
Helsinki University of Technology
Information and Natural Sciences

Eric Malmi

MULTIAGENT SIMULATION AND VISUALIZATION OF SOCIAL IN-
TERACTIONS: FRAMEWORK AND RECOMMENDER SYSTEM

Bachelor’s thesis

Espoo 10.12.2008

Thesis instructor:

M.Sc.(Tech.) Juha Raitio

Helsinki University of Technology abstract of the
bachelor’s thesis

Author: Eric Malmi

Title: Multiagent Simulation and Visualization of Social Interactions:
Framework and Recommender System

Date: 10.12.2008 Language: English Number of pages: 6+24

Degree program: Systems and Operations Research

Supervisor: Prof. Harri Ehtamo

Instructor: M.Sc.(Tech.) Juha Raitio

Social networking websites provide a huge source of social data. We have built a
multiagent simulation framework to handle this data and to simulate social inter-
actions stochastically. Progress of the simulation is visualized using self-organizing
maps. Based on the framework, we propose a recommender system that combines
the traditional collaborative filtering and content-based methods. To evaluate the
framework and the recommender system we collect music listening data from the
Last.fm service and analyze two different example runs of the simulation. The
framework proves to be functional but we are lacking history data which could be
used to calibrate the free parameters in the simulation and validate its predictions.

Keywords: social modeling, multiagent simulation, stochastic simulation, self-
organizing map, collaborative filtering, recommender system, prac-
tice theory

Teknillinen korkeakoulu kandidaatintyön
tiivistelmä

Tekijä: Eric Malmi

Työn nimi: Sosiaalisten vuorovaikutusten moniagenttisimulointi ja
visualisointi: kehys ja suosittelijajärjestelmä

Päivämäärä: 10.12.2008 Kieli: Englanti Sivumäärä: 6+24

Tutkinto-ohjelma: Systeemi- ja operaatiotutkimus

Vastuuopettaja: Prof. Harri Ehtamo

Ohjaaja: DI Juha Raitio

Internetin verkostoitumissivustot tarjoavat laajan lähteen sosiaaliselle aineistolle.
Tämän aineiston käsittelemiseksi on rakennettu simulaatiokehys, joka perus-
tuu stokastiseen moniagenttisimulointiin, ja jolla voidaan simuloida sosiaalisia
vuorovaikutussuhteita. Simulaation etenemistä havainnollistetaan itseorganisoi-
villa kartoilla, jotka kuvaavat agenttien keskinäisiä suhteita sekä agenttien
omaksumia käytäntöjä. Käytännöt voivat olla esimerkiksi artisteja tai harrastuk-
sia.

Simulaatio pyrkii ennustamaan, mitä käytäntöjä agentit omaksuvat tulevaisuu-
dessa. Tältä pohjalta on rakennettu suosittelijajärjestelmä, joka suosittelee
käyttäjille niitä käytäntöjä, joista he saattaisivat olla kiinnostuneita. Esimerkiksi
useat verkkokaupat, kuten Amazon.com, hyödyntävät tällaisia järjestelmiä ehdot-
taessaan asiakkaalle tuotteita, jotka saattaisivat kiinnostaa asiakasta. Työssä
esitelty järjestelmä pyrkii ensin simuloimalla ennustamaan, mitä käytäntöjä agen-
tit omaksuvat, ja sen jälkeen suosittelee näitä käytäntöjä agenteille. Järjestelmä
hyödyntää perinteisiä yhteisöllisen suodatuksen (collaborative filtering) sekä
sisältöpohjaisia (content-based) menetelmiä.

Simulaatiokehystä testattiin Last.fm-palvelusta kerätyllä musiikin kuunteluaineis-
tolla. Last.fm-on internetradio, joka tallentaa käyttäjien kuuntelutottumuksia.
Kehyksen ja suosittelijajärjestelmän toimintaa havainnollistettiin analysoimalla
kaksi Last.fm-aineistolla ajettua esimerkkisimulaatiota. Kehys osoittautui toimi-
vaksi, mutta realististen simulaatioiden aikaansaamiseksi vaadittaisiin historia-
aineistoa, jonka avulla voitaisiin määrittää simulaation vapaat parametrit ja to-
dentaa sen antamat ennusteet.

Avainsanat: sosiaalinen mallinnus, moniagenttisimulaatio, stokastinen simu-
lointi, itseorganisoiva kartta, yhteisöllinen suodatus, suositteli-
jajärjestelmä, käytäntöjen teoria

iv

Acknowledgements

I have had the great opportunity to work on my thesis as an undergraduate re-
searcher, in the group of Computational Cognitive Systems. The whole group, led
by docent Timo Honkela, has been very supportive and has given me lots of feed-
back regarding to my thesis. The funding for my work has come from the KULTA
project, which is funded by Tekes, the Finnish Funding Agency of Technology and
Innovation. Especially, I would like to thank my instructor, Juha Raitio, for the
constant support and for the talks we have had, that have given me a great insight
to the topic of my thesis and to the academic world in general.

Otaniemi, 10.12.2008

Eric Malmi

v

Contents

Abstract ii

Abstract (in Finnish) iii

Acknowledgements iv

Contents v

1 Introduction 1

2 Simulation Framework 2

2.1 Objective . 2

2.2 Methods . 2

2.2.1 Multiagent Simulation . 2

2.2.2 Self-organizing Map . 2

2.3 Data Model . 3

2.3.1 Agent Data . 3

2.3.2 Practice Data . 4

2.4 Interaction Model . 4

2.4.1 Stochastic Choosing of Influencer 5

2.4.2 Stochastic Choosing of Practice 5

2.4.3 Increasing Agent’s Time for Chosen Practice 6

2.4.4 Decreasing Agent’s Time for Other Practice(s) 7

2.5 Model Calibration and Validation . 7

2.6 Stochastic Stability of Predictions . 8

2.7 Visualization of Simulation . 8

2.8 Software Architecture . 9

3 Recommender System 11

3.1 Overview . 11

3.2 Collaborative and Content-based Recommendations 11

3.3 Multiagent Simulation Approach . 12

4 Simulation Case: Last.fm 13

vi

4.1 Overview . 13

4.2 Example Run 1 . 13

4.2.1 Setup . 13

4.2.2 Analysis of Results . 14

4.3 Example Run 2 . 14

4.3.1 Setup . 14

4.3.2 Analysis of Results . 14

4.4 Stability of Predictions . 15

4.5 Visualization of Artist Clusters . 16

5 Conclusions 17

5.1 Strengths and Weaknesses . 17

5.2 Future Work . 18

References 19

Appendix A 21

Appendix B 24

1

1 Introduction

Modeling human behavior with computer simulations has influenced several branches
of science, e.g. sociology, consumer research and risk analysis. Increase in efficiency
of computers and wide accessibility on all kinds of data via the Internet has made
it possible for scientists to simulate even complex natural phenomena.

Multiagent system is an approach where intelligent agents model individuals that
make their own decisions based on the changes in their environment [1]. Normally,
a multiagent simulation uses data describing the initial state and properties of the
agents and then simulates how the agent society will evolve. Interactions between
agents and an agent and the environment need to be modeled well enough in order
to get natural phenomena emerge in the simulation. This can give us better under-
standing of the phenomena and also help us to predict new phenomena that might
emerge.

Recommender systems are an application of social modeling. They try to predict
what items a user would find interesting, based on the other items the user has liked
and the other items the users with similar interests have liked. These recommenda-
tions are widely used in Web shops, such as Amazon.com, and in recommendation
Web sites, specialized e.g. in movies such as MovieLens. [2]

Usually recommender systems are classified into three main categories: collaborative
filtering, content-based and hybrid systems. Collaborative filtering systems search
for users with similar interests and propose the items those users have liked. Content-
based systems search for items with similar properties to those that the user has
purchased or rated well himself. Hybrid approaches combine these two methods. [2]

Our goal is to build a multiagent simulation framework that should be capable of
handling diverse data and diverse interaction models between agents. As input data,
the simulation uses a list of practices [3] for each user and a list of properties for
each practice.

We also propose a recommender system based on the simulation framework. The
system simulates how users’ times spent on their practices change when they are in
a group where all users interact with each other. Thus, our system predicts what
new practices a user will adopt and then recommends those to the user. As test
data we use data gathered from Last.fm’s Audioscrobbler service [4]. Last.fm keeps
track of what artists the users, registered to the system, have listened to and how
much. It also provides possibilities for tagging artists. Thus, we can model artists
as practices and their tags as the properties of the practices.

To calibrate the simulation and validate its predictions, one would need some long-
term history data about how users’ practices have evolved in real life. We are
lacking this data but we discuss how it could be used if available. To demonstrate
the functionality of our framework we show some example runs on the Last.fm data
and discuss the emerging phenomena.

2

2 Simulation Framework

The basic framework behind our simulation is that we have a group of agents which
have a group of practices. When the simulation is run, the agents begin to interact
and, in consequence, their time spent on practices change and they adopt new
practices.

2.1 Objective

The objective of this work is to build a simulation platform where interaction models
between agents can be defined to support different simulation cases. Practice, as a
concept, should be modeled generally enough so that the framework would suit for
variety of purposes.

2.2 Methods

2.2.1 Multiagent Simulation

Agent is an autonomous decision maker that bases its decisions on the environment.
That means, it can communicate with other agents and change its behavior according
to the changes in the environment. Multiagent simulation is a system that consists
of several autonomous agents that begin to interact when the simulation is begun.
A multiagent system can be seen as one big problem where agents are solving its
subproblems [5].

The “Bottom up”-oriented approach to multiagent simulation means that agents
are observed in real life and we attempt to model their behavior as well as possible.
Simulation parameters are calibrated so that real life phenomena would emerge. It
is used to understand phenomena emerging and to predict new phenomena that
might emerge. [6]

2.2.2 Self-organizing Map

Self-organizing map (SOM) is an artificial neural-network algorithm that can be
used for data clustering and data visualization [7]. It projects n-dimensional data
vectors nonlinearly to lower (usually two) dimensional map. It does not require
sample vectors with predefined projections but it takes set of input vectors and
learns unsupervisedly how to project them to the map.

To train the map, we initialize each cell with a weight vector of the same dimension
than the input vectors. The cells can be initialized with random vectors that rep-
resent the input space. With the random initialization, however, the training can
take a long time and there are also some more sophisticated initialization methods.

After the initialization, we draw samples from the input vector set. For each sample

3

vector, we go through all the cells and search for the best-matching unit (BMU),
which is the weight vector with the smallest Euclidean distance to the sample. The
BMU and its neighbors are then conformed nearer to the sample vector.

After the training, we can project vectors to the map. To project a vector, we
get the BMU for the vector and map the vector to the cell of the BMU. SOM
tends to preserve the topological properties of the input space and thus the vector
neighborhoods in the input space tend to form neighborhoods on the SOM as well.
SOM does also a density approximation, which means that it allocates most of the
weight vectors to represent the dense parts of the input space.

The maps that we use have different colors as they visualize the U-matrix of the map.
The U-matrix colors the cells based on their average distance to the neighboring cells.
The distance is calculated in the original input space and the bigger the distance
the darker the color. Consequently, we notice that if two cells have a dark stripe
between them, they are probably far apart in the input space eventhough they
would be nearby on the map. Thus, we are able to distinguish clusters since they
are surrounded by dark area.

2.3 Data Model

2.3.1 Agent Data

For each agent, we need a list of all practices they have and the times they spend
for the practices. Having obtained the list of all practices and time values we can
form a practice vector for each user. Putting these practice vectors together, we get
an agent-practice matrix, such as one in table 1.

Table 1: Agent input data collected into a matrix. On the y-axis, we have agents
and on the x-axis practices (artists). Values in the matrix define how much each
agent uses for each practice (how many hours he or she listens to the artist per
week).

Agent \ Practice Coldplay Dream Theater Chopin
Bruce 5 0 4
Mike 0 4 4
Lisa 0 10 0

Simulation also takes an influence matrix. The influence matrix determines how
much influence each agent has on every other agent. By default, all influence values
are 1, in case the influence data is not available. Table 2 shows an example of
influence relationships between agents.

It is difficult to define how much influence person A has on person B. However,
it can be estimated based on, e.g., the number of friends person A has. Using the

4

Table 2: An influence matrix that determines how much influence each agent has on
every other agent. On the left are the influencers and on the top the conformists.

Bruce Mike Lisa
Bruce # 0.4 0.7
Mike 1 # 0.9
Lisa 0.7 0.2 #

number of friends we assume that more friends means more influence. Alternatively,
we can simply use the information whether A is a friend of B or not and define the
influence value, for example, 1 or 0.5 respectively.

2.3.2 Practice Data

For each practice, we need a list of their properties. With the properties, we associate
a relevance value which tells how relevant the property is. Of property lists and
property relevancies, we can form a property vector for each practice. Properties
can be, e.g., tags that are associated with binary values (1 = practice has this tag,
0 = practice does not have it) or with float values between 0 and 100 describing
the relevance of a property. Putting the property vectors together, we can form a
practice matrix, such as one in table 3.

Table 3: Practice data collected into a matrix. On the y-axis, we have practices
(artists) and on the x-axis properties (tags). Values in the matrix define how relevant
each tag is for each artist.

Practice \ Tag progressive metal piano rock
Coldplay 0 2 100

Dream Theater 100 0 11
Chopin 0 44 0

2.4 Interaction Model

The algorithm for interaction between agents is as follows:

1. Go through all agents and do steps 2-5 for each of them.

2. Choose the influencing partner (influencer).

3. Choose one practice from the influencer.

5

4. Increase agent’s time for that practice.

5. Decrease agent’s time for other practice(s) so that the total time remains
constant.

6. Go back to step 1 and repeat n times.

2.4.1 Stochastic Choosing of Influencer

First we calculate the probability Pr(Sa = s) for each agent s to be chosen as the
influencer for agent a. Then we draw the influencer from the distribution of S. We
assume that Pr is linearly dependent of the distance between agents d(a, s) and the
agent’s s influence f(a, s) on agent a, so that the smaller the distance the bigger the
probability and the bigger the influence the bigger the probability. Thus, we can
write

Pr(Sa = s) = k(wd(b− d(a, s)) + wff(a, s)), (1)

where wd is the weight given for the distances, wf the weight given for the influence
values and b a constant. We define b to be 1.1 ·max(d(a, si)) so that the probability
will never be negative and even the farthermost agent has always a little probability
to be chosen the influencer. From the axiom

n∑
i=1

Pr(Sa = si) = 1, (2)

we calculate the free parameter k.

The distance between two agents is calculated as Euclidean distance between agents’
practice vectors. This metric is also referred as the Mean Squared Difference and
used, e.g., in Collaborative Filtering methods when determining similarity of user
profiles [8].

2.4.2 Stochastic Choosing of Practice

First, we calculate the probability Pr(Xs = x) for each influencer’s practice x to
be chosen as the influencing practice for the conforming agent a. Then we draw
the influencing practice from the distribution of X. We assume that Pr is linearly
dependent of the distance between the conformist and the chosen practice d(a, x)
and the time the influencer s spends on the chosen practice t(s, x) so that the
smaller the distance the bigger the probability and the bigger the time the bigger
the probability. Thus, we can write

Pr(Xs = x) = k2(wd2(b2 − d(a, x)) + wtt(s, x)), (3)

6

where wd2 is the weight given for the distances, wt the weight given for the times
and b2 a constant. We define b2 to be 1.1 ·max(d(a, xi)) so that the probability will
never be negative and even the farthermost practice has always a little probability
to be chosen the influencer. From the axiom

n∑
i=1

Pr(Xs = xi) = 1, (4)

we calculate the free parameter k2.

The distance d between the influencing practice and the conforming agent’s practices
has to be defined in the case the agent has more than one practice. Therefore, we
determine the distance between practice p and agent’s practices as follows:

1. Calculate the distance between p and each practice the agent has.

2. Choose the smallest distance of them.

Distance between two practices is calculated either as Euclidean distance between
practices’ property vectors or as Euclidean distance on the self-organized practice
map.

SOM does a nonlinear projection of practices into two-dimensional map and thus
the topological properties cannot be fully preserved in the mapping. That is, on
the map The Beatles might be closer to The Rolling Stones than to Queen but in
the original tag space it could be vice versa. However, the distance on the SOM
can be used as a reasonable estimate for the actual distance. Motivation for this is
that calculating the Euclidean distance is much faster in two dimensions than in the
original tag space where there might be hundreds or even thousands of dimensions.

2.4.3 Increasing Agent’s Time for Chosen Practice

We have two different formulas for adjusting agent’s time (tA) for the chosen prac-
tice. Method 1 adjusts agent’s relative time nearer to the influencer’s relative time
(tB/ttotB) according to

tA = tA + α(
tB
ttotB

− tA
ttotA

)ttotA, (5)

where ttotA and ttotB are agents’ total times for all practices. α is a constant between
0 and 1. We use a value around 0.2 for α. tA is changed only if the subtraction in
the formula is positive.

Method 2 is similar to the first one, except that it does not take into account the
influencer’s practice time but it increases tA by a fraction of the agent’s average
listening time tA

7

tA = tA + αtA. (6)

Intuitively, the first method is more accurate since the more the influencer does a
practice the bigger the influence is. However, if for example user A listens to an
artist 2 hours per week and in total he listens to music 10 h/week and user B listens
to the artist 10 h/week and in total 100 h/week, it seems incorrect that B could
not get A to listen to the artist more because he has smaller ratio (i.e. tB > tA but

tB
ttotB

< tA
ttotA

).

2.4.4 Decreasing Agent’s Time for Other Practice(s)

To avoid the agents just increasing the amount they use for their practices, we make
an assumption that agent’s total time for practices remains constant. Currently,
the simulation chooses randomly a practice from the agent and decreases the time
used for it. Decrease in time equals to the increase in the other practice time. If
a time is about to go negative, we randomize a new practice and decrease its time.
This is repeated so many times that the same amount of time is decreased that was
increased.

It may seem more reasonable to drop off the small practices when the time for
some practice is increased. However, this would also drop the recently appeared
practices and thus it would be very unlikely for a new practice to replace an older
one. Therefore, we should probably invent an activity value for a practice and the
practices with high activity would be unlikely to decrease. Nevertheless, the activity
metric should be one that the needed data is available for.

2.5 Model Calibration and Validation

The simulation attempts to predict how a society of agents will evolve. It predicts
how much time each agent uses for each practice in the end of the simulation (out-
come). To validate the prediction, we should have data about how societies have
actually evolved (history data) and then compare the outcome to the history data.
To compare how well the predicted and the actual outcomes match, we choose to
encode an outcome into a vector by concatenating each user’s practice vector to one
vector. This is called the outcome vector.

There are free parameters in our model that need to be calibrated so that the
simulation gives the best possible predictions. The history data is used also for
the calibration. Simulation outcomes are fitted to the history data iteratively by
changing the parameters after each simulation run and minimizing the error between
actual outcome and the simulated outcome. The error (E) can be defined in the
least squares sense [9]

E = ||va − vp||2, (7)

8

where va is the actual outcome vector and vp the predicted outcome vector.

In calibration and validation the history data is divided into two sets. The first set
is used to calibrate the model as described above. The other set is used to validate
the model. Validation is done by examining how well the output of the simulation
fits to the validation data which has not been used in the calibration.

2.6 Stochastic Stability of Predictions

Stochastic simulation is reasonable if the system tends to converge to similar states
using similar initial conditions. That is, the variance of the predictions should not be
too large, else the confidence interval of a prediction becomes wide and the prediction
has little relevancy. Variance or standard deviation alone, however, do not tell much
if not related to the mean [10]. Therefore, we use the coefficient of variation (CV)
[10], which is a dimensionless statistic and thus gives us better understanding of the
predictions. CV is defined as the ratio of the standard deviation σ and the mean µ

cv =
σ

µ
. (8)

We run the simulation for n times with the same initial parameters and get n
different outcome vectors. CV is first calculated for each outcome vector element
separately. Then we take the mean of the element CVs and the formula for the
mean CV becomes

cv =
1

N1

N1∑
i=1

√
1

N2−1

∑N2

j=1(xji − xi)2

xi

, (9)

where N2 is the number of outcome vectors, N1 is the number of elements in an
outcome vector, xji is the ith element in the jth outcome vector and xi is the mean
of ith elements in all outcome vectors.

2.7 Visualization of Simulation

Visualization can be a powerful approach for handling large volumes of data [11].
Animating the progress of the simulation, rather than using pure statistics, helps
the user to follow the progress. It can also provide the developer a very useful tool
for debugging the system.

In our simulation we use two self-organizing maps: the agent map and the practice
map. The agent map visualizes how agents’ practice times change over time. All
agents are mapped on the SOM based on their practice vectors. As the practice
vectors change while agents interact, they are mapped to new cells on the SOM
according to their new BMUs. The agent map is trained with the initial practice
vectors of agents.

9

The practice map contains all the practices of all agents. It visualizes practice
distribution of one agent at a time. Agent’s practices are marked with circles on the
map. The bigger the circle the more time agent uses for the practice. As simulation
goes on, new circles appear and old ones grow and shrink. The practice map is
trained with the property vectors of practices.

Figure 1 illustrates the user interface of the simulation.

Figure 1: Visualization of the simulation. On the left there are agents marked with
circles. Trajectories show how agent’s practices have changed during the simulation.
All the practices are shown on the right. Circles visualize practice distribution of an
agent. The bigger the circle the more time agent uses on the corresponding practice.

2.8 Software Architecture

The self-organizing maps are trained with the SOM Toolbox [12] which is a Matlab
implementation of the SOM. The other parts of the simulation are implemented in
Java programming language [13]. Java suits well for a multiagent simulation for it
is an object-oriented programming language. Objects, like agents, have state and
behavior [14] and therefore it feels natural to handle agents as objects. Java program
can also be turned into a web application rather easily which is useful if we want
to, for example, create a recommender system that is available in the Web.

The source code is divided into four packages (see figure 2): read (contains classes
for reading and parsing input data from files and from the Internet), simulation
(main structure of the simulation model), som (self-organizing map specific classes),
and ui (user interface classes).

10

The most important classes in the simulation package are: Agent, Practice,
Recommender, and SimulationRoom. Agent and Practice model the agent and
practice entities. SimulationRoom is sort of a pool for the agents and it takes care
of running the simulation. Recommender class contains the functionality for checking
which new practices agents have adopted.

Figure 2: On the top: the package structure of the program. On the bottom: the
most important classes in the simulation package.

11

3 Recommender System

3.1 Overview

The task of a recommender system is to help a person to decide what products
to buy, which movie to see, etc. Because of the huge amount of choices, it is
often impossible to evaluate all the possibilities and then make a sound decision.
Recommender systems help by offering a small subset of possibilities a person might
be interested in. [2][8]

3.2 Collaborative and Content-based Recommendations

Collaborative filtering (CF), content-based and hybrid systems are the three main
categories for recommender systems. CF systems are based on the idea that people
usually consult other people with similar tastes when deciding, e.g., what music to
listen to. CF methods build a profile for all persons so that the similarity can be
measured. The profile can be built based on the ratings the person has given or, for
example, the sites he or she has visited. [2]

There are two common approaches for CF: memory-based methods and model-
based methods. Memory-based methods look for people with similar tastes and then
recommend the items they have liked. Model-based methods build, e.g., statistical
models or neural networks which are trained with the profiles of the people and the
ratings they have given to items. After these models have been trained they can be
used to give recommendations for all kinds of profiles. [8]

Content-based systems use information about the properties of the items [2]. Items
that match the person’s own preferences are recommended to the person. For ex-
ample, if a person has watched Titanic and Casablanca and rated them well, a
content-based system might recognize that he or she likes romance movies and rec-
ommend Shakespeare In Love.

The advantage of CF is that nothing needs to be known about the properties of the
items that are recommended, only how other people have liked those. This allows
CF to be applied to various items if only user data is available. The advantage,
and limitation as well, of content-based systems is that they do not use information
about other persons. Therefore, they will never recommend items that are totally
different from the items a person has previously rated or purchased, even though
the person might like them [2]. On the other hand, content-based systems can deal
with the cold-start problem, i.e. they are able to recommend new items that have
not yet been given enough ratings by other persons [2].

12

3.3 Multiagent Simulation Approach

Our method is a hybrid approach since it takes into account both other agents and
similarities of practices. Simulation takes a group of people and uses data about the
practices of the group and the properties the practices. The system then simulates
what new practices persons would adopt and proposes those practices to them.
When a new practice is established, the system recommends it. We assume that a
practice is established when the time used for it has exceeded half of the average
time used for the initial practices.

Normally, recommender systems use rating data but our approach is suitable for
more general data such as listening times. It can also utilize ratings if we assume
that a rating positively correlates to the time used for the practice. That is, the
better the rating, the more time the person will use for the practice.

13

4 Simulation Case: Last.fm

We first introduce the Last.fm service. Then, to demonstrate how the simulation
and the recommender system work, we analyze two example runs which use the
same Last.fm data but different adaption methods and visualization.

4.1 Overview

Last.fm is a free Internet radio service that tracks listenings of the registered users
[15]. It has its own system for giving recommendations to the users and streaming
music they might like. Over 15 million different people use the service at least once
in a month [16].

Users can tag artists. Tags are not chosen from a predefined list but filled in a text
form. A user can also add another user as friend and a mutual friendship is formed
if the other user accepts the request. The friendships can be only mutual, i.e. if the
other user does not accept, or ignores the request, no friendship is formed.

Audioscrobbler [4] is a data service which provides access to the Last.fm data. It
can give, for example, the most listened artists by a user or the friends of the user.
Data is given in XML format, which makes it easy to parse.

4.2 Example Run 1

4.2.1 Setup

We take a user group selected from Audioscrobbler database, their 50 most listened
artists and the tags of the artists as data. Since Audioscrobbler does not have
random access to the users, we pick one of my friends, Japsu , and take the nine
first users in his friend list to form the user group (the author is not among the nine
himself). Japsu is chosen because he has several friends in Last.fm so we get a big
enough sample.

We analyze the example run in six parts: 0, 10, 200, 1500, 3200 and 6100 steps. We
show the visualization after each part and focus especially on the user Rhodanthe’s
listenings. Therefore, all the maps on the right (see appendix A) show the artists
Rhodanthe listens to. The agent maps on the left have very clear clusters. This is
because the map size is too big for the training data which consists of only 10 input
vectors - the initial practice vectors of the agents. However, using oversized maps,
we are able to see even small changes in agents’ practice vectors. Except for the
size, the maps are trained with the default parameters in the SOM Toolbox.

In this run we use adaption method 2. The other simulation parameters are: α = 0.2,
wd = 1, wf = 0, wd2 = wt = 0.5. As wf is zero, all influence values are equal.

14

4.2.2 Analysis of Results

In the initial state all agents are located uniformly around the map. After 10 steps
each of them have stirred a little bit (see figure 4).

After 200 steps Rhodanthe has approached hapanvelli (see figure 5). He has also
adopted several new artists and the top three of them are The Prodigy, with 92
plays, John Coltrane, with 69 plays, and ATC with also 69 plays. All of these
exceed the half of the average number of plays, 58, and thus they are recommended
to Rhodanthe. hapanvelli listens to The Prodigy and John Coltrane so it’s likely
that Rhodanthe has adopted those from him. ATC is adopted from Nikerabbit since
he is the only one in the group who listens to it.

After 1500 steps (figure 5) we can see that the agents have assembled into two groups
except for joonasl who is still hanging in his initial cluster in the down-right corner.

Finally, after 3200 steps (figure 6) all agents have gathered into the same cluster
and the variety of artists has clearly decreased. In 6100 steps Linkin Park grows so
big that it drops all the other artists. Agents are still not in the exact same cell on
the map because they do not listen to Linkin Park equally much.

Obviously, the outcome of the simulation, that everybody would listen to only Linkin
Park in the end, is absurd. Therefore, there should be a mechanism to prevent the
big artists from knocking off the small ones. The other adaption method takes care
of this problem.

4.3 Example Run 2

4.3.1 Setup

We use the same data set as in the first run. However, now we have different influence
values for the agents. An influence value is calculated as the ratio of the number
of friends an agent has and the maximum number of friends the agents have. The
influence values can be observed from the circle sizes of the agents.

In this example, we use a smaller map size in order to get a better agent map but
in consequence there is less movement on the map. Therefore, the run is analyzed
in only four parts. The practice map also looks a little bit different since it has
more cells. It also normalizes the distances logarithmically so that even the small
distances are distinguishable (see appendix B).

In this run we use adaption method 1. The other simulation parameters are: α = 0.2,
wd = wf = wd2 = wt = 0.5.

4.3.2 Analysis of Results

The visualization in the initial state is shown on the top of the figure 7. First
movement, shown on the bottom of the same figure, appears only after 200 steps.

15

Rhodanthe has not yet moved but he has already adopted new practices so much
that they are recommended to him: Boards of Canada with 103 plays, Freedom Call
with 96 plays and Björk with 93 plays. None of these artists is same than those that
were recommended to Rhodanthe in the first run. This indicates that the selection
of the adaption method can have a significant impact on the outcome.

After 1500 steps Rhodanthe has still not moved but other agents have. After 3000
steps agents have settled down to their final practices shown in the figure 8. Agents
have the same artists but they are still not in the same cell because they have
different total listening times. In the top three of the artists are: HIM, Linkin Park
and Machinae Supremacy.

4.4 Stability of Predictions

We can not calibrate the simulation parameters and validate the predictions since
we are lacking history data. Simulation is stochastic and therefore we examine how
well it converges to the same outcome states, i.e. how stable it is, when given the
same initial parameters and run several times. We use the coefficient of variation as
the measure.

To examine the stability, we use user Rj and his 84 friends as the agent group and
the ten most listened artists of each as the practice group. We test ten different
setups where we change the number of simulation steps and the adaption method
(sec. 2.4.3) which agents use to increase their practice times. The results are shown
in the table 4.

Table 4: Convergence results. The metric is the coefficient of variation. n is the
number of simulation steps and methods refer to the two adaption methods which
agents use to adapt their practice times.

n=10 n=100 n=1000 n=3000 n=6000
Method 1 14.0% 31.7% 31.8% 16.2% 6.3%
Method 2 31.1% 6.8% 4.7% 0.2% 0.1%

The results show us that with method 2 simulation converges faster. This is because
with method 2 simulation ends up in a situation where one practice has superseded
all the others, as shown in the example run 1 (sec. 4.2). Because of the randomiza-
tion, the one practice differs between the simulation runs and the outcomes become
different. However, since the CV is calculated as the mean of each element’s CV, it
is close to zero even if the one practice varies.

16

4.5 Visualization of Artist Clusters

As a by-product, our visualization framework proves to be able to produce inter-
esting artist maps representing the mutual relationships of the artists. Figure 3
shows a SOM which uses Finland’s top artists as data. In the picture the clusters
are defined and drawn by hand. They could be given, e.g., the following tags: 1.
Finnish/Swedish metal; 2. Heavy metal; 3. Finnish rock; 4. Rock; 5. Classic rock;
6. Alternative rock.

Figure 3: Self-organizing map of Finland’s most listened artists for a period of one
week.

17

5 Conclusions

5.1 Strengths and Weaknesses

Our framework has the advantage of being applicable to several different simulation
cases. We first started with hobbies as practices and took the data from Wikipedia
articles. Later, we decided to move from Wikipedia to Last.fm since Last.fm would
offer us proper agent data as well. This change required us to implement only a new
parser to get the data in the right format from Last.fm.

On the other hand, excess generality has the risk of making simulation so vague
that it cannot be applied to any real life problems. To prevent this, our framework
is built so that new interaction models are easy to define.

In our experiments with Last.fm data, the interaction models are quite artificial and
not based on any sociological research. For example, they do not take into account
that new artists, nobody in a user group yet listens to, occur. Therefore, even if
we had the history data for calibrating our model, the calibration would not be
successful. This is because, in a long term, new hit artists would rise up in real life
but our model could not predict them.

Our agent model is also oversimplified since it takes into account only the practice
times and the influences between agents. This diminishes diversity and leads to
outcomes where all agents have the same practices.

Since the predictions of our simulation are not quite reliable, the recommender sys-
tem cannot be considered reliable either. Nevertheless, given proper models it could
prove useful, especially because it has the visualization supporting the recommen-
dations. Herlocker et al. [17] argue that current recommender systems are black
boxes, and if added some transparency, users would accept the recommendations
better. Our visualization should help the users to understand the process behind
simulation and recommendations, thus adding to the credibility of the system.

Our original idea was not to create a reliable predictor but a functional simulation
platform. In this sense we have succeeded as our example runs show. Building a
recommender system was not in the original plan either but it came almost as a
by-product with the simulation framework. I got the idea for it when I started to
use Last.fm data and with brief pre-study it turned out to be an intriguing research
topic.

In general, multiagent simulation feels a natural approach to the problem since we
do not have to make any generalized assumptions about the whole societies. We
only define the interaction models and give the data about agents. Then we can
observe if the simulation follows the reality and if not, recalibrate the parameters in
the models.

18

5.2 Future Work

To obtain reliable simulation results, we would need to calibrate our models and
this requires history data. We could set up a crawler that downloads the current
state of an agent group between certain intervals. However, the interaction models
and agent models should first be rebuilt so that they would base on some existing
research results.

One way to improve the agent models could be to utilize the diffusion of innovations
theory. This theory classifies agents to early adopters, secondary adopters, tertiary
adopters, etc., based on how fast they adopt new innovations [18]. However, we do
not have the data required for classification but possibly the history data could be
used for that too. In general, more detailed data about the agents would be needed.
We could do this by looking for new data sources or maybe setting up a survey of
our own, which we would use for collecting all the necessary information about a
group of people.

19

References

[1] Wooldridge, M. Lecture Slides for An Introduction to Multiagent Sys-
tems. Available at: http://www.csc.liv.ac.uk/~mjw/pubs/imas/distrib/

pdf-index.html, accessed 25 August 2008.

[2] Adomavicius, G., Tuzhilin, A. Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE
Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734-749,
Jun., 2005

[3] Pantzar, M. Shove, E. The Choreography of Everyday Life: Towards an inte-
gratice Theory of Practice. 2008.

[4] Audioscrobbler. The Social Music Technology Playground. Available at: http:
//www.audioscrobbler.net/data/webservices/, accessed 4 June 2008.

[5] Lesser, V. R. Cooperative multiagent systems: A personal view of the state of
the art. IEEE Trans. Knowledge Data Eng., vol. 11, pp. 133-142, Jan. 1999.

[6] Klügl, F. Multi-Agent Simulation. Lecture slides. 2004. Available at:
http://ki.informatik.uni-wuerzburg.de/~kluegl/teach/EASSS2004%

20Multi%20Agent%20Simulation.pdf, accessed 25 August 2008.

[7] Kohonen, T. Self-Organizing Maps. Springer Series in Information Sciences, 30,
Springer, 2001.

[8] Polc̆icová, G. Topographic Organization of User Preference Patterns in Collab-
orative Filtering. Doctoral thesis, Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies, 2004.

[9] Weisstein, Eric W. Least Squares Fitting. From MathWorld–A Wol-
fram Web Resource. Available at: http://mathworld.wolfram.com/

LeastSquaresFitting.html, accessed 21 August 2008.

[10] Dogra, Shaillay K., Coefficient of Variation. From QSARWorld–A Strand
Life Sciences Web Resource. Available at: http://www.qsarworld.com/

qsar-statistics-coeff-variance.php, accessed 18 August 2008.

[11] Spector, L., and Klein, J. 2002. Evolutionary dynamics discovered via visual-
ization in the breve simulation environment. In Proceedings of the Workshop
‘Beyond Fitness: Visualising Evolution’ at The 8th International Conference
on the Simulation and Synthesis of Living Systems, Artificial Life VIII.

[12] Adaptive Informatics Research Centre: SOM Toolbox, Available at: http:

//www.cis.hut.fi/projects/somtoolbox/, accessed 28 October 2008.

[13] Java, 2007. Java Platform, Standard Edition 5.0. Sun Microsystems, Inc. Avail-
able at: http://java.sun.com/javase/6/docs/, accessed 21 August 2008.

20

[14] Sun Microsystems Inc. What Is an Object? Available at: http://java.sun.

com/docs/books/tutorial/java/concepts/object.html, accessed 21 Au-
gust 2008.

[15] About Last.fm Available at: http://www.last.fm/about, accessed 21 August
2008.

[16] Aukia, J. Bayesian clustering of huge friendship networks. Master’s thesis,
Helsinki University of Technology, Department of Computer Science and Engi-
neering, Espoo, 2007.

[17] Herlocker, J., Konstan, J.A., Riedl, J. Explaining Collaborative Filtering Rec-
ommendations. ACM 2000 Conference on CSCW. 2000

[18] Rogers, Everett M. Diffusion of Innovations, Fifth Edition. New York, 2003.

21

Appendix A

Figure 4: On the top: simulation in its initial state. On the bottom: simulation
after 10 steps. Maps on the right visualize the listening distribution of Rhodanthe.

22

Figure 5: On the top: simulation after 200 steps. On the bottom: simulation after
1500 steps.

23

Figure 6: On the top: simulation after 3200 steps. On the bottom: simulation after
6100 steps.

24

Appendix B

Figure 7: On the top: simulation in its initial state. On the bottom: simulation
after 200 steps. Maps on the right visualize the listening distribution of Rhodanthe.

25

Figure 8: On the top: simulation after 1500 steps. On the bottom: simulation after
3000 steps.

Eric Malmi

Kandidaatintyön yhteenveto

Monet tieteenalat, kuten sosiologia ja kuluttajatutkimus, pyrkivät mallin-
tamaan ihmisen käyttäytymistä. Nykyään tietokoneet tarjoavat hyödyllisen
apuvälineen mallintamiseen, sillä tietokoneille voidaan rakentaa simulaatioi-
ta, joiden avulla pystytään tutkimaan ihmisen käyttäytymistä ilman työläitä
ja kalliita ihmiskokeita. Simulaatioita varten tarvitaan sosiaalista aineistoa
ihmisten käyttäytymisestä, ja tätä on saatavilla hyvin esimerkiksi internetin
verkostoitumissivustojen kautta.

Tätä työtä varten on rakennettu stokastiseen moniagenttisimulointiin perus-
tuva simulaatiokehys, jolla voidaan simuloida sosiaalisia vuorovaikutussuh-
teita. Kehys käsittelee agentteja, eli tässä yhteydessä ihmisiä, sekä agenteilla
olevia käytäntöjä, joilla tarkoitetaan esimerkiksi ihmisten kuuntelutottumuk-
sia tai muita harrastuksia. Simulaatioon syötetään agenttien alkutila, minkä
jälkeen se alkaa simuloida sitä, kuinka agentit omaksuvat uusia käytäntöjä
toisiltaan ja luopuvat vanhoista. Lopputuloksena saadaan ennustus esimer-
kiksi siitä, minkälaista musiikkia agentit kuuntelevat tulevaisuudessa.

Kehyksen on tarkoitus soveltua useaan erilaiseen simulointitarpeeseen, jo-
ten agentteja ja käytäntöjä koskeva data esitetään yleisesti vektoreina. Jo-
kaista agenttia varten tarvitaan käytäntövektori, jonka alkiot kuvaavat eri
käytäntöihin varattua aikaa. Käytäntövektorilla voidaan kuvata siten esimer-
kiksi eri harrastusten viikoittaisia harrastusaikoja. Jokaista käytäntöä varten
tarvitaan puolestaan ominaisuusvektori, joka kuvaa käytäntöön liittyviä omi-
naisuuksia ja sitä, kuinka oleellisia eri ominaisuudet ovat käytännölle.

Agenttien väliset vuorovaikutusmallit voidaan myös määritellä vapaasti. Ke-
hykseen on toteutettu valmiiksi yksinkertainen stokastinen malli, joka perus-
tuu ajatukseen, että henkilöt vuorovaikuttavat todennäköisimmin samanlais-
ten henkilöiden kanssa. Algoritmi toimii siten, että agentit valitsevat ensin
kukin itselleen vaikuttajan, jolta alkavat omaksua jotain käytäntöä. Vaikut-
taja valitaan satunnaisesti muista agenteista, mutta kuitenkin niin, että pai-
notetaan niitä, joiden käytäntövektori on lähellä agentin omaa käytäntövek-
toria. Agenteille voidaan määrittää lisäksi sosiaalista statusta kuvaava lu-
kuarvo, jota käytetään myös painotuksessa.

Vaikuttajan valinnan jälkeen valitaan yksi sen käytännöistä. Käytäntö voi
olla mikä tahansa vaikuttajan käytännöistä, mutta valinnassa painotetaan
niitä käytäntöjä, joihin vaikuttaja käyttää eniten aikaa, ja jotka ovat lähellä
agentin omia käytäntöjä. Kun käytäntö on valittu, lisää agentti tälle käytän-
nölle varaamaansa aikaa sekä vastaavasti pudottaa saman ajan pois joiltain
muilta käytännöiltä. Edellä esitellyn menetelmän voidaan ajatella mallin-

Eric Malmi

tavan tilannetta, jossa henkilö tapaa esimerkiksi jonkin itselleen läheisen
ystävän, ja he alkavat puhua molempia kiinnostavasta musiikinalasta. Ystävä
kertoo henkilölle jostain uudesta alan artistista, minkä seurauksena henkilö
päättää alkaa kuunnella tätä artistia.

Simulaation etenemistä havainnollistetaan itseorganisoivilla kartoilla. Itseor-
ganisoiva kartta on ohjaamattomaan oppimiseen perustuva neuroverkkoal-
goritmi. Se kuvaa annetun vektoriaineiston epälineaarisesti kaksiulotteiselle
kartalle, ja näin ollen sitä voidaan käyttää moniulotteisen aineiston visuali-
sointiin. Simulaatiokehys käyttää kahta itseorganisoivaa karttaa, joista toi-
nen havainnollistaa agenttien ja toinen käytäntöjen välisiä suhteita. Kartoille
syötetään käytäntö- ja ominaisuusvektorit, minkä jälkeen ne oppivat kuvaa-
maan vektorit kartalle. Kun agentit alkavat vaikuttaa toisiinsa ja muuttavat
käytäntövektoreitaan, ne kuvautuvat uusiin soluihin kartalla, joten vuorovai-
kutus havaitaan agenttien liikkeenä kartalla.

Jotta simulaatio voisi antaa järkeviä ennustuksia, täytyy mallin parametrit
kalibroida. Kalibrointi suoritetaan historia-aineistolla, joka kuvaa sitä, kuin-
ka agenttien käytännöille varaamat ajat ovat muuttuneet ajan myötä. Pa-
rametreja muutellaan niin kauan, kunnes simulaation antamat ennustukset
saadaan sovitettua mahdollisimman hyvin kerättyyn historia-aineistoon. Ai-
neistoa voidaan käyttää myös ennustusten todentamiseen siten, että jaetaan
aineisto kahteen joukkoon. Toisella aineistojoukolla kalibroidaan parametrit
ja sen jälkeen tutkitaan, kuinka hyvin malli ennustaa toista joukkoa.

Simulaatiokehyksen yhteyteen on rakennettu myös suosittelijajärjestelmä, jo-
ka suosittelee käyttäjille niitä käytäntöjä, joista he saattaisivat olla kiinnos-
tuneita. Esimerkiksi useat verkkokaupat, kuten Amazon.com, hyödyntävät
tällaisia järjestelmiä ehdottaessaan asiakkaalle tuotteita, jotka saattaisivat
kiinnostaa asiakasta. Perinteiset suosittelijajärjestelmät voidaan jakaa kah-
teen alakategoriaan: yhteisöllisen suodatuksen (collaborative filtering) me-
netelmiin sekä sisältöpohjaisiin (content-based) menetelmiin. Yhteisöllisessä
suodatuksessa järjestelmä etsii käyttäjän kanssa samanlaisia käyttäjiä ja suo-
sittelee tuotteita, joista nämä samankaltaiset käyttäjät ovat pitäneet mutta
joita käyttäjä itse ei ole vielä kokeillut. Sisältöpohjaiset menetelmät etsivät
puolestaan tuotteita, jotka ovat samankaltaisia niiden tuotteiden kanssa, jois-
ta käyttäjä on aiemmin pitänyt.

Työssä esitellyn suosittelijajärjestelmän ideana on se, että ensin ennustetaan
simuloimalla, mitä käytäntöjä agentit omaksuvat, ja sen jälkeen suositellaan
näitä käytäntöjä agenteille. Järjestelmä yhdistelee yhteisöllistä suodatusta ja
sisältöpohjaisia menetelmiä, sillä se huomioi sekä samankaltaiset agentit että
samankaltaiset käytännöt.

Eric Malmi

Järjestelmän toiminnallisuutta esitellään analysoimalla kaksi esimerkkiajoa,
jotka käyttävät Last.fm-aineistoa. Last.fm on internetradio, joka tallettaa
käyttäjien kuuntelutottumuksia. Last.fm-palvelun yhteyteen on rakennettu
Audioscrobbler-palvelu, joka tarjoaa pääsyn Last.fm-aineistoon ilmaiseksi.
Audioscrobblerin kautta voi ottaa selville esimerkiksi käyttäjän eniten kuun-
telemat kappaleet, artisteille annetut tagit ja käyttäjien palvelussa muo-
dostamat ystäväverkostot. Esimerkkiajoissa käytetään käytäntöinä artisteja.
Käytäntöjen ominaisuuksina käytetään artisteille annettuja tageja.

Esimerkkiajoja varten valitaan yksi käyttäjä Last.fm-palvelusta ja otetaan
tämän käyttäjän yhdeksän ensimmäistä ystävää. Toisessa ajoista määrite-
tään agenteille myös sosiaaliset statukset olettamalla, että agentin sosiaali-
nen status on sitä suurempi, mitä enemmän agentilla on palvelussa ystäviä.
Simulaatioita ajetaan niin kauan, kunnes agentit ovat saavuttaneet jonkin-
laisen tasapainotilan.

Esimerkkisimulaatiot suppenevat tasapainotiloihin, joissa kaikki agentit kuun-
televat samoja artisteja. Tämä on luonnollisesti epäuskottava ennuste, joten
simulaatio on osittain puutteellinen. Simulaation parantamiseksi tarvittaisiin
paremmat vuorovaikutusmallit, jotka pohjautuisivat oikeisiin tutkimustulok-
siin. Ongelmana on myös se, ettei ole saatavilla historia-aineistoa, jolla voi-
taisiin kalibroida simulaation vapaat parametrit sekä todentaa sen antamat
ennusteet.

Historia-aineiston keräämiseksi voitaisiin toteuttaa pieni ohjelma, joka la-
taisi säännöllisin väliajoin jonkin käyttäjäjoukon sen hetkiset kuuntelutot-
tumukset. Esimerkkiajojen perusteella voidaan kuitenkin sanoa, että alku-
peräinen tavoite, eli toimivan simulointikehyksen toteuttaminen, on onnis-
tunut. Suosittelijajärjestelmän toteuttaminen ei kuulunut myöskään alku-
peräiseen suunnitelmaan, vaan se syntyi ikään kuin simulaatiokehyksen sivu-
tuotteena.

