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Abstract 

Background 

Detailed and systematic understanding of the biological effects of millions of available 
compounds on living cells is a significant challenge. As most compounds impact multiple 
targets and pathways, traditional methods for analyzing structure-function relationships are 
not comprehensive enough. Therefore more advanced integrative models are needed for 
predicting biological effects elicited by specific chemical features. As a step towards creating 
such computational links we developed a data-driven chemical systems biology approach to 
comprehensively study the relationship of 76 structural 3D-descriptors (VolSurf, chemical 
space) of 1159 drugs with the microarray gene expression responses (biological space) they 
elicited in three cancer cell lines. The analysis covering 11350 genes was based on data from 
the Connectivity Map. We decomposed the biological response profiles into components, 
each linked to a characteristic chemical descriptor profile. 

Results 

Integrated analysis of both the chemical and biological space was more informative than 
either dataset alone in predicting drug similarity as measured by shared protein targets. We 
identified ten major components that link distinct VolSurf chemical features across multiple 
compounds to specific cellular responses. For example, component 2 (hydrophobic 
properties) strongly linked to DNA damage response, while component 3 (hydrogen bonding) 
was associated with metabolic stress. Individual structural and biological features were often 
linked to one cell line only, such as leukemia cells (HL-60) specifically responding to cardiac 
glycosides. 

Conclusions 

In summary, our approach identified several novel links between specific chemical structure 
properties and distinct biological responses in cells incubated with these drugs. Importantly, 
the analysis focused on chemical-biological properties that emerge across multiple drugs. The 
decoding of such systematic relationships is necessary to build better models of drug effects, 
including unanticipated types of molecular properties having strong biological effects. 



Background 

The mechanism of action of drugs at the biochemical level has typically been studied by 
investigating specific chemical properties of the drug and the biological properties of its 
specific target [1,2]. This is the standard paradigm in Quantitative Structure Activity 
Relationship (QSAR) studies, where multivariate mathematical models are used for modeling 
the relationships between a set of physiochemical or structural properties and biological 
activity. In previous QSAR studies, such as in the classical 3D-QSAR work by Cramer et al. 
[3], values of a single biological activity measure are predicted. 

However, biological responses at the cellular level are diverse and each drug typically binds 
to a multitude of targets in the cells and elicits a number of other off-target effects. Systems-
level approaches are thus needed to get a more comprehensive view of drug effects in living 
cells. Genome-wide massively multivariate description of the cellular responses caused by 
the drugs, such as in the Connectivity Map program (CMap; Lamb et al., [4]), requires new 
kinds of tools for analysis and interpretation. 

Chemical systems biology has emerged at the interface of systems biology and chemical 
biology with the goal of constructing a systems-level understanding of drug actions. 
Systematic analysis of a network of drug effects, i.e. network pharmacology, offers great 
opportunities for drug design in the future [5]. Chemical systems biology has also been used 
to predict drug side effects [6] as well as in other types of toxicological analysis [7]. 

Here, we undertook a complementary approach, by studying the impact of a host of chemical 
descriptors across a large panel of drugs on the biological response profiles measured at a 
genome-wide scale. We linked key structural components of the drug molecules, as defined 
by 3D VolSurf descriptors, with the consistent biological properties, as measured by 
microarray gene expression profiles. We developed a data-driven approach to analyze 
relationships between patterns of chemical descriptors of the drugs on one hand, and 
matching patterns in the cellular responses measured by genome-wide expression profiles, as 
shown in Figure 1. 

Figure 1  Data-driven search for statistical relationships between Chemical space 
(formed of VolSurf features) and Drug response space (gene expression) 

As biological response data we used the Connectivity Map (CMap, [4,8]), which consists of 
gene expression measurements from three cancer cell lines (MCF7-breast, PC3-prostate and 
HL60-blood) treated with over a thousand different drug molecules (Figure 1C). These data 
offer a unique view to the genome-wide responses of the cells to drug treatments and has 
been used to find new biological links e.g. between heat shock protein inhibitors, proteasome 
inhibitors, and topoisomerase inhibitors [8]. 

Our key assumption is that the chemical structure as encoded in the 3D descriptors of drugs 
impacts on the drug response resulting in specific patterns of gene expression. Furthermore, if 
there is any statistical relationship between the occurrence of patterns in the chemical space 
and the patterns in biological response space, those patterns are informative in forming 
hypotheses on the mechanisms of drug action. Given proper controls, the statistical responses 
can be attributed to the specific features of the chemicals tested out of a diverse drug library. 
In this paper we used comprehensive but readily interpretable models for finding the 



statistical dependencies. We searched for distinct components that correlate the patterns in 
the chemical space with the biological response space. Assuming linear relationships, the task 
reduces to Canonical Correlation Analysis (CCA [9]) for searching for correlated components 
from the two data spaces (Figure 1D). We visualized the components in a comprehensive 
way to facilitate interpretation (Figure 1E and 1F) and validate them both qualitatively and 
quantitatively. 

Canonical Correlation Analysis was recently used for drug side effect prediction and drug 
discovery by Atias and Sharan [10]. They applied CCA to combine known side effect 
associations of drugs with (i) 2D structure fingerprints and (ii) bioactivity profiles of the 
chemicals. The CCA results from both combinations were then successfully used to predict 
side effects for the drugs, suggesting that CCA is effective in finding relevant components 
from heterogeneous data sources. 

Drugs generally act on a multitude of direct and intended targets as well as on a number of 
non-specific off-targets. All these targets and effects together connect to a phenotypic 
response. As most of these effects are still poorly understood, modelling of the structure-
target-response profiles across a large drug library is an important, but challenging goal. In 
this study we modelled the structure-response relationships of 1159 drug molecules directly, 
with CCA components playing the role of unknown mechanistic processes. 

The lack of information on all of the possible targets prompted us to select a particular set of 
chemical descriptors that allows capturing of generic response patterns. Many kinds of 
chemical descriptors are available for characterizing chemical structures in a quantitative 
way. Simple classical 2D fingerprints can be used to detect close analogs, but they would 
miss most if not all scaffold-hopping situations, where the different chemical entities give rise 
to similar pharmacophoric properties. Fingerprints and pure pharmacophoric descriptors 
require clearly defined individual targets, which are not known in many cases. In the present 
study, we aimed to bridge the chemical and biological space by using a set of VolSurf 
descriptors of the drugs ([11]; Figure 1A) that are ideal for capturing both structural 
similarities and general chemical features, such as solubility and permeation properties 
(ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicology properties). 
Although VolSurf descriptors are not thought to explain detailed structure-activity 
relationships, such as the binding to a single target, they offer a good overall interpretation of 
the molecular shape, hydrogen bonding, lipophilicity, and related properties, which are more 
conservative than individual binding cavities. It has also been shown that shape is a major 
factor when trying to find compounds with similar biological activity but dissimilar 2D 
structures [12]. 

The idea of correlating chemical structures with biological expression was introduced by 
Blower et al. in [13]. By combining 2D fingerprint data with biological activity profiles for 
the chemicals over 60 cancer cell lines (NCI60), and with steady-state gene expression 
measurements from those cell lines before drug treatments, they obtained indirect 
relationships between chemical substructures and the gene targets. In a more recent work, 
Cheng et al., [14] investigated correlations between the chemical structures, bioactivity 
profiles, and molecular targets for a set of 37 chemicals. This small-scale study demonstrated 
that combinations of biological activity and chemical structure information can provide 
insights into drug action mechanisms on a molecular level. 



By using the direct gene expression responses to a large set of drug treatments from the 
Connectivity Map, along with comprehensive component-level decomposition of response 
profiles, we are able to make more direct observations on how compounds impact on cells 
and which features of the chemical molecules and the biological responses are correlated. 

Results and discussion 

We analysed the 1159 drug treatment gene expression responses of three cancer cell lines of 
the Connectivity Map, with the methods summarized in Figure 1 and detailed in Methods. 
The analysis decomposed the relationship between the “chemical space” and the “biological 
space” into components. The chemical space consists of the selected 76 chemical descriptors 
of each drug and the biological space contains gene expression responses of corresponding 
drugs. Each component relates a characteristic statistical gene expression pattern with a 
pattern of the drug properties. We will call the components “CCA components” as the core 
method is Canonical Correlation Analysis (CCA). In this section we analyse further the 
identified components and the statistical relationships they discovered. 

Quantitative validation of functional similarity of  drug components 

We evaluate the biological relevance of the extracted CCA components by studying the 
functional similarity of drugs associated with each component. In particular, we measure the 
performance of the component model in retrieving similar drugs, as indicated by external data 
about their function, and compare it to retrieval based on either the biological or chemical 
data separately. Details of the validation procedure are described in Methods. The mean 
average precision obtained for the retrieval task on the four data sets (CCA components, 
chemical space, biological space as represented by GSEA and Gene expression) are plotted in 
Figure 2. 

Figure 2  Quantitative validation of functional similarity of drug components. The figure 
shows the mean average precision for retrieving functionally similar chemicals as a function 
of the number of top chemicals considered. Results are shown for three representations: CCA 
(red), Chemical space (green), and Biological space (GSEA: blue, Gene expression: grey). 
Error bars show one standard error of the mean precision 

The results show that retrieval based on the chemical space, i.e. VolSurf descriptors, 
performs clearly better than retrieval based on the biological space (activities of gene sets and 
genes), indicating that the chemical information is more relevant for evaluating the functional 
similarity of the chemicals. The biological space encoded by gene sets performs similarly to 
the original gene expression, indicating that the gene sets are a sensible encoding of the 
biological space; information lost due to dimensionality reduction is balanced by introduction 
of prior biological knowledge in the form of the sets. Finally, the combined space formed by 
the CCA components shows significantly better retrieval performance than either of the data 
spaces separately. The results are consistent over the range of drugs considered in the 
retrieval task. These results show that CCA is able to extract and combine relevant 
information about the chemical structure and biological responses of the drugs, while filtering 
out biologically irrelevant structural information and also biological responses unrelated to 
the chemical characteristics. 



Response components and their interpretations 

We next analyze the top ten CCA components having the highest significant correlations 
between the spaces. Figure 3 summarizes the relationships between the VolSurf descriptors 
and the gene sets as captured by the components. Each component is divided into two 
subcomponents ‘A’ and ‘B’, where in the first, the compounds have positive canonical score 
and in the second negative (the characteristic response patterns are otherwise the same, 
details in Methods). For each CCA-subcomponent the 20 highest-scoring compounds are 
listed in the Additional file 1: Top_Compounds.xls. 

Figure 3  Relationships decomposed into components. “Eye diagram” showing the top 10 
significant CCA components ordered by correlation from top to bottom (middle), VolSurf 
descriptors (left), and top gene sets (right). The CCA components are shown as circles, with 
numbers indicating the decreasing order of canonical correlation and letters A and B 
indicating subcomponents (A: positive canonical score, B: negative canonical score). The 
widths of the curves from the components to VolSurf descriptors and gene sets indicate the 
strength of the corresponding associations. For VolSurf descriptors the subcomponent-
specific activity is shown, whereas for the gene sets we show the overall activity in the 
component. For an example compound, VolSurf fields are illustrated in the top-left corner 
while three gene sets are listed along with their five most significant genes in the top right 
corner 

VolSurf descriptors, unlike more typically used 2D or 3D fingerprints and pharmacophores, 
do not have clear structural counterparts such as fragments or functional groups. Therefore, 
these descriptors are able to group together compounds with very dissimilar chemical 
structures and yet having the same type of chemical properties. This is especially important in 
our study since the same biological activity may not have been created because of the same 
biological target protein but because of another target protein in the same pathway. Within a 
pathway, binding cavity properties may change, but general descriptors describing the size, 
lipophilicity, and shape are more conservative. Therefore VolSurf descriptors are better 
suited for classifying these aspects of the compounds. 

In the case of the 1st and 2nd components, the selected VolSurf descriptors are dominated by 
hydrophobicity related descriptors. The 3rd component is connected to hydrogen bonding, 
polar interactions, and dispersion-related descriptors. Component 4 is also strongly connected 
with hydrophobicity related descriptors, besides the component is influenced by the 
molecular volume and surface area. Components 5–7 are mainly connected to 
“pharmacophoric” descriptors that are describing distribution of strong interaction points over 
the molecular space. Components 8 and 9 are both strongly influenced by integy-moments, 
describing imbalance of either hydrophobic or hydrophilic areas over the whole molecular 
volume. Component 10 is mainly affected by shape and size-related parameters, and also 
lipophilic integy moments. 

On the biological space we observe that the enriched gene sets in component 1 indicate a 
mitogenic signaling response. Component 8 appears similar but has an additional link to cell 
adhesion signaling. Component 4 in turn very directly connects to cytoskeletal regulation and 
cell adhesion. While there appears to be a considerable overlap between compounds in 
components 2, 3 and 10, the enriched gene sets in component 2 show a strong link to DNA 
damage response, 10 is associated with common cancer signals, and component 3 is 
associated with an anabolic response. Components 5 and 6 are connected to different 



differentiation events. Component 7 links to gene expression changes seen in GPCR 
signaling. Component 9 links to amino acid and nitrogen metabolism. 

We further extracted the significant genes in each component and performed GO enrichment 
analysis on them. Additional file 2: Top_GOTerms.xls shows the top 10 significant GO terms 
for each component while Additional file 3: Top_Genes.xls shows the top 30 significantly 
differentially expressed genes for each. 

Based on the Eye diagram (Figure 3) and lists of significant genes, gene sets, GO terms, and 
the top 20 compounds, we summarize the biological and chemical patterns in Table 1. 

Table 1  Summarized interpretation of top 10 components. Group A and B are the 
subcomponents of Figure 3 
Comp. Biological 

Interpretation  
Compounds in 

Group A  
Compounds in 

Group B 
VolSurf 

Interpretation  

1 

Classic growth factor 
signaling: (MAP and 
protein kinase 
signaling) 

Sulfonamides, 
antibiotics, 
carbonic anhydrase 
inhibitors 

Antipsychotic and 
antihistaminic 
compounds 

High lipophilicity 

2 
DNA damage Contrast agents, 

antibiotics, 
DNA damaging 
agents, 
antimetabolites 

Strong lipophilic 
areas emphasized 

3 
Stress response, 
mitochondrial and 
anabolic metabolism 

DNA damaging 
agents 

GPCR antagonists, 
ion channel blockers 

Polar interactions 
enriched 

4 
Cytoskeleton, cell 
adhesion and 
migration 

GPCR liganda, 
macrocyclic cmpds 
and contrast agents 

Beta adrenergic 
agonists, other GPCR 
ligands 

N/A 

5 

Differentiation, EMT, 
stemness 

NSAIDS, cAMP 
signaling 
promoting 
compounds 

HDAC Inhibitors, 
HDAC-like 

Significantly 
enriched with 
pharmacophoric 
features* 

6 

Inflammatory and 
differentiation 
signaling 

N/A Protein synthesis 
inhibitors, anti-
diabetics, cardiac 
glycosides 

Pharmacophoric 
features* 

7 
GPCR and cytokine 
signaling 

N/A Cardiac glycosides, 
cephalosporins 

Pharmacophoric 
features* 

8 

Growth factor and 
cell adhesion 
signaling 

Cardiac glycosides β-adrenergic 
agonists, Ca2+ 
channel blockers 

Integy-moment and 
significant 
pharmacophoric 
enriched* 

9 

Amino acid and 
nitrogen metabolism 

Protein synthesis 
inhibitors 

Anti-diabetics Integy-moment and 
significant 
pharmacophoric 
enriched* 

10 
Cancer signaling DNA damaging 

agents 
Corticosteroids, 
ionophores 

Size shape type 
descriptors 



The pharmacophoric enrichment analysis (marked with “*”) was carried out over VolSurf 
features (Additional file 5: VolSurf_Classification.xls) considered as a gold standard, and 
measuring enrichment of the list in a component by a hypergeometric test 

Enrichment of known targets 

Existing drug response research relies heavily on target and pathway-based analysis. Our 
novel approach attempts to go beyond known targets and pathways to find drug response 
groups in an entirely data driven way linking pharmacophoric descriptors to specific gene 
expression response patterns. Some of the found patterns may rationally be explainable by 
known targets and next we analyze the discovered biological process classes (components), 
for enriched protein targets. 

We collected a set of drug-protein target pairs from several drug databases (see Methods for 
details); that contains targets for almost half of the CMap drugs. We then did enrichment 
analysis of the compounds sharing common targets in each component (see Methods for 
details). The common protein targets and component p-values are listed in Additional file 6: 
Target_Breakdown.xls. 

As expected, the analysis shows that only few subcomponents have compounds that 
significantly share protein targets (p < 0.05). These are 1B, 2B, 10A and 10B. Subcomponent 
1B appears to be strongly driven by endogenous amine GPCR interactions. Subcomponent 
2B and 10A, like 3A, are driven by compounds inducing DNA damage and are discussed 
below in more detail. Subcomponent 10B is strongly influenced by glucocorticoids primarily 
targeting the glucocorticoid receptor, but the fact that several other ion flux modulating 
compounds (erastin, clofilium tosylate, colforsin, monensin and lasalocid) also link to this 
subcomponent argues that the corticosteroid effects are through the mineralocorticoid 
receptor and that the subcomponent response is driven by a selected ion flux. 

The fact that other subcomponents do not significantly link to target classes in our target 
analysis is a strong indicator that the associations between the compounds in most 
components are not restricted to known primary target mechanisms and that our method 
allows for discovering novel, but still undefined, mechanism of action and target linkages 
between compounds. The evaluation of mechanisms of action that cannot be explained via 
known protein targets is a challenging research direction, which requires uncovering the vast 
hidden mechanisms that might make two seemingly non-similar compounds similar. We feel 
that our approach provides a step forward towards the goal of understanding drug 
associations extracted from the actual measurement data that could potentially provide 
hypotheses for unexplored polypharmacology and both target and off-target drug 
mechanisms. 

Components 3/3A – A cell stress component 

We observed that in component 3, the top genes and gene sets indicate mostly mitochondrial 
and metabolic stress-related processes. Top gene sets associating with this component include 
many gene sets connecting to mitochondrial function (Figure 3). Similarly, on the gene level 
several known cell stress genes such as PGK1, PGD, and PRMT1 [15-17] are upregulated. A 
deeper look into the 3D structures of the top compounds in this component (Additional file 1: 
Top_Compounds.xls) reveals a possibility of 4–12 hydrogen bonds in all of the top 
compounds of set 3A. Thus, these compounds may be able to affect proton transportation 



processes, which is in agreement with the biological interpretation that mitochondria act like 
proton pumps. As an example, Figure 4 shows the hydrogen bond donor and acceptor regions 
of azacitidine and idarubicin. 

Figure 4  Compounds high in hydrogen Bonding. Azacitidine (left) and Idarubicin (right) 
showing H-bonding areas with blue (hydrogen-bond donor) and red (hydrogen-bond 
acceptor) 

To help understand how the biological variability caused by the drugs and the chemical 
features in component 3A compares with the intrinsic variability from one cell type to 
another, we visualize drug response transitions on MCF7 cells. Thirty different breast cancer 
cell types are used as references in their unperturbed condition (as described in Methods). 
The MCF7 treatments from subcomponent 3A and the thirty independent breast cancer cells 
are plotted in Figure 5 using a recent multidimensional scaling method called NeRV [18,19]. 
NeRV shows these different cell instances mapped onto the 2-dimensional display such that 
similarities are preserved as faithfully as possible. Subcomponent 3A contains many DNA-
damaging agents such as the DNA intercalating and topoisomerase inhibitory camptothecin, 
daunorubicin, and mitoxantrone, the CDK inhibitors alsterpaullone, GW-8510 and 0175029–
0000, the cardiac glycoside lanatoside C, which at high concentrations is likely to inhibit 
topoisomerases [20] the antimetabolite methotrexate, as well as rescinnamine, which has 
been suggested to induce a DNA damage response without itself inducing DNA damage [21] 
and the aromatase inhibitor letrozole. The NeRV plot based on the top changed genes in 
treated and untreated MCF7 cells as well as a panel of other breast cancer cell lines, shows 
that after treatment with these drugs, the gene expression of the luminal, ER-positive MCF7 
cells starts to resemble the basal, ER-negative breast cancer types. Interestingly, while MCF7 
cells are relatively chromosomally stable, the drug-treatments make them appear like 
chromosomally unstable and intrinsic high DNA damage cell lines such as HCC1937 or 
MDA-MB-231. Cell stress is an emerging cancer therapy target and it is interesting that a) 
this subcomponent including topoisomerase inhibitors, antimetabolites and CDK inhibitors 
induces stress-related metabolic responses in MCF7 cells similar to what is seen in a basal 
level in other, more malignant and undifferentiated breast cancer cells, and b) it raises the 
hypothesis that the compounds in this subcomponent could be combined with cell stress 
targeting compounds. This finding is strengthened by the fact that many of the top 
upregulated genes in the 3A subcomponent; ACHY, CDC37, GPI, ME2, PMRT1, P4HB, 
PGD, and PGK1 are also overexpressed in breast cancers as compared to normal tissue 
(Additional file 4: HeatMaps.pdf, Figure A). 

Figure 5  3A drug transitions. NeRV visualization showing Drug Treatment Transitions. 
Lines indicate the transition from Pretreated MCF7 to treated MCF7 cells 

Components 2B & 10A – functionally similar but gene-wise different 
responses 

We observe that component groups 2B, 3A, and 10A share several compounds such as the 
DNA-intercalating topoisomerase inhibitors mitoxantrone and irinotecan, the cyclin-
dependent kinase (CDK) inhibitors alsterpaullone, GW-8510 and 0175029–0000, and the 
antimetabolites methotrexate and azacitidine, 5 of the top 20 between each paired group. 
Most of the non-overlapping compounds in each component group are not linked functionally 
or structurally in any obvious way, on the other hand. To verify that the components capture 
different phenomena despite sharing several compounds, we compute chemical composition 



and biological similarity matrices over all component pairs. We use the Tanimoto similarity 
measure to compute overlap between the top 30 genes of each subcomponent pair; as shown 
in Additional file 4: HeatMaps.pdf, Figure D. The analysis of biological similarity between 
these subcomponents with compound overlap (out of top 20 compounds for each component) 
indicates that there is minimal biological and chemical sharing between any two components. 
Almost all component pairs that are highly biologically similar have a non-significant and 
low chemical composition similarity, and vice versa. This is a strong indication that we have 
identified sets of VolSurf descriptors that link to different biological responses. In some 
cases, several of these features can be identified in a single molecule like the etidronic acid, 
which is linked to both components 3 and 6. The chemical properties of component 6 are 
connected with pharmacophoric features and component 3 with hydrogen bonding, while 
biologically the components are related to differentiation and stress response, respectively. 

To get a deeper view of the underlying biological response mechanisms we explore the 
response patterns of the components using heatmaps. In the first heatmap, we consider the 
most active genes in a subcomponent and plot their expression levels across the top 
compounds of every subcomponent (Figure 6). In the figure we search for the subcomponents 
that have a unique expression pattern across other subcomponents in a column. Components 
2B and 10A show a unique structure. These seem to represent two separate aspects of DNA 
damage response, which are connected to two separate molecular features; hydrophobicity in 
component 2B and shape-type VolSurf descriptors in component 10A. The gene expression 
changes in both subcomponents are strongly linked to a DNA damage and mitotic arrest 
response with many proto-oncogenic cell division and mitogenic signaling genes being down 
regulated (Figure 6; Additional file 3: Top_Genes.xls). The same genes are commonly seen 
upregulated in cancers (Additional file 4: HeatMaps.pdf, Figure B and C) and many of them 
have been and are pursued as drug targets. Therefore both the components are similar on a 
larger biological scale, but do in fact have little gene-wise overlap. 

Figure 6  Finding interesting components. Heatmap across the 10 highest scoring 
significant CCA components: X-axis lists the top 30 significant genes in each subcomponent, 
while y-axis represents the top 20 scoring compounds in each. Two unique components 2B 
and 10A are zoomed in to show the detailed expression pattern along with 3D VolSurf 
descriptors (green areas are the lipophilic fields and the purple water fields). Only a subset (5 
compounds and 10 genes) is shown in the zoomed version due to space constraints 

To validate these hypotheses, we checked for reported growth inhibition for the top 20 
chemicals in these two subcomponents in the NCI/DTP in vitro cell line testing database 
(NCI60 testing program, http://dtp.nci.nih.gov/docs/cancer/cancer_data.html). Four 
compounds from 2B and 10 from 10A were represented in the NCI60 datasets (Table 2). For 
almost all of the compounds for which NCI60 data are available, in CMap the compounds 
were used at doses that very effectively will stop the cells from growing or kill them. 

Table 2  Growth Inhibition verification of 2B/10A Compounds 
Chemical CMap (µM)  GI50 (µM)  Subcomponent Cell line 
berberine 10 25.1 2B MCF7 
irinotecan 100 6.3 2B, 10A MCF7 
mitoxantrone 7.9 0.004 2B MCF7 
amiodarone 6.3 4.0* 2B PC3 
8-azaguanine 25.1 0.32 10A HL60 



apigenin 15.9 25.1 10A HL60 
azacitidine 15.9 0.79 10A PC3 
camptothecin 12.6 <0.01** 10A MCF7 
chrysin 15.9 15.8*** 10A MCF7 
methotrexate 7.9 0.03 10A MCF7 
thioguanosine 12.6 0.32 10A MCF7 
esculetin 25.1 >100** 10A HL60 
fulvestrant 1.0 >100** 10A PC3 
GI50 values (drug concentration causing a 50% growth inhibition) from NCI/DTP are shown 
along with the corresponding concentrations used in the Connectivity Map (CMap) data. By 
comparing the GI50 and CMap values we can get an idea of expected cell killing effect of the 
drug in the CMap data. Drugs that are expected to eventually kill the cells are shown in bold. 
GI50 and CMap concentration values are in µM scales. 
* GI50 value at the end of the tested range. 
** Mean of GI50 values from HL60 and MCF7 cell lines. 
*** Value from HL60 cell line. 
 

Component 7B – A leukemia-specific subcomponent 

Based on studying the heatmaps, 7B is another interesting subcomponent: It has a dominant 
effect on HL60 as compared to MCF7 and PC3, indicating that this subcomponent and the 
link between structure and gene expression may be specific for leukemic cells and leukemic-
specific molecular targets. 

Figure 7 shows the activity of most significant genes (columns) corresponding to the top 
compounds (rows) across the three cell lines. The top drugs are mainly cardiac glycosides 
and these drugs are known to have a strong toxic effect on leukemic cells at the 
concentrations used. It is worth noting that FLT3LG (FLT3 ligand) is one of the most 
significantly up-regulated genes. The FLT3 receptor, to which FLT3LG binds, is an emerging 
target in leukemia [22]. 

Figure 7  Heatmap for subcomponent 7B. Y-axis lists the top 10 active compounds in the 
component, replicated over the three cell lines, while the X-axis lists the most significantly 
active genes in the component. The genes are clearly activated systematically and exclusively 
in the HL60 cell line, hence indicating an HL60 specific response 

Conclusions 

We have introduced a chemical systems biology approach for analyzing the complex 
relationship patterns between chemical structures of drug molecules and their genome-wide 
responses in cells. With Canonical Correlation Analysis, we are able to find statistical 
dependencies between the two data spaces in the form of correlated components. We have 
demonstrated quantitatively that these components are more informative about drug similarity 
than either chemical or biological data separately. 

Our approach finds the relationships in an entirely data driven way without being constrained 
to known target information. Uncovering the detailed mechanisms of actions of a diverse 



library of drugs, including those not having known target classes is a major research goal. 
Our approach provides the first step, by generating hypotheses for unexplored 
polypharmacology and both target and off-target drug mechanisms. 

In our study, we used gene sets to introduce biological knowledge into the analysis. Iorio et 
al. [8] have recently got promising results with an alternative method of analyzing gene 
expression responses. It is an interesting and non-straightforward research question whether 
that approach can be generalized to searching for structure-response relationships. 

We have also demonstrated the use of advanced visualization methods to facilitate detailed 
interpretation of the chemical and biological characteristics of the components. Our findings 
show connections between the biological responses of many known drug groups to their 
general chemical properties (Table 1). As an example of the ability of the model to discover 
detailed drug response mechanisms we were able to separate different DNA damage 
responses that appear to be driven by different chemical features in compound sets having 
considerable overlap. Subcomponents 2B, 3A, and 10A all contain classic chemotherapeutic 
and DNA damaging agents as described in the results section. Strikingly, subcomponents 2B 
and 10A are driven primarily by hydrophobic/lipophilic descriptors and are more similar in 
their biological output. They both connect to the downregulation of many proto-oncogenic 
and mitotic genes but notably still through almost entirely non-overlapping gene sets and 
genes. Subcomponent 3A, on the other hand, which is connected to hydrogen bonding and 
hydrophilic features, connects to a very different cellular response: the turning on of many 
stress-induced “defense” genes. In other words, we document how within the same 
compound or related compounds, hydrophobic and size features drive a mitotic arrest 
response while hydrogen bonding and hydrophilic features drive a reparative response. This 
knowledge, in combination with gene expression data in the solid tumors may allow us to 
design and utilize the chemotherapeutic agents with the appropriate balance of hydrophilic, 
size and hydrogen bonding for each cancer patient to hit the correct balance between anti-
growths to damage response induction for best possible efficacy. 

Methods 

Gene expression data 

We used the Connectivity Map gene expression profile data set as biological response 
profiles to drug treatments, forming the biological space. Instead of the rank-based procedure 
of the original Connectivity Map paper, we used a different preprocessing method since 
ranking amplifies noise. Even small differences in low intensities, which contain mostly noise 
are ranked, and this has a significant impact on the identification of differentially expressed 
genes. Hence, we downloaded the raw data files in original CEL-format, from 
http://www.broadinstitute.org/cmap/, which we RMA-normalized [23] before computing 
differential expression. We used expression profiles from the most abundant microarray 
platform (HT-HG-U133A) in the data collection. Differential expression was then taken with 
respect to the control measurements in each measurement batch. In the case of multiple 
controls per batch, we formed a more robust control by removing as an outlier the control 
with the highest Euclidean distance to the other controls, and then used the mean of the rest 
as the controls. To further reduce the noise in the expression data, we discarded 5% of the 
genes having the highest variance in the control measurements, that is, genes having high 
level of variation unrelated to chemical responses. As simple means of balancing between the 



varying sample sizes for different chemicals in the CMap data, we chose for each chemical 
the one instance with the strongest effect, measured with the highest norm of response, on the 
cell line for further analysis. The resulting gene expression data consisted of profiles for 1159 
compounds over 11,350 genes. 

To bring in prior knowledge of biological responses, and to reduce the dimensionality of the 
gene expression data, we performed Gene Set Enrichment Analysis (GSEA). GSEA gives as 
output for each gene set the direction (positive/negative) and strength of the activity, as 
measured by the false discovery rate (FDR) q-values, ranging from 0 (indicating highest 
activity) to 1. We transformed the q-values for the CCA by first inverting the q-values such 
that 1 indicates the highest activity, and then further mirroring q-values for the negatively 
activated gene sets with respect to zero to take the sign of activity into account. This results in 
a reasonably unimodal distribution of the data around zero, with higher positive and negative 
values indicating higher positive and negative activation of the gene sets, respectively. In the 
resulting data we have biological activation profiles over 1321 gene sets for 1159 distinct 
chemicals (see Figure 1B). 

As the gene sets, we used the C2 collection (curated gene sets v2.5) from the Molecular 
Signatures Database (http://www.broadinstitute.org/gsea/msigdb/). The extensive collection 
of gene sets covered 90% genes in our data and is thus a sensible representation of the 
biological space. GSEA was computed with the Java software package version 2–2.05 
(http://www.broadinstitute.org/gsea). 

Chemical descriptors 

The chemical space was formed by representing each chemical with a set of descriptors of its 
structure and function. In the analysis, the chemical similarity will be dependent on the 
selected descriptors and thus the selection is of utmost importance. This is especially true 
when the aim is to find small molecules that share targets and biological functions regardless 
of structural similarity. We use the VolSurf descriptors, calculated using MOE version 
2009.10 (http://www.chemcomp.com/software.htm). Original sdf-files were translated into 
3D using Maestro/LigPrep (Maestro version 9.0) since VolSurf descriptors are based on 3D 
molecular fields. The resulting data contains 76 descriptors for each chemical. Additional file 
5: VolSurf_Classification.xls lists these descriptors. 

Canonical correlation analysis 

Drug action mechanisms are indirectly visible in relationships between the chemical 
properties of the drug molecules and the biological response profiles. We carry out a data-
driven search for such relationships with a method that searches for correlated components in 
the two spaces, as shown in Figure 1. 

Canonical Correlation Analysis (CCA [9]) is a multivariate statistical model for studying the 
interrelationships between two sets of variables. CCA explores correlations between the two 
spaces whose role in the analysis is strictly symmetric, whereas classical regression 
approaches like Partial Least Squares [24] typically explain one or possibly several response 
variables in one space by a set of independent variables in the other one. The result of the 
CCA analysis is an underlying component subspace relating chemical descriptors with gene 
sets. 



Let us consider two matrices X and Y, of the size of n x p and n x q, representing the chemical 
and biological spaces. The rows represent the samples and the columns are the features (gene 
set activation values or chemical descriptors). In the following we describe the CCA learning 
algorithm as a stepwise process. 

First, two projection vectors w1 and v1 are sought such that they maximize the correlation P1 
between components of data formed by, 

( )1 , 1 11 1
max cor , ,w vP Xw Yv=  

subject to the constraint that the variance of the components is normalized, i.e., 
var(Xw1) =  var(Yv1) =  1. 

The resulting linear combinations Xw1 and Yv1 are called the first canonical variates or 
components, and P1 is referred to as the first canonical correlation. The first canonical 
variates explain the maximum possible shared variance of the two spaces along a single linear 
pair of projections: w1 and v1. 

The next canonical variates and correlations can be found as follows. For each successive 
step s =  2,3,…min(p,q), the projection vectors (ws,vs), can be found by maximizing 

( ),max cor , ,
s ss w v s sP Xw Yv=  

subject to the constraint var(Xws) =  var(Yvs) =  1, and with a further constraint of 
uncorrelatedness between different components. 

Let Cxx =  XXT and Cyy =  YYT denote the scaled sample covariance matrices for the two input 
spaces, and Cxy =  XYT the sample cross-covariance. Then the first canonical correlation is 

1 1 1 1 1 1 1.
T T T

xy xx yyP w C v w C w v C v=  

If Cxx and Cyy are invertible the vectors w1 and v1 maximizing the above equation can be 
found. Generally, in omics data and also in our study, the number of genes/gene sets is large 
compared to the number of experiments. In such cases the classical CCA solution may not 
exist or it can be very sensitive to collinearities among the variables. This issue can be 
addressed by introducing regularization [25-27], i.e., by penalizing the norms of the 
associated vectors. Hence, we seek projection vectors that maximize the penalized correlation 

1 1
1

1 1 1 1 1 1 2 1

.
T

xy
T T

xx yy

w C v
P

w C w L w v C v L v
=

+ +
 

The regularization coefficients L1 and L2 were estimated with 20-fold cross validation over a 
grid of values, while maximizing the retrieval performance on known drug properties. The 
retrieval procedure and performance measure are described in the drug similarity validation 
section below. In each fold, the model was first applied to a training data set, and the test data 
were then projected to the obtained components. Estimated regularization parameter values 
were L1 = 100 and L2 = 0.001. We used R-package “CCA” [26]. 



Drug similarity validation procedure 

To quantitatively validate the performance of the component model in extracting functionally 
similar drugs, we carried out the following analysis. For a given data set, we first computed 
pairwise similarities of drugs. In practice, we used each chemical in turn as a query, and 
ranked the other chemicals based on their similarity to the query. For the similarity measure, 
we had three alternatives, similarity in the CCA component space, in the biological space, 
and in the chemical space. Finally, we computed the average precision of retrieving 
chemicals that are functionally similar to the query, i.e. share at least one known property in 
an external validation set. We report the mean of the average precisions for all chemicals. We 
repeat the results as a function of the number of the top ranked chemicals used to compute the 
average precision (from 5 to 100). 

We constructed the external validation set about the functional similarity of the drugs from 
their known protein targets and ATC (Anatomical Therapeutic Chemical, 
http://www.whocc.no/atc_ddd_index/) codes. Drug target information was obtained from 
ChEMBL (https://www.ebi.ac.uk/chembl/), DrugBank (http://www.drugbank.ca/), DUD 
(http://dud.docking.org/), and ZINC (http://zinc.docking.org/). We additionally extracted 
targets and ATC codes for the CMap chemicals from the supplementary material provided in 
[8]. From the ATC codes we used the fourth level information, indicating the 
chemical/therapeutic/pharmacological subgroup and hence high similarity of drugs. In total 
we have 4427 associations between 821 CMap chemicals and 796 targets or ATC codes. 

Visualizing through an “eye diagram”: relationship between gene sets, 
extracted components, and VolSurf descriptors 

The CCA components summarize statistical relationships between the chemical and 
biological spaces. The relationships can be visualized as in Figure 1 and 3: The components 
in the middle are connected to the chemical descriptors that activate them (left) and to the 
gene sets that are differentially expressed when the component is active. We selected the top 
10 significant components from the CCA model for the visualizations. The significances of 
the components were estimated by a permutation test, using the observed correlations as a 
test statistic. The samples in one of the spaces were randomly rearranged removing the 
relationship with the other space. One thousand such random permutations were formed and 
their canonical correlations computed. Component significances were then determined as the 
proportion of random correlations that are greater than the observed correlation. 

The components were further split into two subcomponents labeled ‘A’ and ‘B’, in A the 
canonical scores are positive and in B negative. Compounds in the two subcomponents 
behave in the opposite fashion on the gene sets and VolSurf features, such that when one of 
the subcomponents activates some biological processes, the other either has no effect or 
deactivates them. For visual clarity the eye diagram shows only the top 10 correlated gene 
sets for each component, out of the 1321 gene sets used. All 76 VolSurf features are shown. 
The eye diagram was originally introduced in [28] for visualizing component models. 



Differentially expressed genes and GO enrichment 

To get a comprehensive view of the biology in each component we extracted the genes and 
Gene Ontology classes active in each one of them. For each component, we took the top 20 
positively and top 20 negatively correlated gene sets and listed the genes in them. The 
differential expression of these genes was tested for activation/repression of the gene in the 
top 10 active compounds in the component using a regularized t-test [29]. The genes having 
p-values < 0.05 were considered to be significantly activated by the compounds in the 
component. This procedure ensures that the extracted genes are most representative of the top 
correlated gene sets in the component, hence contributing the most to the canonical 
correlation. 

The component-specific list of significantly differentially expressed genes was used to 
compute the corresponding Gene Ontology Enrichment for each component. Enrichment was 
computed for Biological Process classes using GOstats R-package 
(www.bioconductor.org/help/bioc-views/release/bioc/html/GOstats.html). Additional file 2: 
Top_GOTerms.xls lists the top 10 significant GO terms for each component while Additional 
file 3: Top_Genes.xls lists the top 30 significantly differentially expressed genes. 

Target enrichment procedure 

The target enrichment analysis of each subcomponent was done based on sharing of known 
targets. Specifically, the shared targets of top 20 compounds of each subcomponent was 
compared to target sharing in 1000 random draws of the same number of compounds. P-value 
is given by the proportion of enriched targets in the random samples. Additional file 6: 
Target_Breakdown.xls lists the common targets and p-values for each subcomponent. 

Drug Target data was obtained from ChEMBL (https://www.ebi.ac.uk/chembl/), DrugBank 
(http://www.drugbank.ca/), DUD (http://dud.docking.org/), and ZINC 
(http://zinc.docking.org/). We additionally extracted targets from the supplementary material 
provided in [8]. In total 716 CMap chemicals had target information. 

Characterizing drug response on breast cancer cells 

We investigated if the components reveal interesting patterns in the responses to drugs, by 
plotting the transitions caused by each drug in the gene subspace defined by the component. 
This was done by extracting the 100 most significant genes as an effective representative of 
changes caused by treatments in the genome (using the procedure described in the above sub-
section). The profiles of 30 independent cell lines in a steady-state, unperturbed conditions, 
were included to act as references for calibrating the display. These independent breast cancer 
cell lines were obtained from ArrayExpress experiment ID E-MTAB-37 
(www.ebi.ac.uk/arrayexpress) with replicates merged to make a single representation for each 
of the cell types. All cell lines were annotated as BasalA, BasalB, Luminal, or progenitor 
using classifications by Kuemmerle et al.,[30]. Only MCF7 (breast cancer) treatments were 
used from CMap data. 

The breast cancer cell line and CMap data come from different Affymetrix platforms, HG-
U133plus_2.0 and HT-HG-U133A, respectively. We therefore normalized them separately by 
computing differential expression as the expression value divided by the mean of each gene 
within the platform. These normalized data were scaled using log2. 



Both the CMap-selected instances and breast cancer cell data were collected into a single 
matrix. To visualize the transitions, pairwise correlation similarities were computed over this 
matrix and plotted using the state-of-the-art non-linear dimensionality reduction and 
visualization tool NeRV [18,19]. The result is a mapping of the high-dimensional expression 
profiles to a two-dimensional display for easier visualization, such that if two points are 
similar in the visualization, they can be trusted to have been similar before the projections 
also. NeRV visualization of component 3A, which is analyzed in the Results, is shown in 
Figure 5. 
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Additional_file_1 as XLS 
Additional file 1: Table S1.  Top_Compounds.xls. Contains lists of Top 20 active 
compounds in each subcomponent 

Additional_file_2 as XLS 
Additional file 2: Table S2.  Top_GOTerms.xls. Contains lists of Top 10 significant GO 
Terms in each component 

Additional_file_3 as XLS 
Additional file 3: Table S3.  Top_Genes.xls. Contains lists of Top 30 significant Genes in 
each subcomponent 

Additional_file_4 as PDF 
Additional file 4: Figure S1.  HeatMaps.pdf. Contains breast cancer patient heat maps and 
chemical/biological composition plot 

Additional_file_5 as XLS 
Additional file 5: Table S4.  VolSurf_Classification.xls. Contains lists of all VolSurf 
features and their pharmacophoric classification 

Additional_file_6 as XLS 
Additional file 6: Table S5.  Target_Breakdown.xls. Contains list of commonly occurring 
protein targets in each subcomponent 
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