
Differential Cryptanalysis of PUFFIN and
PUFFIN2

Céline Blondeau1 ? and Benôıt Gérard2??

1 Aalto University School of Science, Department of Information and Computer
Science

2 Université catholique de Louvain, UCL Crypto Group, ICTEAM Institute.
celine.blondeau@aalto.fi; ben.gerard@uclouvain.be

Abstract. A sound theoretical framework for analyzing multiple differ-
ential cryptanalysis was introduced and applied to reduced-round
PRESENT at FSE 2011. We propose here to apply it to the cryptanal-
ysis of another lightweight block cipher namely PUFFIN. This cipher
security has already been undermined by Leander for a quarter of the
keys. In this paper we claim that both PUFFIN and its patched version
PUFFIN2 can be broken by differential cryptanalysis faster than by ex-
haustive search and using less than the full code-book. We also improve
the complexities of these attacks using multiple differentials. Particu-
larly, we propose an attack on PUFFIN2 that recovers the 80-bit key in
274.78 operations using 252.3 chosen plaintexts.
Keywords: multiple differential cryptanalysis, lightweight cryptogra-
phy, PUFFIN.

1 Introduction

Security and privacy in constrained environment is a challenging topic in cryp-
tography. In this prospect many lightweight ciphers have been designed in the
last few years. The most studied one is PRESENT that was proposed at CHES
2007 [1]. The popularity of this cipher may come from its very simple structure
(the Substitution Permutation Network or SPN) together with the simplicity
of its permutation layer that only consists in wire crossings. This cipher has
been extensively studied and its security against statistical cryptanalyses has
not been threatened yet. Unfortunately, this is not the case of all proposed
lightweight ciphers. Indeed, some specifications include incorrect security analy-
sis claiming resistance against classical statistical attacks namely Matsui’s linear
cryptanalysis [2] and Biham and Shamir’s differential cryptanalysis [3]. A typi-
cal illustration is the PUFFIN cipher family. PUFFIN [4] and PUFFIN2 [5] are
two recently proposed ciphers operating on 64-bit messages with respective key
lengths 128 and 80. An extension of linear cryptanalysis has been applied to
PUFFIN by Leander [6] and we propose in this paper to consider the weakness
of both ciphers against differential cryptanalysis.

? This work was produced while at INRIA project-team SECRET, France
?? Postdoctoral researcher supported by Walloon region MIPSs project.

The main source of incorrectness in the security analysis of PUFFIN and
PUFFIN2 comes from the fact that advances in both linear and differential
cryptanalysis have not been taken into account. For instance, at EUROCRYPT
2011, Leander [6] presented a new method to attack block ciphers considering
the linear hull effect. Applying this method to PUFFIN he obtained an attack
that recovers the master key with a data complexity of 258 for a quarter of
the keys while the designers claim that obtaining a gain over exhaustive search
at least requires 264 plaintext/ciphertext pairs. The same holds for differential
attacks since only attacks using one differential are considered and since the
probabilities of such differentials are underestimated by only looking at the most
probable differential trail. Moreover, it is implicitly considered that the classical
last-round attacks will use differentials on r − 1 rounds (that is 31 out of 32 for
PUFFIN and 33 out of 34 for PUFFIN2) while it turns out that we are able to
perform attacks with differentials for r− 4 and r− 5 rounds of the cipher due to
the slow diffusion of both the permutation layer and the key-schedule algorithm.

From a cryptanalytic point of view, the proposed attacks are very similar to
the multiple differential cryptanalyses of PRESENT [7, 8]. The main difference
comes from the fact that more than the two last rounds are partially inverted.
This implies that the key-schedule may be exploited when partially deciphering
samples to keep the time complexity small enough. This consideration is the
main contribution of this paper regarding the state of the art in differential
cryptanalysis. It also raises the question of using algebraic techniques at this
point of the attack. This problem is closely related to the use of an algebraic
wrong-pair detection as investigated in [9].

Using the theoretical framework presented in [8], we propose different attacks
on both ciphers. For instance, we propose parameters to attack PUFFIN which is
parametrisez by a 128-bit key with time complexity 2108.84 and data complexity
249.42. More importantly, we also propose an attack on the patched PUFFIN2
version that recovers the 80-bit key in time 274.78 using 252.3 chosen plaintexts
contradicting the security claims of the designers.

The remaining sections are organized as follows. First, in Section 2 we pro-
vide a detailed description of both PUFFIN and PUFFIN2 then, in Section 3
we discuss techniques for recovering key bits in a last-round attack. We also
discuss techniques for performing this key-recovery part of the attack efficiently
when many active S-boxes have to be considered and propose an estimate for
the resulting time complexity. In Section 4 we present tools we use to analyze
multiple differential attack complexities and provide some lower bounds for dif-
ferential probabilities on PUFFIN and PUFFIN2. Finally, we detail our choice of
parameters for the proposed attacks and provide the corresponding complexities
in Section 5 before concluding in Section 6.

2 Description of PUFFIN and PUFFIN2

The lightweight cipher PUFFIN was introduced in [4] then upgraded to PUF-
FIN2 in [5]. Both ciphers are 64-bit SPN ciphers with round functions composed
of a key addition, an S-box layer and a permutation. The order of the different
components differs from a version to another but both the S-box and the permu-
tation are the same for PUFFIN and PUFFIN2. The particularity of this cipher
is that the permutation and the substitution layer are involutions, meaning that
the same primitive is used for both encryption and decription process.

The initial number of key bits in PUFFIN was 128, it has been reduced to
80 in PUFFIN2 while the number of rounds has been increased from 32 to 34.
The key-schedule also has been improved since it was linear in PUFFIN and is
now highly non-linear in PUFFIN2. Notice that in addition to the 32 rounds of
PUFFIN, a sub-key addition and a permutation are performed at the beginning.
In PUFFIN2, the S-box layer is applied at the end of the 34 rounds (see Fig. 1).
The round functions and key-schedules are detailed in the following subsections.

?

?

?
...

?

?

Add subkey 0

Permutation

Substitution

Add subkey 1

Permutation

Substitution

Add subkey 32

Permutation

}
Round 1

}
Round 32

?

?
...

?

?

?

Substitution

Permutation

Add subkey 1

Substitution

Permutation

Add subkey 34

Substitution

}
Round 1

}
Round 34

Fig. 1. PUFFIN (left) and PUFFIN2 (right) ciphers.

2.1 Round functions of PUFFIN and PUFFIN2

As mentioned earlier, the round functions are composed of a key addition, an
S-box layer and a permutation layer. While in both PUFFIN and PUFFIN2
the state first passes through the S-box layer, the state is exclusively-ORed to

the round sub-key before being permuted in PUFFIN (SAP) when it is first
permuted in PUFFIN2 (SPA). Both ciphers are depicted in Fig. 1.

For both versions of the cipher, the substitution layer is composed of 16
applications of a 4x4 S-box given by Table 6 in Appendix B. The permutation
layer P is given by Table 7 in Appendix B. A round of PUFFIN is depicted in
Fig. 2.

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕

Fig. 2. One round of PUFFIN.

2.2 PUFFIN key-schedule

The key-schedule of PUFFIN is linear and operates on 128-bit master keys to
generate 33 round-subkeys as follow.

1. First, a 128-bit state is initialized with the master key.
2. The 64-bit first-round subkey is extracted from the state using the selection

table given in Table 8.
3. Steps 4 to 6 are iterated to obtain the remaining subkeys.
4. The state is updated using the permutation given in Table 9.
5. Bits 0, 1, 2 and 4 are inverted excepted for rounds 2, 5, 6 and 8.
6. A 64-bit round subkey is extracted from the state using Table 8.

2.3 PUFFIN2 key-schedule

The key-schedule in PUFFIN2 is not linear anymore but nevertheless remains
simple since its structure follows the one of an SPN (without key addition of
course). The key-size has been reduced here from 128 in PUFFIN to 80 bits.
Then the state is processed as follows to generate 34 round sub-keys.

– First, an 80-bit state is initialized with the master key and passed through
an S-box layer which consist in an application of the cipher S-box to each
group of nibbles of the 80 bits.

– Then the following steps are iterated to obtain the 34 round-subkeys.

1. A 64-bit subkey is extracted by selecting the 64 leftmost bits or the 64
rightmost bits of the state depending on the round number (see Table 1).

2. The 64 bits of the state used to generate the key are passed through
the cipher permutation P(64 leftmost or 64 rightmost depending on the
round number).

3. The whole 80-bit state is non-linearly transformed by passing through a
layer of S-boxes: adjacent bits are grouped by nibbles (4 bits) and the
cipher S-box is applied to each of the 20 groups.

Round numbers

64 leftmost bits 1,2,7,8,11,12,15,16,19,20,23,24,27,28,33,34
64 rightmost bits 3,4,5,6,9,10,13,14,17,18,21,22,25,26,29,30,31,32

Table 1. Bits of the state considered in the key-schedule.

3 Key-recovery in differential cryptanalysis

3.1 Last-round attacks: the differential case

Last-round attacks recover some key bits by peeling off one or more rounds (say
r′) of the cipher. The idea is to compute a statistic linked to the behavior of
the cipher over r rounds thus targeting r + r′ rounds. This is done by partially
deciphering some relevant part of the available ciphertexts over r′ rounds. Hence,
for each possible value of the key bits involved into this process, a statistic is
obtained. These statistics translate into probabilities or likelihood values that
induce at their turn an ordering of the subkey candidates from the most probable
value for the correct subkey to the least one.

The main novelty of the attacks proposed in this paper lies in the fact that,
by contrast with differential attacks on PRESENT, the number of peeled off
rounds is larger (r′ can be up to 5 rounds in the PUFFIN’s case while it is
equal to 2 in differentials attacks on PRESENT [7, 8]). The partial deciphering
hence has a huge cost in time if no trick is used to reduce it. The context of
differential cryptanalysis is particular in this prospect hence, as mentioned in
the title of the section, we will focus on this case. We are first going to briefly
recall the flow of differential cryptanalysis to clearly express the problem. To ease
the understanding, we restrict ourselves to the particular setting where only one
differential is used. The problem is quite similar when using more differentials
hence we will discuss the main differences later on.

The cipher is divided into two parts: Er+r′ = Er′ ◦ Er that is the first r
rounds Er that are considered when searching a good differential and the last r′

rounds Er′ that are partially inverted during the attack. The functions E have
two variables: the first is the key used and the second one the message/internal

state. Pairs available to the attacker have been obtained using the correct key k∗
that the attacker aims at recovering: C = Er+r′(k∗, P). The partial decryption
using a candidate k is denoted by E−1r′ (k,C). For a given differential (δ0, δr), the
attack is detailed in Algorithm 1.

Algorithm 1: Last-round differential attack.

Input: a differential (δ0, δr), plaintext/ciphertext pairs (P,C = Er+r′(k∗, P))
Output: an ordered list of subkey candidates
Initialize a table D of size 2nk to 0, D(k) corresponds to the counter for the
subkey candidate k;
foreach plaintext pair (P, P ′) such that P ⊕ P ′ = δ0 do

foreach subkey candidate k do
if E−1

r′ (k, C)⊕ E−1
r′ (k, C′) = δr then

D(k)←− D(k) + 1;
return candidates ordered according to D(k);

3.2 PUFFIN permutation layer diffusion

The permutation layer of PUFFIN has been designed to be hardware efficient
(it uses only wire crossings) and to be an involution. This last point is the main
difference with the permutation layer of PRESENT and has a major counterpart
that is its slow diffusion. The full-diffusion of a cipher is reached when a bit-flip at
any position of the input will influence all output bits3. In general, the smaller the
number of rounds required to reach full-diffusion is, the more resistant the cipher
should be (particularly against last-round attacks and impossible differential
cryptanalysis). While using PRESENT permutation full-diffusion is reached after
3 rounds (which is optimal for a bit permutation and 16 4-bit S-boxes), 5 rounds
of PUFFIN are required to obtain this property (see Fig. 3 for an example).
The danger for last-round attacks is that a bad diffusion implies a small number
of active S-boxes when inverting the last rounds. Hence, the attacker is able to
increase r′ that is decreasing r for the same number of targeted rounds, which
in turns, implies the use of better statistical characteristics.

In this paper, we present attacks where only S-box S11 is active in the r +
1-th round. It turns out that best differentials are the ones having only one
active S-box in the last round. More particularly, output differences activating
S-boxes S3, S11 and S12 have pretty good probabilities. Then, we looked at
the corresponding diffusion patterns and chose S11 for the attack. The diffusion
pattern for S11 is depicted in Fig. 3.

We want to point out that the larger r′ is, the larger the differential proba-
bilities for the r-round part are (since covering less rounds) inducing a smaller

3 Notice that this does not mean that there is not any bias in the distribution of the
output differences.

S11S11S11S11

S3S5S9S13

S0S4S4S4S8S10S10S10S11S11S11S11S12S13S14S14

S0S0S0S1S1S3S3S3S3S4S4S5S5S5S5S6S8S8S9S9S9S9S10S11S12S13S13S13S13S14S14S15

S0S0S0S0S1S1S1S2S2S2S3S3S3S3S4S4S4S4S5S5S5S5S6S6S7S7S8S8S8S8S9S9S9S9S10S10S10S10S11S11S11S11S12S12S12S12S13S13S13S13S14S14S14S14S15S15

Fig. 3. Diffusion of differences activating only S11 over 5 rounds of PUFFIN and
PUFFIN2.

data complexity. The counterpart of choosing a larger r′ is that the number of
key-bits involved increases. The partial decryption phase as presented in Algo-
rithm 1 has a time complexity of Θ (Ns 2nk) where Ns is the number of pairs
used and nk the number of involved key bits. Hence, r′ should be chosen such
that log2(Ns) + nk is smaller than the master-key length.

It is actually possible to speed up Algorithm 1. Many techniques can be
found in the literature but here we need to push them beyond their typical
use since the number of rounds we invert is large (and so is the number of
active S-boxes). Moreover, the analysis of the fastened Algorithm 1 becomes
really tricky when using such advanced techniques. Therefore, we propose to
look at key-recovery as a tree-traversal problem. Such representation will help in
both the understanding of the problem and the derivation of an estimate of the
complexity. This is precisely the two points we focus on in the next subsections.

3.3 Using a tree-based description for key-recovery

For a fixed pair of ciphertexts, the problem of incrementing the key-candidate
counters can be seen as a tree traversal. Using this expression of the problem
makes things clearer and might be helpful for the analysis of the attack com-
plexity.

Counter incrementation as a tree traversal.
The attack uses a differential (δ0, δr) over r rounds of the cipher. For each cipher-
text pair (C,C ′) obtained from a plaintext pair having a difference δ0, we have
to increment by one each candidate counter corresponding to a value k such that
E−1r′ (k,C)⊕ E−1r′ (k,C ′) = δr. Not all the bits of E−1r′ are required to increment
the counters. Only active S-boxes (as depicted in Fig. 3) need to be inverted. Let
us denote by d the number of active S-boxes (maximal number of active S-boxes
on the r′ rounds for a pair of ciphertexts fulfilling E−1r′ (k,C)⊕E−1r′ (k,C ′) = δr.).
The tree TC,C′ corresponding to the problem is a tree of height d and branching
factor 24. This tree has 24d leaves corresponding to all the possible values for
the key-bits XORed before inverting active S-boxes. At some depth in the tree,
all the nodes are corresponding to the same active S-box. For each leave, there
is a difference δ that results from the partial decryption of C and C ′ using the
key-bits determined by the path of the leave. Note that not all the 4d-bit values
correspond to a master key. Indeed, these bits may be linked by the key-schedule
algorithm. Incrementing counters boils down to detecting the leaves for which
the 4d bits correspond to a real key (there are only 2nk such leaves) and for
which the difference after deciphering is equal to δr.

We propose to implement the key-recovery part of the attack as the traversal
of TC,C′ . Then, to be efficient, we have to take care of not wasting time traversing
useless branches. What we refer as a useless branch is a subtree that does contain
no leave leading to a counter incrementation. Such branches may be the result of
an inconsistence in the key-schedule (only 2nk out of 24d candidates correspond
to a real key) or may simply come from the fact that not all the candidates are
incremented by a given ciphertext pair.

Using a first filter.
An important remark here is that not all the 2nk leaves corresponding to valid
candidates will produce difference δr after decryption. Let us introduce some
formalism to express this. Let ϕδr be the function defined as follows where m is
the message-length.

ϕδr : Fm2 × Fnk2 → Fm2 × Fm2
(x, k) 7→ (y, y′) = (Er′(k, x), Er′(k, x⊕ δr))

The set Im(ϕ) is the set of ciphertext pairs that can be obtained after r′ rounds
of encryption when starting from a difference δr. The first main tool to speed
up Algorithm 1 is to use a filter that is a subset F ⊆ Fm2 × Fm2 such that
Im(ϕ) ⊆ F . Indeed, no candidate counter will be incremented by a ciphertext
pair not in Im(ϕ) thus processing such a pair is useless and time consuming.
Such filter F is optimal when equal to Im(ϕ). Typically, filters consist of a set of
reachable differences or potentially active key-bits obtained using techniques of
truncated differential cryptanalysis or impossible differential cryptanalysis. The
usefulness of algebraic techniques for this purpose is still an open question [10,
9].

Using round filters.
In the attack on PRESENT proposed in [7] and where r′ is equal to 2, the author
proposed to use an intermediate filtering step. For a given pair of ciphertexts,
the attacker inverts the active S-boxes in the last round for all possible corre-
sponding round-key bit values. He goes on inverting the penultimate round only
if the difference obtained after the round inversion belongs to the set of possible
differences. Such an additional filtering step has an important impact on the
time complexity of the attack.

Using S-box filters.
The number of active S-boxes in the last round is too large in our context to use
only round filters. Indeed, inverting the last round for all pairs that have not
been discarded is far too time consuming. Hence, the natural idea is to apply a
filter after each S-box inversion. This is precisely what we propose in this paper
and we will see that it allows us to take large values for r′ (up to 5). Using
efficient filters drastically fastens the attack but is difficult to analyze. Indeed,
ad hoc techniques used up to now becomes more tricky to apply for many reasons
and particularly because dependencies between different filters may appear.

Invalid key values.
Considering S-boxes successively, we have to take care of detecting invalid values
for the 4d key-bits early in the traversal. In Algorithm 1, each of the 2nk can-
didate was expanded to a 4d-bit value then used for partial decryption. Using
S-box filters, we try to avoid decrypting using all the candidates and hence we
have to check for key-bit consistency during the traversal. This can be done by
using r′ states corresponding to round subkeys and by updating them relatively
to the key-schedule each time key-bits are guessed. Then, some key-bits of previ-
ous rounds will be fixed in advance reducing the number of children of the next
level of the tree.

Analyzing key-recovery complexity.
We presented techniques to speed up Algorithm 1 and we aim now at analyz-
ing the resulting complexity of the attack. We tried to use the same kind of
techniques that can be found in the literature but we faced many difficulties be-
cause of all the inherent dependencies between bits when considering more than
2 rounds of a cipher. A typical problem encountered is that the diffusion pattern
provides a list of potentially active S-boxes that have to be inverted but, for a
fixed ciphertext pair, some of these S-boxes may be inactive. We have to invert
them to perform the r′-round decryption but we should not start with them since
the corresponding filters will validate all the 4-bit values for the key. Hence, to
be efficient, the order of S-boxes may depend on the ciphertext pair. It is not
tractable to take this into account using aforementioned evaluation techniques
and fixing the same order for all pairs would result in very high complexity. That

is the reason why we propose to analyze the complexity of this part of the attack
in an ideal context using the tree-representation of the problem.

3.4 Expected complexity of the fast counter incrementation

In this subsection, we derive an asymptotic estimate for the key-recovery com-
plexity under the strong assumption that we are able to detect all useless branches
as soon as possible (that is detecting a useless branch when reaching its root) in
constant time. This assumption is optimistic but we will discuss in Appendix A
the fact that techniques used to speed up Algorithm 1 take constant time at the
cost of table pre-computations and storage and that they allow a quasi-optimal
tree traversal.

Now assuming that this hypothesis holds, then the complexity of one tree
traversal is Θ (dα) where α is the number of counters incremented by the pro-
cessed pair. Let N be the number of available plaintext/ciphertext pairs, then
we can form Ns = N/2 plaintext pairs and obtain the corresponding ciphertext
pairs. We denote by A1, . . . , ANs the number of incremented counters corre-
sponding to the Ns ciphertext pairs. Then, we are interested in computing the
complexity of the attack:

∑Ns
i=1 dAi. Since we know very few about the distri-

bution of Ai, we propose to estimate the expected value of the time complexity
of the attack. Using the linearity of the expected value, we easily derive

E

(
Ns∑
i=1

dAi

)
= Ns · d · E (A) .

Supposing that ciphertext pairs are uniformly distributed4 over Fm2 × Fm2 , then,
the expected value of the cardinal of ϕ−1δr (y, y′) is the ratio of the input by the
output space cardinalities:

E
(
#ϕ−1δr (y, y′)

)
=

2m+nk

22m
= 2nk−m.

Hence, the expected value of the time complexity of the fastened version of
Algorithm 1 using the tree-based approach is

Θ(Ns d 2nk−m). (1)

Notice that the N available plaintexts have to be read to form the pairs.
Hence, it has to be taken into account when estimating the complexity of the
attack. Moreover, the first filter can be applied at the same time as forming pairs
using a hash table. The value provided by (1) may be smaller than N but this
is due to the fact that after the first filter only very few pairs remain.

We presented a new technique to estimate the complexity of a simple differ-
ential cryptanalysis. In the next section, we present tools for analyzing the use
of several differentials.
4 This assumption is realistic since they are obtained by using r + r′ rounds of the

cipher: if not true, it will induce an attack on r + r′ + 1 rounds of the cipher.

4 Multiple differential cryptanalysis

In the previous section, we focused on techniques for incrementing candidate
counters for a given ciphertext pair. All the statements were instantiated in the
particular case of single differential cryptanalysis. Attacks presented here are
multiple differential cryptanalyses that is attacks using more than one differen-
tial. The optimal way for combining information from many differentials is a
work in progress and may hardly depend on the accuracy of differential proba-
bility estimates as it is the case for linear cryptanalysis [11–13]. Hence, we chose
here a classical approach that consists in combining counters obtained from dif-
ferent differentials using addition. Such attacks have been formalized and studied
in [8]. Before providing results on the differential probabilities of the best char-
acteristics on PUFFIN and PUFFIN2, we briefly discuss the influence of the use
of many differentials on the complexity given in (1) and recall the results given
in the aforementioned paper.

4.1 Time cost of the use of many differentials

The asymptotic time complexity of the key recovery part given by formula (1)
have been obtained for a single differential. In differential cryptanalysis, the
attacker uses a set ∆ of differentials. The set of input differences contained

in ∆ is denoted by ∆0. To a given input difference δ
(i)
0 in ∆0 corresponds a

set of differentials of the form (δ
(i)
0 , δ

(i,j)
r). We denote by ∆

(i)
r the set of output

differences corresponding to a given input difference δ
(i)
0 . Then, from well-chosen5

N plaintext/ciphertext pairs, the attacker can form N/2 couples of plaintext for

each input difference hence obtaining a total of Ns = |∆0|·N
2 samples.

Forming all the samples should have time complexity Θ(Ns) but it is possible
to combine the formation of plaintext pairs to the first filter using a hash table
(as mentioned in Section 3.4). It turns out that if the filter is efficient enough, the
number of remaining pairs will smaller than N . In the other case, forming pairs
will be more time consuming than Θ(N) but this complexity will be negligible
compared to the one of the corresponding key-recovery. Hence, it is not abusive
to consider than the time complexity of forming samples is the one of reading
available plaintext/ciphertext couples that is Θ(N).

Then, for a given ciphertext pair, the input difference δ
(i)
0 is fixed. This

difference has a corresponding set of output differences ∆
(i)
r . Since we combine

differentials by summing counters, the only difference with Algorithm 1 is that a
candidate counter will be incremented if the obtained difference belongs to the set

∆
(i)
r . Hence, for a fixed input difference, the number of incremented counters will

be multiplied by |∆(i)
r | influencing the complexity of a tree traversal. Summing

over all possible samples, we obtain a global complexity of

5 That is choosing plaintexts using the so-called structures.

Θ

(
Ns d 2nk−m

∑|∆0|
i=1 |∆

(i)
r |

|∆0|

)
. (2)

Note that since Ns = |∆0|·N
2 , the term Ns

∑|∆0|
i=1 |∆(i)

r |
|∆0| actually corresponds to

2N |∆|.

4.2 Theoretical framework used

Let us first begin with the definition of some notation from the framework de-
veloped in [8].

Notation.
The attacker chooses a set ∆ of differentials with probabilities p(1), . . . , p(|∆|).
The output differences of the differentials determine the set of active S-boxes in-
volved in the partial deciphering process. The corresponding number of required
key bits is denoted by nk hence the attacker will have to distinguish the correct
subkey among 2nk .

The cornerstone of the theoretical analysis in [8] is an estimate for the subkey-
counter cumulative functions that is given in [8, Proposition 1]. This estimate
is denoted by G and is parameterized by the number of samples. We will hence
denote it by GNs . The function GNs(τ, p∗) is the estimate for the correct-key
counter distribution and GNs(τ, p) is the one for the wrong keys. Values for p∗
and p are equal to

p∗ =

∑
i p

(i)
∗

|∆0|
and p =

|∆|
264|∆0|

.

We now recall the main two results that can be found in [8]. The first one
is an estimate of the data complexity required for the correct key to be ranked
among the ` most likely candidates with probability close to one half.

Corollary 1. [8, Corollary1] Let ` be the size of the list of the remaining can-
didates and let nk be the number of bits of the key we want to recover. Using the
previous notations, the data complexity of a multiple differential cryptanalysis
with success probability close to 0.5 can be estimated by

N ′ = −2 · ln(2
√
π` 2−nk)

|∆0|D(p∗||p)
, (3)

where D(p∗||p) denote the Kullback-Leibler divergence:

D(p∗||p) = p∗ log

(
p∗
p

)
+ (1− p∗) log

(
1− p∗
1− p

)
In this result the statement “success probability close to 0.5” may seem un-

clear and imprecise6. The point is that the success probability corresponding to

6 For a complete understanding, to please refer to [14]

the data complexity N ′ given in this Corollary may vary a bit around this value.
In the case of differential or multiple differential cryptanalysis, our experiments
show that using the value of N ′ given in Corollary 1 leads to a success probabil-
ity between 0.35 and 0.507. This formula provides an intuition on the impact of
the use of many differentials on the data complexity through the denominator
|∆0|D(p∗||p).

Then, to precisely adjust the number of samples to reach a given success
probability, another result of [8] should be use. This one, presented in Corollary 2,
is a tight formula for computing the success probability of an attack when only
the ` most likely keys are tested and when Ns samples are available.

Corollary 2. [8, Corollary2] Under the previous notations, the success proba-
bility, PS, of a multiple differential cryptanalysis is given by

PS ≈ 1−GNs
[
G−1Ns

(
1− `− 1

2nk − 2
, p

)
− 1, p∗

]
(4)

where the pseudo-inverse of GNs is defined by G−1Ns(y) = min{x|GNs(x) ≥ y}.

The tightness of formula (4) have been empirically tested on a reduced version
of PRESENT in [8] with very convincing results.

4.3 The differential probabilities

In the first analysis of the security of PUFFIN [4] authors claim that since the
best trail on 31 rounds (over the 32 rounds) has a probability equal to 2−62, the
cipher is secure against differential cryptanalysis. On the one hand and according
to PUFFIN design -i.e. similar to the one of PRESENT- a differential will be
composed of so many trails that the probability of a differential is dramatically
underestimated when only considering the best differential trail. On the other
hand, authors’ analysis of the cipher security is based on the assumption that
the attacker will only recover key bits from the last round (that is r′ = 1) while
attacks proposed in this paper actually use values for r′ up to 5.

Using a Branch and Bound algorithm (see [15–17] for instance), we are able
to compute the probabilities of the best differential trails. Combining these trails,
we obtain lower bounds on the probabilities of the best differentials. As men-
tioned in Section 3, we have observed that the best differential trails have a
single active S-box in the input and the output difference. Therefore we chose
to select differentials such than only one S-box is active in the output difference.
Diffusion properties of PUFFIN and PUFFIN2 suggest the use of S11 as active
S-box among those having good differential properties.

We now provide some results about the differential probabilities for PUFFIN
and PUFFIN2. The data complexity of the attack will depend on the number r

7 Experiments from [14] shown a range from 0.52 to 0.65 in differential settings.

of rounds targeted by differentials, it will also depend on the differentials we will
use. Moreover, the estimation of these probabilities is a critical point since a too
pessimistic analysis will lead to the underestimation of the attack performances.
In order to compare the different values for r′ we looked for the best differentials
over r = 27, 28, 29, 30 and 31 rounds. According to Section 3.2, we focused on
r-round differentials (δ0, δr) such that

δr ∈ ∆out = {0x0000Y00000000000|Y ∈ {0x1, · · · , 0xF}}.

The best differentials - corresponding to our criteria - we found are given in
Table 2. Notice that we did not consider the additional operations performed
before the first round in PUFFIN and after the last round in PUFFIN2 since
they do not alter the probabilities of differentials.

Table 2. Best differentials on r rounds with output difference activating only S11 and
their probabilities.

r δ0 δr p∗
27 0x000000000000a000 0x0000400000000000 2−49.71

28 0x000b400000000000 0x0000400000000000 2−52.07

29 0x0000000000400000 0x0000400000000000 2−53.59

30 0x0000400000000000 0x0000400000000000 2−56.35

31 0x0000000000007000 0x0000400000000000 2−57.9

5 Parameters and performances of proposed attacks

Let us now move to the choice of parameters for the attacks we propose. We
want to precise that the attacks mentioned here are not claimed to be optimal
since some of our choices relied on heuristics (for instance the choice of S11 may
not lead to the best possible attack).

5.1 Formulas of the attack complexities

Simple formulas for complexities aim at easing the choice of parameters to bal-
ance them. More precisely, in the case of multiple differential cryptanalysis, there
are three different steps to consider for the time complexity.

1. Obtaining plaintext/ciphertext pairs: Θ(N).

2. The key-recovery part with complexity given by formula (2).

3. The final exhaustive search that takes Θ(` 2n−nk) where n is the master-key
length and ` the maximum number of candidates to test.

Then, the time complexity of a multiple differential attack is

Θ

(
N + ` 2n−nk +Ns d 2nk−m

∑|∆0|
i=1 |∆

(i)
r |

|∆0|

)
(5)

For a given set ∆ of differentials, fixing r′ will determine the values for d
the number of active S-boxes and nk the number of involved key-bits. Then,
there are tight links between the data complexity N , the success probability PS
and the number of candidates to test `. This relationship is represented by the
formula (3). Since we aim at proposing attacks with success probabilities greater
than 0.5, we propose to multiply this formula by a factor 1.5. Experiments in
[14] show that for such a value, this probability gets around 0.8.

1.5 ·N ′ = −3 · ln(2
√
π` 2−nk)

|∆0|D(p∗||p)
. (6)

This is asymptotic in nature: the estimate is negative for values of ` close to 2nk

but it tends toward the correct value of N as `
2nk decreases.

This formula will be of great use since we can substitute it into the aforemen-
tioned complexities removing one parameter. Then, for a given set ∆ and a fixed
r′, the problem boils down to balance these complexities using the parameter `.

5.2 First approach: using a single differential

As both time and data complexity depend on the set of differentials, we chose,
as a first approach, to study the complexities of differential cryptanalyses using
a single differential. For the best differentials (δ0, δr) described in Table 2, we
propose to compute the complexities obtained for different values of r′ (r+ r′ =
32 for PUFFIN and 34 for PUFFIN2). Once ` is fixed, the success probability
will accurately be estimated using (4). As it is supposed to, it will vary in a
reasonable range around 0.5.

Table 3. PUFFIN: Parameters of simple differential cryptanalyses using the formula
for N given by (6).

r′ d nk p∗ ` N Time C. PS

3 13 43 2−53.59 200.1 257.49 285.10 0.75
4 27 81 2−52.07 224.6 256.04 276.84 0.79
5 43 109 2−49.71 278.6 252.45 2101.95 0.85

Results in Table 3 and Table 4 confirm the fact that the formula (6) leads
to a success probability close to 0.8. The parameters presented in Table 3 and
Table 4 show that a differential attack using a single differential is enough to
break both PUFFIN and PUFFIN2.

Table 4. PUFFIN2: Parameters of simple differential cryptanalyses using the formula
for N given by (6).

r′ d nk p∗ ` N Time C. PS

3 13 35 2−57.90 212.4 261.25 261.35 0.75
4 27 59 2−56.35 235.0 259.47 260.07 0.63
5 43 74 2−53.59 261.1 255.60 270.21 0.87

One of the problems left as an open question for multiple differential crypt-
analysis is the optimal choice of the parameters of the attack (typically the set of
differences used). Results given here when using a single differential emphasize
the fact that this notion of optimal choice may hardly depend on the context (Is
the full code-book available?, Is the computational power the limiting factor?).
Indeed, when moving from r′ = 4 to r′ = 5, samples are exchanged for compu-
tational effort. Nevertheless, there are parameters that are clearly sub-optimal
as r′ = 3 that, here, leads to an attack outperformed in both time and data
complexities by other parameters.

5.3 Proposed attacks

Table 3 and Table 4 show that we can break both PUFFIN and PUFFIN2 using
simple differential cryptanalysis. Nevertheless, complexities of these attacks can
be improved using several differentials. The set of differential we propose for the
attacks is big, that we present in Appendix in Table 10 only the parameters for
the attacks with the smallest used differentials. We propose a multiple differential
attack on PUFFIN where r′ = 4 that outperforms the simple attack for r′ = 5
i.e. that have smaller complexities (for both time and data). We also propose a
multiple attack on PUFFIN2 with r′ = 4 and attacks on both versions for r′ = 5
to illustrate that the choice of differential sets and values for r′ allow trading
data complexity for time complexity.

The attacks proposed are summarized in Table 5 and detailed below.

Table 5. Attacks on the PUFFIN ciphers.

version key bits rounds Data C. Time C. Success P.

PUFFIN 128 32 258 2124 > 0.25 [6]
PUFFIN 128 32 252.16 295.40 0.77 this paper
PUFFIN 128 32 249.42 2108.84 0.59 this paper

PUFFIN2 80 34 255.58 264.66 0.58 this paper

PUFFIN2 80 34 252.30 274.78 0.78 this paper

Attacks on PUFFIN.
In the previous section, we presented a simple differential attack on PUFFIN with

data complexity 252.45 and time complexity 2101.95 (case where r′ = 5). Using
a set of 830 differentials having |∆0| = 359 input differences on r = 28 rounds
(that is r′ = 4), we obtain a multiple differential cryptanalysis (p∗ = 2−56.7178)
which requires 252.16 chosen plaintexts that has a time complexity of 295.40 and
success probability of 0.77 (` = 248.40). Complexities of this attack outperform
the complexities of the simple differential cryptanalysis of PUFFIN we propose.

Nevertheless, if the bottleneck of the attacker resources is the data complexity
and not the computational power, then we may use another set of parameters.
For instance, there is a set of 954 differentials over 27 rounds (r′ = 5) such that
|∆0| = 318 and that provides a probability p∗ = 2−54.6862. Taking ` equal to
285.9, we obtain an attack that requires 249.42 chosen plaintexts and that can be
performed in time 2108.84 with a success probability of 0.59. If we compare this
attack to the simple differential attack described in Table 3, the data complexity
is divided by a factor 23.03 while the time complexity is multiplied by 26.89.

Examples of parameters we present show that depending on the attack re-
quirements, different trade-offs for the complexities are possible.

Attacks on PUFFIN2.
For PUFFIN2, we also propose two kinds of multiple differential attacks, one that
improves the data complexity with a small cost in time complexity (compared
to the simple differential attack proposed in Table 4) and another that tries to
minimize the data complexity of the attack.

We recall that in the case of r′ = 5, the simple differential attack proposed
in Table 4, can be performed using 255.60 plaintexts in 270.21 operations. Now,
using a set of 115 differentials over 30 rounds (that is r′ = 4) with |∆0| = 95
input differences, we propose a multiple differential cryptanalysis on PUFFIN2
with time complexity 264.66, data complexity 255.58 and success probability 0.58
(` = 244.60 and p∗ = 2−59.1178). Differentials used for this attack are given in
Table 10 for the interested reader to be able to check our results.

We can also perform a multiple differential attack on PUFFIN2 using differ-
entials on 29 rounds (r′ = 5). Using 210 differentials having |∆0| = 137 different
input differences, we obtain a probability p∗ = 2−57.7949 which lead to an attack
with data complexity 252.30, time complexity 274.78 and success probability 0.78
(` = 266.5).

6 Conclusion

This work aims at illustrating the impact of the flaws that can be found in the se-
curity analysis of recent ciphers. We propose attacks on PUFFIN and PUFFIN2
that are low-cost ciphers designed to be more efficient than PRESENT (and
particularly to be involutions). It turns out that they are also less secure since a
simple differential cryptanalysis allows to break them. Using a new approach to
estimate the cost of key-recovery in differential cryptanalyses, we proposed two
attacks on these ciphers. The attack on PUFFIN recovers the full 128-bit key in
295.40 operations with probability 0.77 when using 252.16 chosen plaintexts and

the attack on PUFFIN2 recovers the full 80-bit key in 265.66 operations with
probability 0.58 when using 255.58 chosen plaintexts.

While PUFFIN and PRESENT are similar, these differential attacks and the
linear attack proposed by Leander[6] on PUFFIN and PUFFIN2 do not threaten
the security of PRESENT. Differences can be explained by both the substitution
and the permutation layers. Indeed, the fact that in PUFFIN, the S-box have
properties that allow one-bit input and output differences implies there exists
differential trails with one active S-box for each round what is not possible for
PRESENT (at least two active S-boxes for one out of two rounds). This property
can be removed using a linear transformation of the S-box.

Concerning the permutation layer, it turns out that the optimality of the
PRESENT bit-permutation cannot be obtained with an involution. The permu-
tation proposed in PUFFIN only reaches full diffusion after 5 rounds. This has
implications in both the trail probabilities and the number of rounds that can
be inverted by the attacker. Using involution permuation layer with diffusion on
4 rounds may improve the security of the cipher.

Impact of the use of “better” involutions as basic components for an SPN is
an interesting scope for further research.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.H.: PRESENT: An ultra-lightweight block cipher.
In Paillier, P., Verbauwhede, I., eds.: Cryptographic Hardware and Embedded Sys-
tems - CHES 2007. Volume 4727 of LNCS., Springer (2007) 450–466

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In Helleseth, T., ed.:
Advances in Cryptology - EUROCRYPT 1993. Volume 765 of LNCS., Springer
(1994) 386–397

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4 (1991) 3–72

4. Cheng, H., Heys, H.M., Wang, C.: PUFFIN: A novel compact block cipher tar-
geted to embedded. In Fanucci, L., ed.: Conference on Digital System Design:
ARchitectures, Methods and Tools - DSD 2008, IEEE (2008) 383–390

5. Wang, C., Heys, H.M.: An ultra compact block cipher for serialized architecture
implementations. In: Canadian Conference on Electrical and Computer Engineer-
ing - CCECE 2009, IEEE (2009) 1085–1090

6. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a crypt-
analysis of PUFFIN. In Paterson, K., ed.: Advances in Cryptology - EUROCRYPT
2011. Volume 6632 of LNCS., Springer (2011) 303–322

7. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In Vaudenay,
S., ed.: Progress in Cryptology - AFRICACRYPT 2008. Volume 5023 of LNCS.,
Springer (2008) 40–49

8. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice.
In Joux, A., ed.: Fast Software Encryption - FSE 2011. Volume 6733 of LNCS.,
Springer (2011) 35–54

9. Wang, M., Sun, Y., Mouha, N., Preneel, B.: Algebraic techniques in differential
cryptanalysis revisited. In Parampalli, U., Hawkes, P., eds.: Information Security
and Privacy - ACISP 2011. Volume 6812 of LNCS., Springer (2011) 120–141

10. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In Dunkel-
man, O., ed.: Fast Software Encryption - FSE 2009. Volume 5665 of LNCS.,
Springer (2009) 193–208

11. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s
algorithm 2. In Dunkelman, O., ed.: Fast Software Encryption - FSE 2009. Volume
5665 of LNCS., Springer (2009) 209–227

12. Hermelin, M., Cho, J.Y., Nyberg, K.: Statistical tests for key recovery using mul-
tidimensional extension of Matsui’s algorithm 1. Advances in Cryptology - EU-
ROCRYPT 2009 POSTERSESSION (2009)

13. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In Pieprzyk, J.,
ed.: Topics in Cryptology - CT-RSA 2010. Volume 5985 of LNCS., Springer (2010)
302–317

14. Blondeau, C., Gérard, B., Tillich, J.P.: Accurate estimates of the data complexity
and success probability for various cryptanalyses. Design, Codes and Cryptography
59 (2011) 3–34

15. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations.
In Desmedt, Y., ed.: Advances in Cryptology - CRYPTO 2004. Volume 3152 of
LNCS., Springer (2004) 1–22

16. Collard, B., Standaert, F.X., Quisquater, J.J.: Improved and multiple linear
cryptanalysis of reduced round Serpent. In: Inscrypt’07. Volume 4990 of LNCS.,
Springer–Verlag (2007) 51–65

17. Blondeau, C., Gérard, B.: Links between theoretical and effective dif-
ferential probabilities: Experiments on PRESENT. In: TOOLS’10. (2010)
http://eprint.iacr.org/2010/261.

A More details on the tree-traversal

In Section 3.3, we modeled the key-recovery part of a differential attack as a tree
traversal. Nodes at the same depth in the tree correspond to one of the active
S-boxes in the diffusion path. There are 24 children corresponding to the possible
values for the 4 key bits XORed to the output value of the S-box corresponding
to the node. When traversing the tree, passing along an edge refers to XORing
the corresponding 4-bit key value and inverting the S-box. When reaching a
node, it is essential to detect the current branch (this node and its descendants)
as useless if so. A useless branch is a branch where all leaves at depth d do not
correspond to counter incrementation. Such branches may appear for different
reasons. If the current node is inconsistent with the previous guessed key bits for
instance (this case is really easy to detect). The other source of useless branches
comes from the fact that the number of incremented counter is far smaller than
the 2nk candidates. Such branches are more difficult to detect even using many
filters.

When analyzing this tree traversal in Section 3.4 we made the strong hy-
pothesis that we were able to detect useless branches at the top level (that is as
soon as possible). This is a bit optimistic according to what has just been said
but using the tricks we are to detail, the proportion of non-discarded useless
branches can be kept small. A more precise study of the complexity taking this
proportion into account may be of interest here and is left as an open question
for further work.

We detail here the algorithm we have in mind for constructing and traversing
the tree efficiently (that is detecting most of the useless branches in constant
time).

Constructing the tree.
Obviously we are not going to construct the tree since we aim at traverse the
tree avoiding useless branches. Nevertheless, there is one degree of freedom in the
definition we gave for the tree TC,C′ : the order of S-box inversions. Modifying the
order of S-boxes will not necessarily help in improving useless branch detection
technique but using an efficient S-box order, useless branches may be met earlier
in the tree traversal. This would reduce the constant hidden in the Θ notation
and hence may be carefully looked at when implementing a practical attack but
can be omitted for analyzing an attack.

Detecting key-bit inconsistency.
As already mentioned, this can be done by updating a 4d state following the
key-schedule algorithm. Then, when reaching a new node, the set of child nodes
considered is restricted if some key bits have already been guessed. In this context
changing S-box order may also be of interest. Indeed, for PUFFIN2, the only
non-linear part of the key-schedule is the application of the substitution layer
to 64 bits of the current key state. Hence, some key bits directly correspond
from one subkey to the other. Starting by guessing those bits may induce more
efficient filters at the top of the tree.

Round filtering.
The round filtering process as detail in [7] consist in detected some useless branch
after deciphering all active S-boxes in one round. This one may not be optimal
due to memory limitation. Hence, they may be reduced to a set of reachable
differentials. Applying such a filter can be done efficiently since it will consist in
at most 263 differences which can be stored in a relevant structure with search
cost logarithmic in its size. Such sieves will be applied only at some depth of
the tree hence it is not abusive to consider that this cost is constant in nature.
Notice that the first sieve as to be applied to all the Ns samples hence the total
cost of the key-recovery step may not be smaller than Ns.

S-box filtering.
An other kind of filters are S-box filters. Instead of applying such filters after
having inverted the S-box using all the possible values of key bits, it is more
efficient to pre-compute a 24×(24−1) table containing, for each pair of outputs,
the list of keys that lead to a correct input difference. The memory cost of
this technique for b-bit S-boxes is Θ(d 23b) hence is negligible compared to the
memory used for counters (2nk) when inverting a large number of S-boxes. Again,
the cost of such filtering is constant regarding parameters of the attack.

B Components of PUFFIN

This appendix section contains the details for PUFFIN and PUFFIN2 specifica-
tion.

B.1 Common components

In Table 6 the S-box used in both PUFFIN and PUFFIN2 is given using hex-
adecimal values.

Table 6. PUFFIN/PUFFIN2 S-box in hexadecimal, S1(0x0) = 0xD.

input 0 1 2 3 4 5 6 7 8 9 A B C D E F

output D 7 3 2 9 A C 1 F 4 5 E 6 0 B 8

Then, Table 7 specifies the bit-permutation P . The table has to be read as:
the input bit at position a·8+b will be sent to the position given in the cell at line
a and column b in the output. For instance, the 19-th input bit will correspond
to the 21-th output bit. As shown in Fig. 3, we number S-boxes (hence bits)
from the right to the left (little endian representation).

Table 7. 64-bit permutation P : input = row · 8 + column.

a\b 0 1 2 3 4 5 6 7

0 12 1 59 49 50 26 9 35

1 24 6 31 60 0 48 46 18

2 33 52 15 21 56 19 47 40

3 8 51 5 30 61 29 27 10

4 36 16 57 7 32 43 45 58

5 23 54 62 37 55 38 14 22

6 13 3 4 25 17 53 41 44

7 20 34 39 2 11 28 42 63

B.2 Components used in PUFFIN key-schedule

As for Table 7, Table 9 and Table 8 have to be read in the following way. The
value in the row a and column b is the output position of the input bit number
16a+ b or 8a+ b depending on the table.

Table 8. The 64-bit selection used in the PUFFIN key-schedule: input = row · 8 +
column.

0 1 2 3 4 5 6 7

0 2 122 14 57 88 35 97 51

1 56 62 99 69 45 70 93 50

2 82 13 3 21 31 113 83 100

3 11 22 30 64 40 95 119 49

4 44 53 111 121 28 80 29 120

5 96 54 25 63 23 116 18 8

6 110 17 43 85 15 94 41 71

7 1 90 117 123 37 47 42 38

Table 9. The 128-bit permutation used in the PUFFIN key-schedule: input = row ·
16 + column.

0 1 2 3 4 5 6 7

0 21 120 125 109 78 80 115 54

1 112 20 28 19 55 75 40 111

2 44 108 94 86 93 43 67 7

3 114 68 5 74 82 4 53 69

4 22 60 105 102 84 123 110 51

5 118 31 99 16 14 33 127 90

6 57 98 119 66 30 97 52 70

7 91 24 37 92 64 1 36 27

8 23 81 87 13 95 117 0 8

9 124 26 126 17 3 9 101 6

10 34 104 47 62 29 76 71 49

11 107 72 11 18 106 10 25 83

12 46 96 116 48 45 32 15 41

13 38 56 113 61 122 100 79 12

14 50 121 63 88 42 59 39 2

15 85 89 58 73 77 103 35 65

B.3 Differentials used to attack PUFFIN2

The following table contains differentials we use in the attack on PUFFIN2 with
r′ equal to 4. Since the only active box in the outpu difference is the 11-th one,
we only mention the corresponding 4-bit output difference in the column δr|S11.

Table 10. Differentials used for attacking PUFFIN2 with r = 30 and r′ = 4.

δ0 δr|S11 p∗ δ0 δr|S11 p∗
0x0000000000040003 0x4 2−55.55 0x0000c00000000000 0x4 2−60.11

0x0000000000040003 0x8 2−58.28 0x000000000000000d 0x4 2−60.14

0x0000000000040003 0x6 2−58.39 0x0000000000090001 0x4 2−60.18

0x0000000000040003 0x2 2−58.52 0x0000000000040001 0x4 2−60.28

0x0000000000040003 0xa 2−59.69 0x00009a0000000000 0x4 2−60.29

0x0000000000040000 0x4 2−55.72 0x000100000000000d 0x4 2−60.29

0x0000000000040000 0x8 2−58.25 0x0001400000000000 0x4 2−60.33

0x0000000000040000 0x2 2−58.42 0x00000000000d0001 0x4 2−60.42

0x0000000000040000 0x6 2−58.55 0x0000400000040001 0x4 2−60.44

0x0000000000040000 0xa 2−59.65 0x000a000000000006 0x4 2−60.45

0x0003600000000000 0x4 2−56.79 0x00a0000000000000 0x4 2−60.56

0x0003600000000000 0x8 2−59.56 0x0001d00000000000 0x4 2−60.64

0x0003600000000000 0x2 2−59.72 0x0000100000050000 0x4 2−60.72

0x0003600000000000 0x6 2−59.83 0x0000c000000a0000 0x4 2−60.74

0x0000000000000001 0x4 2−57.96 0x0000000000003000 0x4 2−60.74

0x0000000000000001 0x8 2−60.77 0x0000500000000000 0x4 2−60.80

0x0000000000000001 0x2 2−60.95 0x0003400000040000 0x4 2−60.82

0x0000000000000001 0x6 2−60.97 0x000100000000000a 0x4 2−60.83

0x000d400000000000 0x4 2−58.11 0x000d000000000000 0x4 2−60.83

0x0003000000000006 0x4 2−58.40 0x00b0000000000000 0x4 2−60.87

0x000300000000000a 0x4 2−58.44 0x0000000000004000 0x4 2−60.94

0x000b000000000000 0x4 2−58.46 0x0000000000040006 0x4 2−60.96

0x000a000000000001 0x4 2−58.52 0x00001e0000000000 0x4 2−60.99

0x0000000000000008 0x4 2−58.63 0x0001300000000000 0x4 2−61.08

0x000a400000000000 0x4 2−58.74 0x0000800000000000 0x4 2−61.09

0x0000000000030000 0x4 2−58.78 0x0003000000000001 0x4 2−61.11

0x0006000000000001 0x4 2−58.88 0x0000000000030001 0x4 2−61.12

0x0000100000000000 0x4 2−58.92 0x0050000000000000 0x4 2−61.13

0x0000100000000000 0x8 2−61.62 0x00a00000000a0000 0x4 2−61.13

0x0000100000000000 0x2 2−61.75 0x0000000000060000 0x4 2−61.14

0x0000100000000000 0x6 2−61.95 0x0080900000000000 0x4 2−61.16

0x000a000000000003 0x4 2−58.99 0x0001000000040000 0x4 2−61.24

0x0001000000000003 0x4 2−59.18 0x0050100000000000 0x4 2−61.25

0x000100000000000b 0x4 2−59.22 0x0000000000000003 0x4 2−61.26

0x00000000000e0000 0x4 2−59.33 0x00a0300000000000 0x4 2−61.36

0x0000200000000000 0x4 2−59.38 0x00a0800000000000 0x4 2−61.39

0x0000200000000000 0x8 2−61.79 0x0000890000000000 0x4 2−61.40

0x0000200000000000 0x2 2−61.90 0x0000000000000006 0x4 2−61.40

0x0000200000000000 0x6 2−62.26 0x00d0000000000000 0x4 2−61.44

0x0000700000000000 0x4 2−59.54 0x0080800000000000 0x4 2−61.46

0x0000000000000004 0x4 2−59.61 0x0000400000000003 0x4 2−61.46

0x00006a0000000000 0x4 2−59.62 0x0000400000040003 0x4 2−61.50

0x000d000000000001 0x4 2−59.77 0x000d000000040000 0x4 2−61.51

0x0000000000090000 0x4 2−59.85 0x000b000000000001 0x4 2−61.60

0x0006400000000000 0x4 2−59.95 0x0000000900000000 0x4 2−61.63

δ0 δr|S11 p∗ δ0 δr|S11 p∗
0x0000030000000000 0x4 2−61.64 0x0001000000030000 0x4 2−61.89

0x0000d00000080000 0x4 2−61.65 0x0000a000000a0000 0x4 2−61.92

0x00004000000a0000 0x4 2−61.67 0x000600000000000a 0x4 2−61.94

0x0001000000000001 0x4 2−61.70 0x0008000000000006 0x4 2−61.99

0x0000ba0000000000 0x4 2−61.71 0x0001400000030000 0x4 2−62.00

0x0001300000040000 0x4 2−61.72 0x000b000000040001 0x4 2−62.01

0x0300000000090000 0x4 2−61.73 0x00a0900000000000 0x4 2−62.01

0x0050200000000000 0x4 2−61.78 0x0005000000000004 0x4 2−62.01

0x0000680000000000 0x4 2−61.80 0x0000c80000000000 0x4 2−62.05

0x0003100000000000 0x4 2−61.83 0x00008a0000000000 0x4 2−62.05

0x0000600000050000 0x4 2−61.84 0x0000000000003001 0x4 2−62.05

0x0000000600000000 0x4 2−61.85 0x0000600000040003 0x4 2−62.08

0x0000400000060000 0x4 2−61.87

