 différences en
entrée. Mais en supposant que les meilleurs chemins différentiels ont peu de boites-S
actives nous pouvons conjecturer que 2~ semble étre la meilleure probabilité pour
un chemin sur 14 tours. En utilisant cette conjecture, nous pouvons dire que les
chemins différentiels utilisés par Meigin Wang ont la meilleure probabilité possible.

— FEn utilisant ’algorithme de “branch and bound”, nous avons pu déterminer tous les
chemins avec différence en entrée d; et différence en sortie di4 qui ont une proba-
bilité théorique supérieure a 27, En sommant la probabilité de ces chemins (voir
section 4.2) nous avons pu observer que la probabilité de la différentielle (do, dy4)
est supérieure & 275773, Au regard de ce résultat la complexité de Pattaque faite par
Meiqin Wang est plus petite que la complexité qu’elle nous donne.

Dans cette section nous présentons une attaque sur 18 tours de PRESENT. Pour ef-
fectuer cette attaque nous avons calculé la probabilité de chaque différentielle a 1’aide
de l'algorithme “branch and bound” décrit dans la section 4.1.2. En prenant la somme
des chemins ayant une probabilité supérieure & 27%° et un nombre maximal de boites-S
actives par tour égal a 3, nous avons trouvé une borne inférieure sur la probabilité d’un
certain nombre de différentielles sur 16 tours. Parmi les meilleures différentielles trouvées,
nous avons gardé les différentielles pour lesquelles ’ensemble de différences en entrée est
“admissible”. Les différentielles que nous avons utilisées sont détaillées dans le tableau 6.3.
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TABLE 6.3 — Les différentielles utilisées dans D’attaque

PRESENT.

ao a, ‘ log (P [ag — a,]) ‘
0x1001 0x404040400000000 -62.21
0x1001 0x40400000000 -62.58
0x1001 0x400040400000000 -62.84
0x1001 0x4040400000000 -62.84
0x100100000000 | 0x404040400000000 -62.97
0x4004 0x404040400000000 -62.99
0x10010000 0x404040400000000 -63.13
0x400c 0x404040400000000 -63.16
0xc004 0x404040400000000 -63.16
0xc00c 0x404040400000000 -63.16
0x2002 0x404040400000000 -63.17
0x1008 0x404040400000000 -63.21
0x100e 0x404040400000000 -63.21
0x101 0x404040400000000 -63.29
0x11 0x404040400000000 -63.29
0x100100000000 0x40400000000 -63.35
0x200a 0x404040400000000 -63.37
0xa002 0x404040400000000 -63.37
0xa00a 0x404040400000000 -63.37
0x4004 0x40400000000 -63.39
0x1001 0x400400000000 -63.40
0x2004 0x404040400000000 -63.45
0x4002 0x404040400000000 -63.45

différentielle multiple sur
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Pour la cryptanalyse que nous avons effectuée, nous avons utilisé 23 différentielles sur
16 tours. Ces différentielles peuvent étre regroupées par rapport a #A, = 16 différences
en entrée

Pour chacune des différences en entrée, I’ensemble des différences en sortie varie. Ainsi
I’ensemble des différences en sortie est inclus dans 1’ensemble

A, € {0x0707070700000000}.

Il s’avére que dans notre cas le nombre de différences en sortie pour chaque différence en
entrée varie. Il est le plus important pour la différence en entrée 0x1001. Pour cette entrée
on a |A,| = 5. En utilisant cet ensemble de différence en sortie, nous obtenons des cribles
similaires pour chaque différence en entrée apres 18 tours du systéme de chiffrement. La
taille de chacun de ces cribles est proche de 232

#A(i)

sieve ~ 232‘
Dans le cas de nos expérimentations sur SMALLPRESENT-[8], il nous avait été possible
d’obtenir une bonne estimation de la probabilité des différentielles®. La probabilité de
la meilleure différentielle que nous avons trouvée est (0x1001, 0x404040400000000) sur
16 tours est bornée par 27922 En utilisant seulement cette différentielle, une attaque
différentielle classique utilisant les 254 messages clairs aurait une probabilité de réussite de
59% pour une taille de liste ¢ = 2%, En utilisant plusieurs différentielles nous augmentons

sensiblement la probabilité de succes de 'attaque.

A partir des 23 différentielles qui sont utilisées dans notre cryptanalyse nous obtenons

des probabilités

_ 2—62.59 —63.47
*x .

P et p=2

Le nombre de boite-S actives est égal a 4 pour le tour 17 et & 8 pour le tour 18. Comme
pour chaque boites-S le nombre de bits de clés impliqués est égal a 4. Cela nous fait en
théorie 48 bits de clés a retrouver. En regardant de plus prés I’algorithme de cadencement
de clés pour la clé maitre de 80 bits, nous avons remarqué que 6 bits sont partagés sur les
deux derniers tours. Notre attaque nous permet donc au maximum de retrouver 42 bits
de clés (on a 2%% candidats possibles pour la clé des deux derniers tours.)

Afin de diminuer la complexité en temps de I'attaque, nous pouvons utiliser la méme
méthode que celle donnée par Meiqin Wang dans son papier : nous pouvons décomposer
le crible en ajoutant un crible intermédiaire aprés avoir partiellement déchiffré un tour.

Les cribles Ai,?we , correspondent a I’ensemble des différences possibles aprés r + 1 tours.
La taille maximale de ces cribles est 2!2.
Le tableau 6.4 nous donne les complexités de 'attaque pour différentes valeurs de la

complexité en données et pour différentes valeurs de taille de liste.

6.5.1 Conclusion

L’attaque que nous avons présentée n’est pas la meilleure attaque sur PRESENT. Cette
attaque a pour but d’illustrer le fait que la cryptanalyse différentielle multiple améliore la

cryptanalyse différentielle classique. Le tableau 6.5 donne la liste des attaques statistiques
effectuées sur PRESENT.

5. Dans la section 6.4, nous expliquons que nous les avons obtenues par une moyenne sur tous les
clairs pour un certain nombre de clés
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complexité

Npc 14 Pg en temps
262 g — 241 73% 279.00
264 g — 239 77% 276.00
264 { = 241 98% 279.00

TABLE 6.4 — Paramétres d’attaque différentielle multiple sur 18 tours de PRESENT.
Pour une complexité en mémoire de 24?(clé de 80 bits)

TABLE 6.5 — Résumé des attaques sur PRESENT.

#rounds ‘ version Cryptanalyse Npc  temps mémoire référence
8 128 intégrale 2243 ol00d 2770 [ZRHDOS|
16 80 différentielle 2640 9640 2320 [Wan08]
17 128 clés lices 263 21040 2530 |[OVTcK09]
18 80 différentielle multiple 264 279 242 section 6.5
19 128 différentielle algébrique 2020 21130 n/r [AC09]
24 80 linéaire 2635 2400 2100 [Ohk09]
24 80 saturation 2570 2570 2320 [CS09]
25 128 linéaire 2640 9967 210-0 [INSZW09]
26 80 linéaire multiple 2640 9720 2320 [Cho10]







Deuxiéme partie

Propriétés des boites-S






Chapitre 7

Introduction

Au début de la partie précédente nous avons défini les systémes de chiffrement par
bloc. Cette partie est dédiée a 1’étude de certaines propriétés de la partie de substitution
des algorithmes de chiffrement par bloc (voir section 1.3.1). Nous rappelons ici que cette
partie de substitution, qui est non-linéaire, est composée de petites fonctions appliquées
en paralléle a I’état interne du systéme de chiffrement. Ces fonctions sont appelées boites-
S. Afin d’avoir un systéme de chiffrement qui résiste aux attaques statistiques présentées
dans les chapitres 2 et 3, les boites-S doivent avoir de bonnes propriétés. Par exemple
Uuniformité différentielle des boites-S (voir définition 2.5) permet de mesurer la vulné-
rabilité des boites-S contre les attaques différentielles (voir section 2.1). Chaque bit de
sortie de la boite-S peut s’écrire comme combinaison des bits de I'entrée. Ainsi certaines
propriétés des boites-S peuvent étre étudiées en analysant les propriétés des fonctions
booléennes (fonction qui prend plusieurs bits d’entrée et a un bit en sortie).

Les boites-S peuvent aussi étre représentées par un polyndéme sur le corps fini Fy.. Pour
faire le paralléle avec les fonctions booléennes, les fonctions alors obtenues sont appelées
fonctions vectorielles. Ce chapitre d’introduction est dédié a la présentation d’un certain
nombre de propriétés des fonctions booléennes et des fonctions vectorielles.

Le chapitre 8 est quant & lui consacré a certaines nombre de propriétés obtenues avec
Anne Canteaut et Pascale Charpin.

Soit k£ un entier positif. Dans ce chapitre et le suivant nous manipulons des éléments
du corps fini Fy» de taille 2". Nous rappelons la définition de la trace que nous utilisons
dans cette partie.

Définition 7.1. Soit o un élément du corps fini Fon. La trace de o sur le sous corps Fox
ot k divise n est notée Tr) et est définie par

Tr} (o) = a + o2+ a2y,

Lorsque que k = 1, c’est-a-dire lorsque le sous corps en question est Fo, on note Tr
lapplication trace de Fon dans Fy. On appelle cette trace la “trace absolue” sur Fon Celle-
ct vaut alors :

Tr(o) =a+a+ ..+ a2 ",



142 7.1 Les fonctions booléennes

7.1 Les fonctions booléennes

7.1.1 Définition

Définition 7.2. On appelle fonction booléenne a n variables toute application f de
F% dans IF,. L’ensemble des fonctions booléennes a n variables est noté B,,.

Comme il existe une bijection entre ’espace vectoriel 5 et le corps Fan, les vecteurs
de 7 peuvent étre identifiés aux les éléments du corps fini Fon.

Définition 7.3. Soit f une fonction booléenne a n variables. On appelle support de f
l'ensemble des vecteurs de % qui ont une image non nulle, c’est-a-dire

supp(f) = {z[f(z) # 0}.

Définition 7.4. Soit f une fonction booléenne, le poids de Hamming de f est égal au
cardinal du support de f :

wt(f) = #supp(z).

Une fonction booléenne peut étre définie par sa table de vérité : la table de vérité d’une
fonction booléenne f € B, est 'ensemble des couples (z, f(z)) ou x parcourt Fj.

Exemple 7.1. Soit f une fonction booléenne a trois variables définie par sa table de vé-

rité :

x | (000) (001) (010) (011) (100) (101) (110) (111)
fx)| o 1 0 0 0 1 1 0

Le support de f est supp(f) = {(001), (101), (110)} et le poids de f est wt(f) = 3.

Définition 7.5. Une fonction booléenne est dite équilibrée si son image posséde autant
de 0 que de 1. C’est-a-dire f € B,, est équilibrée si et seulement si

wt(f) = 2"

Définition 7.6. Soit f une fonction booléenne a n variables. La transformée de Mo-
bius de f est définie par

fe: Fy — F,
u = @yjuf(v)

ou v = u signifie v; < u; Vi € {1.n}.

Exemple 7.2. Soit f la fonction définie dans 'exemple 7.1. La transformée de Mobius
f° de f satisfait

£°(1,0,1) = £(0,0,0) @ £(0,0,1) & £(1,0,0) & £(1,0,1) = 0.

A partir de la définition de la transformée de Mobius on peut calculer la forme algé-
brique normale d’une fonction booléenne.
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Définition 7.7. Soit f une fonction booléenne a n wvariables. La forme algébrique
normale(ANF!) de f est définie par

D rw e,

u=(u1,..un)
ot u; € {0,1} et u parcourt Fy.

Exemple 7.3. Soit f la fonction définie dans 'exemple 7.1. La forme algébrique normale
de f est :
f(w1, 29, 73) = 23 ® To73 ® T172 D T1T273.
A partir de la forme algébrique normale d’une fonction booléenne on peut définir le

degré algébrique de cette fonction.

Définition 7.8. Le degré algébrique d’une fonction booléenne f a n variables est le
degré de sa forme algébrique normale. C’est-a-dire si f est définie par

D rwaar

u=(u1, un)

alors

deg() = max{wt(u)|f*(u) # 0}

On dit que f est affine sideg(f) =1 et que f est constante si deg(f) = 0.

7.1.2 Spectre de Walsh

En cryptographie nous avons besoin de calculer la distance des fonctions booléennes
aux fonctions affines. Pour cela nous étudions la transformée de Walsh de la somme de f
avec une fonction affine.

Définition 7.9. Soit u € Fan, nous notons par ¢, la fonction booléenne affine définie
par
Oy - Forn — [y
x +— Tr(uz)

Nous définissons alors la Transformée de Walsh d'une fonction booléenne f comme la
corrélation de (—1)/ avec la fonction signe d’une fonction linéaire. Nous parlerons plus
commodément de corrélation centrée de f avec une fonction linéaire.

Définition 7.10. Soit f € B,, une fonction booléenne. Le coefficient de Walsh de f au
point u € FY est noté F(f + u). 1l correspond a la quantité

F(foa) =Y (-1)f@rue

€y

L’ensemble
{F(f+¢u),ueF3},
est appelé spectre de Walsh de la fonction f.

1. ANF est I'abréviation du terme anglais "Algebraic normal form"
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La non-linéarité d’une fonction booléenne mesure la distance entre la fonction boo-
léenne et ’ensemble des fonctions affines.

Définition 7.11. Soit f € B, une fonction booléenne. La non-linéarité de f notée
NL(f) est la distance de Hamming entre la fonction f et l’ensemble des fonctions affines.
Elle est définie par la valeur

_ 1 .
NL(f) =21 =5L(f) ot L(f) = max |F(f + )| .
u on
La plus petite valeur pour £(f) est 22. Cette valeur est atteinte par les fonctions dites
courbes. Les fonctions courbes font partie d’'une famille plus grande, appelée fonctions
plateauz.

Définition 7.12. [ZZ99][CCCF00] Soit f € B,, une fonction booléenne. La fonction f est
dite plateau si ses coefficients de Walsh prennent au plus trois valeurs, {0, £L(f)}. On
a alors L(f) =2° avec s > n/2.

Les fonctions courbes sont les fonctions plateaur qui vérifient s = n/2. Les fonctions
courbes existent si et seulement si n est pair. Dans ce cas particulier ses coefficients de
Walsh ne prennent que deuz valeurs +£27 .

De plus, f est dite plateau optimal si s = (n + 1)/2 pour n impair ou si s = (n+2)/2
POUT M PAIT.

Dans le contexte des fonctions booléennes, la relation de Parseval est la suivante
Z fQ(f+90a) = 2%,
GGFQH
En appliquant cette relation il est facile de voir que le s défini dans la définition précédente

ne peut pas étre inférieur a 7.

Avant de donner un exemple de fonction plateau. Nous donnons deux formules simples
que nous utilisons & maintes reprises dans ce chapitre et dans le suivant.

Lemme 7.1. Soient t et n deux entiers positifs. Nous avons
pged (2t — 1,27 — 1) = grecdtn) _ g (7.1)
A partir de ’égalité précédente on peut montrer [McES87[[lemme 11.1] :

1, st pged(t,n) = pged(2t,n)

t n __ —
pged(2® + 1,2 1) { opeed(tn) 4 1 g 2pged(t, n) = pged(2t, n). (7.2)

Exemple 7.4. Soit f € B, la fonction booléenne définie par f(x) = Tr(z2+1) et soit
k = pged(2t,n). A partir de l’égalité (7.2), on peut calculer la transformée de Walsh des
fonctions f + @, pour u € Fon.

F(f+¢u)|  nombre de u
0 on _ 2nfk
2(n+k)/2 on—k—1 =+ 2(n—k—2)/2
_2(n+k)/2 on—k—1 _ 2(n—k—2)/2'

Ainsi la fonction f: x — Tr(xztﬂ) est une fonction plateau qui n’est jamais courbe.
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Il est aussi intéressant d’étudier les moments d’ordre supérieur de la transformée de
Walsh d’une fonction booléenne. Nous donnons ici la définition du moment d’ordre quatre
normalisé.

Définition 7.13. Le moment d’ordre quatre normalisé d’une fonction booléenne
f € B, est défini par :
v(f)=27"3 F(f+eu).

u€Fon

Le moment d’ordre quatre normalisé de f est relié au moment d’ordre deux de la
transformée de Walsh des dérivées de la fonction f.

Définition 7.14. Soit f : Fon — F, une fonction booléenne. La dérivée au point a de
f est définie par

Dof(x) = f(x) + f(x +a).

Remarque 7.1. On vérifie facilement que

v(f) =Y FDuf) (7.3)

(ZEFQTL

C’est sous cette forme que le moment d’ordre quatre normalisé a été introduit dans [ZZ95]

comme un critéere cryptographique sous le nom de "sum of square indicator”. Cette quan-
tité a été particulierement étudiée dans [CCCF00, CCCF01, ZZ99].

Le théoréme suivant donne une borne sur la valeur du moment d’ordre quatre norma-
lisé. La preuve de ce théoréme se trouve dans [CCCFO00| et [ZZ99).

Théoréme 7.1. Toute fonction booléenne f € B, wvérifie v(f) < 2"L%(f). L’égalité est
vrate si et seulement si f est plateau. Dans ce cas on a

L(f)=2% et v(f) =2""%, pour% <s<n. (7.4)

7.2 Fonctions vectorielles

Au lieu d’étudier chaque bit de sortie des boites-S d’un systéme individuellement, on
peut aussi regarder la fonction qui a une entrée de 5 donne une sortie dans Fy* avec m
plus grand que 1. Les fonctions de ce type, sont appelées fonctions vectorielles.

7.2.1 Définition

Définition 7.15. On appelle fonction vectorielle & n entrées et m sorties une
application de F% dans FY'. L’ensemble des fonctions vectorielles a n entrées et m sorties
est noté B)".

Par la suite une fonction vectorielle est caractérisée par une lettre majuscule afin de
faire la distinction avec les fonctions booléennes que nous notons en minuscule.
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Définition 7.16. Soit F' une fonction vectorielle F' : Fon +— Fom. Les composantes de
F sont des fonctions booléennes. Elles sont notées fy (fn € By) et sont définies pour tout
A € Fom par
i Fon — Ty
r = Tel'(\F(x)).

Toute fonction de Fyn dans Fan peut s’exprimer comme un polynéme univarié de
Fan[X]. Avec cette représentation, on définit le degré d’une fonction vectorielle comme
suit.

Définition 7.17. Soit F' une fonction de Fon dans Fon représentée par le polynome uni-
varié P dans Fon [ X]. Le degré de F' est alors le degré maximal du poids de Hamming des
exposants du polynéme P :

deg (Z_: )\iXi> = max {wt(i) | \; #0 },
i=0

En cryptographie, les fonctions de petit degré présentent des faiblesses contre les at-
taques algébriques.

7.2.2 Différentiabilité

Les boites-S des systémes de chiffrement par bloc sont définies & partir de fonctions
vectorielles. Dans la section 2.1 nous avons vu que la résistance des systémes de chiffrement
par bloc aux attaques différentielles était reliée a certaines propriétés des dérivées des
fonctions vectorielles. Nous rappelons ici quelques définitions.

Définition 7.18. Soit F' € B]" une fonction de Fan dans Fom. Soit a un élément du corps
Fon. La dérivée de F' par rapport a a est notée D, F' et est définie par

DaF ZFQn — Fgm
r — F(x)+ F(z+a)

En cryptographie on s’intéresse a la répartition de I'image de la dérivée d’une fonction
vectorielle

Définition 7.19. Soit F' € B une fonction de Fon dans Fom. Soient a € Fan et b € Fom.
On définit la quantité 6(a,b) par
5(@, b) — #{JI E FQH DQF(.I) - b}
= #{r eFn|F(z)+ F(zr+a) =0}

Comme on est en caractéristique deux, si x vérifie D, F'(z) = b alors on a D, F(z+a) = b
et donc pour tout a et tout b, la quantité &(a,b) est pair. Evidemment la dérivée par
rapport a 0 n’a pas d’intérét car pour toute fonction F et pour tout x nous avons Dy F'(x) =
0.

En cryptographie le maximum des §(a, b) pour a non nul, définit ["uniformité différentielle
d’une fonction F'.
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Définition 7.20. Soit F' € B une fonction de Fon dans Fom. On note par 6(F) le
mazximum des §(a,b) pour a non nul :

I(F) = gr;%?§5(a, b).

On dit alors que F' est différentiellement ¢(F')-uniforme.

La quantité 0(F') est paire et supérieure ou égale a 2. Les fonctions atteignant la valeur
minimale, c’est-a-dire les fonctions différentiellement 2-uniformes sont dites APN ( "almost
perfect non-linear"”).

Dans beaucoup de systémes de chiffrement par bloc, les boites-S sont “carrées” c¢’est-a-
dire que le nombre de bits en entrée et en sortie de la boite-S est le méme. Cette propriété
n’est pas toujours vraie notamment pour les systémes de chiffrement de type Feistel pour
lesquels la fonction de tour n’a pas besoin d’étre inversible?. Par la suite on s’intéresse
aux fonctions F' qui sont dans B]!, c’est-a-dire aux fonctions de Fyn dans Fon. Dans ces
fonctions on peut distinguer les permutations des non-permutations. On rappelle quune
fonction F' € B n’est pas une permutation si il existe z1 et x5 tels que F'(z1) = F(x).
Dans le cas ou F' n’est pas une permutation il est facile de voir qu’il existe a tel que

d(a,0) =0.

Proposition 7.1. Soit F' € B! une fonction de Fon. Alors F' est une permutation du
corps Fon si et seulement si, pour tout a non nul, 6(a,0) = 0.

7.2.3 Non-linéarité

La non-linéarité d’une fonction vectorielle F' de Fon dans Fan est définie a partir de la
non-linéarité de ses fonctions composantes f\ pour tout A € Fan\{0}(voir définition 7.16).

Définition 7.21. Soit F' une fonction de Fon dans lui-méme avec fonctions composantes
fr, A € Fon. La non-linéarité de F' est reliée a la non-linéarité de ses fonctions compo-
santes fy. Celle-ci est égale a

ACF) ot A(F) = max L(f).

__on—1 __
NL(F) =2 5 max

La non-linéarité de la fonction F' est une mesure qui permet de calculer sa vulnérabilité
aux attaques linéaires (voir section 3.2). Les fonctions qui ont une non-linéarité maximale
sont dites presque courbes. Cette propriété existe seulement pour n impair lorsque 1'on
consideére les fonctions de B; .

Définition 7.22. Soit F' une fonction de Fon dans lui méme avec composantes fy, \ €
Faon. Alors,

AF) > 2"
Les fonctions F' qui satisfont
AF) =27

2. On peut par exemple citer le DES [DES77| qui utilise des boites-S de 6 bits vers 4 bits
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sont dites presque courbes?®. De plus si F' est presque courbe, alors pour tout a € Fan
pour tout X non nul

n+1

{F(fr+¢@a), N€Fhn,a € Fon} = {0,425}, (7.5)

c’est-a-dire, toutes les composantes fr, A # 0, sont “plateau optimal”(ou "semi bent").

7.2.4 Fonctions puissances

Dans sa généralité, ’étude des fonctions vectorielles et de leurs propriétés cryptogra-
phiques est complexe. Nous devons identifier des classes particuliéres. Les mondmes sont
faciles & implémenter et sont utilisés dans beaucoup de boites-S des systéme de chiffrement
par bloc. On peut citer par exemple la boite-S de 'AES (voir section 1.4.2) qui utilise la
fonction « + 2! dans le corps Fan.

Définition 7.23. Soit F' un polyndéme sur le corps fini Fon. Soit d un entier tel que

1 <d<2"—2. F est une fonction puissance ou encore un monéme si F(z) = z%.

Dans ce cas on note par Fy cette fonction

FdZ an — ]an

r — zo

Proposition 7.2. Soit F; une fonction puissance sur le corps Fon :

F, est une permutation si et seulement pged(d,2™ — 1) = 1.

Pour les fonctions puissances il existe des classes d’équivalence qui préservent 1'unifor-
mité différentielle. Les lemmes suivants détaillent certaines de ces équivalences.

Lemme 7.2. Soit Fy une permutation puissance F(x) = x% du corps Fyn. Soit d = 2id
mod 2" — 1 un exposant dans la classe cyclotomique de d. Alors 64(a,b) = 64(a,b*)

Preuve : Supposons que d4(a,b) = A # 0 alors il existe A racines du polynéme
X'+ (X +a)t =0, (7.6)

dans le corps fini Fon.
En élevant cette équation a la puissance 2° on obtient

x2'd (X + a)?d -2
Ainsi si x est racine de (7.6), alors x est racine de
¥ + (x4 a)? =b*.

Et on a dq4(a,b) = du(a,b?').

3. Le terme anglais est "almost bent” connu sous I'abréviation AB
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Lemme 7.3. Soit F' une permutation Fy(x) = x%. Soit F~1 la réciproque de F. Alors
dr(a,b) = dp-1(b,a).
Preuve : Supposons que dp-1(a,b) = X\ # 0 alors il existe A racines du polynéme
FrYX)+FYX4a)=0. (7.7)

Notons z une de ces racines. Alors on a

Flz+a) = b+F‘()
& r+a = (b+F L(2))
=3 a = F(b+F'(2)+=z

En posant y = F'~!(z), 'équation précédente devient a = F(b+y)+F(y). Ainsi on obtient

dp-1(a,b) = 6p(b,a).

Remarque 7.2. Le lemme précédent est vrai en particulier pour les mondémes de permu-
tation. Soit Fy(z) = 2% une permutation de Fan. On a

da(a,b) = d4-1(b, a).

7.2.5 Deérivée en un point des fonctions puissances

Nous pouvons remarquer que pour les fonctions puissances, analyser la dérivée en un
point suffit pour étudier les propriétés différentielles de la fonction.
En effet dans le cas des fonctions puissances, F(z) = ¢, les propriétés différentielles
peuvent étre analysées plus facilement puisque, pour tout a € Fon\{0}, I'équation (z +

a)? + 2¢ = b peut se récrire
d d
(o) () -
a a

ce qui implique que d(a,b) = 0(1,b/a?) pour tout a # 0. Alors, si F : x +— z¢ est une
fonction puissance, les propriétés différentielles de F' sont déterminées par les valeurs de
0(1,b), quand b parcourt le corps Fon.

A partir de maintenant, nous écrivons d(b) pour parler de §(1,b).

Définition 7.24. Soit F' un mondme. L’ uniformité différentielle de F' se détermine par
la quantité
I(F) =mazx (b).

beFon

On dit alors que F' est différentiellement §(F')-uniforme.
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7.2.6 Remarques sur (0)

Dans le but d’évaluer la différentiabilité d'une fonction puissance Fy(x) = x? définie
sur le corps Fon, nous pouvons commencer par étudier le cas particulier de certaines
valeurs de 0(b). En particulier nous nous intéressons au cas particulier ou b = 0. Dans
cette partie, nous notons Sy(b) 'ensemble formé par les solutions de 1’équation

(z+ 1) 42 =0 (7.8)
Dans le cas ou b = 0, nous avons le résultat suivant :

Lemme 7.4. Soit d un exposant tel que pged(d,2" — 1) = s alors 6(0) = s — 1. En
particulier s = 1 si et seulement si 6(0) = 0.

Ce lemme signifie que 6(0) = 0 si et seulement si F; est une permutation.
Une conséquence immédiate de ce lemme pour certaines valeurs de 'exposant d est la
suivante :

Lemme 7.5. Soit d > 3 tel que d = pged(d, 2™ — 1). Alors 6(0) = 6(Fy) =d — 1.

Preuve : Puisque d = pged(d, 2" — 1), & partir du lemme 7.4 nous avons 6(0) = d — 1.
De plus le polynéme z¢ + (x + 1)¢ + b est de degré d — 1 pour tout b. Ainsi on a que
d(b) < d—1 et on en déduit donc que 6(Fy) =d — 1. O

Exemple 7.5. Soit d = 11, d’apres le lemme précédent on a §(Fy) = §(0) = 10 pour tout
n tel que 11 divise 2" — 1. Comme 11 divise 1023 = 2!9 — 1, on obtient que cette propriété
est vérifiée si 10 divise n.

7.2.7 Les monomes APN

Dans cette thése nous nous sommes intéressés aux mondmes différentiellement 4- et
6-uniformes. Les résultats que nous avons trouvés sur ces fonctions sont détaillés dans le
chapitre 8. Cependant cette thése n’aurait pas été compléte sans citer les résultats connus
sur les mondmes APN qui restent ceux qui résistent le mieux aux attaques différentielles.
Dans son habilitation Anne Canteaut [Can06| avait déja regroupé tous les résultats connus
sur les monomes APN.

Le tableau 7.1 donne la liste des exposants d tel que la fonction F(x) = x4 est APN
sur le corps Fon dans le cas ot n est impair. Nous rappelons que dans ce cas toutes les
fonctions sont des permutations.

Dans le cas ou n est pair, les monémes APN ne sont jamais des permutations. Le ta-
bleau 7.2.7 nous donne la liste des exposants d tels que F(z) = 24 est APN.

Dans le chapitre suivant, nous remarquons que si pged(t,n) = s, les fonctions avec
exposant quadratique ou de Kasami sont différentiellement 2° - uniformes. De plus dans
le théoréme 8.3 et le théoréme 8.4, nous montrons que pour tout b, d(a, b) est égal & 0 ou
a 2°.
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Nom Exposant Conditions Références
1<t<m
. . t _— _—
fonction quadratique Q; 2+ 1 paed(tn) = 1 [Gol68, Nyh94]
2<t<m
- - 2% _ ot =t
fonction de Kasami K 2% -2t +1 paed(t,n) = 1 |[Kas71]
fonction de Welsh 2m 43 [Dob99a, CCDOO|
fonction de Niho 2" gil_ ! " balt [Dob99b, HXO01]
2m4+2 2 —1 m impair
fonction inverse 22m — 1 [Nyb94, BD93]|
fonction de Dobbertin | 2%9 + 239 4+ 2% 429 — 1 n = 5g [Dob00]

TABLE 7.1 — Fonctions puissances F(x) = 2¢ APN connues sur le corps Fon avec n =

2m + 1.

Nom Exposant Conditions Références
1<t<m
. . t _— _—
fonction quadratique Q; 2t +1 paced(t,n) = 1 |Gol68, Nyb94]
2<t<m
. : 2t—2t41 =t =
fonction de Kasami K; 2 peed(t,n) = 1 [Kas71]
fonction de Dobbertin | 2%9 + 239 4+ 2% 429 — 1 n = by [Dob00]

TABLE 7.2 — Fonctions puissances F'(z) = 2% APN connues sur le corps Fan avec n = 2m.






Chapitre 8

Spectre différentiel des monémes

L’uniformité différentielle d’une fonction vectorielle a été introduite dans le but d’éva-
luer la résistance des systémes de chiffrement par bloc aux attaques différentielles (cha-
pitre 2). Ce chapitre est fondé sur un ensemble d’observations sur le spectre différentiel
des fonctions. Par exemple, nous avons remarqué que deux fonctions F' et G qui ont la
méme uniformité différentielle peuvent avoir des comportements différents par rapport
aux attaques différentielles en fonction de la répartition des valeurs de leurs tables de
différences!.

Durant cette thése, nous nous somme donc intéressés a cette répartition des différences
pour certaines classes particuliéres de fonctions. Les fonctions monomes étant trés utili-
sées pour définir les boites-S des systéemes de chiffrement par bloc, nous avons restreint
notre analyse a cet ensemble de fonctions.

Pour les mondmes nous avons précisé la notion de spectre différentiel et étudié 'intérét
de celui-ci. Dans le cheminement de cette étude du spectre différentiel, nous avons en
particulier, étudié les fonctions avec uniformité différentielle égale a 4 ou 6.

Dans ce chapitre, aprés avoir défini l'intérét de 1’étude du spectre différentiel, nous pré-
sentons les résultats de notre recherche exhaustive du spectre différentiel des fonctions
différentiellement 4- et 6-uniformes pour des petites tailles de corps. Les résultats de nos
expériences nous ont permis d’identifier un certain nombre de classes de monoémes qui
étaient différentiellement 4- ou 6- uniformes. Les sections suivantes de ce chapitre sont
dédiées a I’étude du spectre différentiel des monomes différentiellement 4- ou 6- uniformes.

Dans ce chapitre nous utilisons les mémes notations que celles du chapitre 7. Soit d un
entier ; nous étudions les mondémes sur Fon :

F: an — ]an
r o

On rappelle que F' est une permutation si et seulement si pged(d,2" — 1) = 1.

Dans la suite de ce chapitre, nous utilisons indifféremment le terme de mondme et
de fonction puissance. Le terme permutation puissance désigne quant a lui, une fonction
puissance bijective.

1. La définition de d(a, b) est donnée dans la définition 7.19.
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8.1 Spectre différentiel

Pour mesurer la résistance d’un systéme de chiffrement aux attaques différentielles,
un certain nombre de propriétés des fonctions puissances ont été étudiées. Notamment on
peut mesurer la résistance d’un systéme de chiffrement aux attaques différentielles en cal-
culant I'uniformité différentielle des boites-S composant le systéme de chiffrement. Ainsi,
soit F' une fonction vectorielle comme définie dans le chapitre précédent ; pour vérifier la
résistance du systéme de chiffrement contre les attaques différentielles on s’intéresse au
maximum des d(a,b). Dans ce chapitre nous nous intéressons aussi a la répartition des
d(a, b). En particulier nous illustrons le fait que cette répartition peut étre différente pour
deux fonctions qui ont la méme uniformité différentielle.

8.1.1 Définition

En introduction on a souligné qu’on voulait étudier la répartition de d(a,b) pour
tout a € [F5, et pour tout b € Fon, c’est-a-dire que l'on veut s’intéresser aux valeurs
#{b € Fau|d(a,b) = i}. Or pour les fonctions puissances, nous avons vu a la fin du
chapitre précédent qu’il suffit d’étudier la dérivée par rapport a 1 :

#1b € Fon|6(a,b) = i} = #{b € Fou|6(1,b) =i}  Va #£0.

Par la suite 6(1,b) est notée §(b).
On définit alors le spectre différentiel d’'une fonction puissance de la fagon suivante.

Définition 8.1. Soit F'(z) = 2% une fonction puissance sur le corps Fon. Nous définissons
la quantité w;, pour i pair, comme le nombre de b tels que 'équation F(z)+ F(zx+1) =b
a v racines :

w; = #{b € Fau|d(b) = i}.

Le spectre différentiel de F' est alors l’ensemble des w; :
Sp = {wo, w2, ..., ws(p) }-
Nous donnons d’abord des propriétés élémentaires des w;.

Lemme 8.1. Soit w; les valeurs définies dans la définition 8.1. Pour une fonction puis-
sance F' nous avons les propriétés suivantes.

ng) w; = 2",

SO G x w; = 2m

Preuve : En sommant tous les w;, on obtient tous les b € Fy» et ceci une et une seule
fois. Et en sommant tous les iw; on obtient toutes les racines des différentes équations
%+ (x + 1)? = b. Chaque élément du corps étant racine d’une et d'une seule équation,
on en déduit la deuxiéme égalité. O

A titre d’exemple nous donnons le spectre différentiel de la fonction inverse. Le lemme
suivant est basé sur un résultat de Kaisa Nyberg [Nyb94|.

Lemme 8.2. Soit F'(z) = 22" 2 définie sur le corps Faon. Le spectre différentiel de F est :
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— Sin est impair, on a Sy = {wy = 2" wy = 2771}
— Sin est pair, on a Sp = {w; = 2"+ 1wy =271 — 2, wy = 1}.

Preuve : Dans cette preuve on note F, la fonction définie par F'(z) = ™! avec la conven-
tion que F'(0) = 0.

L’étude du spectre différentiel repose sur I’étude du nombre de solutions de ’équation :
'+ (z+1) =0 (8.1)

Deux cas se présentent a nous.

1. Sib=1alors 0 et 1 sont solutions de (8.1). Pour x # {0, 1} I’équation (8.1) peut se
récrire

1 1

+ _
r x+1

& ?+x+1=0 (8.2)

Or 2?4+ x+1 = 0 a deux solutions dans Fan si et seulement si Tr(1) = 0, c’est-a-dire
si et seulement si n est pair.

Donc si b =1 on a 4 solutions dans le cas ot n est pair et 2 solutions dans le cas
ol n est impair.

2. Si b # 1 alors une solution = de (8.1) est telle que = # {0,1} et doit vérifier

1 1
b= ] + —. Cette condition se réecrit bx? + bxr + 1 = 0. Cette équation a 0 ou 2
x x

solutions dans Fan selon que Tr(3) =0 ou 1.

En utilisant le lemme 8.1, on prouve la seconde partie du lemme. Cela revient a
résoudre le systéme
wo + wo +wy =27
{ 20)2 + 4004 = 2"

Ainsi dans le cas oul n est impair, comme w,y = 0, le spectre différentiel est {271 2"~1}.
Dans le cas ou n est pair, comme wy = 1, le spectre différentiel est {21+ 1,271 —2 1}.

m
Dans [CHZ07| Pascale Charpin, Tor Helleseth et Victor Zinoviev ont étudié¢ d’autres
critéres sur la fonction inverse. Ils ont notamment étudié le spectre de Walsh de la dérivée
de la fonction inverse.

Toutes les fonctions APN ont le méme spectre différentiel {2771, 2"~1}. Mais les fonc-
tions telles que §(F') > 2 présentent une grande variété de spectres.

Lemme 8.3. Soit Fy(x) = 2¢ et F,(x) = x¢ deux fonctions puissances. S’il existe k tel
que e = 28d mod 2" — 1 ou si pged(2" — 1,d) =1 et e =d~' mod 2" — 1 alors Fy et F,
ont le méme spectre différentiel.

Dans la partie suivante nous donnons des arguments pour expliquer ce qui a motivé
I'introduction du spectre différentiel : comment pour deux fonctions qui ont la méme
uniformité différentielle, le spectre différentiel peut influer sur la résistance du systéme de
chiffrement aux attaques différentielles.
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8.1.2 Intérét de I’étude du spectre différentiel

Par le passé, Lars R. Knudsen et Kaisa Nyberg [NK92] a montré que connaissant
I'uniformité différentielle de la fonction de tour d’un systéme de chiffrement de type Feistel
on pouvait en déduire une borne sur la probabilité d’'un chemin différentiel. Ce résultat
nous dit que plus I'uniformité différentielle de la fonction de tour est petite, plus le systéme
de chiffrement résiste aux attaques différentielles. D’ot1 I'importance pour un systéme de
chiffrement par bloc d’étudier la différentiabilité des boites-S le composant.

Lors de la conception d’un systéme de chiffrement par bloc, le concepteur a alors tout
intérét a choisir des boites-S qui sont APN. Or dans le cas ou n (taille de la boite-S) est
pair, la seule permutation APN connue a ’heure actuelle est celle découverte par Dillon
[BDMW10| dans le cas ot n = 6. La forme algébrique normale de cette fonction est trés
complexe. En revanche, il a été prouvé qu’il n’existe pas de permutation puissance APN
dans le cas ol n est pair (une preuve récente peut étre trouvée dans [BCCLCO06]).

Pour des raisons d’implémentation dans la plupart des systémes de chiffrement actuels
les boites-S sont de taille 4 ou 8 bits 2. Pour ) fixé, il existe un certain nombre de fonctions
qui sont différentiellement A-uniformes. Pour résister aux autres types de cryptanalyses, il
existe d’autres critéres qui permettent de choisir les meilleures boites-S. La non-linéarité,
par exemple, (définition 7.21) de la fonction donne un critére de résistance du systéme de
chiffrement contre les attaques linéaires (section 3.2).

Dans cette section, nous donnons I’exemple de deux systémes de chiffrement identiques
utilisant des boites-S différentes, ayant la méme uniformité différentielle, et ne possédant
pas le méme potentiel de résistance a la cryptanalyse Ceci est dii aux différences entre
leurs spectres différentiels.

Nous rappelons que les boites-S APN ont toutes le méme spectre différentiel (wy =
2n=1 0w, = 2771). Par la suite, nous illustrons ce phénomeéne en utilisant des boites-
S qui sont différentiellement 4-uniformes.

Exemple 8.1. Dans cet exemple nous nous plagons dans le cas ot n = 6. D’apres le
tableau 8.1 qui est commenté dans la section 8.2, il existe un certain nombre de permu-
tations puissances qui sont différentiellement 4-uniformes. Cette table illustre le fait que
le spectre différentiel peut étre tres différent pour deux fonctions qui ont la méme unifor-
maté différentielle. Pour illustrer ['tmportance du spectre différentiel, nous allons prendre
deux fonctions qui ont des spectres différentiels éloignés. Nous prenons par exemple les
fonctions G(z) = 23! et H(x) = x°. La premicre fonction est dans la classe de la fonction
inverse et donc son spectre différentiel est :

WO(G> = 33, MQ(G) = 30, W4(G) =1.

La fonction H quant a elle, est un mondme avec exposant quadratique®. La formule gé-
nérale du spectre différentiel des fonctions avec exposant quadratique est donnée dans la
section 8.4.2. D’apres le tableau 8.1, pour n = 6, le spectre différentiel de H est :

WQ(H) = 48, LUQ(H) = 07 w4(H) = 16.

2. Voir par exemple les boites-S des systémes de chiffrement PRESENT (section 1.4.1) et AES (sec-
tion 1.4.2)
3. fonctions avec exposant d = 2 + 1
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o) [1] [o]) [1]
+—Sk—
(1] [z] [ [0]
&S] Pl — z]
S}
(o) (1] [o] [1]

FIGURE 8.1 — Propagation d’une différence sur un Feistel généralisé. Illustre I'intérét de
I’étude du spectre différentiel

Le but est d’illustrer que la résistance d’un systéme de chiffrement a la cryptanalyse dif-
férentielle est différente selon que les boites-S de celui-ci sont définies par la fonction G
ou par la fonction H.

Prenons l'exemple simple du chiffrement “jouet” défini par un schéma de Feistel généra-
lisé avec deux boites-S (voir définition 1.7). La probabilité de la différentielle (0,1,0,1) —
(0,1,0,1) sur deux tours du systéme de chiffrement (voir figure 8.1) est définie par

>P[tga]rlize

Dans le cas ot la boite-S est définie par la fonction H (S = H), tous les chemins
différentiels avec différence en entrée a = (0,1,0,1) et différence en sortie b = (0,1,0,1)
arrivent avec probabilité 278 = (%)2. Et le nombre de chemins suivant cette différentielle
est exactement égal a wy = 16. On en déduit donc que la probabilité théorique de la
différentielle est égale & 16 x 278 = 274,

Dans le cas ou S = G un seul chemin avec différence en entrée a = (0,1,0,1) et
différence en sortie b = (0,1,0,1) arrive avec probabilité 278 = (%)2 (c’est le cas ou
x = 1) tous les autres chemins arrivent avec probabilité 2719 = (2%)2 On en déduit donc
que la probabilité théorique de la différentielle est égale d 30 x 2710 278 = 27491

Cet exemple simple sur deux tours d’un schéma de Feistel généralisé a quatre branches
wllustre bien [intérét de l’étude du spectre différentiel des boites-S puisque dans cet exemple
plus wy est petit plus la probabilité de la différentielle est aussi petite.

Au regard de cette discussion, la fonction inverse est celle qui posséde la meilleure
résistance contre la cryptanalyse différentielle (parmi les monémes de permutation dif-
férentiellement 4-uniformes dans le cas ou n est pair) puisque pour la fonction inverse
wy = 1. Le spectre différentiel de cette fonction est proche du spectre différentiel d’'une
fonction APN.
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Définition 8.2. Soit F' une fonction puissance. Si F' vérifie les conditions suivantes :
d(b) <2 pour tout b # {0,1},

alors le spectre différentiel de F' est proche du spectre différentiel d’une fonction APN.
Par la suite, on dit que F est localement-APN.

Par rapport aux travaux de Kaisa Nyberg, nous dirons que dans le cas des schémas de
Feistel, I’étude de I'uniformité différentielle nous donne une borne sur la probabilité du
meilleur chemin différentiel alors que I’étude du spectre différentiel nous donne des indi-
cations sur le nombre de chemins composant une différentielle ainsi que leurs probabilités.
Ce résultat donne alors une borne sur la probabilité d’une différentielle.

8.2 Fonctions puissances différentiellement 4- et 6- uni-
formes

Depuis les travaux de Lars R. Knudsen et Kaisa Nyberg [NK92], les fonctions APN
ont été beaucoup étudiées. Ainsi on sait par exemple qu’il n’existe pas de monoéme de
permutation APN quand n est pair [BCCLCO06]. Or, pour la conception de primitive
cryptographique, nous avons besoin de fonctions bijectives, faciles a implémenter et dif-
férentiellement A-uniformes avec A petit (voir section 2.1). Dans cette thése, nous nous
sommes concentrées sur les fonctions puissances différentiellement 4- ou 6-uniformes. On
rappelle ici, que les monémes APN ont tous le méme spectre différentiel : {271 271},
Dans l'exemple 8.1, nous avons illustré 'importance de 1’étude du spectre différentiel
quand 6(F') > 2. Dans cette partie nous avons calculé le spectre différentiel de tous les
mondmes différentiellement 4- ou 6-uniformes sur le corps Fon avec n < 27. Lors de cette
recherche nous avons identifié un certain nombre de classes de fonctions différentielle-
ment 4- ou 6- uniformes. Cette section est dédiée a nos résultats expérimentaux. Nous
divisons notre étude en quatre sous-sections : les permutations et non-permutations dif-
férentiellement 4- ou 6-uniformes. Dans chaque section nous identifions différentes classes
de fonctions et nous commentons un résumé des résultats obtenus dans les sections sui-
vantes. Certains résultats, qui ne sont pas prouvés, sont des questions ouvertes ou des
conjectures.

Nous nous intéressons dans un premier temps aux permutations puissances différentiel-
lement 4-uniformes.

8.2.1 Permutation puissances différentiellements 4-uniformes

Le tableau 8.1 présente tous les monémes F(x) = 2% qui sont différentiellement 4-
uniformes dans le corps Fon, pour n compris entre 6 et 26. En accord avec le lemme 8.3,
nous avons calculé le spectre différentiel des fonctions ¢ ot I'exposant d est le représentant
de la classe cyclotomique modulo 2™ — 1.
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Permutations puissances x — z¢ sur le corps Fon, différentiellement 4-uniformes
n | exposant/inverse wo W Wy Type

6 5/13 48 0 16 Quadratique/Kasami
6 31/31 33 30 1 Inverse

7 19/47 85 22 21

8 127/127 129 126 1 Inverse

9 45/125 292 184 36

10 5/205 768 0 256 Quadratique
10 13/79 768 0 256 Kasami

10 17/181 768 0 256 Quadratique
10 29/247 573 390 61

10 103/149 588 360 76

10 223/367 603 330 91

10 511/511 513 510 1 Inverse

11 79/183 1156 760 132

11 109/695 1189 694 165

11 251/367 1255 562 231

11 463/703 1222 628 198

12 73/731 2496 1152 448 Bracken et Leander|BL10|
12 2047/2047 2049 2046 1 Inverse

13 303,947 4603 3082 507

14 5/3277 12288 0 4096 Quadratique
14 13/1339 12288 0 4096 Kasami

14 17/2893 12288 0 4096 Quadratique
14 65/2773 12288 0 4096 Quadratique
14 205/241 12288 0 4096 Kasami

14 319/979 12288 0 4046 Kasami (4033)
14 8191/8191 8193 8190 1 Inverse

16 32767/32767 32769 | 32766 1 Inverse

18 5/52429 196608 0 65536 Quadratique
18 13/20165 196608 0 65536 Kasami

18 17/46261 196608 0 65536 Quadratique
18 241/12101 196608 0 65536 Kasami

18 257,/43861 196608 0 65536 Quadratique
18 1279/12605 196608 0 65536 Kasami (65281)
18 | 131071/131071 | 131073 | 131070 1 Inverse

20 1057/306539 651264 | 270336 | 126976 | Bracken et Leander [BL10]
20 | 524287/524287 524289 | 524286 1 Inverse

22 5/838861 3145728 0 1048576 Quadratique
22 13/322639 3145728 0 1048576 Kasami

22 17/740173 3145728 0 1048576 Quadratique
22 65/709813 3145728 0 1048576 Quadratique
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Permutations puissances x — z¢ sur le corps Fan, différentiellement 4-uniformes.

n | exposant/inverse wo W Wi Type

22 241/87019 3145728 0 1048576 Kasami

22 257/734419 3145728 0 1048576 Quadratique
22 1025/699733 3145728 0 1048576 Quadratique
22 3277/16639 3145728 0 1048576 Kasami (65281)
22 4033/246739 3145728 0 1048576 Kasami

22 5119/49981 3145728 0 1048576 | Kasami (1047553)
22 | 2097151/2097151 2097153 | 2097150 1 Inverse

24 | 8388607/8388607 8388609 | 8388606 1 Inverse

26 5/13421773 50331648 0 16777216 Quadratique

16777216 Kasami
16777216 Quadratique
16777216 Quadratique
16777216 Kasami
16777216 Quadratique
16777216 Quadratique

26 13/5162299 50331648
26 17/11842741 50331648
26 65/11356885 50331648
26 241/1396651 50331648
26 257/11750611 50331648
26 1025/11719501 50331648

SO DD DO DODDO OO oo

26 4033 /848653 50331648 16777216 Kasami
26 4097/11187541 50331648 16777216 Quadratique
26 20479/3208147 50331648 16777216 Kasami
26 52429/65281 50331648 16777216 Kasami
26 66559/3951439 50331648 16777216 Kasami
26 | 33554431/33554431 | 33554433 | 33554430 1 Inverse

TABLE 8.1 — Permutations puissances z + 2

uniformes

sur le corps Fon, différentiellement 4-

Nous décrivons les différentes classes de permutations puissances différentiellement 4-
uniformes qui apparaissent dans le tableau 8.1. Pour certaines des ces fonctions le spectre
différentiel est déja connu. Pour d’autres, une étude plus compléte du spectre différentiel
est faite dans les sections suivantes.

La fonction inverse

La fonction inverse est la fonction avec exposant 2" — 2 (celui-ci est dans la méme
classe cyclotomique que lexposant 2"~! — 1). Il est bien connu que dans le cas ou n est
pair la fonction inverse est différentiellement 4-uniformes [Nyb94|. Le spectre différentiel
de cette fonction est donné dans le lemme 8.2.

L’exposant 22¢ + 2F + 1 pour n = 4k

En 2010 Carl Bracken et Gregor Leander (|BL10]) ont étudié les monoémes F(x) = x¢
avec exposant d = 2% + 2 + 1 dans le corps Fou. Dans leur article ils ont prouvé que
cette fonction est différentiellement 4-uniformes. Nous rappelons ici leur résultat.

Théoréme 8.1. [BL10] Soit n = 4k et F(z) = 22" T2+ [ fonction puissance définie
sur le corps Fon. I est différentiellement 4-uniformes. De plus cette fonction est une
permutation si et seulement si k est impair.
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Dans la section 8.3, a 'aide des résultats liant le spectre de Walsh avec le spectre
différentiel, nous déduisons le spectre différentiel de ces fonctions (voir théoréme 8.2).

Exposant quadratique ou de Kasami

Nous rappelons ici que 'on appelle ezposant quadratique, tout exposant de la forme

2t 4+ 1.

t
F:gr— 21!

Et que l'on appelle exposant de Kasami, tout exposant de la forme 2% — 2¢ + 1.

F g g2 72
Les fonctions avec exposant quadratique ou avec exposant de Kasami sont APN si et seule-
ment si pged(t,n) = 1. Dans les sections 8.4.2 et 8.4.3, nous étudions le spectre différentiel
des fonctions avec exposant quadratique ou exposant de Kasami. Nous remarquons dans
le tableau 8.1 qu’un certain nombre de ces fonctions sont différentiellement 4-uniformes.
L’exposant de Kasami n’étant pas toujours le plus petit de sa classe nous donnons ici le
lien entre les exposants donnés dans la table et 'exposant de Kasami correspondant :
Pour n = 12 (resp. n = 20), 2™ (resp. 2'%7) sont dans la méme classe cyclotomique
que 2% avec d = 2% — 2t + 1 et n = 4t. Pour n = 14, nous remarquons que 319 est dans
la classe de I'exposant de Kasami 31926 = 212 — 26 4+ 1. De la méme facon, pour n = 18,
1279 est dans la méme classe que I'exposant de Kasami 1279 - 28 = 216 — 28 1 1,

Conjectures

En analysant les résultats du tableau 8.1, il est aussi important de remarquer qu’il
n’existe pas de permutation puissance différentiellement-4-uniformes pour n impair entre
15 et 25.

On peut donc faire la conjecture suivante.

Conjecture 8.1. Soit F' une permutation puissance du corps Fon. Si m est impair et
n > 15 alors F n’est pas différentiellement 4-uniformes.

De la méme facon, dans le cas ou n est pair, il semble que pour n > 12 toutes les
permutations puissances différentiellement 4-uniformes font partie d’'une des famille citées
ci-dessus.

Conjecture 8.2. Soit F' une permutation puissance du corps Fon différentiellement /-
uniformes. Si n est pair et n > 12 alors d est équivalent soit a un exposant quadratique,
soit a un exposant de Kasami, soit & 'exposant 2"~ — 1, soit si n = 4k a "exposant
22k 4ok 4+ 1.

8.2.2 Non-permutations puissances différentiellement 4-uniformes

D’un point de vue expérimental, nous avons aussi cherché les monomes différentielle-
ment 4-uniformes qui ne sont pas des permutations. Le tableau 8.2 donne la liste de toutes
les fonctions puissances F'(z) = z? sur le corps Fyn, non-permutations, différentiellement
4-uniformes pour n compris entre 8 et 26. On peut d’abord remarquer que le corpus consi-
déré est “pauvre”. Nous détaillons cependant les différentes classes de non-permutations
puissances différentiellement 4-uniformes.
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’ n \ s \ pged(s, 2™ — 1) \ wo \ w9 \ Wy \ Type ‘
5 5 192 0 64 Quadratique
3 21 3 152 80 24 Bracken et Leander|BL10]
95 5) 156 72 28
111 3 140 104 12
12 ) ) 3072 0 1024 Quadratique
14 69 3 9200 6176 1008
81 3 9200 6176 1008
5) 5) 49152 0 16384 Quadratique
16 | 65 ) 49152 0 16384 Quadratique
273 3 40448 17408 7680 | Bracken et Leander[BL10]
20 ) ) 786432 0 262144 Quadratique
) ) 12582912 0 4194304 Quadratique
24 | 1025 ) 12582912 0 4194304 Quadratique
4161 3 10452992 | 4259840 | 2064384 | Bracken et Leander|BL10]

TABLE 8.2 — Non-permutations puissances x +— z° sur le corps Fy. différentiellement
4-uniformes

L’exposant quadratique

Certaines des non-permutations puissances avec exposant quadratique
t
F:xwz? ™!

sont différentiellement 4-uniformes. Dans la section 8.4.2, nous donnons leur spectre dif-
férentiel.

L’exposant 22¢ + 2F + 1 pour n = 4k

Soit n = 4k, le théoréme 8.2 montre que les fonctions puissances avec exposant 22% +
2% 4+ 1 sont différentiellement 4-uniformes. Dans le cas ol k est pair, ce ne sont pas des
permutations.

n impair

Le résultat suivant montre que dans le cas ol n est impair, il n’existe pas de fonctions
puissances différentiellement 4-uniformes qui ne sont pas des permutations.

Proposition 8.1. Soit F' une fonction puissance sur le corps Fon avec n impair. Si F' est
différentiellement 4-uniformes alors F' est une permutation.

Preuve : Raisonnons par I'absurde. Supposons que F' est différentiellement 4-uniformes et
que F' n’est pas une permutation. D’apreés le lemme 7.4, nous avons que §(0) = pged(d, 2" —
1) — 1. Comme F n’est pas une permutation, §(0) # 0 et comme F est différentiellement
4-uniformes, §(0) < 4. C’est-a-dire §(0) € {2,4}.

Supposons que §(0) = 2. Cela signifie que 3 divise 2" — 1. Ceci n’est pas possible car
n est impair ce qui implique que pged(2? — 1,2" — 1) = 2re«dn) 1 = 1 et donc que

5(0) # 2.
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Supposons que §(0) = 4. Cela signifie que 5 divise 2" — 1. Or pged (22 +1,2" — 1) =1
(voir lemme 7.1). Donc §(0) # 4. On peut donc conclure que §(0) > 6 et que donc qu'il
n’existe pas de non-permutation puissance différentiellement 4-uniforme dans le cas ot n
est impair.

]

La proposition précédente est analogue au résultat bien connu suivant :

Proposition 8.2. Soit F' un fonction puissance de Fon avec n impair. Si F' est APN
alors F est une permutation.

Conjectures

Dans le tableau 8.2, on remarque que si n = 2 mod 4 et 18 < n < 26, il n’existe
pas de non-permutation puissance différentiellement 4-uniforme. Nous faisons, donc, la
conjecture suivante :

Conjecture 8.3. Soit Fon le corps de taille 2. Si n = 2 mod 4 il n’existe pas de non-
permutation puissance différentiellement 4-uniforme pour n > 18.

Dans le cas ot n = 0 mod 4 on fait la conjecture suivante.

Conjecture 8.4. Soit F' une non-permutation puissance sur le corps Fon avec n = 0
mod 4 et n > 12. Si F' est différentiellement 4-uniforme alors d est équivalent soit a un
exposant quadratique soit & l'exposant 2% + 28 + 1 pour n = 4k.

8.2.3 Permutation puissance différentiellement 6-uniformes

Le nombre de permutations puissances différentiellement 6-uniformes est assez impor-
tant en particulier pour les corps Fon avec n < 14.

Dans nos expérimentations, nous avons remarqué que parmi les permutations puis-
sances différentiellement 6-uniformes, une classe d’exposants se dégageait nettement. Cette
classe correspond aux fonctions F(z) = 2% avec d = 2! — 1 pour certaines valeurs de
2 <t <n—1. Dans le tableau 8.3, pour 7 < n < 26, nous avons calculé le nombre de
permutations puissances différentiellement 6-uniformes qui ont un exposant de la forme
d=2"—1.

On peut premiérement remarquer que quand n grandit la plupart des permutations
puissances différentiellement 6-uniformes sont équivalentes aux fonctions F(z) = 2 avec
d=2'—-1pour2<t<n-—1.

Une étude approfondie du spectre des fonctions puissances avec exposant d = 2¢ — 1
est présentée dans la section 8.6.7.

On peut aussi remarquer que pour n = 18 et n = 24 il n’existe pas de permutations
puissances différentiellement 6-uniformes. Ainsi on peut formuler la conjecture suivante.

Conjecture 8.5. Soit Fon le corps a 2" éléments. Pour n = 0 mod 6 et n > 18, 1l
n’existe pas de permutation puissance différentiellement 6-uniforme.
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n | exposant | nombre de fonctions n | exposant | nombre de fonctions
7 7

T e i 17— e v
7 7

e ; e ;
7 7

) e ; 19| e 0
7 7

10 2Au_tri 121 20 2Au;ri (2)
7 7

1 2Au_tri 466 21 zAuzri (2)
7 7

12— ; 2 e 0
7 7

13 2Au;r(1a 120 23 2Au;ri, g
7 7

14 2Au_trzz 224 24 2Au;ri g
7 7

15 e ; 5 e 0
7 7

16 | ie 0 2 e 0

TABLE 8.3 — Monémes de permutation différentiellement 6-uniformeS sur le corps Fon.
Résumé du nombre de fonctions pour un exposant d de la forme particuliére d = 2! — 1
ou avec une autre valeur.
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’ n ‘ s ‘ pged(s, 2™ — 1) ‘ wWo Wo ‘ Wy ‘ We Type ‘
6 7 7 35 27 1 1 2t —1
3 25 5} 172 48 28 8

63 3 156 86 0 14 2t —1
12 7 7 2401 1518 1 176 2t —1
14 75 3 9858 4958 1470 98
105 3 9487 5693 1113 91
15 7 7 19046 12391 0 1331 2t —1
63 3 38116 24746 0 2674 2t —1
16 4915 5} 38988 21024 4828 696
16383 3 38116 24746 0 2674 |2t —1
18 7 7 153167 97929 1 11047 |2t -1
22 255 3 2446578 | 1573013 0 174713 | 2t -1
24 7 7 9788205 | 6289212 1 699798 | 2t — 1
9% 262143 3 39142742 | 25171967 0 2794155 | 2t — 1
16777215 3 39142742 | 25171967 0 2794155 | 2t — 1

TABLE 8.4 — Non-permutations puissances = — x° sur le corps Faon différentiellement
6-uniformes.

8.2.4 Non-permutations puissances différentiellement 6-uniformes

Le tableau 8.4 donne la liste des fonctions puissances F' = z? sur le corps Fon pour

6 < n < 26 qui ne sont pas des permutations, et qui sont différentiellement 6-uniformes.

On peut remarquer qu’a part quelques exceptions pour des corps de petite taille, tous
les exposants cités dans le tableau sont de la forme 2¢ — 1. Ainsi, comme dans le cas des
permutations différentiellement 6-uniformes, on peut faire la conjecture suivante :

Conjecture 8.6. Soit F' = 2 une fonction puissance, non-permutation du corps Fon avec
n > 18. Si F' est différentiellement 6-uniforme alors d est équivalent a un exposant de la
forme 2t — 1.

8.2.5 Récapitulatif

Les résultats de nos expérimentations détaillées dans les sections précédentes nous ont
permis de remarquer que le nombre de fonctions différentiellement 4- ou 6-uniformes est
assez petit. De plus quand la taille de corps grandit tous les monoémes observés ont des
exposants de la forme

~d=2"+1

—d=2"-2t+1
—d=2" 42" 41 avec n = 4m
—d=2t-1

Dans le tableau 8.5 nous résumons les résultats de nos expérimentations.

Les sections suivantes de ce chapitre sont dédiées a I’étude de ces quatre classes de
fonctions. Ainsi dans la section 8.3 nous étudions le spectre différentiel de la fonction
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puissance avec exposant d = 2%™ +2™ 41 avec n = 4m. La section 8.4 est dédiée a I’étude
des fonctions avec exposant quadratique d = 2¢ + 1 ou de Kasami d = 2% — 2t + 1. Et
enfin dans la section 8.6 nous étudions le spectre différentiel des fonctions avec exposant
d=2"—1.
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8.3 Monoémes avec exposant 2% + 2% 4+ 1

Dans |[BL10]|, Carl Bracken et Gregor Leander ont montré que les fonctions F(z) =
222 gy le corps Four sont différentiellement 4-uniformes. Nous avons étudié le spectre
différentiel de ces fonctions. Les résultats présentés dans cette section ont été présentés
dans [BCC10al. Dans cette section nous donnons tout d’abord quelques résultats prélimi-
naires qui relient le spectre différentiel d’une fonction différentiellement 4-uniforme avec
le spectre de Walsh de la fonction booléenne associée.

8.3.1 Lien entre le spectre différentiel d’'une fonction différentiel-
lement 4-uniformes et le spectre de Walsh

Le résultat principal de cette section donne le lien entre le spectre différentiel dune
fonction vectorielle différentiellement 4-uniforme et le spectre de Walsh de la fonction
booléenne associée.

Soit la fonction puissance F'(z) = x4 dans cette section nous notons par f; sa fonction
booléenne associée :

de an — FQ
z — Tr(z?)

Nous rappelons (voir définition 7.13) la définition du moment d’ordre quatre normalisé
pour les fonctions booléennes :

v(f) =27 FUf+eu) - (84)

’U,E]FQTL

(8.3)

Proposition 8.3. [BCCLC06] Soit F(z) une permutation puissance du corps Fan. Soit
fa = Tr(z?%) la fonction booléenne associée a F. Alors

v(f) = 2'#{(2,y) € Fon x Fanlz? + (z + 1) = y" + (y + 1)}
22 4 2"l (2,y) € Fon X Fonlz Ay #y+1eta® + (x+ 1) =y + (y+1)%}
A partir de la proposition précédente, nous pouvons déduire la proposition suivante :

Proposition 8.4. Soit F(z) = 2% une permutation puissance du corps Fon. Soit f4(z) la
fonction booléenne associée. On a

27"w(fa) = Y (" + (x + 1)%).

w€Fgn

Donc §(F) > 272"w(fy).

Preuve : Soit A = 27"v(f,). A partir de la proposition 8.3, nous avons
A= #{(5,9) € Fan x Fafa + (2 + 1) =y + (g + 1)%).

Ce qui implique que

A= Z #{?JEanwd-F(y—l—l)d:bavecb:xd+(x+1)d}

.Z’EFQ'IL

= Y (6" + (z+ 1)) < 2"5(F)

IEE]FQTL



Spectre différentiel des mondmes 169

]

Une conséquence directe de la proposition 8.4 est que le spectre différentiel d’une
permutation puissance différentiellement 4-uniforme est déterminé par le moment d’ordre
quatre normalisé de la fonction booléenne associée.

Lemme 8.4. Soit F(z) = z? une permutation puissance de Fon. Soit f; = Tr(z?) sa
fonction booléenne associée (voir (8.3)). Si §(F) = 4 alors le spectre différentiel de F est
le suivant.

v(fa)

Wy = on+3 22 Wy =2" — 2wy et wy=2""" 4wy (8.5)

Donc, v(f) = 2"k avec 272 < k < 2""1. En particulier, si k = 2"~! alors wy = 0.

Preuve : D’aprés la proposition 8.4 on a

27w(f) = Y 8(b)? = Zm,

beFan
ce qui implique que
27"v(f) = 22602 + 24w4 avec 2wy + 4w, = 2™,

En remplagant wy par (2"~ — 2w,), nous obtenons wy = v(f)/2"+3 — 2"72,
De ce résultat nous déduisons que v(f) = 2"k avec £ > 0. Comme 0 < wy < 2772
nous devons avoir 2”2 < x < 2°~ 1. En particulier wy = 0 si et seulement si k = 27, O

8.3.2 Spectre différentiel

A partir des résultats précédents qui nous donnent le lien entre le spectre différentiel
d’une fonction différentiellement 4-uniforme et le spectre de Walsh de la fonction boo-
léenne associée, nous pouvons extraire le spectre différentiel de la fonction F(x) = ¢ sur
le corps Fan avec d = 22F + 2F + 1.

Théoréme 8.2. Soit F(z) la fonction puissance définie sur le corps Fou par F(x) = x¢

avec d = 22F + 2% 1 1. Le spectre différentiel de cette fonction est le suivant :
wy = 267328 — 1), wy = 2%672(2F 1 1) et wo = 5.2%73 _ 933,

Preuve : Carl Bracken et Gregor Leander ont prouvé que §(F') = 4 (voir théoréme 8.1).
Si on veut utiliser le lemme précédent il suffit de calculer le moment d’ordre quatre
normalisé de la fonction booléenne associée. D’apreés la définition méme du moment d’ordre
quatre normalisé pour calculer celui-ci, il suffit de connaitre le spectre de Walsh. Or Hans
Dobbertin a montré [Dob98| que le spectre de Walsh de la fonction f; = Tr(z?) avec
d=2% 4+ 2% + 1 est le suivant :

F(fa+ pu) nombre u
_22k+1 (2n72 . 23(k71))/3 . 22k72
_22k (2n—1 + 23k—1)/3
0 2n—1 _ 23k—2
22k: <2n—1 + 23k—1)/3
_22k+1 (2n—2 o 23(k—1))/3 + 22]9—2.
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D’aprés (8.4), nous avons

n—1 3(k—1)+1 n 3k
2ny(fd) —  9A(2k+1) (2 _?))( * ) +28k(2 ‘;2 )
B 28k (2k+3 _ 23k+2 LN 23k:>
B 3
9.2n — 3.23
= 28 0.28-3.27) _ oMk (3.2F — 1),

3

De sorte que le moment d’ordre quatre normalisé est v(f;) = 27%(3.2F — 1).
Ainsi en appliquant le lemme 8.4, on obtient

Wy = 23k—3(2k+1 + 2k o 1) o 24k—2 — 23k—3<2k - 1)

et
Wy = 24]671 - 23]4:72(2]6 o 1) — 24]4:72 4 23]672 — 23](:72(2]{ 4 1)

8.4 Fonctions avec exposant quadratique ou de Kasami

En analysant les résultats du tableau 8.1, nous avons remarqué que le spectre diffé-
rentiel des fonctions puissances avec exposant quadratique ou exposant de Kasami dif-
férentiellement 4-uniformes est de la forme suivante {2771 + 2772 0,2"2?}. Ce spectre
différentiel semble particulier car seuls wy et w, sont non-nuls.

Dans cette section nous nous sommes donc intéressés au cas particulier des fonctions
puissances ou d(a,b) prend seulement 2 valeurs, c’est-a-dire, d(a,b) € {0,x} pour tout
(a,b) € F3. x Fan et pour k > 2.

Définition 8.3. Soit F' une fonction puissance définie sur le corps Fon. On dit que F est
différentiellement 2-valuées si 6(b) € {0,0(F)}. C’est-a-dire si pour touti # {0,(F)},
W; = 0.

Exemple 8.2. Les fonctions puissances APN sont différentiellement 2-valuées (6(b) €

{0,2}).

Remarque 8.1. Soit F' une fonction linéaire sur le corps Fon alors F' est différentielle-
ment 2-valuées avec spectre différentiel wy = 2" — 1,  won = 1.

Dans la suite de cette section, on étudie les fonctions différentiellement 2-valuées non-

linéaires.

8.4.1 Fonctions puissances différentiellement 2-valuées

Soit F' une fonction puissance différentiellement 2-valuées. Nous remarquons que dans
ce cas 0(F') est une puissance de 2.

Lemme 8.5. Soit F' une fonction puissance du corps Fon Supposons que F' est différen-
tiellement 2-valuées. Alors il existe s (1 < s <n) telle que §(F') = 2°.
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Preuve : Cette propriété est simple & montrer dans le cas ou F' est une fonction puissance.
En effet, d’aprés le lemme 8.1, nous avons

{wo—l—w,.@:Q”

Kw,, = 2".

Donc & divise 2". O

Proposition 8.5. Soit F(x) = z% une fonction puissance du corps Fan tel que 6(F) = 2°.
Soit fq(z) = Tr(x?) la fonction booléenne associée. Si F est différenticllement 2-valuées
alors v(fy) = 2%7+s.

Preuve : D’apreés la proposition 8.4 nous avons

v(f) = 2 o+ (z+ 1))

= 2".2".2°%
O

A partir de ce résultat, nous déduisons que certains mondmes, pour lesquels la fonction
booléenne associée est plateau, (voir définition 7.12) sont différentiellement 2-valués.

Proposition 8.6. Soit d un entier tel que pged(d,2" — 1) = 1. Soit F(x) = 2% une

permutation et fq(x) = Tr(z?). Supposons que fy est une fonction plateau avec spectre de
Walsh {0, 4£200/2) - Alors §(F) > 28 avec égalité si et seulement si 5(b) € {0,2%} pour
tout b. De plus, si tout §(b) non-nul est supérieur ou égal a 2% alors 5(b) € {0,2*} pour
tout b € Fon.

Preuve : Puisque f; est plateau a partir de la définition 7.12 et du théoréme 7.1 nous
avons v(fy) = 2?2""*. En utilisant la proposition 8.4, nous obtenons

2 = 3" 5 (a4 (4 1Y)

zE€Fon

Donc §(F) > 2F et I'égalité est vraie si et seulement si ¢ (27 + (z 4+ 1)%) est égal a 2"
pour tout x. D’autre part, il est clairement impossible d’avoir §(b) > 2%, pour tout §(b)
non-nul, sauf si §(b) € {0, 2%} pour tout b. O

A Taide de ces résultats préliminaires nous pouvons déduire le spectre différentiel des
fonctions puissances avec exposant quadratique ou exposant de Kasami.

8.4.2 L’exposant quadratique

Dans cette section, nous considérons le cas particulier des fonctions Qy(x) = 221 avec
1 <t<n-—1surlecorps Fon. La valeur d = 2" + 1 est appelée exposant quadratique.
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Théoréme 8.3. Soit Q; une fonction du corps Fon définie par Qu(x) = x>+,

Soit s = pged(t, n).Considérons [’équation

Qi(x) + Qu(x +a) =b. (8.6)

pour tout a,b dans Faon. Si (8.6) a au moins une solution x, alors ’ensemble des solutions
est © + alFys. C’est-a-dire que les fonctions puissances avec exposant quadratique sont
différentiellement 2-valuées avec 6(Qy) = 2° et §(b) € {0,2°}.

Preuve : Supposons que nous avons une paire (a,b) telle que ’équation (8.6) a au moins
une solution z. Alors nous avons

2y (x + a)2t+1 —2¥a+ad¥z+a¥ " =0 (8.7)

L’équation 22 a+a? z4+a2 t14+b = 0 est affine sur le corps Fyn ; donc le nombre de solutions
de 'équation (8.6) est soit égal a 0 soit égal au nombre de solutions de ¥ a+ax (partie
linéaire de 1’équation). Or z2'a + a*z = ax(2? ' + a®~1). Donc lespace des solutions
de cette équation linéaire est alFos et nous concluons que 1'équation (8.6) a pour solution
I'ensemble z + alFys. O

Grace a ce résultat, nous déduisons le spectre différentiel des fonctions Q).

Corollaire 8.1. Soit Q); une fonction puissance avec exposant quadratique, définie dans
le théoréeme 8.3. Le spectre différentiel de (Q; est

wp=2"—=2""" et wos =2"" avec s = pged(n,t).

8.4.3 L’exposant de Kasami

Dans cette section, nous nous intéressons aux fonctions puissances ayant un exposant
de Kasami. Nous notons par K; ces fonctions :

Kt . ]F2n — an
r o ¥ P on2 <t <n/2

La quantité 22 — 2¢ + 1 est appelée exposant de Kasami. Dans un premier temps nous
rappelons le spectre de Walsh d’une fonction avec exposant de Kasami.

Proposition 8.7. [Kas71]  Soit la fonction K; avec exposant de Kasami. Soit f la
fonction booléenne associée : f(x) = Tr(K(x)). Soit s = pged(n,t) = pged(n,2t). Le
spectre de Walsh de f est

{0712(114-8)/2}‘

Si I'on veut utiliser la proposition 8.6, afin de prouver que les monoémes avec exposant
de Kasami sont différentiellement 2-valués nous devons montrer que Vb si (b) # 0 alors
§(b) > 2k. Pour cela nous commencons par rappeler un résultat qui relie 'exposant de
Kasami a 'exposant quadratique.

Lemme 8.6. Soit t un entier positif, nous avons
2% 1= (2" +1)(2* — 2" +1). (8.8)

De plus, si 3t > n, nous pouvons remarquer que :



Spectre différentiel des mondmes 173

- 813t =n+k avec k > 0, alors la fonction Q3 correspond a la fonction Q.
- Si1 3t =n, alors K; est dans la classe de inverse de Q).

Preuve :
— L’équation (8.8) se démontre facilement en développant le deuxiéme terme de 1'éga-
lité.
— Dans le cas ot 3t = n + k nous avons 2% +1=2"2 + 1 =2+ 1 mod (2" — 1).
— Dans le cas ou 3t = n nous avons (2% — 2! +1)(2'+1)=2"+1=2 mod (2" —1).
Donc (2% — 2!+ 1)(28 +1)(2"7') =1 mod (2" —1).
[

Dans la section précédente nous avons montré que la fonction @); est différentiellement
2-valuée. A 'aide du lemme précédent, nous montrons que les fonctions K; sont différen-
tiellement 2-valuées.

Dans un premier temps nous rappelons un résultat bien connu sur les fonctions avec
exposant de Kasami K.

Lemme 8.7. [Kas71, JW93] La fonction K; : Fon — Fon est APN si est seulement si
pged(t,n) = 1.

Par la suite, nous nous concentrons donc sur les valeurs de t telles que s = pged(t,n) >
1. De plus nous supposons que n/pged(t,n) est impair. Ceci implique que pour tout r
impair, pged (27 4 1,2" — 1) = 1, c’est-a-dire que d = 2% — 2! + 1 est premier avec 2" — 1
et que K est une permutation du corps Fan.

Théoréme 8.4. Soit K; : x — 222+ une fonction définie sur Fon. Supposons que
n # 3t et s = pged(n,t) avec n/s impair. Alors 6(b) € {0,2%} pour tout b et donc
d(Ky) = 2°. Plus précisément, si l'équation Ki(x) + Kiy(x + 1) = b a une solution x
l’ensemble des solutions est

(y + a]ng)Qt+1 ou T = y2t+1, r+1=(y+ a)QtH.
Preuve : Soit b € Fan tel que ’équation suivante
T ()T o (8.9)
a au moins une solution z. Pour les valeurs de ¢ définies dans le théoréme, on a pged (2! +

1,2" — 1) = 1 (voir équation (7.2)). En conséquence, il existe y et z tels que 2 = y**+1 et
x4+ 1= 2" et il existe a tel que z =y + a. Avec ces notations, ’équation (8.9) devient

g 4 (y+ )P =, (8.10)

ou 23 +1 est calculé modulo (2" — 1) (c’est-a-dire que si 3t = n+£ avec £ > 1 alors 23t 41
est équivalent & 2¢ + 1). Soit k& défini par k = pged(3t,n). Comme s = pged(t,n) et 3 est
premier, nous avons k = s ou k = 3s. A partir du théoréme 8.3, nous déduisons que si
'équation (8.10) a une solution y alors I’ensemble des solutions est y + aFqs.
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A partir de maintenant, nous voulons prouver que pour tout 8 € Fos, ’élément (y +

Y
Ba)?+1 est solution de I'équation (8.9). Soit u = (y 4+ Ba)* ! et v = (y + (B + 1)a)* *.
Nous avons

ut+v = (y+ Ba)2ta + (y + ﬂa)aQt + a2 1

= ya® +y%a+ >
t t
_ y2+1+(y+a)2+1
= z+(x+1)=1.
Alors I'égalité
W22 + (u+ 1)22’572%1 — 2 + 221

= (y+Ba)” 4 (y+ (B+1Da)? 1 =0,

prouve que ’équation (8.10) a au moins 2° solutions. Nous en déduisons que §(b) > 2° pour
tout d(b) non-nul. D’aprés la proposition 8.7, la fonction booléenne z — Tr(z2” =2 +1) est
plateau avec spectre de Walsh {0, £2("+%)/2} En utilisant la proposition 8.6 nous pouvons
conclure que 6(b) € {0,2°} pour tout b. O

Remarque 8.2. La condition n/s impair donnée dans le théoréme précédent est néces-
saire. En effet il existe un certain nombre de fonctions K; qui ne sont pas différentiellement
2-valuées. Nous donnons ici 'exzemple du spectre différentiel de la fonction Ko(z) = '3
dans le corps fini Fa2 :

Wy = 2389, Wy = 1638, Wy = 1, et W12 = 68.

8.4.4 Monoémes avec exposant 27! + 271 _ 1 sur le corps Foem

En 2009, Yassir Nawaz, Kishan Chand Gupta et Guang Gong dans [NGGO09| ont
conjecturé que les fonctions puissances F(x) = 2221 gtajent différentiellement
4-uniformes. Or, nous avons remarqué que ces fonctions étaient dans la classe cycloto-
mique d'une fonction avec exposant de Kasami. Dans cette section nous donnons donc
une preuve que les fonctions F(z) = 22" 2" '~ sont différentiellement 4-uniformes et
différentiellement 2-valuées.

Proposition 8.8. Soit n = 2m, avec m impair, et d = 2™t + 2=t — 1. La fonction
x — % définie sur le corps Fon est une permutation différentiellement 4-uniforme,et
différentiellement 2-valuée.

Preuve : Pour m > 3 I'exposant d = 2™+ + 2™~ — 1 est dans la classe cyclotomique d'un
exposant de Kasami :

mel . d — 22m 4 22m72 . 2m71 mOd (22m o 1)
22(m—1) o 2m—1 + 1.

Donc d est dans la classe cyclotomique de la fonction K; avec t = m — 1. Nous avons
2m = 3(m — 1) si et seulement si m = 3.
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Soit k tel que m = 2k + 1 nous avons :

pged(m — 1,2m) = pged(2k, 4k + 2) = 2pged(k, 2k + 1) = 2.

D’aprés le théoréme 8.4, la fonction F(z) = x¢ est différentiellement 4-uniforme. Et pour
tout b, 6(b) € {0,4}.

Dans le cas ot m = 3, d = 19 est dans la classe de 'exposant de Kasami 13. Dans ce
cas le théoréme ne peut pas s’appliquer directement. Mais d est 'inverse de I'exposant
quadratique d = 5 et nous pouvons aussi prouver que la fonction est différentiellement
4-uniforme, 2-valuées. O

Remarque 8.3. Comme il est dit dans [article [NGG09] la fonction puissance avec
exposant 2mT1 + 2m=1 1 est hautement non-linéaire. En dehors du cas ott n = 6 cet
exposant est le représentant de la classe cyclotomique.

Remarque 8.4. Dans le cas ot m est pair la fonction F(x) = 22" 2" =1 est une
non-permutation APN sur le corps Fozm car elle est dans la classe de K,y et pged(m —
1,2m) = 1.

8.4.5 Quelques remarques sur les autres exposants : Quelles sont
les fonctions différentiellement 2-valuées?

Dans le tableau 8.1, nous donnons ’ensemble des permutations puissances différentiel-
lement 4-uniformes. Nous remarquons dans ce tableau que les seules fonctions qui sont
différentiellement 4-uniformes et différentiellement 2-valuées sont équivalentes aux fonc-
tions avec exposant quadratique ou de Kasami. La méme remarque peut étre faite dans
le cas général ou les fonctions sont différentiellement 2°-uniformes. Nous proposons donc
la conjecture suivante :

Conjecture 8.7. Toute fonction puissance x® différentiellement 2-valuée est telle que d
est équivalent & un exposant quadratique ou un exposant de Kasami*.

Dans la seconde partie de cette section, nous montrons que pour certaines tailles de
corps finis il n’existe pas de mondmes différentiellement 2-valués. Ces résultats renforcent
la conjecture précédente.

Nous pouvons aussi remarquer que cette conjecture illustre le fait que pour les permu-
tations puissances, il y a une décorrélation entre le spectre différentiel et le spectre de
Walsh de la fonction booléenne associée. C’est-a-dire que deux fonctions peuvent avoir le
méme spectre de Walsh et un spectre différentiel différent.

4. Equivalent au sens défini dans le lemme 8.3.
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Etude des monémes avec exposant d = 2" + 3 sur Fym avec m impair

Dans cette partie nous allons illustrer ce phénomeéne en montrant qu’une autre famille
de fonction plateau n’est pas différentiellement 2-valuée. Plus précisément, nous donnons
ici le spectre différentiel des fonctions puissances étudiées par Thomas Cusick et Hans

Dobbertin [CD96].

Théoréme 8.5. [CDI6| Soit n = 2m un entier avec m impair. Soit d un entier pouvant
prendre les valeurs suivantes :

d=2m 2(m+1)/2 +1 ;
d=2"+3.

Soit fy la fonction booléenne définie par fq(z) = Tr(z?) sur le corps Fon. Alors f; est
n+2

plateau avec spectre de Walsh {0,£272 }.
Remarque 8.5. Les fonctions définies dans le théoréme précédent sont des permutations.

Nous rappelons que dans le cas ou n est pair, une fonction puissance APN sur Fy» ne
peut pas étre bijective. Ce qui signifie que les fonctions F' avec d défini comme dans le
théoréme précédent ne peuvent pas étre APN. Or comme la fonction booléenne associée
a la fonction F' est plateau, la proposition 8.6 implique que la fonction F est :

— soit différentiellement 4-uniforme et différentiellement 2-valuée ;

— soit §(F") > 6.

Le tableau 8.6 retranscrit les résultats des calculs effectués pour n =2 mod 4et 10 < n <
30. Les résultats montrent que les deux fonctions puissances avec exposant défini comme
dans le théoréme 8.5 sont différentiellement 8-uniformes. De plus ces deux fonctions ont
le méme spectre différentiel.

TABLE 8.6 — Spectre différentiel des permutations puissances étudiées par Cusick et Dob-
bertin : Fy : z — 2 sur le corps Fon avec d = 2™ + 20m+1/2 1 ] et d = 27+ 4+ 3, pour
n = 2m, avec m impair.

’ n \ s inverse wWo Wa Wi We ws
10 41 25 698 200 76 40 10
67 107 698 200 76 40 10
14 145 113 11504 2240 2080 448 112
259 1613 11504 2240 2080 448 112
18 545 481 182496 40320 29248 8064 2016
1027 26291 182496 40320 29248 8064 2016
99 2113 1985 2909184 675840 440320 135168 33792
4099 419021 2909184 675840 440320 135168 33792
9% 8321 8065 46744064 | 10250240 7552000 2050048 | 512512
16387 6712115 46744064 | 10250240 7552000 2050048 | 512512
30 33025 32513 746098688 | 169164800 | 116187136 | 33832960 | 8458240
65539 | 1073676229 | 746098688 | 169164800 | 116187136 | 33832960 | 8458240

A partir de ces résultats nous proposons la conjecture suivante.
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Conjecture 8.8. Soit n = 2m avec m impair. Soit F : x — x% une permutation puissance
définie pour les valeurs suivantes de d :

—d=92m 1 2(m+1)/2 41 ;

—d=2""4+3.
Alors, pour ces valeurs de d, F est différentiellement 8-uniformes et toutes les valeurs
0,2,4,6 et 8 apparaissent dans le spectre différentiel.

Non-existence de fonctions différentiellement 2-valuées pour certaines tailles
de corps

Dans la conjecture 8.7, nous avons supposé que seules les fonctions puissances avec
exposant quadratique ou de Kasami étaient différentiellement 2-valuées (& équivalence
prés). La validité de cette conjecture est renforcée par les résultats suivants qui montrent
que pour certaines valeurs de n il y a un certain nombre d’exposants d pour lesquels les
fonctions puissances correspondantes ne peuvent pas étre différentiellement 2-valuées.

Afin de prouver que pour certaines tailles de corps et pour certaines uniformités dif-
férentielles il n’existe pas de fonctions puissances différentiellement 2-valuées, nous avons
besoin du lemme générique suivant.

Lemme 8.8. Soit p un nombre premier impair, pour tout w, nous avons 2" =2 mod p.

Preuve : Soit ¢ un entier. Comme pour p impair pgcd(21”H ,p) = 1 d’aprés le petit théoréme
de Fermat nous avons : )
i—-1\P—
<2p 1) = 1 mod p.

\p-1 o
Or (27’171)1) =277 donc

27 = 2" mod p (8.11)
Pour ¢ = 1, nous avons 27 = 2 mod p. Par récurrence sur 'équation (8.11), on en déduit
que , pour tout w,
2P" = 2 mod p.

O

Proposition 8.9. Soient p un nombre premier et n = p* une puissance de p pour une
valeur particuliére de w > 1. Soit F : x — x¢ une permutation puissance non-linéaire sur
le corps Fon différenticllement 2-valuée avec 6(F) = 2°. Alors, p > 2 et p divise (2571 —1).
Et l'on a notamment,

— pour tout p, 0(F) #4;

— pour tout p # 3, §(F)

— pour tout p £ 7, 6(F)
Ainsi sip # 3,7, on a 6(F)

Preuve : Nous définissons l'ensemble £ = {b € Fan, §(b) # 0}. Soit F une fonction
différentiellement 2-valuée avec 6(F) = 2°. Comme

> o) =2,

belFon

8 :
1

SOy -

£
4
> 2
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on a #& = 2"%. Mais, pour tout b, §(b) = §(b*). En conséquence, I'ensemble £ correspond
a une union de classes cyclotomiques modulo (2" —1). De plus b = 1 est inclus dans I'espace
& puisque §(1) > 2.

Quand n = p», la taille des classes cyclotomiques est divisible par p excepté pour la
classe de 1 et de 0. On en déduit donc qu’il existe A tel que #& =1+ pA (car 0 ¢ £). Ce
résultat implique que p\ = 2"° — 1.

Nous pouvons remarquer que A > 1 puisque si A = 0 on a §(F) = 2". Ceci est
impossible car nous avons supposé que F' était non-linéaire. Nous obtenons donc

2P"=5 _ 1 =0 mod p. (8.12)

Ceci implique donc que p > 2. D’aprés le lemme 8.8 nous avons alors que 2P = 2°
2 mod p, c¢’est-a-dire que p divise 257! — 1.

l

Remarque 8.6. La proposition précédente dit que sin est une puissance de 2, il n’existe
pas de mondéme de permutation non-linéaire différentiellement 2-valué.

Proposition 8.10. Soient p > 2 un nombre premier, w un entier positif et n = 2p".
Soit F : x — x% une permutation puissance non-linéaire du corps Fon différentiellement
2-valuée. Soit s tel que 0(F) = 2°. Ces permutations existent si et seulement si p divise
soit (272 — 1) soit (32572 —1). Plus précisément, on a que

— pour tout p# 5, 6(F) #8;

— pour tout p ¢ {3,11}, §(F) # 16;

— pour tout p & {7,23}, §(F) # 32;

— pour tout p € {3,5,47}, 0(F) # 64.

Preuve : La preuve est similaire a celle de la proposition précédente. Ici comme n = 2p¥, en
plus des classes d’ordre divisibles par 1 et p on a la classe d’ordre 2. Soit b’ un représentant
de cette classe. Deux cas se présentent alors : soit 6(b') = 0 soit o(b') = 2°.

Dans le cas ou §(b') = 2° avec les notations de la preuve précédente on a #& = 14+2+4pA.
Alors 2%" = 3 -2° mod p. De plus par le lemme 8.8 22" = 4 mod p donc p divise
3-2572 1.

Dans le cas ou §(b') = 0, avec les notations de la preuve précédente on a #E = 1+ pA.
Alors 22" = 2° mod p. De plus par le lemme 8.8 2*° =4 mod p donc p divise 2572 — 1.

m

8.5 Résumé sur les fonctions différentiellement 4-uniformes

Le tableau 8.7 résume les spectres différentiels des familles infinies de monémes diffé-
rentiellement 4-uniformes.
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Nom Exposant Conditions Spectre
wo wo Wy
_ d(t,n) =2 _ _
2t 1 pgc ’ on _ gn 2 on 2
quadratique + pecd(2t, 1) = 2 0
n=2 mod 4
Kasami 22t 2t 11 n # 3t 2n — gn—2 0 2n—2
pged(t,n) = 2
[BL10] 22k 2k 11 n =4k 5.24k=3 _ 93k=3 | 93k=2(ok 1 1) | 23k=3(2F 1)
Inverse on—l_q n pair DA | on—1 _ 9 1

TABLE 8.7 — Spectre différentiel des monoémes différentiellement 4-uniformes

Dans la section suivante nous continuons, d’explorer les mondémes avec petite unifor-
mité différentielle. Dans nos simulations nous avons remarqué que la plupart des fonctions
différentiellement 6-uniformes ont un exposant de la forme d = 2° — 1. Parmi les fonctions
avec exposant de cette forme on retrouve naturellement la fonction inverse (qui est APN
si n est impair) et localement-APN sinon. Dans cette famille d’exposant on retrouve aussi
la fonction quadratique x +— 2® qui est APN.

. .. ., A t_
Nous donnons donc maintenant des propriétés générales des monoémes z — z? ~1. En
outre nous montrons qu’un certain nombre de ces fonctions ont une petite uniformité
différentielle.

8.6 Les exposants 2/ — 1

Dans les sections 8.2.3 et 8.2.4 nous avons vu que pour des tailles de corps suffisamment
grandes, la plupart des fonctions puissances différentiellement 6-uniformes ont un exposant
équivalent & un exposant de la forme 2 — 1

La seconde partie de ma thése étant dédiée a I’étude du spectre différentiel des mo-
nomes avec petite uniformité différentielle, nous nous sommes donc intéressés aux fonc-

tions F(z) = 22~'. Les résultats présentés dans cette section ont été publiés dans
[BCC11].

Soit Fan le corps de taille 2. Soit 2 < t < n — 1; dans la suite de cette section nous
notons par G; les fonctions
! 2:5 N 36;_1 = (8.13)

Dans cette section nous étudions les fonctions Gy pour tout t. Pourtant nous remarquons
que Gy est une permutation si et seulement si pged(2' — 1,2" — 1) = 1, c’est-a-dire si et
seulement si pged(t,n) = 1.

8.6.1 Lien avec les polynémes linéaires

Dans un premier temps nous donnons quelques propriétés générales sur la famille des
fonctions G;.
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Théoréme 8.6. Soit Gy(z) = x* ' la fonction puissance définie par (8.13). Nous avons,

(x2t—1 + :17)2

(8.14)

Donc, pour tout b € Fon \{1}, 0(b) est égal au nombre de racines dans Fon \Fa du polynome
linéarre

Py(z) = 2% +ba® + (b+ 1)z .
De plus

5(0) — 2pgcd(t,n)_2’
(5(1) — 2pgcd(t—1,n)‘

Et pour tout b € Fon \ Fy, il existe r avec 1 <r < min(t,n —t + 1) tel que
i) = 2" —2.

Preuve : Dans un premier temps nous regardons le cas particulier ot b = 1. On s’intéresse
alors aux racines du polynéme 1+ 2 ~' + (1 + z)?~'. En multipliant ce polynéme par
22 + 2 on obtient le polynéme linéarisé suivant :

(z+2)A+2¥ "+ 1+ H=z+22+2¥ + 25 4 2(1 4+ 2)% =22+ 27,

On en déduit donc que 6(1) correspond au nombre de racines du polynéme Pj(z) =
(227" 4 2)2.

Maintenant considérons le cas ot b # 1. Alors z € Fqn \[Fy est solution de (z+1)%+24 =
b si et seulement si il est solution de (22" +2)% = (b+1)x(z+1). De maniére équivalente
12 \Fy est solution de (z + 1)? + 2¢ = b si et seulement si c’est une racine du polynome
linéarisé

Py(z) = z¥ + ba? + (b+ 1)z.

Les racines z = 0 et x = 1 de (8.14) sont comptées dans 6(1). Or B,(0) = Py(1) = 0 pour
tout b. Nous obtenons donc que pour b # 1, le nombre de racines de P, dans le corps Fan
est égal & (0(b)+2). Comme l'ensemble des racines d'un polyndme linéarisé est un espace
vectoriel, nous déduisons que

Vb e Fon \ {1}, 0(b) =2" —2 avecr < t.

De plus, en élevant P, a la puissance 27!, nous obtenons que toute racine de P, est aussi
une racine de b*" 22" 4+ (0¥ +1)2*"" 4 2. Ce qui implique que §(b) = 2" — 2 avec
r < n —t+ 1. Dans le cas particulier ou b = 0, Py(z) = ¥ + z, ce qui implique que
§(0) = 2pscdtn) _ 9, O

Remarque 8.7. La fonction inverse x — 12" 2 est dans la méme classe cyclotomique que
la fonction G,,_1 : x g2 définie sur le corps Fon. Ainsi en appliquant le théoréme
précédent on retrouve la formule bien connue du spectre différentiel de la fonction inverse
(voir lemme 8.2). En effet si on applique le théoréme précédent dans le cas ot =n — 1,
cela nous donne 6(0) = 0 et §(1) = 2 quand n est impair et §(1) = 4 quand n est pair.
Pour tout b ¢ Fy, §(b) € {0,2}.

On obtient donc
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— sin est impair, 6(Gp_1) =2 et wy = 2" wy =271
— sin est pair, §(Gp 1) =4 et wg =2""1 4+ 1, wo =2""1 -2 wy=1.

L’application du théoréme 8.6 nous permet de faire la remarque suivante qui nous dit
que §(Gy) prend un nombre limité de valeurs.

Remarque 8.8. Soit Gy(x) = 2* 1 une fonction puissance définie par (8.13). Alors, il

existe 2 <1 < n tel que G(x) est différentiellement (2" —2)-uniforme ou différentiellement
2"-uniforme. De plus, si 6(Gy) = 2", alors cette valeur apparait une seule fois dans le
spectre différentiel, c’est-a-dire, wer = 1. Cette valeur correspond a §(1), ce qui implique,
d’apres le théoreme, que §(G,) = 2recdlt=1n),

8.6.2 D’autres formulations équivalentes

Le but de cette section est d’étudier le spectre différentiel des fonctions z — z2' L.

Dans le théoréme 8.6, nous avons montré qu’étudier le spectre différentiel de cette famille
de fonctions est équivalent & trouver les racines d’un polynoéme linéaire. Dans cette section
nous donnons d’autres méthodes équivalentes pour résoudre ce probléme.

Dans un premier temps nous allons voir le lien entre le nombre de racines de P, :
Pyp=a" +bx?+ (b+1)z.
et celui de son application adjointe. Ce lien nous permet dans la section 8.6.3 d’établir un

lien entre le spectre différentiel de G; et celui de G, 11_4.

Dans un second temps nous remarquons que trouver les racines du polynéome P, est
équivalent a résoudre un systéme de deux équations linéaires de degré plus petit que celui
de P,;. Ce lien nous permet en particulier dans la section 8.6.5 de déterminer le spectre
différentiel de la fonction G3(r) = 7.

Nous commencons par introduire quelques notations que nous allons utiliser dans cette
partie.
Pour tout sous espace E de Fon (o011 le corps Fan est identifié a I'espace vectoriel F5),
nous définissons le dual de E de la maniére suivante :

Et={z|Tr(zy)=0 VycFE}

Nous notons par Im(F') 'espace image d'une fonction F' et par Ker(F') le noyau d’une
I’application linéaire F'.
Lien avec le nombre de racines de ’application adjointe
Lemme 8.9. Soitt,s > 2 et s =n —t+ 1. Considérons l’application linéaire

Poy(x) = 2¥ +ba® + (b4 1)z, b€ Fan.
Alors le dual de Tm(P;p) est lensemble des a satisfaisant Pfy(a) =0 ou

So(@) =27 + (b+1)%2% + ba.

Dans la littérature, Py, est appelé application adjointe de P .
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Preuve : Par définition, Zm(P, ;)" consiste en 'ensemble des « tels que Tr(a P, ;(z)) =0
pour tout x € Fon. Nous avons

Tr(aP,,(z)) = Tr(az?)+ Tr(baz®) + Tr(alb+ 1)z)
= Tr(a® "'2?) + Tr(baz?) + Tr(a?(b + 1)%2?)
= Tr(2*(a® +a?(b+1)* + ab)).

Donc, a appartient au dual de 'image de P, si et seulement si o +a?(b+ 1) +ab = 0,
c’est-a-dire, si et seulement si « est une racine de P/, O

Systéme d’équations linéaires
Le théoréme suivant nous donne une information nouvelle nous permettant de trouver

une borne supérieure sur I'uniformité différentielle des fonctions G;.

Théoréme 8.7. Soit t,s > 2 et s =n —t+ 1. Soit Py et P}y, comme défini dans le
lemme 8.9. Alors

dim Ker(P,,) = dim Ker(FPy).

Donc, la dimension de Ker(P,y) peut étre déterminée en résolvant I’équation
2 + b+ 1) +br =0, ous=n—t+1.

Preuve : Soit k la dimension de ’espace image de P, . Il est bien connu que n = k +
dim Ker(P;;). D’autre part, le lemme 8.9 dit que a € Zm(P,;)* est dans le dual de
Iimage de P si et seulement si P () = 0. Nous déduisons que

n — k= dim Ker(P/,) = dim Ker(P,).

]

L est

, N . . , . cr, . . t__
Le théoréme suivant nous dit qu’étudier le spectre différentiel des fonctions z — 22
équivalent a la résolution d’un systéme d’équations linéaires.

Théoréme 8.8. Pour tout t > 2, nous définissons ’équation suivante :
Ey : 2¥ 402+ (b+1)2 =0, b & F.

Soit Ny le nombre de solutions de Ej, dans Fan \ Fy. Soit My le nombre de solutions dans
F3. du systeme
{ 2 y(b+1) = 0
Tr(y) = 0

Alors Ny, = 2 x M,,.

Preuve : Remarquons que
2 b+ (b+ Dz = 2% + 1+ b+ 1)

= (P40 + (@40 o+ @ a)+ b +2)
= T P T P y(b+ 1), avec y = 22 4.
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Nous nous intéressons au nombre de solutions de Ej, qui ne sont pas dans Fy. Ce probléme
est équivalent au calcul du nombre de solutions non-nulles y de

v P b+ 1) =0

pour lesquelles 1'équation 22 + 2 +y = 0 a 2 solutions. Cette derniére condition est vraie
si et seulement si Tr(y) = 0. On a alors 2 solutions x; et x5 = x; + 1 qui vérifient
?+r =y [l

Remarque 8.9. Dans le théoreme 8.8, la quantité b peut prendre toutes les valeurs du
corps Fon. Or dans le théoreme 8.6, P, est défini pour b # 1. Nous faisons ici le lien entre
Mb et 5<b)

Pour tout b # 1, nous avons Ny = §(b). Si b= 1, Pi(x) = 2% + 22 et le nombre de
racines de Py dans Fon est égal a

Ny + 2 = grecdt=1n) — 5(7),

Donc My =6(1)/2 — 1.

8.6.3 Une propriété de symétrie

Soit G(z) la fonction définie par Gy(z) = %! sur le corps Fan. Dans cette partie,
nous établissons que les spectres différentiels de G; et G4, o t, s > 2 et s =n —1t + 1,
sont reliés entre eux.

Le résultat principal de cette section est le théoréme suivant. La preuve de ce théoréme
est longue et trés technique. Cette preuve est détaillée dans la section 8.6.4.

Théoréme 8.9. Pour tout u avec 2 <y < n — 1, nous définissons
S, ={b| dimKer(P,p) =i} avec 1 <i<p.
Alors pour tout s,t > 2 avect =n — s+ 1 et pour tout i, nous avons #S° = #S..

Le théoréme 8.9 n’est pas trés explicite en lui-méme. Dans le corollaire suivant nous
donnons une version plus explicite de ce théoréme. C’est-a-dire nous donnons la méthode
pour calculer le spectre différentiel de GG,,_;+1 a partir de celui de G;.

Corollaire 8.2. Nous notons par 6,(b), b € Faon, la quantité 6(b) correspondante a la
fonction G, : x — 27 (u=s ou pu =t). Alors, pour tout s,t > 2 avect =n —s+1,
nous avons

5,(0) = 6i(1) — 2 = el _ g
5,(1) = 6,(0) +2 = recdlen)

et nous avons l’égalité entre les deus “multi-ensembles”™ suivants :

(5,(0),b € Fon \ By} = {5,(b),b € Fy \ F . (8.15)

5. Le terme “multi-ensemble” correspond & un ensemble ol les répétitions sont possibles
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De plus Gy et G4 ont le méme spectre différentiel si et seulement si
pged(s,n) = pged(t,n) = 16.
Dans tous les cas, G, est localement-APNT si et seulement si Gy est localement-APN.
Preuve : Puisque s =n —t + 1, nous avons
pged(s,n) = pged(t — 1,n) et pged(s — 1, n) = pged(t, n).
Alors, en appliquant le théoréme 8.6, nous obtenons

§,(0) = 2pecdsm) 9 — gpecd(t=ln) _ 9 — §,(1) — 2
55(]—) — 2pgcd(sfl,n) — 2pgcd(t,n) — 515(0) 4 27

c’est-a-dire
{dim Ker(P.p),dim Ker(P; 1)} = {dim Ker(Ps,),dim Ker(Ps1)} .
A partir du théoréme 8.9, nous déduisons que
#{beFp \Fy | dimKer(Py) =i } =#{ b€ Fon \Fy | dim Ker(P,) =1 } .
L’égalité (8.15) est alors une conséquence directe du théoréme 8.6, puisque
{6,(b),b € Fou \ Fy} = {27 — 2 k(D) = dim Ker(P,,), b € Fon\Fy} .

Remarquons que 65(0) = ;(0) si et seulement si d5(1) = 6,(1). Nous déduisons alors que
G et G5 ont le méme spectre différentiel si et seulement si d5(0) = 9;(0). Or

05(0) = 2PEedlem) 9 et §,(0) = 2pecdtn) 9,

La condition précédente est vérifiée si et seulement si pged(t,n) = pged(s,n) = 1. Cette
condition n’est jamais vérifiée quand n est pair car dans ce cas soit s soit t est pair,
c’est-a~dire que 2 divise pged(t,n) ou pged(s,n).

]

Corollaire 8.3. Soit n et t < n tels que Gy : x — 22! est APN sur le corps Fon. Soit
s=n—t+ 1. Alors,
— sin est impair, Gy et G, sont des permutations APN ;
— sin est pair, Gy n’est pas une permutation et G est une permutation différentielle-
ment 4-uniformes, localement-APN avec spectre différentiel :

wi=1 wy=2"1—-2 et wy=2"1+1.

6. Ce cas ne peut apparaitre que pour n impair
7. Une fonction est localement-APN si Vb # 0,1 on a 0(b) < 2(voir définition 8.2)
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Preuve : Supposons G; est APN| alors Vb € Fan, nous avons ;(b) € {0,2}. En particulier
nous avons (1) < 2 et §,(0) < 2. En utilisant les résultats du théoréme 8.6, nous
déduisons donc que pged(n,t — 1) =1 et pged(n,t) € {1,2}.

Si n est impair, nous avons pged(n,t) = 1 c’est-a-dire que &;(0) = 0. En utilisant le
corollaire 8.2, nous obtenons : §,(0) = 0, §,(1) = 2 et §,(b) € {0,2} pour tout b € Fon.

Nous venons de montrer que si GG; est APN alors G; et G sont des permutations APN.

Dans le cas ou n est pair, il est bien connu qu’une fonction puissance APN ne peut pas
étre une permutation. Comme G; est APN d’aprés le théoréme 8.6, nous avons 6,(0) = 2
et pged(n, t) = 2. D’aprés le corollaire 8.2, nous en déduisons que d5(0) = 0 (car §;(1) # 0
implique que &;(1) = 2) et d5(1) = 4. Le calcul du spectre différentiel complet de G est
une conséquence directe du corollaire 8.2. O

Exemple 8.3. Dans cet exemple nous illustrons un lien entre la fonction inverse et la
fonction avec exposant quadratique x — x>.

Pour t = 2, nous avons Gy(x) = x3. Il est bien connu que cette fonction est APN
quelle que soit la parité de n(c’est une permutation si et seulement si n est impair). Soit
s=n—t+1=n—1;o0n a que Gy est dans la classe de la fonction inverse. C’est-a-dire
que le spectre différentiel de G4 est le méme que celui de la fonction inverse. En appliquant
le corollaire 8.3 on retrouve le résultat bien connu montré par Kaisa Nyberg [Nyb94] qui
dit que la fonction inverse est une permutation APN quand n est impair et qu’elle est
différentiellement 4-uniformes localement-APN quand n est pair.

En utilisant le corollaire 8.2, nous pouvons extraire le méme type de résultat pour les
fonctions différentiellement 4-uniformes.

Corollaire 8.4. Soit n et t < n deux entiers tels que la fonction Gy : x — 21 sur le

corps Fon est différentiellement 4-uniformes. Alors, n est pair et G; est une permutation
avec le spectre différentiel suivant :

wi=1, we=2"1—2 et wy=2""14+1
De plus, pour s =n —t+ 1, G5 est APN (non-permutation).

Preuve : Comme 6(G;) = 4, a partir du théoréme 8.6 nous avons que d;(b) # 4 pour tout
b # 1 et que seul 0,(1) = 4. Clest-a-dire que pged(n,t — 1) = 2 et que wy = 1. Nous
remarquons alors que n doit étre pair pour satisfaire pged(n,t — 1) = 2. De plus comme
pged(n,t — 1) et pged(n,t) ne peuvent pas étre tous les deux égaux a 2, nous déduisons
aussi que G est une permutation localement-APN. En utilisant le corollaire 8.2, nous
avons que 05(0) = 2 et que d5(1) = 2, ce qui implique que G est APN. O

8.6.4 Preuve du théoréme 8.9 sur la propriété de symétrie

Afin de prouver le théoréme 8.9 nous avons besoin d’introduire quelques lemmes in-
termédiaires.

Lemme 8.10. Soit s,t > 2 avec t = n — s+ 1. Soit m une permutation de F5, X Fon

définie par
« ab
m(a,b) = ((12 ,525 + 1) :
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Alors, pour tout (a,b) dans Fy. xFan, lélément (o, B) = w(a,b) satisfait P} 5(a) = Pfy(a) .

Preuve : Dans un premier temps, nous montrons que 7 est une permutation de F5, X Fon.
En effet, 7 (F5, X Fan) C Fh, x Fan. Soit p la fonction définie par

plang) = (a2 S0

Alors p est l'inverse de 7. En effet, (2" ") = « et il peut étre calculé facilement que

o Ta(B+1)

m(p(a, B)) = (Ofa ooz T 1) = (o, B).

Nous en déduisons que 7 est une permutation et que p est I'inverse de la fonction 7.

En utilisant les égalités (8 + 1)? = a“;—bfl et s+t =mn-+ 1, nous en déduisons que

sla) = (@®)* + (@) (B +1)? + (a*)p
= a®>+a*® +ab+ad*

= tfb(a) .

Lemme 8.11. Soit s,t > 2 avect = n — s+ 1. Soit b € Fon et soit a € F, tels que
Pry(a) = 0. Alors dim Ker(P;,) = dim Ker(P; ), ot f =1+ ab/a* .

Preuve : Dans un premier temps nous rappelons 'expression des polynomes Py et Py
Ph(z) =2 +2*(b+ 1) +ab et Ply(x)= o + 2B+ 1)% + 2B.

D’aprés le théoréme 8.7 nous avons dim Ker(F;,) = dim Ker(Fy,) et {0,1} est inclus
dans le noyau de P, ;. Nous en déduisons que pour tout b ¢ Fy il existe v € Fan \ {0,1}
tel que Pyy(7y) = 0. En effet, P(1) = b* 4+ b = 0 si et seulement si b € .
Nous allons dans un premier temps, traiter le cas ot a = 1. Ce cas apparait seulement
si best égal 4 0 ou a 1. Pour 8 = b+ 1, d’aprés le lemme 8.10 nous avons P} 4(1) = 0
puisque 7(1,b) = (1,b+ 1).
— Pour b=0on a P}y(z) = 2* + 2% = P,1(x).
~ Pour b=1ona P} (x) = 2* +x = P,o(z). Alors, nous pouvons conclure que pour
a =1, sibest tel que P/(1) =0et 3 =0+ 1 alors d’aprés le théoreme 8.7 nous
avons dim Ker(P;,) = dim Ker(P; ) = dim Ker(P},, ;).
A partir de maintenant nous supposons que a € Fy. Avec z = ay, I'équation Pry(r) =0
est équivalente a
a®y* +ad* b+ 1) +ayb=0

s . a?(b+1)? ab
a2 (y2 + (a ) y2+ya )ZO

c’est-a-dire a

28 28
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Comme 2 1 12 ;
w-l-l: aQS
a a

car c¢’est equivalent a
a® +a*(b+1)>+ab=0, i.e., Pya) =0,
nous avons 23 1 112 )
a”(0+ a
a a

En remplacant dans I’équation nous obtenons que Pt’fb(x) = 0 est équivalent a

Pos(y) =y* +By* + (B+1)y =0.

En conséquence dim Ker(Psz) = dim Ker(Fy,). En utilisant le théoréme 8.7, comme
dim Ker(P;3) = dim Ker(P; ) nous pouvous conclure que dim Ker(Fy;,) = dim Ker(P; ).
[

A partir de ces résultats nous pouvons revenir sur la preuve du théoréme 8.9.
Preuve :  Preuve du théoréme 8.9
Nous rappelons la notation suivante

S, ={beFy | dimKer(P,p)=i}oup=tous.
Le probléme consiste alors a montrer que pour tout ¢,
#5; = #5..
Pour tout 2 < <n —1 et pour tout 1 < ¢ < p, nous définissons
& ={(a,b) € F5 x Fan | Py y(a) =0 et dim Ker(F,,) =i} .
A partir du théoréme 8.7, nous savons que dim Ker(P,;) = dim Ker(Py,). Alors,
& ={(a,b) € F, x Fan| P;y(a) =0 et dim Ker(P;,) =1 }.

Pour tout b € S, on a dim Ker(P;,) =i avec a = 0 € Ker(P;,) donc on a 2’ — 1 valeurs

a # 0 dans Ker(P7,). Pour un b fixé, on a donc 2’ — 1 paires (a,b) dans £, qui vérifient

#E, = (2" = D#S], . (8.16)

Nous allons utiliser le lemme 8.10. Nous rappelons que 7 est la permutation de F3, x Fan

définie par
s ab
W(a,b) = (&2 ,F—Fl) .

Nous avons donc,

& = {(a,b) €Fj. X Fon | Ply(a) =0 et dim Ker(P/,) =1 },
& = {(a.B) €Fy X Fyn | Pig(a) =0et dim Ker(P}g) =i}
o

= {(e, ) = (a,b),(a,) € &} .
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En effet, comme 7 est une permutation, tout couple («, 5) est identifié & un seul couple
(a,b). A partir du lemme 8.10, nous avons P;s(a) = P;y(a). De plus d’aprés le lemme 8.11,
nous avons dim Ker(FP,) = dim Ker(P;5), ot 8 est calculé & partir de a et b, pour tout
a tel que Pyy(a) = 0.

En d’autres termes, pour toute paire (a,b) € & il correspond une unique paire («, 3) €
EL. Nous obtenons finalement que #&' = #&}. D’aprés I'équation (8.16), nous complétons
la preuve en remarquant que

#S, = #5}.

8.6.5 La fonction = — x7

Dans cette section nous nous intéressons a I’étude du spectre différentiel de la fonction
G5 :  — 2'. Dans cette partie nous montrons que cette fonction est différentiellement
6-uniformes et nous donnons le spectre différentiel complet de cette fonction.

Définition 8.4. Nous notons par K(1) la somme de Kloosterman définie par

K(1)= Y (—1)™e ), (8.17)

zE€Fon

ot par convention Tr(x~!) = Tr(2?"~2) = 1 pour x = 0. Le calcul de cette somme pour
x = 0 peut se faire en fixant la convention suivante : (—1)“(5"’71) =1 pour x = 0.

Proposition 8.11. [Car69, Formula (6.8)] Soit K(1) la somme de Kloosterman définie
par (8.17). Alors,
_q L3
(1) (7)o
Kl)=1+-—"— -1) 7.

Le théoréme 8.10 est le résultat principal de cette section. La preuve de ce théoreme
est longue et nécessite 'introduction d’un certain nombre de résultats préliminaires. La
section 8.6.6 est dédiée a la présentation de ces résultats préliminaires ainsi qu’a la preuve
du théoréme. Les résultats suivants sont des conséquences de ce théoréme.

Théoréme 8.10. Soit G5 : x +— 7 sur le corps Fon avec n > 4.
— sin est impair, le spectre différentiel de G3 est

2" 241 K1)

We = 6 8 Wyq = 0, Wy = 2n—1 - 3w6, Wy = 2n—1 + 2w6.

— sin est pair, le spectre différentiel de G5 est

we = —2%62_4 + %, wi=1, wy=2""1-3wg—2, wo=2""14+2ws+1.

ot K(1) est la somme de Kloosterman définie dans la définition 8.4. En particulier, G
est différentiellement 6-uniformes pour tout n > 6.
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En combinant les résultats du théoreme 8.10 et du corollaire 8.2, nous en déduisons le
spectre différentiel de G,,_5 : © — 22" sur le corps Fon.

Corollaire 8.5. Soit la fonction G, _s : x — 271 définie sur le corps Fon pour n > 6.
Nous avons :
- sipged(n,3) =1, alors G,,_o est différentiellement 6-uniformes et pour tout b € Fon,
d(b) € {0,2,6}. De plus, son spectre différentiel est donné par :

n—2 K(1 . . .
B { 26% — EA) g est mmpair

We 3
on 4 K 1) . .
=—— t == sitn est par,
Wy = 2”71 — 30)6;
Wy = 2n—1 + 2w6

— 81 3 divise n, alors G,_o est différentiellement 8-uniformes et pour tout b € Fon,
d(b) €40,2,6,8}. De plus, son spectre différentiel est donné par :

wg = 1;
n—2__ K(1 . . .
2 e 5 _ % st n est tmpair
wg = _
6 oan—2_1( K(1) . U
e T —5 stn estpar;
Wy = 2”71 — 3W6 — 4,

wo = 2" 142w +3.

Preuve : Nous appliquons le corollaire 8.2, pourt =3 et s=n—2ou3=n—(n—2)+1.

On note par d3(b) la valeur de §(b) pour la fonction G5 et par d,,_o(b) la valeur de §(b)
pour la fonction G,,_5. D’apreés le corollaire 8.2, nous avons :

— Si pged(3,n) = 1 alors 63(0) = 0 et §,,_o(1) = 2.

- SiIlOIl7 53(0) =6 et 671—2(1) = 8.
De plus

— Sin pair, 03(1) =4 et 6,_2(0) =2

— Si n impair, d3(1) =2 et §,_2(0) =0

Toujours d’aprés le corollaire 8.2 nous avons que les spectres différentiels de ces fonc-
tions sont égaux “a §(0) et §(1) pres”. Dans cette preuve nous notons par (Ag, Az, A, Ag)
(resp. (po, pi2, fa, i16)) le spectre différentiel de Gs sur le corps Faon quand n est impair
(resp. n pair).

D’aprés le théoréme 8.10, pour n impair, nous avons

A6 = 2%6%rl - %, A=0, X =2""=3), Ao = 2" 42X, (8.18)

et pour n pair,

po ==t By =1y =27 =B —2, po = 2" 420 +1. (8.19)

Nous séparons notre analyse suivant quatre cas.

1. Si pged(3,n) =1 et n est impair, nous avons

(65(0),05(1)) = (0,2) et (8,-2(0),0,-2(1)) = (0,2).

Nous obtenons

C’est-a-dire,
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n—2 K(1 - -
wﬁz%_%7 (A)4:O, w2:2n 1_3("}67 w0:2n 1+2w67
et pour © > 8, w; = 0.

2. Si pged(3,n) =1 et n pair, nous avons

(65(0),85(1)) = (0,4) et (0,-2(0),8,—2(1)) = (2,2).
Nous obtenons,
We = 6, wy=pa—1,  we=pe+2,  wo=p—1L
C’est-a-dire,
22 K()

— Wy = O, Wo = 2n—1 — 3&)6, Wo = 2n—1 + 2w6,

We = 6 ]

et pour 2 > 8, w; = 0.

3. Si pged(3,n) = 3 et n impair, nous avons

(53(0)753(1)) - (672) et (5n—2(0)>5n—2(1)) - (0>8)‘

Nous obtenons,

wg = 1, we = Ag — 1, Wy = Ay, Wy = Ay — 1, wy = wp + 1.
C’est-a-dire,
wg =1, wyg=0,
Wy =2""1 =3\ —1=2""1 - 3(wg+1) —1=2""1— 3w — 4,
wo=2""1—22%+1=2""14+2ws+1)+1=2""1 4 2ws + 3,
et pour 2 > 8, w; = 0.

4. Si pged(3,n) = 3 et n pair, nous avons

(65(0),03(1)) = (6,4) et (8,-2(0),8,-2(1)) = (2,8).

Nous obtenons,

wg = we=pe—1, wi=ps—1, wr=p2+1,  wo= ppo.
L

C’est-a-dire,

Wwg = 17 Wy = 07
2n—2_4 K(l) _1

We=""F— ~ "%

we =271 —3pug—1=2""1 —3(wg+1) —1=2""1 — 3wg — 4,
wo=2""1—2us+1=2""142(ws+ 1)+ 1 =2""1 + 2ws + 3,

et pour v > 8, w; = 0.
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8.6.6 Preuve du théoréme 8.10 sur le spectre différentiel de la
fonction z — 27

Lemme 8.12. [BRS67| Soient a € Fon et b € F., l'équation 2* + ax +b = 0 a une
solution unique dans Fan si et seulement si Tr(a/b?) # Tr(1). En particulier, si cette
équation a 3 solutions distinctes dans Fan, alors Tr(a®/b?) = Tr(1).
Proposition 8.12. [KHCH96, Appendice| Soient a € Fon, fo(r) =23+ 2+ a et

M; = #{ a € F3. | fu(x) =0 a précisément i solutions dans Fan }.

Sin est impair, nous avons

2"+ 1 DA
My = - , My =271, My = ———
3 3
et st n est pair, nous avons
2" —1 on=l 9
My = My =2""" My=——".
0 3 ’ 1 ) 3 3

Le résultat suivant est un résultat proche de celui du théoréme 8.10.

Théoréme 8.11. Soit
Py(z) = 2® +b2® + (b+ 1)a, b€ Fyn \ {1}

Le nombre py de b € Fon \ {1} tels que P, n’a pas de racine dans Fan \ {0,1} est donné
par
K(1)

2n—2 —1)"
rorty (Y

2n+ -1 n+1
Ho = —(3 )

Preuve : Soit b € Fan \ {1}. D’aprés le théoréme 8.8 nous savons que le nombre N, de
racines de P, dans Fon \ Fy est égal au double du nombre de racines dans 5, du systéme
suivant ou S =b+1:

(3 = goreres

Puisque 5 # 0, on a Q3(y) # 0 pour y € Fan. Donc, pour tout 8 # 0, on peut avoir les
différents cas suivant :

— (g n’a pas de racines dans Fan. Dans ce cas, N, = 0.

— () a une unique racine y € Fon. D’apreés le lemme 8.12, cette situation arrive si
et seulement si Tr(87') # Tr(1). Dans ce cas, N, = 0 si Tr(y) = 1 et N, = 2 si
Tr(y) = 0.

— (g a trois racines yi,y2,ys € Fan. Ces racines sont racines d’'un polynome linéaire
de degré 4. Ainsi on a y3 = y; + 2, ce qui implique que Tr(ys) = Tr(y;) + Tr(ys).
Cette condition implique qu'’il y a au moins un des y; tel que Tr(y;) = 0. Dans ce
cas on a soit NV, = 6 soit NV, = 2.
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Nous définissons la quantité suivante :
B = #{p € F;., (s a une unique racine y € Fon et Tr(y) = 1}.
A partir de la discussion précédente nous avons,

po = #{B €F;., Qs n’apas de racines dans Fon} + B

D’aprés la proposition 8.12 nous avons

amn -1 n+1
o = %jLB. (8.21)

En utilisant le fait que 8 = 43 + y, on obtient

. 1
B o= #H0P ) € By T () 2T et Te) = 1,
De plus nous avons
1 1+y*  y*+ 1 1 1
iy vty oy 1

= ==+ + .
v+y v+y vP+y v¥+y oy oy+1l o yr41

Ce qui implique que

() ()

B=#{( +y) €Fy, Tr (é) £ Te(1) ot Tr(y) = 1}

En conséquence

Maintenant, nous avons (y° + y) = 0 si et seulement si y € Fy. De plus, deux éléments
distincts y; et y, dans Fon \ Fy avec Tr(y;') # Tr(1) et Tr(y,') # Tr(l) vérifient
(y3 +v1) # (Y3 +y2) (dans le cas contraire, Qs avec B = ¥ +y; a au moins 2 racines dans
Fan). Nous en déduisons donc,

B =#{y € Fou \ F5, Tr G) 4 Tr(1) et Tr(y) = 1}.

Si n est impair, nous en déduisons que

B=#{y € Fon \Fy, Tr G) 0 et Tr(y) = 1}.

Si n est pair, nous en déduisons que
1
B = #{y € an \]FQ, Tr (;) =1et T‘I‘(y) = 1}
1
= #Hy eFor \Fy, Tr(y) = 1} — #{y € Fn \Fy, Tr <§> =0 et Tr(y) = 1}

= 2" —#{y € Fou \ Fy, ’I‘r(i)z()et Tr(y) =1}.
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D’un autre coté, par la définition de la somme de Kloosterman K (1), nous avons

K1)—2 = Y  (-1)Te

z€Fon \Fa
—2#{x €Fon \Fy, Tr(z 7' +2) =1} +2" -2
—44H{x € Fon \ Fy, Tr(z™") = 0 et Tr(z) =1} +2" — 2.

Alors,
#{x € Fon \Fy, Tr(z ') =0 et Tr(z) =1} =22 — @

Nous en déduisons alors, que pour tout n,

K(1
4
D’apres I'équation 8.21, on en déduit que
2"+ (=" s K(1)
= — 42" —1)"—=.
Ho 3 + + (—1) 1
O
Preuve :  Preuve du théoréme 8.10

D’aprés le lemme 8.1, afin de trouver le spectre différentiel complet de G5 nous devons
étre capable de résoudre le systéme suivant :

{ W + Wo + Wy + wg = 2 (822)

2wy + 4wy + bwg = 2™

D’aprés le théoréme 8.6, nous savons que pour tout b # {0,1}, 6(b) € {0,2,6}. De
plus dans le théoréme 8.11 nous avons calculé la valeur pg (voir définition de ;o dans le
théoréme 8.11) qui correspond exactement a la quantité wy. On a donc

+2" % 4 (—1)”@.

on + (_1)n+1
3

Wo = Mo =

Afin de pouvoir déterminer le spectre différentiel complet de la fonction G, nous avons
besoin de calculer la valeur de §(1). D’aprés le théoréme 8.6, on a §(0) = 2recd(tn) ef
§(1) = 2reedt=1n) Comme t = 3, si n est impair on a pged(t — 1,n) = 1, et si n est pair
on a pged(t —1,n) = 1. Ainsi §(1) = 4 si n est pair et (1) = 2 si n est impair. Donc,
wy = 1 si n est pair et wy = 0 sinon. A partir de la seconde équation du systéme (8.22),
nous obtenons

Wy = 2n—1 - 3(,06 - 2&)4,
et en utilisant la premiére équation du méme systéme, nous obtenons
we = 2" —wp—wy —wq =2""1 —wy+ ws + 3ws ,

Wo — W4

we = _27172 + 5
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t max 0(b) Commentaires
b#£{0,1}
2 2 quadratique
3 6
(n+k)/3 6 k=0,1,2,3etn+k mod 3 =0
n/2 2 n pair
(n—1)/2 6 n impair
(n+3)/2 6 n impair
n/2+1 2 n pair
(2n+k)/3 6 k=0,1,2,3et n—k mod3=0
n—2 6
n—1 2 Inverse

TABLE 8.8 — Uniformité différentielle restreinte des fonctions puissances avec exposant
2t — 1.

Nous en déduisons que pour n impair,

_ Wo _ 2"+1 K1)
— _2n 2 - _ _2n 3 .
e 3 6 8
241 K(1)
6 8
et pour n pair,
o, wo—1 s 2=1  K(1) 1
— on 2 — on 3 _ =
We + + 6 3 9
22 — 4 K(1)
= +
6 8

Pour conclure la preuve, d’aprés 'expression de la somme de Kloosterman, on montre
que wg > 1 pour tout n > 6. Ce résultat implique que G35 est différentiellement 6-uniforme.

]

Remarque 8.10. Pour n = 5, la fonction G35 est linverse de la permutation puissance
APN avec exposant quadratique x — x°. Ainsi pour n = 5, G5 est une fonction APN.

Pour n =4, la fonction Gz correspond & la fonction inverse sur le corps Fos. Dans ce
cas la fonction G5 est localement-APN différentiellement 4-uniforme avec wy = 1.

8.6.7 Quelques classes spécifiques

Dans la section A.2 nous avons mis les tables des fonctions Gy(z) = 2 — 1 pour 5 <

n < 32. Nous avons séparé les résultats suivant que g}{ax}é(b) < A pour A = 2,6, 14, 30.
b£{0,1
Dans cette section, nous allons prouver les propriétés présentées de maniére synthétique

dans le tableau 8.8.
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Exposant 2l"/2] — 1

Nous étudions la sous famille Gy pour ¢ = |n/2|. Dans un premier temps, nous
considérons le cas ou n est pair. Nous avons que G; n’est pas une permutation puisque
2" —1=(2"-1)(2" +1).

Théoréme 8.12. Soit n un entier pair, n > 4 et Gy(x) = 221 pour t = 5. Alors Gy est
quasi-APN (voir définition 8.2). Plus précisément

(5<Gt) = 2t —2 et (5(b) < 2, Vbe ]an \FQ
- Sin=0mod 4, le spectre différentiel de G, est :

wor_p = 1,
wi = 0,Vi, 2<i<?2 -2,
wy = 2ottt
wo = 2m 42t 9

- Sin=2mod 4, le spectre différentiel de G, est :

Wot_g = 1,
wi = 0,Vi, 4<i<?2 -2,
wy = 1,
wy = 2m ottt

wg = 2ttt

Preuve : A partir du théoréme 8.6, nous obtenons directement 6(0) = 2¢ — 2, et §(1) = 2
si t est pair ou §(1) = 4 si t est impair.

Maintenant, pour tout b ¢ Fy, nous devons déterminer le nombre de racines dans Fan
de

Py(x) = 2% +b2® + (b + 1)z

ou, de maniére équivalente, le nombre de racine de
(Py(z)? =2+ %227 + (b+ 1)¥2?.
Si z est une racine de P, alors 22° = bz? + (b + 1)z. Donc, I'équation Py(x) = 0 implique

(Py(z)? = 4+ (@) + (V¥ + 1)z
= 40+ (b+ D) + (0 +1)(b2® + (b + 1))
b2i+2$4 + (b2t+2 + b2t+1 4 b2t + b)$2 + (b2t+1 + b2t + b)l‘

On obtient alors un polynome linéaire de degré 4. Deux racines évidentes de ce polynéme
sont 0 et 1. Donc ce polyndéme a 7 racines ot 7 est égal & 4 ou 2. Et, pour tout b ¢ Fs,
d(b) < 2 puisque §(b) < 7 — 2. Nous en déduisons que G, est quasi-APN. Le spectre
différentiel complet peut alors étre obtenu en utilisant le lemme 8.1. Dans le cas ot ¢ est
pair, nous avons w; = 0 pour tout 7 ¢ {0,2,2" — 2}, sinon nous avons w; = 0 pour tout
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i ¢{0,2,4,2" — 2}, de plus si t est impair wyt_» = wy = 1. En utilisant le lemme 8.1, pour
t pair nous obtenons :

2” = W —+ (09)) + 1

2" = 2wy + (28 —2).

Donc wy = 2"t — 271 11 et nous concluons avec wy = 2" — wy — 1. La méme preuve
peut étre faite pour ¢ impair en résolvant le systéme suivant :

2”=w0+w2—|—2
2" = Qwqy + 28 + 2.

m
A partir de ce résultat, nous déduisons un résultat général sur le nombre de racines des
polynomes linéaires correspondants.

Corollaire 8.6. Soit n = 2t. Soit b € Fon fixé. Soit les polyndomes définis sur le corps Fon
par
2 b+ (b+ D et 2¥ + b+ (b+ 1)z

Alors, pour tout b € Fan \ Fy, ces polynomes ont 2 ou 4 racines dans le corps Fon.

Théoréme 8.13. Soit n un entier pair n > 4 et Goyi(x) = 22~ pour t = 2. Alors,
Gy, est localement-APN, différentiellement 2t -uniformes et son spectre différentiel est

Wot = 1
w, = 0, Vi, 2<i<?2
Wo = 2n—1 . 2t—1

wo = Wttt
De plus, Gy11 est une permutation si et seulement st n = 0 mod 4.

Preuve : Dans un premier temps, puisque n = 2t, nous avons pged(t+1,n) = 1 si ¢ est pair
(c’est-a-dire, n = 0 mod 4) et pged(t+1,n) = 2 si t est impair (c’est-a-dire, n = 2 mod 4).
Soit (w])o<i<on (resp. (wj)o<i<on) le spectre différentiel de Gy (resp. Gyy1) sur le corps
[F5». Nous obtenons alors le lien suivant entre les deux spectres :
— Pour n = 0 mod 4, nous avons

(6:(0), 3¢(1)) = (2" = 2,2) et (55(0),05(1)) = (0,2").
Nous déduisons,
wo=wp+1, wo=wy—1, wy 9=wy_o—1etwy =1.
— Pour n = 2 mod 4, nous avons
(6:(0),0:(1)) = (2 = 2,4) et (6:(0),0,(1)) = (2,2").
Nous déduisons ,

wy=wh+1, wy=w)—1, Wy 9=wy o—1etwy =1.
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Le spectre différentiel Gy se déduit directement en combinant les deux formules précé-
dentes avec les valeurs de wj calculées dans le théoréme 8.12. [

Dans le cas ol n est impair, le théoréme suivant nous donne des informations sur le

spectre différentiel de Gy, avec t = ”T’l

Théoréme 8.14. Soit n un entier impair, n > 3. Soit Gy(z) = 22~ avec t = (n —1)/2.
de spectre différentiel {w;};. Alors, Gy est une permutation. Pour tout b € Fon \ Fy nous
avons 0(b) € {0,2,6}. De plus

— sin =0mod 3, alors §(Gy) =8, ws =1 et w; = 0 pour tout i ¢ {0,2,6,8}.

— sin #Z 0mod 3, alors §(Gy) < 6 et w; =0 pour tout i ¢ {0,2,6}

Preuve : A partir du théoréme 8.6, nous avons §(0) = 0. De plus, si 3 divise n alors
d(1) = 8 sinon §(1) = 2. En effet, puisque
n—3

2

ngd(t - ]-7 n) - ngd( 7”) - ngd(TL - 37 n) - ngd(37 n>>

donc 1
8 si n=0 mod 3;
6(1) = { 2 sinon.

A partir de maintenant, nous supposons que b ¢ Fy, Nous devons alors déterminer le
nombre de solutions dans Fy» de

Py(x) = 2¥ + b2 + (b + 1)z,

ou, de fagon équivalente, le nombre de racines de

2t+1

(Po(@)* =2+ 0" "2 4+ (b+1)

Soient ¢ = b et Qy(x) = (Pb($))2t+1. Si x est une racine Py alors 22 = ba? + (b+ 1)x.
Donc, I'équation Py(z) = 0 implique
Qu(x) = x+c(a®) + (c+1)(a”)
z + c(bz® + (b+ 1)x)* + (c+ 1) (ba® + (b + 1)x)?
cb*2® 4+ (c(b+ 1)* 4+ (c+ Do)z + (c+ D(B* + D)a* + .

ot+1 ot+1
T .

Puisque Q) est de degré 8, il a soit 8 soit 4 soit 2 solutions. En d’autres termes, pour
tout b # {0, 1}, nous avons 4(b) € {0,2,6}. O

Lemme 8.13. Soit n un entier impair, n > 3. Soit Gy(z) = 22~ avec t = (n + 3)/2.
Alors, sin nest pas divisible par 3 Gy est une permutation. De plus 6(G;) < 6

Preuve : On note s = "TJrg et t = "T_l Nous appliquons le corollaire 8.2. Par le théo-
réme 8.14, nous avons

5,(0) = 8,(1) — 2 — {

et 65(1) = 6;(0) + 2 = 2. De plus, comme Vb # {0, 1}, on a §(b) < 6 et le résultat suit. [

6 si n=0 mod 3
0 sinon.

Le théoréme 8.14 et les résultats expérimentaux donnés dans la section A.2 nous
ameénent a la conjecture suivante.
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Conjecture 8.9. La fonction Gy(z) = x>~

différentiel que la fonction G = 2",

avec t = (n — 1)/2 a le méme spectre

Exposant 27/3] — 1

Dans le tableau A.3, nous pouvons remarquer que pour chaque valeur de n > 8, il
existe au moins 4 exposants (6 dans le cas ou 3 divise n) pour lesquels lr)n%>1<5 (b) = 6. Dans

la section 8.6.5, nous avons étudié le spectre différentiel des fonctions G5 et GG,,_5. Dans
cette section, nous donnons le début d’'une étude du spectre différentiel des fonctions G
avec t = ”TH“ (on k = 0,1,2,3 tel que n+k = 0 mod 3). On peut alors appliquer la
méme technique que celle de la section précédente pour montrer que pour b # {0,1} on a

5(b) < 6.

Théoréme 8.15. Soit Fon le corps a 2™ éléments. Soit k = 0,1,2,3 tel que n +k =0
mod 3. Soit GnTH la fonction puissance définie sur le corps Fon par :

o™y
Goir 1= T -
3

Alors ¥Yb # 0,1 nous avons 6(b) =0,2,6

Preuve : Nous devons déterminer le nombre de racines dans Fon du polynome P, (X) =

+k)/3 . . 1k)/3
X2 L pX2 4 (b + 1)X. Pour simplifier la preuve nous notons d = b2 et ¢ =
b2(2n+2k)/3
Soit = une racine de P,(X). On a
(n+k)/3 (2n+2k)/3 (n+k)/3+1 (n+k)/3
Py(z)? = 2 + dz® + (d + 1)2?
et
(2n+2k)/3 (3n+3K)/3 (2n+2k)/3+1 (2n+2K)/3
Qu(7) = Py(x)? =2° + ca? + (e +1)2?

En remplacant dans la deuxiéme équation nous obtenons :

Qy(z) = 22" n C[dxg(n+k)/3+1 +(d+ 1)x2(n+k)/3]2 4 (c+1)[de o(n+k)/3+1 4 (d+ 1)z 2(n+k)/3]
_ :L_Qk + Cd2$2(n+k>/3+2 + [C(dg + 1) (C + 1)d] n+k>/3+l ( )( ) o(n+k)/3
= 2% +cd?ba® + (b+ D) + (cd® + ¢ + cd + d)[ba® + (b+ 1)z’
+(c+ 1)(d + 1)[bz* 4 (b + 1)a]
= [ed**)2® + [cd*(b* + 1) + (cd® 4 ¢ + cd + d)b*]z* + [(cd® + ¢ + cd + d)(b* + 1)
e+ 1)(d+ D)ba® + [(c+ 1) (d+ 1)(b+ D]z + 2%
[cd?b*)2® + [ed®b* + cd® + cd®b* + cb? + cdb? + db*|x* +
[cd®b* + cd® + cb® + ¢ + cdb® + cd+d62+d+cdb+cb+db+b]x2+
[cdb+ cd + cb+c+db+d+ b+ 1]z + 2

Le résultat suit alors immédiatement en remarquant que @), est de degré 8, et qu’il a
alors 8, 4 ou 2 solutions. O
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t = 2(n+k)/3 { — o@nt3-K)/3
6(0) o(1) 6(0) o(1)

n = 3l E=0 on 3 _ 2 2pgcd(n 3,3) 2pgcd(n 3,3) _ 2 2n/3
n=6l+1|Fk=2 0 2 0 2
n=6l+2 k=1 0 1 2 2
n=06l+4| k=2 2 2 0 4
n=6l+5|k=1 0 2 0 2

n =3l L=3 2pgcd(n 3+1,3) _ 2 271/3 on 3 —9 2pgcd(n/3+1,3)

TABLE 8.9 — 6(0) et 6(1) pour les fonctions 2 — 1 avec t = (n + k)/3

Dans le tableau 8.3 nous avons mis seulement les permutations puissances qui sont
différentiellement 6-uniformes. Pourtant si on exclut §(0) et 4(1), d’aprés le théoréme
précédent on a que les fonctions Garx vérifient max d(b) <6.

3

)

Pour cette raison en appendice nous avons calculé le spectre différentiel des fonctions
G pour des tailles de corps comprises entre 6 et 32(voir section A.2)

Si on étudie le spectre différentiel des fonctions G ntk TIOUS TEMArquons que sik=1,2
alors le spectre différentiel de Gn+k est le méme que celul de G5 (en tout cas pour n < 32).
On peut donc faire la ConJecture suivante.

Conjecture 8.10. Soient n et k tel que n = k mod 3 et k = 1 ou 2 alors le spectre

différentiel privé de 6(0) et §(1) de G%k est le méme que celui de G3(x) = 27.

Dans le cas ot n est divisible par 3, nous avons vu dans le théoréme précédent que les
fonctions Gz et Gugs vérifient max d(b) < 6. Par symétrie (au sens du théoréme 8.9) les

)

fonctions GG -3 et G 2 vérifient aussi max §(b) < 6. Expérimentalement on peut voir que

)

le spectre différentiel de ces fonctions n’est pas le méme que le spectre différentiel de Gs.

Afin de déterminer le spectre différentiel des fonctions G .+x nous pouvons commencer
par nous intéresser aux valeurs de 6(0) et §(1). Le calcul de ces valeurs a été effectué a
I’aide des formules données dans le théoréme 8.6. Le tableau 8.9 résume ces valeurs suivant
la taille du corps n.
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A.1 Attaque expérimentale sur SMALLPRESENT-[§]

Dans le tableau A.1 nous donnons toutes les différentielles que nous avons utilisées pour
faire notre attaque expérimentale sur SMALLPRESENT-[8]. Pour chaque différentielle
nous avons calculé la probabilité théorique en sommant les probabilités des chemins qui
composent la différentielle (chemins avec probabilité supérieure a 27*%). Cette probabilité
a été obtenue grace a l'algorithme de “branch and bound” que nous avons décrit dans
la section 4.1.2. Les autres colonnes correspondent & la probabilité de la différentielle
obtenue par une moyenne sur les 232 messages clairs et 250 clés pour les deux algorithmes
de cadencement de clés pour des clés maitres de 40 bits et de 80 bits (voir section 1.4.1).
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TABLE A.1 — Différentielles utilisées pour notre attaque par différentielle multiple sur
SMALLPRESENT-[§|
Differential Theo. | 40-bit | 80-bit Differential Theo. | 40-bit | 80-bit

0x3 — 0x40400000 | 273028 | 272980 | 9=2985 || ox5 — 0x40400000 | 2730-20 | 272976 | 5=29.80
0x3 — 0x04040000 | 273033 | 272980 | 9=2984 | ox5 — 0x04040000 | 2730-%5 | 272987 | 9=20.73
0x3 — 0x50500000 | 273046 | 272996 | 273007 | ox5 — 0x50500000 | 2730-34 | 272987 | 22976
0x3 — 0x05050000 | 273098 | 272998 | 9-2999 | 0x5 — 0x10100000 | 273050 | 2-30.06 | 5-30.28
0x3 — 0x10100000 | 273059 | 272990 | 9=3010 1| ox5 — 0x05050000 | 2730-52 | 273002 | 5=30.06
0x3 — 0x01010000 | 273064 | 272994 | 9=3045 | 0x5 — 0x01010000 | 2730-55 | 272996 | 5=29.94
0x3 — 0x80800000 | 273070 | 273017 | 9=3024 I ox5 — 0x08080000 | 2730-57 | 273001 | 5=29.97
0x3 — 0x08080000 | 2730-70 | 273010 | 23001 | ox5 — 0x80800000 | 2730-57 | 272998 | 2-30.04
0x3 — 0x0a0a0000 | 273097 | 2730-27 | 9-3032 | 0x5 — 0x0a020000 | 273077 | 273008 | 9-30.04
0x7 — 0x40400000 | 272947 | 272920 | 272921 | OxB — 0x40400000 | 2730-21 | 272960 | 2=29.88
0x7 — 0x04040000 | 272954 | 272923 | 9-2323 || OxB — 0x04040000 | 273026 | 272975 | 9=29.92
0x7 — 0x50500000 | 272959 | 2729-26 | 9=2930 || oxB — 0x50500000 | 273041 | 272996 | 5=29.99
0x7 — 0x10100000 | 27207 | 272933 | 9=2970 || oxB — 0x05050000 | 2730-%9 | 272997 | 5=30.06
0x7 — 0x05050000 | 272976 | 272987 | 272043 || 0xB — 0x08080000 | 2730-64 | 2729.94 | 5=30.02
0x7 — 0x01010000 | 272986 | 272954 | 972956 || OxB — 0x80800000 | 2730-65 | 272995 | 2=30.06
0x7 — 0x020a0000 | 273000 | 272963 | 9=2965 || oxB — 0x10100000 | 2730-73 | 273013 | 5=30.33
0x7 — 0x80800000 | 273019 | 272961 | 9=2972 || oxB — 0x01010000 | 273081 | 273013 | 5=30.18
0x7 — 0x08080000 | 273021 | 272966 | 22966 || 0xB — 0x0a020000 | 273086 | 273009 | 9-30.10
0x7 — 0x40500000 | 273076 | 273022 | 9=80.09 1| 0xF — 0x00110000 | 273060 | 22997 | 9-29.78
0xD — 0x05050000 | 272981 | 272930 | 9=2939 || OxF — 0x40400000 | 272949 | 272926 | 9=29.36
0xD — 0x40400000 | 272982 | 272942 | 972942 | OxF — 0x04040000 | 272956 | 272923 | 2=29.31
0xD — 0x04040000 | 272991 | 272950 | 9=2946 || oxF — 0x50500000 | 272980 | 272946 | 9-29.45
0xD — 0x10100000 | 273001 | 272950 | 9=2983 || oxF — 0x05050000 | 272982 | 272939 | 9=20.87
0xD — 0x50500000 | 273008 | 272960 | 9=2971 | oxF — 0x80800000 | 272988 | 272932 | 9=29.57
0xD — 0x01010000 | 273015 | 272952 | 273014 I oxF — 0x08080000 | 272988 | 272958 | 2=29.38
0xD — 0x0a0a0000 | 273025 | 272974 | 9=2978 || oxF — 0x10100000 | 273010 | 272969 | 9=29.76
0xD — 0x80800000 | 273089 | 272982 | 9=2996 || oxF — 0x01010000 | 273016 | 272968 | 5—29.94
0xF — 0x0a0a0000 | 273022 | 2-29.67 | 9-29.80

A.2 Spectre différentiel des fonctions = — 7?1

. s . . t_
Dans cette section, nous donnons le spectre différentiel des fonctions z — z? ~'. Nous
avons séparé les résultats en 4 tableaux.

— Dans le tableau A.2 nous donnons les fonctions Gy(z) = 2>~ pour lesquelles
max 6(b) = 2.
b#0,1

— Dans le tableau A.3 nous donnons les fonctions Gy(z) = 2% ! pour lesquelles
max 0(b) = 6.
b7#0,1

— Dans le tableau A.4 nous donnons les fonctions Gy(z) = 2%~ pour lesquelles
max 6(b) = 14.
b#0,1

~ Dans le tableau A.5 nous donnons les fonctions Gy(z) = 2> ~! pour lesquelles
max 6(b) = 30.

b£0,1
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Les spectres différentiels donnés dans ces tableaux sont calculés sans la valeur de §(0)

et de 6(1).

TABLE A.2 - Spectre différentiel des fonctions Gy(x) = 22! sur le corps Fon avec Vb #
{0,1},6(b) <2

’Spectre différentiel des fonctions G;(z) = 22 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 2‘

’ n ‘ t ‘inverse‘pgcdwmaxH 50, 01 | Spectre différentiel sans §(0), (1) ‘
5l2] 11 | 1 ] 2] 0,2 | 0[5 2[5

503 5 | 1] 21 0,2 |o0[5]2[5

51al 15 | 1] 21 0,2 | 0[5 2[5

612 - |3 21 2.2 0B22[30

613 - | 7 61 6,4 | 0[35]2[27

6lal - | 3| 8| 2.8 | 0[352][7

65| 31 | 1| 41 0,4 032 2][30]

712 43 | 1 | 2 |[ 0,2 | 0[632][63]

714l 9 |1 21 0,2 0[63 2163

716! 63 | 1 || 2 0,2 0[632][63]

sl2] - [ 3 [ 2 2,2 | 0[1282[126]
8lal - |15 | 14| 14,2 | 0[134] 2 [120]
8|5 91 | 1 |16 0,16 0[134]2[120]
8|7 127 | 1| 4 | 0,4 | 0[128] 2 [126]
ol2] 171 | 1L || 2 | 0,2 | 0[255] 2 [259)]
ols5] 17 | 1| 2| 0,2 | 0[255 2[255]
ols| 255 | 1| 2| 0,2 | 0[2552[255]
1002 - |32 2,2]0[p5122[p10]
1005 - |31 301 30,4 01527] 2 [495]
1006 - | 3 |32 2,32/ 0527 2 [495]
1009 511 | 1 || 4| 0,4 | 01512 2]510]
11]2] 683 | 1 || 2 |[ 0,2 | 0[1023]2[1023]
1106 33 | 1 || 2| 0,2 | 0[1023] 2 [1023]
11]10{ 1023 | 1 || 2 || 0,2 | 0[1023] 21023
122 - [ 3 2 2,2 [ 0[2048] 2 [2046]
1206 - | 63|62 62,2 02078 2 [2016]
12(7] 1387 | 1 || 64 || 0,64 | 012078 2 [2016]
1211 2047 | 1 || 4 || 0,4 | 0[2048] 2 [2046]
13[2] 231 1 || 2 || 0,2 | 040952 [4095]
1370 65 | 1 || 2| 0,2 | 04095 2 [4095]
1312) 4095 | 1 || 2 || 0,2 | 0]4095] 2 [4095]
42 - | 3 2| 2,2 ] 0[8192 2[8190]
147 - 127|126 || 126 , 4| 0 (8255 2 [8127]
148 - | 3 ||128][2,128] 08255 2 [8127]
14013/ 8191 | 1 || 4 || 0,4 | 08192 2 [8190]
15(2010023 1 || 2 || 0,2 | 0[16383] 2 [16383]
1508 120 | 1 || 2 | 0,2 | 0[16383] 2 [16383]
1514/ 16383 | 1 || 2 | 0,2 | 0[16383] 2 [16383]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 2‘

’n‘ t ‘ inverse ‘pgcd H Omax H 6o, 01 |

Spectre différentiel sans 6(0), (1) ‘

162 - 3 2 2,2 | 032768 2 [32766]

16/ 8| - 255 || 254 | 254 ,2 | 0[32894] 2 [32640]

16/ 9| 21931 | 1 || 256 || 0,256 | 0[32894] 2 [32640]

16|15 32767 | 1 4 0,4 | 032768 2 [32766]

17) 2] 43691 | 1 2 0,2 | 0[65535] 2 [65535]

17| 9| 257 1 2 0,2 | 0165535] 2 [65535]

17|16] 65535 | 1 2 0,2 | 0165535] 2 [65535]

182 - 3 2 2,2 | 0][131072] 2 [131070]
18/9 - 511 || 510 || 510, 4 | 0[131327] 2 [130815]
18|10 - 3 || 512 || 2,512 | 0[131327] 2 [130815]
18/17| 131071 | 1 4 0,4 | 0][131072] 2 [131070]

19] 27 174763 | 1 2 0,2 | 0][262143] 2 [262143]
19/10| 513 1 2 0,2 | 0][262143] 2 [262143)
1918] 262143 | 1 2 0,2 | 0][262143] 2 [262143]
202 - 3 2 2,2 | 0[524288] 2 [524286]
20(10| - 1023 || 1022 || 1022, 2 | 0 [524798] 2 [523776]
20[11| 349867 | 1 || 1024 || 0, 1024 | 0 [524798] 2 [523776]
20(19| 524287 | 1 4 0,4 | 01524288 2 [524286]
21[2] 699051 | 1 2 0,2 | 0[1048575] 2 [1048575]
21[11| 1025 | 1 2 0,2 | 0][1048575] 2 [1048575]
21[20{ 1048575 | 1 2 0,2 | 0[1048575] 2 [1048575]
22 - 3 2 2,2 | 0[2097152] 2 [2097150]
211 - 2047 || 2046 || 2046 , 4 | 0 [2098175] 2 [2096127]
2(12| - 3 || 2048 || 2, 2048 | 0[2098175] 2 [2096127]
22(21| 2097151 | 1 4 0,4 | 0]2097152] 2 [2097150]
2322796203 | 1 2 0,2 | 0]4194303] 2 [4194303]
23[12| 2049 | 1 2 0,2 | 0][4194303] 2 [4194303]
23(22| 4194303 | 1 2 0,2 | 0]4194303] 2 [4194303]
242 - 3 2 2,2 | 03383608 2 [8388606]
24/12| - 4095 || 4094 || 4094 , 2 | 0 [8390654] 2 [8386560]
24[13| 5593771 | 1 || 4096 || 0, 4096 | 0 [8390654] 2 [8386560)
24(23| 8388607 | 1 4 0,4 | 0][8388608] 2 [8388606]
25)2 (11184811 1 2 0,2 | 0[16777215] 2 [16777215]
25(13| 4097 | 1 2 0,2 | 0[16777215] 2 [16777215]
25(24|16777215| 1 2 0,2 | 0[16777215] 2 [16777215]
262 - 3 2 2,2 | 033554432 2 [33554430]
26(13| - 8191 || 8190 || 8190 , 4 | 0 [33558527] 2 [33550335]
26(14| - 3 || 8192 || 2, 8192 | 0 [33558527] 2 [33550335]
26(25(33554431| 1 4 0,4 | 033554432] 2 [33554430]
27[ 244739243 1 2 0,2 | 0[67108863] 2 [67108863]
27(14| 8193 | 1 2 0,2 | 0[67108863| 2 [67108863]
27(26(67108863| 1 2 0,2 | 0[67108863] 2 [67108863]
282 - 3 2 2,2 | 0[134217728] 2 [134217726]
28/14| - |16383|/16382|[16382 , 2| 0 [134225918] 2 [134209536]
28(15(89483947| 1 ||16384]0 , 16384| 0 [134225918] 2 134209536
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 2‘
’ n ‘ t ‘ inverse ‘ pged H Omax H 09, 01 | Spectre différentiel sans 6(0),d(1) ‘
28|27| 134217727 1 4 0,4 0 [134217728| 2 [134217726]

32(17|1431677611
32|31(2147483647

655360 , 65536| 0 [2147516414] 2 [2147450880]
4 0,4 | 0[2147483648] 2 [2147483646]

29] 2178956971 | 1 2 0,2 | 0[268435455] 2 [268435455]
29(15| 16385 1 2 0,2 | 0[268435455] 2 [268435455]
29(28| 268435455 | 1 2 0,2 | 0[268435455] 2 [268435455]
30] 2 - 3 2 2.2 | 0[536870912] 2 [536870910]
30|15 - 32767||32766(|32766 , 4| 0 [536887295] 2 [536854527]
30|16 - 3 ||32768||2 , 32768| 0 [536887295] 2 [536854527]
30(29| 536870911 | 1 4 0,4 | 0[536870912] 2 [536870910]
31] 2| 715827883 | 1 2 0,2 | 0[1073741823] 2 [1073741823]
31[16| 32769 1 2 0,2 | 0[1073741823] 2 [1073741823]
31(30/1073741823| 1 2 0,2 | 0][1073741823] 2 [1073741823]
32[ 2 - 3 2 2,2 | 0[2147483648] 2 [2147483646]
32|16 - 6553565534 /65534 , 2| 0 [2147516414] 2 [2147450880]

1

1

TABLE A.3 — Spectre différentiel des fonctions Gy(x) = 221 sur le corps Fon avec Vb #

{0,1}, 6(b) <6

’Spectre différentiel des fonctions G;(x) = 221 sur le corps Fa» avec Vb #{0,1}, 6(b) < 6‘

’ n ‘ t ‘inverse‘pgcdH(SmaxH 90, 01 | Spectre différentiel sans 6(0), (1) ‘
7[3] 21 | 1] 6] 0,2 | 0[772[42]6][7]
7150 21 | 1| 6| 0,2 | 07724267
813 37 | 1 |6 | 0,4 | 0[156] 2 [84] 6 [14]
8|6 - | 3 6| 2,2 | 0[156]2][84] 6 [14]
93| - 7 6 6,2 | 0[300] 2 [189] 6 [21]
9l4] 239 | 1| 8 | 0,8 | 0[300]2][189] 6 [21]
ol6| - | 71 6| 6,2 | 0[300]2][189] 6 [21]
o|7| 8 | 1| 8 | 0,8 | 0[300]2][189] 6 [21]
10[3] 439 | 1 || 6 || 0,4 | 0[582] 2 [405] 6 [35]
1004 - 3 6 2,2 | 01582] 2 [405] 6 [35]
1007 73 | 1| 6| 0,4 | 0[582]2][405] 6 [35]
1008 - | 316 2,2 05822405 6[35]
1103] 293 | 1 || 6 || 0,2 | 0[1177] 2[792] 6 [77]
14| 137 | 1 || 6| 0,2 | 01177 2[792] 6 [77]
1105 991 | 1 || 6 | 0,2 | 01177 2[792] 6 [77]
117] 887 | 1 || 6| 0,2 | 01177 2][792] 6 [77]
18] 731 | 1 || 6 | 0,2 | 01177 2[792] 6 [77]
1109|341 | 1 || 6 || 0,2 | 01177 2[792 6 [77]
12[3] - | 7 [ 6] 6,4 | 0[2401] 2 [1518] 6 [175]
1204 - | 15 || 14 | 14,8 | 0[2365] 2 [1575] 6 [154]
12/5] 661 | 1 || 16 || 0,16 | 0[2362] 2 [1578] 6 [154]
128 - |15 || 14 || 14,2 | 0[2362] 2 [1578] 6 [154]
1219 - | 7 /|16 6,16 | 0[2365] 2 [1575] 6 [154]
120100 - | 3 || 8 || 2,8 | 0]2401] 2 [1518] 6 [175]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 6‘
’ n ‘ t ‘inverse‘pgcdHémaxH 09, 01 | Spectre différentiel sans 6(0), d(1) ‘

13[3] 3511 | 1 || 6 ][ 0,2][ 0[4823]2[3003] 6 [364]
134 (3823 | 1 | 6 || 0,2 0[4823] 2[3003] 6 [364]
13/5( 2907 | 1 | 6 |[0,2| 0[4823] 2[3003] 6 [364]
1364031 | 1 | 6 || 0,2 0[4823] 2[3003] 6 [364]
138 1189 | 1 || 6 |/ 0,2| 0[4823] 2[3003] 6 [364]
13/9( 273 | 1 | 6 || 0,2 0[4823] 2[3003] 6 [364]
13|10 585 | 1 || 6 |/ 0,2 0[4823] 2[3003] 6 [364]
13/11] 1365 | 1 || 6 |/ 0,2 0[4823] 2[3003] 6 [364]
1432341 [ 1 |[ 6 |[0,4| 0[9578] 2 [6111] 6 [693]
14/5( 529 | 1 | 6 |[0,4| 0[9578] 2 [6111] 6 [693]
1410 - 31 6 (2,2 0[9578] 2 [6111] 6 [693]
14]12| - 30 6 (2,2 0[9578] 2 [6111] 6 [693]
153 - 7 [ 6 |[6,2] 0[19046] 2 [12390] 6 [1330]
155 - | 31 30 (30,2 0[19058] 2 [12378] 6 [1330]
156 - 7 || 32 |[6, 32| 0[19061] 2 [12375] 6 [1330]
15/ 7 (16255 | 1 || 8 |/ 0,8 0[19046] 2 [12390] 6 [1330]
159 - 7 1| 6 |[6,2] 0[19046] 2 [12390] 6 [1330]
15/10] - | 31 |/ 30 |[30, 8| 0[19061] 2 [12375] 6 [1330]
1511/ 14199 | 1 || 32 ||0, 32| 0 [19058] 2 [12378] 6 [1330]
15/13| 5461 | 1 || 8 |/ 0,8 0[19046] 2 [12390] 6 [1330]
16/ 328087 1 || 6 | 0,4 0[38116] 2 [24744] 6 [2674]
16/ 6| - 30| 6 ||2,2]| 0[38116] 2 [24744] 6 [2674]
16/11] 1057 | 1 || 6 |/ 0,4 | 0[38116] 2 [24744] 6 [2674]
16|14 - 31 6 [ 2,2 0[38116] 2 [24744] 6 [2674]
173718725 1 | 6 || 0,2 0 [76483] 2 [49113] 6 [5474]
17| 461167 | 1 | 6 |/ 0,2 0[75531] 2 [50541] 6 [4998]
17)5 (21141 1 | 6 || 0,2 0[75531] 2 [50541] 6 [4998]
1762081 | 1 | 6 |[0,2| 0[76483] 2 [49113] 6 [5474]
17719289 | 1 || 6 |[0,2| 0[75531] 2 [50541] 6 [4998]
17/ 865279 | 1 || 6 |/ 0,2 0[76483] 2 [49113] 6 5474
17|10( 56247 | 1 || 6 |/ 0,2 0[76483] 2 [49113] 6 [5474]
17|11] 63455 | 1 || 6 |/ 0,2 0[75531] 2 [50541] 6 [4998)
17|12] 44395 | 1 || 6 |/ 0,2 0[76483] 2 [49113] 6 [5474|
17|13] 4369 | 1 || 6 |/ 0,2 0[75531] 2 [50541] 6 [4998)
17|14] 46811 | 1 || 6 |/ 0,2 0[75531] 2 [50541] 6 [4998]
17|15/ 21845 | 1 || 6 || 0,2 0[76483] 2 [49113] 6 [5474]
183 - 7 [ 6 |[6,4] 0[153167] 2 [97929] 6 [11046]
18/6| - | 63 62 62,2 0[152564] 2 [98847] 6 [10731]
18 7 [113527| 1 || 64 ||0, 64| 0 [152564] 2 [98847] 6 [10731]
18/12| - | 63 || 62 ||62,2| 0[152564] 2 [98847] 6 [10731]
18(13/ 38053 | 1 || 64 ||0, 64| 0 [152564] 2 [98847] 6 [10731]
18/16| - 3 | 8 |[2,8| 0[153167] 2 [97929] 6 [11046]
19/ 3224695 1 || 6 |/ 0,2 0[306033] 2 [196308] 6 [21945]
19| 7 [177515| 1 || 6 || 0,2 | 0[306033] 2 [196308] 6 [21945]
19| 8 (187099 1 || 6 | 0,2 0[302309] 2 [201894] 6 [20083]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 6‘

’n‘ t ‘ inverse ‘pgcdHémaXH 6o, 01 |

Spectre différentiel sans 6(0), (1)

|

10[9] 261631 | 1 || 6 || 0,2 | 0[306033] 2 [196308] 6 [21945]

19/11] 75045 | 1 || 6 | 0,2 | 0[306033] 2 [196308] 6 [21945]

19/12] 84629 | 1 || 6 | 0,2 | 0[302309] 2 [201894] 6 [20083]

19/13| 4161 | 1 || 6 | 0,2 | 0[306033] 2 [196308] 6 [21945]

19|17 87381 | 1 || 6 | 0,2 | 0[306033] 2 [196308] 6 [21945]

20[3] 149797 | 1 || 6 || 0,4 | 0[611368] 2 [393666] 6 [43540]

20[7| 8257 | 1 || 6 || 0,4 | 0][611368] 2[393666] 6 [43540]
20(14| - 30 6 | 2,2 | 0611368 2 [393666] 6 [43540]

20[18] - 30 6 | 2,2 | 0611368 2 [393666] 6 [43540]

21[3] - 7 [ 6 || 6,2 | 0[1222640] 2 [787479] 6 [87031]

211 7] - 127 || 126 ||126 , 8| 0 [1222101] 2 [788319] 6 [86730]

21| 8| 304203 | 1 | 1280, 128| 0 [1222098] 2 [788322] 6 [86730]
21[10{ 1047551 | 1 || 8 || 0,8 | 0[1222640] 2 [787479] 6 [87031]
21|12| - 7| 6 | 6,2 | 0[1222640] 2 [787479] 6 [87031]
21|14 - 127 || 126 ||126 , 2| 0 [1222098] 2 [788322] 6 [86730]
21|15 - 7 || 1286, 128| 0 [1222101] 2 [788319] 6 [86730]
21[19] 349525 | 1 || 8 || 0,8 | 0[1222640] 2 [787479] 6 [87031]
2231797559 | 1 || 6 || 0,4 | 0[2446578] 2 [1573011] 6 [174713]
28] - 30| 6 || 2,2 | 0[2446578] 2 [1573011] 6 [174713)]
22[15| 16513 | 1 || 6 || 0,4 | 0[2446578] 2 [1573011] 6 [174713]
22120] - 31 6 | 2,2 | 02446578 2 [1573011] 6 [174713]
2331198373 | 1 | 6 || 0,2 | 0[4894653] 2 [3143778] 6 [350175]
23/ 8| 328907 | 1 || 6 || 0,2 | 0][4894653] 2 [3143778] 6 [350175]
23[11] 4192255 | 1 || 6 || 0,2 | 0[4894653] 2 [3143778] 6 [350175]
23[13( 3595703 | 1 || 6 || 0,2 | 0[4894653] 2 [3143778] 6 [350175]
23[16] 2807211 | 1 || 6 || 0,2 | 0[4894653] 2 [3143778] 6 [350175]
23[21] 1398101 | 1 || 6 || 0,2 | 0[4894653] 2 [3143778] 6 [350175]
243 - 7 [ 6 || 6,4 | 0[9788205] 2 [6289212] 6 [699797]
24|81 - 255 || 254 {|254 , 2| 0 [9781202] 2 [6299778] 6 [696234]
249 | - 7 1| 256 |[6 , 256/ 0 [9781205] 2 [6299775] 6 [696234]
24|16| - 255 || 254 {|254 , 8| 0 [9781205] 2 [6299775] 6 [696234]
24(17| 7199671 | 1 || 256 ||0, 256| 0 [9781202] 2 [6299778] 6 [696234]
24|22| - 3 | 8 | 2,8 | 09788205 2 [6289212] 6 [699797]
25[3(14380471] 1 || 6 || 0,2 | 0[19572315] 2 [12584565] 6 [1397550]
2509(11228587| 1 || 6 || 0,2 | 0[19572315] 2 [12584565] 6 [1397550]
25(12|16773119| 1 || 6 || 0,2 | 0[19572315] 2 [12584565| 6 [1397550]
25(14| 4794661 | 1 || 6 || 0,2 | 0[19572315] 2 [12584565] 6 [1397550]
25(17| 65793 | 1 || 6 || 0,2 | 0[19572315] 2 [12584565] 6 [1397550]
25(23| 5592405 | 1 || 6 || 0,2 | 0[19572315] 2 [12584565] 6 [1397550]
26] 39586981 | 1 || 6 || 0,4 | 0[39142742] 2 [25171965] 6 [2794155]
26/ 9| 131320 | 1 || 6 || 0,4 | 0[39142742] 2 [25171965] 6 [2794155]
26(18| - 30 6 | 2,2 | 0[39142742] 2 [25171965] 6 [2794155)
26(24| - 30 6 | 2,2 | 0[39142742] 2 [25171965] 6 [2794155)
27[3] - 7 [ 6 || 6,2 | 0[78291786] 2 [50334480] 6 [5591460]
2719 | - 511 || 510 ||510 , 2| 0 [78272340] 2 [50363775] 6 [5581611]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 6‘
’n‘ t ‘ inverse ‘pgcdHémaXH 00, 01 | Spectre différentiel sans 6(0), d(1) ‘

27[10] 57596855 | 1 |[512][ 0, 512 | 0 [78272340] 2 [50363775] 6 [5581611]
27/13| 67100671 | 1 || 8 || 0,8 | 0[78291786] 2 [50334480] 6 [5591460]

2715 - 7| 6 || 6,2 | 0[78291786] 2 [50334480] 6 [5591460]

27|18 - 511 || 510 || 510, 2 | 0 [78272340] 2 [50363775] 6 [5581611]

27/19] 19211557 | 1 | 5121|0512 | 0 [78272340] 2 [50363775] 6 [5581611]

27/25| 22369621 | 1 | 8 || 0,8 | 0[78291786] 2 [50334480] 6 [5591460]

28] 3 [ 115043767 | 1 || 6 || 0,4 | 0 [156593648] 2 [100653846] 6 [11187960]
2810 - 30| 6 | 2,2 | 0[156593648] 2 [100653846] 6 [11187960]
28/19| 262657 | 1 || 6 || 0,4 | 0[156593648] 2 [100653846] 6 [11187960]
2826 - 30| 6 | 2,2 | 0[156593648] 2 [100653846] 6 [11187960]
293 76695845 | 1 || 6 || 0,2 | 0[313184775] 2 [201311475] 6 [22374660]
29/10| 524801 | 1 || 6 || 0,2 | 0[313184775] 2 [201311475] 6 [22374660]
29/14[ 268419071 | 1 || 6 || 0,2 | 0[313184775] 2 [201311475] 6 [22374660]
29/16(230092215 | 1 || 6 || 0,2 | 0[313184775] 2 [201311475]| 6 [22374660]
29/20( 179132075 | 1 || 6 || 0,2 | 0[313184775] 2 [201311475] 6 [22374660]
29(27| 89478485 | 1 || 6 | 0,2 | 0[313184775] 2 [201311475] 6 [22374660]
30[ 3 - 7 |l 6 || 6,4 | 0]626346875] 2 [402656967| 6 [44737980]
30|10 102310221022 , 8| 0 [626261845] 2 [402784767] 6 [44695210]

30[11| 153691429 | 1 {10240 , 1024| 0 [626261842] 2 [402784770] 6 [44695210)
30(20 - 102310221022 , 2| 0 [626261842] 2 [402784770] 6 [44695210]
30(21 - 7 ||1024[[6 , 1024| 0 [626261845] 2 [402784767] 6 [44695210]

3028 - 30 8 || 2,8 | 0][626346875] 2 [402656967] 6 [44737930)
3131920350135 | 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
31[11| 716527275 | 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
31[15(1073709055| 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
31[17| 306792741 | 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
31[21| 1049601 | 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
31[29( 357913941 | 1 || 6 | 0,2 | 0[1252676117] 2 [805340382] 6 [89467147]
32[ 3613566757 | 1 || 6 | 0,4 | 0[2505379956] 2 [1610639184] 6 [178948154]
32[11| 2098177 | 1 || 6 | 0,4 | 0][2505379956] 2 [1610639184] 6 |178948154]
32|22 - 30 6 || 2,2 | 0[2505379956] 2 [1610639184] 6 [178948154]
32(30 - 30 6 || 2,2 | 0[2505379956] 2 [1610639184] 6 |[178948154]

TABLE A.4 — Spectre différentiel des fonctions Gy(z) = 22! sur le corps Fgn avec Vb #
{0,1}, 5(b) < 14

’Spectre différentiel des fonctions G,(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 14‘

’ n \ t \inverse\pgcdHémaxH 90, 01 | Spectre différentiel sans §(0),d(1) ‘
(4] - | 3 |14 2,2 | 0][9548] 2 [6216] 6 [588] 14 [30]

1416 - | 3| 14 2,2 | 0[9548] 2 [6216] 6 [588] 14 [30]

1409 7663 | 1 || 14 | 0,4 | 0]9548] 2 [6216] 6 [588] 14 [30]

14/11] 5851 | 1 || 14 || 0,4 | 0][9548] 2 [6216] 6 [588] 14 [30]

15(4| 2185 | 1 || 14 || 0,8 | 0[18786] 2 [12810] 6 [1155] 14 [15]

15012 - | 7 || 14| 6,2 | 0[18786] 2 [12810] 6 [1155] 14 [15]

16]4] - |15 || 14 || 14,2 | 0 [37838] 2 [25284] 6 [2352] 14 [60]

16531711 | 1 || 16 || 0,16 | 0[37838] 2 [25284] 6 [2352] 14 [60]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 14‘

’n‘ t ‘ inverse ‘pgcdHémaXH do, 01 |

Spectre différentiel sans 6(0), (1)

|

16]7] 10837 | 1 | 14 [ 0,4 | 0[38136] 2 [24954] 6 [2324] 14 [120]

16|10 - 3 1| 14 | 2,2 | 0[38136] 2 [24954] 6 [2324] 14 [120]

16|12 - 15 || 14 || 14, 2| 0[37838] 2 [25284] 6 [2352] 14 [60]

16|13 4681 | 1 || 16 || 0,16 | 0 [37838] 2 [25284] 6 [2352] 14 [60)

184 - 3 [ 14 [ 2,8 | 0[151223] 2 [101205] 6 [9534] 14 [180]

18/ 5[ 93019 | 1 || 14 || 0,4 | 0[151058] 2 [101271] 6 [9723] 14 [90)]

18/ 8| - 3 || 14| 2,2 | 0[151058] 2 [101271] 6 [9723] 14 [90]

18/11] 17545 | 1 || 14 || 0,4 | 0[151058] 2 [101271] 6 [9723] 14 [90]

1814 - 3 || 14| 2,2 | 0[151058] 2 [101271] 6 [9723] 14 [90]

18|15 - 7 || 14| 6,4 | 0[151223] 2 [101205] 6 [9534] 14 [180]

10/ 4 34953 | 1 || 14 || 0,2 | 0[303335] 2 [201495] 6 [18886] 14 [570]

19/ 5] 16913 | 1 || 14 || 0,2 | 0[303335] 2 [201495] 6 [18886] 14 [570]

19/ 6257983 | 1 || 14 || 0,2 | 0[303335] 2 [201495] 6 [18886] 14 [570]
19/14[ 245231 | 1 || 14 || 0,2 | 0[303335] 2 [201495] 6 [18886] 14 [570]
19|15 227191 | 1 || 14 || 0,2 | 0[303335] 2 [201495] 6 [18886] 14 [570]
1916/ 37449 | 1 || 14 || 0,2 | 0 [303335] 2 [201495] 6 [18886] 14 [570]
2004 - 15 || 14 || 14,2 0[606074] 2 [403110] 6 [38640] 14 [750]
20(5| - 31 || 30 |[30, 16| 0 [605739] 2 [403620] 6 [38465] 14 [750]
2006 - 3 || 32 |/ 2,32| 0[605203] 2 [404571] 6 [37975] 14 [825]
20(8| - 15 || 14 || 14, 2| 0[606074] 2 [403110] 6 [38640] 14 [750]

20 9| 174421 | 1 | 16 || 0,16 | 0[606134] 2 [403320] 6 [38220] 14 [900]
20(12| - 15 || 14 || 14, 2| 0[606134] 2 [403320] 6 [38220] 14 [900]
20(13| 516031 | 1 | 16 || 0,16 | 0[606074] 2 [403110] 6 [38640] 14 [750]
20(15| - 31 || 30 || 30, 4| 0605203 2 [404571] 6 [37975] 14 [825]
20(16| - 15 || 32 ||14, 32| 0[605739] 2 [403620] 6 [38465] 14 [750]
20(17| 374491 | 1 | 16 || 0,16 | 0[606074] 2 [403110] 6 [38640] 14 [750]
21[4 978671 | 1 | 14 || 0,8 | 0 [1211640] 2 [808059] 6 [75411] 14 [2040]
2116 | - 7 || 14 | 6,2 | 0[1211640] 2 [808059] 6 [75411] 14 [2040]
2119 | - 7 || 14 | 6,2 | 0[1211398] 2 [806022] 6 [78890] 14 [840)
21[13| 744283 | 1 | 14 || 0,8 | 0[1211398] 2 [806022] 6 [78890] 14 [840]
21[16] 33825 | 1 | 14 || 0,8 | 0[1211640] 2 [808059] 6 [75411] 14 [2040]
21(18| - 7 || 14 | 6,2 | 0[1211640] 2 [808059] 6 [75411] 14 [2040]
2[4 - 3 [ 14 [ 2,2 | 0[2421454] 2 [1615977] 6 [154231] 14 [2640]
225 (676501 | 1 | 14 || 0,4 | 0[2422686] 2 [1614129] 6 [154847] 14 [2640]
2216 - 3 || 14 | 2,2 | 0[2422488] 2 [1615746] 6 [152768] 14 [3300]
22| 7(2080639| 1 | 14 || 0,4 | 0[2421454] 2 [1615977] 6 [154231] 14 [2640]
2209(139537 | 1 | 14 || 0,4 | 0[2422686] 2 [1614129] 6 [154847] 14 [2640]
22/10| - 3 || 14 || 2,2 | 0[2422488] 2 [1615746] 6 [152768] 14 [3300]
22(13(1957615| 1 | 14 || 0,4 | 0[2422488] 2 [1615746] 6 [152768] 14 [3300]
22014 - 3 1| 14| 2,2 | 0[2422686] 2 [1614129] 6 [154847] 14 [2640]
22|16 - 3 || 14 | 2,2 | 0[2421454] 2 [1615977] 6 [154231] 14 [2640]
22(17(1420651| 1 | 14 || 0,4 | 0[2422488] 2 [1615746] 6 [152768] 14 [3300]
22018 - 3 0| 14 | 2,2 | 02422686 2 [1614129] 6 [154847] 14 [2640]
22(19( 299593 | 1 || 14 || 0,4 | 0[2421454] 2 [1615977] 6 [154231] 14 [2640]
23[ 4559241 | 1 || 14 || 0,2 | 0 [4841477] 2 [3234582] 6 [307027| 14 [5520]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 14‘
’ n ‘ t ‘ inverse ‘pgcdHémaXH dg, 01 | Spectre différentiel sans 6(0), (1) ‘

23]5[ 2976603 1 || 14 || 0, 2| 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23/ 6| 133153 | 1 || 14 || 0, 2| 0[4841477] 2 [3234582] 6 [307027] 14 [5520]
23 7(1387093 | 1 || 14 || 0, 2| 0[4845295] 2 [3230235] 6 [306866] 14 [6210]
231 9( 3923439 | 1 || 14 || 0, 2| 0[4841477] 2 [3234582] 6 [307027] 14 [5520]
23[10( 598601 | 1 || 14 || 0, 2| 0[4845295] 2 [3230235] 6 [306866] 14 [6210]
23[14| 270865 | 1 || 14 || 0, 2| 0[4845295] 2 [3230235] 6 [306866] 14 [6210]
23[15( 4161407 | 1 || 14 || 0, 2| 0[4841477] 2 [3234582] 6 [307027] 14 [5520]
23|17/ 4061151 | 1 | 14 || 0, 2| 0 [4845295] 2 [3230235] 6 [306866] 14 [6210]
23[18] 1217701 | 1 || 14 || 0, 2| 0[4841477] 2 [3234582] 6 [307027] 14 [5520]
23[19] 3635063 | 1 || 14 || 0, 2| 0[4845295] 2 [3230235] 6 [306866] 14 [6210]
23(20( 2995931 | 1 || 14 || 0, 2| 0[4841477] 2 [3234582] 6 [307027] 14 [5520]
244 - 15 || 14 |[14, 8] 0[9681841] 2 [6473481] 6 [609532] 14 [12360]
246 | - 63 || 62 ||62,2| 0[9687702] 2 [6463380] 6 [614432] 14 [11700]
24| 7(1188937 | 1 | 64 ||0, 64| 0[9683814] 2 [6471612| 6 [608888] 14 [12900]
24[11| 2794837 | 1 || 14 || 0,4 | 0[9687668] 2 [6465216] 6 [611730] 14 [12600]
24|14 - 3 | 14 | 2,2 0[9687668] 2 [6465216] 6 [611730] 14 [12600]
24(18| - 63 || 62 ||62,2| 0[9683814] 2 [6471612] 6 [608888] 14 [12900]
24[19| 7847407 | 1 || 64 ||0, 64| 0[9687702] 2 [6463380] 6 [614432] 14 [11700)
24/21| - 7 || 16 |[6, 16| 0[9681841] 2 [6473481] 6 [609532] 14 [12360]
25[ 4 (15658735 1 || 14 || 0, 2| 0 [19368015] 2 [12040515] 6 [1221150] 14 [24750]
25/5| - 31 || 30 {|30, 2| 0[19377280] 2 [12922125] 6 [1232525] 14 [22500)
25| 6 (16510911 1 || 32 ||0, 32| 0[19377280] 2 [12922125] 6 [1232525] 14 [22500]
25| 7(14531447| 1 || 14 || 0, 2| 0[19368015] 2 [12940515] 6 [1221150] 14 [24750]
258 (16711423| 1 || 14 || 0, 2| 0[19368015] 2 [12940515] 6 [1221150] 14 [24750]
25(18| 2245769 | 1 || 14 || 0,2 | 0[19368015] 2 [12940515] 6 [1221150] 14 [24750]
25(19| 266305 | 1 || 14 || 0,2 | 0[19368015] 2 [12940515] 6 [1221150] 14 [24750]
2520 - 31 || 30 |30, 2| 0[19377280] 2 [12922125] 6 [1232525] 14 [22500]
25(21| 1118481 | 1 || 32 ||0, 32| 0 [19377280] 2 [12922125] 6 [1232525] 14 [22500]
25(22( 2396745 | 1 || 14 || 0, 2| 0[19368015] 2 [12940515] 6 [1221150] 14 [24750]
264 - 3 [ 14 [[2, 2] 0[38755888] 2 [25853646] 6 [2448628] 14 [50700]
26| 7 (22721899 1 || 14 || 0,4 | 0[38748062] 2 [25865385] 6 [2444715] 14 [50700]
26(8| - 3 | 14 | 2,2 0[38749206] 2 [25859379] 6 [2451722] 14 [48555]
26(10| - 3 || 14 | 2,2 038755888 2 25853646 6 [2448628] 14 [50700]
26(11(29079415| 1 || 14 || 0,4 | 0[38749206] 2 [25859379] 6 [2451722] 14 [48555]
26/12| - 3| 14 || 2,2 0[38748062] 2 [25865385] 6 [2444715] 14 [50700)
26(15( 4475017 | 1 || 14 || 0,4 | 0 [38748062] 2 [25865385] 6 [2444715] 14 [50700]
26(16| - 3 || 14 || 2,2 0[38749206] 2 [25859379] 6 [2451722] 14 [48555]
26(17|33423103| 1 || 14 || 0,4 | 0[38755888] 2 [25853646] 6 [2448628] 14 [50700]
26(19(10832533| 1 || 14 || 0,4 | 0 [387492006] 2 [25859379] 6 [2451722] 14 [48555]
2620 - 3 | 14 || 2,2 0[38748062] 2 [25865385] 6 [2444715] 14 [50700]
26/23(23967451| 1 | 14 || 0, 4| 0[38755888] 2 [25853646] 6 [2448628] 14 [50700]
2748947849 | 1 || 14 || 0, 8| 0 [77496654] 2 [51731568] 6 [4887309] 14 [102195]
27]5 (21648021 1 || 14 || 0,2 | 0[77516427] 2 [51691377] 6 [4912992] 14 [96930]
27| 711056833 | 1 | 14 || 0,8 0[77496654] 2 [51731568] 6 [4887309] 14 [102195]
27| 8 (47897307| 1 || 14 || 0, 2| 0[77516427] 2 [51691377] 6 [4912992] 14 [96930]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 14‘

’n‘ t‘ inverse ‘pgcdH(SmaXH do, 01 |

Spectre différentiel sans 6(0), (1)

|

27[11] 2163745 | 1 || 14 || 0,2 | 0[77516427] 2 [51691377] 6 [4912992] 14 [96930]
27(17| 9512009 | 1 || 14 || 0,2 | 0([77516427] 2 [51691377] 6 [4912992] 14 [96930]
27(20| 66052031 | 1 || 14 || 0,2 | 0[77516427] 2 [51691377] 6 [4912992] 14 [96930]
27|21 - 7 || 14 || 6,2 | 0[77496654] 2 [51731568] 6 [4887309] 14 [102195]
27(23| 58161015 | 1 || 14 || 0,2 | 0([77516427] 2 [51691377] 6 [4912992] 14 [96930]
27|24 - 7 || 14 || 6,2 | 0[77496654] 2 [51731568] 6 [4887309] 14 [102195]
28] 4 - 15 || 14 || 14,2 | 0 [154986630] 2 [103467336] 6 [9780008] 14 [201480]
28| 7 - 127 || 126 || 126 , 4 | 0 [155001911] 2 [103443423] 6 [9789150] 14 [200970)
28| 8 - 15 || 128 |[14 , 128] 0 [155017415] 2 [103410720] 6 [9811074] 14 [196245]
28] 9133955071 | 1 || 16 || 0,16 | 0 [154986630] 2 [103467336] 6 [9780008| 14 [201480]
28/13| 44733781 | 1 | 16 || 0,16 | 0 [154996274] 2 [103448310] 6 [9791670] 14 [199200]
2816 - 15 || 14 || 14,2 | 0[154996274] 2 [103448310] 6 [9791670] 14 [199200]
2820 - 15 || 14 || 14,2 | 0[154986630] 2 [103467336] 6 [9780008] 14 [201480]
28|21 - 127 || 126 ||126 , 16| 0 [155017415] 2 [103410720] 6 [9811074] 14 [196245]
2822 - 3 |/ 128 2,128 | 0[155001911] 2 [103443423] 6 [9789150] 14 [200970]
28[25( 19173961 | 1 || 16 || 0,16 | 0 [154986630] 2 [103467336] 6 [9780008| 14 [201480]
29[ 4250539759 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
29| 8| 77898917 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
29(11| 35931273 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
29(19( 267910655 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
29[22 2113665 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
29(26( 191739611 | 1 || 14 || 0,2 | 0[309989671] 2 [206904531] 6 [19576508] 14 [400200]
30[ 4 - 3 [ 14 | 2,8 | 0[619954315] 2 [413841567] 6 [39148060] 14 [797880]
30/ 8 - 3014 | 2,2 | 0[619931492] 2 [413867820] 6 [39148620] 14 [793890]
30|14 - 3 14| 2,2 | 0[619931492] 2 [413867820] 6 [39148620] 14 [793890]
30(17| 501083887 | 1 || 14 || 0,4 | 0619931492 2 [413867820] 6 [39148620] 14 [793890]
30(23( 359323051 | 1 || 14 || 0,4 | 0[619931492] 2 [413867820] 6 [39148620] 14 [793890]
30|27 - 7 | 14 || 6,4 | 0[619954315] 2 [413841567] 6 [39148060] 14 [797880]
314143165577 | 1 || 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
318 | 8421505 | 1 || 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
31/10(1072692223| 1 | 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
31/22(1002299119| 1 | 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
31[24] 921557943 | 1 || 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
31[28| 153391689 | 1 || 14 || 0,2 0 [1239931087] 2 [827653407] 6 [78301412] 14
[1597740]
32[4 - 15 || 14 || 14,2 | 0 [2479823822] 2 [1655355108] 6 [156597504] 14
[3190860]
328 - 255 || 254 || 254 , 2| 0 [2479848702] 2 [1655306688] 6 [156626624] 14
3185280]
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A.2 Spectre différentiel des fonctions x — x~

1

’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 14‘

’n‘ t ‘ inverse ‘pgcdH(SmaXH &0, 01 |

Spectre différentiel sans 6(0), (1)

|

32

32

32

32

32

32

32

32

9

12

15

18

21

24

25

29

2008800751

715806037

2145385471

287458441

1533916891

1

15

256

14

14

14

16

254

256

16

0, 256 0 [2479848702] 2 [1655306688] 6 [156626624] 14

[3185280]
[3190860]
[3212880]
[3212880]

[3190860]

254 2| 0 [2479848702] 2 [1655306688] 6 [156626624] 14

[3185280]

0,256 0 [2479848702] 2 [1655306688] 6 [156626624] 14

[3185280]

[3190860]

0 [2479823822] 2 [1655355108] 6 [156597504] 14
0 [2479908336] 2 [1655272374] 6 [156573704] 14
0 [2479908336] 2 [1655272374] 6 [156573704] 14

0 [2479823822] 2 [1655355108] 6 [156597504] 14

0 [2479823822] 2 [1655355108] 6 [156597504] 14

t_

TABLE A.5 — Spectre différentiel des fonctions Gy(x) = 22 =1 sur le corps Fon avec Vb #
{0,1}, 6(b) <30

’Spectre différentiel des fonctions Gy(z) = 22 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 30‘

’71‘ t ‘ inverse ‘])ngWhinaX“ do, 01 |

Spectre différentiel sans 6(0), (1)

|

21[5 [ 1014751 | 1 [ 30 ][ 0,2 | 0[1211217] 2 [807828] 6 [76559] 14 [1515] 30 [31]

21|17| 69905 | 1 | 30| 0,2 | 0[1211217] 2 [807828] 6 [76559] 14 [1515] 30 [31]

24]5 [ 541201 | 1 | 30 || 0,16 | 0[9700642] 2 [6451422] 6 [609966] 14 [15060] 30 [124]

24/10| - 3 1|30 || 2,8 | 0[9690937] 2 [6461730] 6 [611611] 14 [12750] 30 [186]

24|15| - 7 |30 || 6,4 | 0[9690937] 2 [6461730] 6 [611611] 14 [12750] 30 [186]

24|20 - 15 || 30 || 14,2 | 0[9700642] 2 [6451422] 6 [609966] 14 [15060] 30 [124]

2510| - 31 || 30 || 30,2 | 0[19378250] 2 [12920850] 6 [1233050] 14 [22125] 30
[155]

25(11(11082555] 1 || 32 || 0,32 | 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30
[155]

25/15| - 31 || 30 || 30,2 | 0/[19378250] 2 [12920850] 6 [1233050] 14 [22125] 30
[155]

25/16| 5548629 | 1 | 32 || 0,32 | 0 [19378250] 2 [12920850] 6 [1233050] 14 [22125] 30
[155]

26| 5 (32472031 1 | 30 || 0,4 | 0 [38743980] 2 [25868076] 6 [2448628] 14 [47775] 30
[403]

26| - 3 1130 | 2,2 | 0][38743980] 2 [25868076] 6 [2448628] 14 [47775] 30
[403]

26(21| 1082401 | 1 || 30 || 0,4 | 0[38743980] 2 [25868076] 6 [2448628] 14 [47775] 30
[403]

26(22| - 3 1130 | 2,2 | 0][38743980] 2 [25868076] 6 [2448628] 14 [47775] 30
[403]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 30‘

’n‘ t ‘ inverse ‘pgcdHémaxHéo,(Sll

Spectre différentiel sans 6(0), (1)

|

27[ 6 - 7 130 [[6,2] 0[77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27(12| - 7 1| 30 || 6,2 0[77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27(16( 64945119 | 1 || 30 || 0, 8| 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

27(22| 45460843 | 1 || 30 || 0, 8| 0 [77525544] 2 [51693849] 6 [4895562] 14 [101655] 30
[1116]

28] 5[ 95251201 | 1 || 30 ||0, 16| 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434)

28 6 - 3 1130 (2,2 0[155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798)

28[11(129955807| 1 || 30 || 0,4 | 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 [1798)

28/12| - 15 || 30 ||14, 2| 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

28[17| 4261921 | 1 || 30 ||0, 16| 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

28[18] - 3 1130 (2,2 0[155019036] 2 [103395012] 6 [9835378| 14 [184230]
30 [1798)

28(23| 38966437 | 1 || 30 || 0,4 | 0 [155019036] 2 [103395012] 6 [9835378] 14 [184230]
30 1798

28(24| - 15 || 30 [|14, 2| 0 [155060664] 2 [103314309] 6 [9880857] 14 [179190]
30 [434]

29[ 5| 17318417 | 1 || 30 || 0, 2| 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899)

29| 6| 8521761 | 1 || 30 || 0, 2| 0[310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899)

29| 7266321791 1 || 30 || 0, 2| 0[310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899)

29/ 9 (89303381 | 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(12(181841259| 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(13| 38343241 | 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(17| 86594197 | 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(18(232504183| 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(21(190536539| 1 || 30 || 0, 2| 0[310094303] 2 [206689467] 6 [19717796] 14 [368445]
30 [899)

29(23(259913695| 1 || 30 || 0, 2| 0[310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899)
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A.2 Spectre différentiel des fonctions x — x~

1

’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 30‘

’n‘ t ‘ inverse ‘pgcdH(SmaXH &0, 01 |

Spectre différentiel sans 6(0), (1)

|

29[24[ 251117039 1 || 30 || 0, 2 | 0 [310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

29[25| 17895697 | 1 || 30 || 0,2 | 0[310040827] 2 [206754021] 6 [19714548] 14 [360615]
30 [899]

30[5 - 31 |[ 30 |[ 30, 4| 0[620184815] 2 [413429025] 6 [39372305] 14 [751275]
30 [4402]

30| 6 - 63 || 62 ||62, 32| 0[620125101] 2 [413500845] 6 [39367160] 14 [745275]
30 [3441]

30| 7| 177547861 | 1 || 64 || 0, 64| 0[620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30/ 9 - 7 |30 || 6,4 | 0[620148195] 2 [413469807] 6 [39371990] 14 [749040]
30 [2790]

30(12 - 63 || 62 || 62,2 | 0[620174850] 2 [413388690] 6 [39445910] 14 [730140]
30 [2232]

30[13| 35787025 | 1 || 64 || 0, 64| 0[620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30(18 - 63 || 62 || 62,2 | 0[620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30[19| 383179483 | 1 || 64 || 0, 64| 0[620174850] 2 [413388690] 6 [39445910] 14 [730140]
30 [2232]

30(22 - 3 130 2,8 | 0[620148195] 2 [413469807] 6 [39371990] 14 [749040]
30 [2790]

30|24 - 63 || 62 || 62,2 | 0[620200006] 2 [413410980] 6 [39370870] 14 [756525]
30 [3441]

30(25 - 31 || 64 {|30, 64| 0[620125101] 2 [413500845] 6 [39367160] 14 [745275]
30 [3441]

30(26 - 3 |/ 32 (2,32 0[620184815] 2 [413429025] 6 [39372305] 14 [751275]
30 [4402]

31[5 (1039104991 1 || 30 || 0, 2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31| 6 (1056698303 1 || 30 || 0,2 0 [1240370295] 2 [826844679] 6 [78763188] 14
[1496835] 30 [8649)]

31| 7152183881 | 1 || 30 || 0,2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31| 9| 71442705 | 1 || 30 || 0,2 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31[12| 346638997 | 1 || 30 || 0,2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31/13[ 311727269 | 1 | 30| 0,2 0 [1240342519] 2 [826901037] 6 [78723477| 14
[1509855] 30 [6758]

31[14| 766949083 | 1 || 30 || 0,2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31[18| 762014555 | 1 || 30 || 0,2 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]
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’Spectre différentiel des fonctions G;(z) = z2 1 sur le corps Fan avec Vb # {0,1}, 6(b) < 30‘

’n‘ t ‘ inverse ‘pgcdHémaxHéo,dll

Spectre différentiel sans 6(0), (1)

|

31[10] 727102827 | 1 || 30 [[0,2] 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31[20( 357214549 | 1 || 30 |[0,2| 0 [1240342519] 2 [826901037] 6 [78723477] 14
[1509855] 30 [6758]

31[23(1065320319| 1 || 30 |[0,2| 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31[25 17043521 | 1 || 30 |[0,2| 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

31[26| 34636833 | 1 || 30 |[0,2] 0 [1240370295] 2 [826844679] 6 [78763188| 14
[1496835] 30 [8649]

31[27| 930576247 | 1 || 30 |[0,2| 0 [1240285479] 2 [827005569] 6 [78681813] 14
[1496370] 30 [14415]

32[5 (692736661 | 1 || 30 |0, 16] 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32| 6 - 3 11301 2,2| 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32| 7(1860025207| 1 || 30 |[0,4| 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32(10 - 3 1130 2,2| 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32[13| 34082881 | 1 || 30 |[0, 16| 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32(14 - 3 1030 2,2| 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32[19(2113400767| 1 || 30 |[0,4| 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32(20 - 15 || 30 |14, 2| 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]

32(23| 138682897 | 1 || 30 |[0,4| 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32(26 - 3 1130(2,2| 0 [2480672648] 2 [1653714450] 6 [157596852] 14
[2971440] 30 [11904]

32(27|1454746987| 1 || 30 || 0,4 | 0 [2480635380] 2 [1653750768] 6 [157606106] 14
[2963880] 30 [11160]

32(28 - 15 || 30 |14, 2| 0 [2480687262] 2 [1653779148] 6 [157478944] 14
[3007680] 30 [14260]
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