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Abstract

Background

Detailed and systematic understanding of the biological effects of miicengailable
compounds on living cells is a significant challenge. As most compounds impact multi
targets and pathways, traditional methods for analyzing structure-functtiomships are
not comprehensive enough. Therefore more advanced integrative models are needed
predicting biological effects elicited by specific chemicatidess. As a step towards creati
such computational links we developed a data-driven chemical systems biology ppro
comprehensively study the relationship of 76 structural 3D-descriptors (VotBerhical
space) of 1159 drugs with the microarray gene expression responses (Hisloaped they
elicited in three cancer cell lines. The analysis covering 11350 genessesdn data from
the Connectivity Map. We decomposed the biological response profiles into componer
each linked to a characteristic chemical descriptor profile.

Results

Integrated analysis of both the chemical and biological space was moreatierthan
either dataset alone in predicting drug similarity as measured by shateid progets. We
identified ten major components that link distinct VolSurf chemical featuressamultiple
compounds to specific cellular responses. For example, component 2 (hydrophobic
properties) strongly linked to DNA damage response, while component 3 (hydrogengh
was associated with metabolic stress. Individual structural and biologgtalds were ofter]
linked to one cell line only, such as leukemia cells (HL-60) specificadlyareding to cardia
glycosides.

Conclusions

In summary, our approach identified several novel links between specific chetmicalre
properties and distinct biological responses in cells incubated with these drpgdaltly,

the analysis focused on chemical-biological properties that emerge aribtigde drugs. The

decoding of such systematic relationships is necessary to build better modats effelcts,
including unanticipated types of molecular properties having strong biol@fieats.
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Background

The mechanism of action of drugs at the biochemical level has typicallysheked by
investigating specific chemical properties of the drug and the biologigagipies of its
specific target [1,2]. This is the standard paradigm in Quantitative StructtivéiyAc
Relationship (QSAR) studies, where multivariate mathematical modeissad for modeling
the relationships between a set of physiochemical or structural propadibgogical
activity. In previous QSAR studies, such as in the classical 3D-QSAR workanyeC et al.
[3], values of a single biological activity measure are predicted.

However, biological responses at the cellular level are diverse and eadlygdcadly binds
to a multitude of targets in the cells and elicits a number of other off-&ffgets. Systems-
level approaches are thus needed to get a more comprehensive view of diagrelifeng
cells. Genome-wide massively multivariate description of the cellulponsgs caused by
the drugs, such as in the Connectivity Map program (CMap; Lamb et al., [4]), seqenve
kinds of tools for analysis and interpretation.

Chemical systems biology has emerged at the interface of systems l@ntbglhiemical
biology with the goal of constructing a systems-level understanding of diagsac
Systematic analysis of a network of drug effeicés hetwork pharmacology, offers great
opportunities for drug design in the future [5]. Chemical systems biology has atsodsee
to predict drug side effects [6] as well as in other types of toxicologiaysis [7].

Here, we undertook a complementary approach, by studying the impact of a heshafat
descriptors across a large panel of drugs on the biological response prefiesea at a
genome-wide scale. We linked key structural components of the drug moleculesmed def
by 3D VolSurf descriptors, with the consistent biological properties, as needsyr
microarray gene expression profiles. We developed a data-driven approadlyze ana
relationships between patterns of chemical descriptors of the drugs on one hand, and
matching patterns in the cellular responses measured by genome-wiglss@axpprofiles, as
shown in Figure 1.

Figure 1 Data-driven search for statistical relationships between Chemicalpace
(formed of VolSurf features) and Drug response space (gene expressio

As biological response data we used the Connectivity Map (CMap, [4,8]), which coffisists
gene expression measurements from three cancer cell lines (MCEBY-B@a-prostate and
HL60-blood) treated with over a thousand different drug molecules (Figure 1C). Htase d
offer a unique view to the genome-wide responses of the cells to drug treatntehés a

been used to find new biological linkgy.between heat shock protein inhibitors, proteasome
inhibitors, and topoisomerase inhibitors [8].

Our key assumption is that the chemical structure as encoded in the 3D desafigtogs
impacts on the drug response resulting in specific patterns of gene exprEssthermore, if
there is any statistical relationship between the occurrence of pati¢heschemical space
and the patterns in biological response space, those patterns are informativenigp form
hypotheses on the mechanisms of drug action. Given proper controls, the statigticates
can be attributed to the specific features of the chemicals tested out ofse direg library.
In this paper we used comprehensive but readily interpretable models for finding the



statistical dependencies. We searched for distinct components thattedhelpatterns in

the chemical space with the biological response space. Assuming limgianstips, the task
reduces to Canonical Correlation Analysis (CCA [9]) for searching forlatetdecomponents
from the two data spaces (Figure 1D). We visualized the components in a comprehensive
way to facilitate interpretation (Figure 1E and 1F) and validate them botitatjualy and
guantitatively.

Canonical Correlation Analysis was recently used for drug side effetitpoa and drug
discovery by Atias and Sharan [10]. They applied CCA to combine known side effect
associations of drugs with (i) 2D structure fingerprints and (ii) bioagtprivfiles of the
chemicals. The CCA results from both combinations were then successfully ysedict
side effects for the drugs, suggesting that CCA is effective in findiegant components
from heterogeneous data sources.

Drugs generally act on a multitude of direct and intended targets as welbasumber of
non-specific off-targets. All these targets and effects togetheecbtma phenotypic
response. As most of these effects are still poorly understood, modelling of tierstruc
target-response profiles across a large drug library is an important, benhghadl goal. In
this study we modelled the structure-response relationships of 1159 drug moleeualhg dir
with CCA components playing the role of unknown mechanistic processes.

The lack of information on all of the possible targets prompted us to select alpadét of
chemical descriptors that allows capturing of generic response pakfteimg kinds of
chemical descriptors are available for characterizing chemrcalstes in a quantitative
way. Simple classical 2D fingerprints can be used to detect close gralogsey would
miss most if not all scaffold-hopping situations, where the different chemica®give rise
to similar pharmacophoric properties. Fingerprints and pure pharmacophoriptdescr
require clearly defined individual targets, which are not known in many casée. present
study, we aimed to bridge the chemical and biological space by using a sefoffVol
descriptors of the drugs ([11]; Figure 1A) that are ideal for capturing battigtal
similarities and general chemical features, such as solubility ane:atom properties
(ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicology propsijti
Although VolSurf descriptors are not thought to explain detailed structure-gactivit
relationships, such as the binding to a single target, they offer a good overaletateyprof
the molecular shape, hydrogen bonding, lipophilicity, and related properties, whiobrare
conservative than individual binding cavities. It has also been shown that shapgadas a ma
factor when trying to find compounds with similar biological activity butidigar 2D
structures [12].

The idea of correlating chemical structures with biological expressioimivaduced by
Blower et al. in [13]. By combining 2D fingerprint data with biological acyiyitofiles for
the chemicals over 60 cancer cell lines (NCI60), and with steady-staexgeression
measurements from those cell lines before drug treatments, they obtainect indir
relationships between chemical substructures and the gene targets. Inracewiravork,
Cheng et al., [14] investigated correlations between the chemical strutiosegivity
profiles, and molecular targets for a set of 37 chemicals. This small-sadyedemonstrated
that combinations of biological activity and chemical structure informatampcovide
insights into drug action mechanisms on a molecular level.



By using the direct gene expression responses to a large set of drugrite&tome the
Connectivity Map, along with comprehensive component-level decomposition of response
profiles, we are able to make more direct observations on how compounds impact on cells
and which features of the chemical molecules and the biological responsesalaed.

Results and discussion

We analysed the 1159 drug treatment gene expression responses of three itéinesrafe

the Connectivity Map, with the methods summarized in Figure 1 and detailed in Methods.
The analysis decomposed the relationship between the “chemical space” and thecébiolog
space” into components. The chemical space consists of the selected 76 othesorgators

of each drug and the biological space contains gene expression responsesudrding
drugs. Each component relates a characteristic statistical gensstxprgattern with a

pattern of the drug properties. We will call the components “CCA components” ag¢he c
method is Canonical Correlation Analysis (CCA). In this section we analstberf the
identified components and the statistical relationships they discovered.

Quantitative validation of functional similarity of drug components

We evaluate the biological relevance of the extracted CCA componentslgingtthe
functional similarity of drugs associated with each component. In partievdameasure the
performance of the component model in retrieving similar drugs, as indicateddogal data
about their function, and compare it to retrieval based on either the biological ocahemi
data separately. Details of the validation procedure are described in M&thedeean
average precision obtained for the retrieval task on the four data sets (CCA components
chemical space, biological space as represented by GSEA and Gerssiexyrare plotted in
Figure 2.

Figure 2 Quantitative validation of functional similarity of drug components. The figure
shows the mean average precision for retrieving functionally similar chEnais a function
of the number of top chemicals considered. Results are shown for three repoeser@LA
(red), Chemical space (green), and Biological space (GSEA: blue, Gersstapr grey).
Error bars show one standard error of the mean precision

The results show that retrieval based on the chemical Spaad&ISurf descriptors,
performs clearly better than retrieval based on the biological spanati@cbf gene sets and
genes), indicating that the chemical information is more relevant faragiway the functional
similarity of the chemicals. The biological space encoded by genpesétsms similarly to
the original gene expression, indicating that the gene sets are a seridiagnof the
biological space; information lost due to dimensionality reduction is balancedrbguction
of prior biological knowledge in the form of the sets. Finally, the combined spaceddiyn
the CCA components shows significantly better retrieval performance than @itthe data
spaces separately. The results are consistent over the range of drigdgredms the
retrieval task. These results show that CCA is able to extract and conibirante
information about the chemical structure and biological responses of the drugsjltehihg
out biologically irrelevant structural information and also biological resgunarelated to
the chemical characteristics.



Response components and their interpretations

We next analyze the top ten CCA components having the highest significanttaorsela
between the spaces. Figure 3 summarizes the relationships between thé déd&iptors

and the gene sets as captured by the components. Each component is divided into two
subcomponents ‘A’ and ‘B’, where in the first, the compounds have positive canonical score
and in the second negative (the characteristic response patterns are othersasest,

details in Methods). For each CCA-subcomponent the 20 highest-scoring compounds are
listed in the Additional file 1: Top_Compounds.xIs.

Figure 3 Relationships decomposed into component&ye diagram” showing the top 10
significant CCA components ordered by correlation from top to bottom (middle), WolSur
descriptors (left), and top gene sets (right). The CCA components are shaveteaswith
numbers indicating the decreasing order of canonical correlation and lediacsB\
indicating subcomponents (A: positive canonical score, B: negative canonicdl $bare
widths of the curves from the components to VolSurf descriptors and gene sets iheicate
strength of the corresponding associations. For VolSurf descriptors the subcomponent-
specific activity is shown, whereas for the gene sets we show the overxaty actihe
component. For an example compound, VolSurf fields are illustrated in the top-left corner
while three gene sets are listed along with their five most signifgenes in the top right
corner

VolSurf descriptors, unlike more typically used 2D or 3D fingerprints and pharmaespho
do not have clear structural counterparts such as fragments or functional grougsr&here
these descriptors are able to group together compounds with very dissimifécathe
structures and yet having the same type of chemical properties. Thisamkgpaportant in
our study since the same biological activity may not have been created bafdiiessame
biological target protein but because of another target protein in the same paththaya
pathway, binding cavity properties may change, but general descriptorbidesihe size,
lipophilicity, and shape are more conservative. Therefore VolSurf dessrgte better
suited for classifying these aspects of the compounds.

In the case of the®land 2° components, the selected VolSurf descriptors are dominated by
hydrophobicity related descriptors. TH& @mponent is connected to hydrogen bonding,
polar interactions, and dispersion-related descriptors. Component 4 is also strongbtexnn
with hydrophobicity related descriptors, besides the component is influenced by the
molecular volume and surface area. Components 5—-7 are mainly connected to
“pharmacophoric” descriptors that are describing distribution of strong ititergoints over

the molecular space. Components 8 and 9 are both strongly influenced by integy-moments,
describing imbalance of either hydrophobic or hydrophilic areas over the wholeuhaole
volume. Component 10 is mainly affected by shape and size-related parametersy and al
lipophilic integy moments.

On the biological space we observe that the enriched gene sets in component 1 indicate a
mitogenic signaling response. Component 8 appears similar but has an additicioat&tk
adhesion signaling. Component 4 in turn very directly connects to cytoskeletaticegaiel

cell adhesion. While there appears to be a considerable overlap between compounds in
components 2, 3 and 10, the enriched gene sets in component 2 show a strong link to DNA
damage response, 10 is associated with common cancer signals, and component 3 is
associated with an anabolic response. Components 5 and 6 are connected to different



differentiation events. Component 7 links to gene expression changes seen in GPCR
signaling. Component 9 links to amino acid and nitrogen metabolism.

We further extracted the significant genes in each component and performedich@ent
analysis on them. Additional file 2: Top_GOTerms.xls shows the top 10 significant @® ter
for each component while Additional file 3: Top_Genes.xIs shows the top 30 significantly
differentially expressed genes for each.

Based on the Eye diagram (Figure 3) and lists of significant genes, gen@®@derms, and
the top 20 compounds, we summarize the biological and chemical patterns in Table 1.

Table 1 Summarized interpretation of top 10 components. Group A and B are the

subcomponents of Figure8

Comp. Biological Compounds in Compounds in VolSurf
Interpretation Group A Group B Interpretation
Classic growth factoiSulfonamides,  Antipsychotic and High lipophilicity
1 signaling: (MAP andantibiotics, antihistaminic
protein kinase carbonic anhydraseompounds
signaling) inhibitors
DNA damage Contrast agents, DNA damaging Strong lipophilic
2 antibiotics, agents, areas emphasized

antimetabolites

Stress response, DNA damaging
3 mitochondrial and agents
anabolic metabolism

GPCR antagonists, Polar interactions
ion channel blockersenriched

Cytoskeleton, cell
4 adhesion and
migration

GPCR liganda, Beta adrenergic

and contrast agentgyands

N/A

macrocyclic cmpdagonists, other GPCR

Differentiation, EMT ,NSAIDS, cAMP HDAC Inhibitors,  Significantly
5 stemness signaling HDAC-like enriched with
promoting pharmacophoric
compounds features*
Inflammatory and  N/A Protein synthesis Pharmacophoric
6 differentiation inhibitors, anti- features*
signaling diabetics, cardiac
glycosides
- GPCR and cytokine N/A Cardiac glycosides, Pharmacophoric
signaling cephalosporins features*
Growth factor and Cardiac glycoside$-adrenergic Integy-moment and
3 cell adhesion agonists, C& significant
signaling channel blockers  pharmacophoric
enriched*
Amino acid and Protein synthesis Anti-diabetics Integy-moment and
9 nitrogen metabolisminhibitors significant
pharmacophoric
enriched*
10 Cancer signaling DNA damaging Corticosteroids, Size shape type

agents ionophores

descriptors




The pharmacophoric enrichment analysis (marked with “*”) was carried ouvVal@urf
features (Additional file 5: VolSurf_Classification.xIs) considered gsld standard, and
measuring enrichment of the list in a component by a hypergeometric test

Enrichment of known targets

Existing drug response research relies heavily on target and pathvealyaveadysis. Our

novel approach attempts to go beyond known targets and pathways to find drug response
groups in an entirely data driven way linking pharmacophoric descriptors to sgeciéc
expression response patterns. Some of the found patterns may rationally be ldedigina
known targets and next we analyze the discovered biological process (tasspsnents),

for enriched protein targets.

We collected a set of drug-protein target pairs from several drabatas (see Methods for
details); that contains targets for almost half of the CMap drugs. We thenrthment
analysis of the compounds sharing common targets in each component (see Methods for
details). The common protein targets and component p-values are listed in Addifgo®al fi
Target_Breakdown.xls.

As expected, the analysis shows that only few subcomponents have compounds that
significantly share protein targets<0.05). These are 1B, 2B, 10A and 10B. Subcomponent
1B appears to be strongly driven by endogenous amine GPCR interactions. Subcomponent
2B and 10A, like 3A, are driven by compounds inducing DNA damage and are discussed
below in more detail. Subcomponent 10B is strongly influenced by glucocorticoidsifyrimar
targeting the glucocorticoid receptor, but the fact that several otheuromtidulating
compounds (erastin, clofilium tosylate, colforsin, monensin and lasalocid) réddo lihis
subcomponent argues that the corticosteroid effects are through the mineawtorti

receptor and that the subcomponent response is driven by a selected ion flux.

The fact that other subcomponents do not significantly link to target classes irgetir ta
analysis is a strong indicator that the associations between the compounds in most
components are not restricted to known primary target mechanisms and that our method
allows for discovering novel, but still undefined, mechanism of action and target knkage
between compounds. The evaluation of mechanisms of action that cannot be explained via
known protein targets is a challenging research direction, which requires tngdkhe vast
hidden mechanisms that might make two seemingly non-similar compounds simi@elWe
that our approach provides a step forward towards the goal of understanding drug
associations extracted from the actual measurement data that coulcappterdvide
hypotheses for unexplored polypharmacology and both target and off-target drug
mechanisms.

Components 3/3A — A cell stress component

We observed that in component 3, the top genes and gene sets indicate mostly mitochondrial
and metabolic stress-related processes. Top gene sets associatihgswibmponent include
many gene sets connecting to mitochondrial function (Figure 3). Similarthecgene level

several known cell stress genes such as PGK1, PGD, and PRMT1 [15-17] are wgutedulat
deeper look into the 3D structures of the top compounds in this component (Additional file 1:
Top_Compounds.xlIs) reveals a possibility of 4-12 hydrogen bonds in all of the top
compounds of set 3A. Thus, these compounds may be able to affect proton transportation



processes, which is in agreement with the biological interpretation that mitozhacidiike
proton pumps. As an example, Figure 4 shows the hydrogen bond donor and acceptor regions
of azacitidine and idarubicin.

Figure 4 Compounds high in hydrogen Bonding Azacitidine (left) and Idarubicin (right)
showing H-bonding areas with blue (hydrogen-bond donor) and red (hydrogen-bond
acceptor)

To help understand how the biological variability caused by the drugs and the chemical
features in component 3A compares with the intrinsic variability from onéypelito

another, we visualize drug response transitions on MCF7 cells. Thirty diffeesxst lsancer

cell types are used as references in their unperturbed condition (as descikile¢igods).

The MCF7 treatments from subcomponent 3A and the thirty independent breast ciéscer ce
are plotted in Figure 5 using a recent multidimensional scaling method called [18RY].
NeRV shows these different cell instances mapped onto the 2-dimensional displéyasuc
similarities are preserved as faithfully as possible. Subcomponent 3Ansomtany DNA-
damaging agents such as the DNA intercalating and topoisomerase inliaitgatothecin,
daunorubicin, and mitoxantrone, the CDK inhibitors alsterpaullone, GW-8510 and 0175029—
0000, the cardiac glycoside lanatoside C, which at high concentrations is likelybio inhi
topoisomerases [20] the antimetabolite methotrexate, as well as essoienwhich has

been suggested to induce a DNA damage response without itself inducing DNA damage [21]
and the aromatase inhibitor letrozole. The NeRV plot based on the top changed genes in
treated and untreated MCF7 cells as well as a panel of other breast ediioers; shows

that after treatment with these drugs, the gene expression of the luminal, iR poOSF7

cells starts to resemble the basal, ER-negative breast cancer ygestingly, while MCF7
cells are relatively chromosomally stable, the drug-treatments inakeappear like
chromosomally unstable and intrinsic high DNA damage cell lines such as HCG1937
MDA-MB-231. Cell stress is an emerging cancer therapy target anihieresting that a)

this subcomponent including topoisomerase inhibitors, antimetabolites and CDK inhibitors
induces stress-related metabolic responses in MCF7 cells similar tosvgleahi in a basal

level in other, more malignant and undifferentiated breast cancer cells, amdi$gstthe
hypothesis that the compounds in this subcomponent could be combined with cell stress
targeting compounds. This finding is strengthened by the fact that manytopthe
upregulated genes in the 3A subcomponent; ACHY, CDC37, GPI, ME2, PMRT1, P4HB,
PGD, and PGK1 are also overexpressed in breast cancers as compared tassonal t
(Additional file 4: HeatMaps.pdf, Figure A).

Figure 5 3A drug transitions. NeRV visualization showing Drug Treatment Transitions.
Lines indicate the transition from Pretreated MCF7 to treated MCF7 cells

Components 2B & 10A — functionally similar but genewise different
responses

We observe that component groups 2B, 3A, and 10A share several compounds such as the
DNA-intercalating topoisomerase inhibitors mitoxantrone and irinotecan, thiacy

dependent kinase (CDK) inhibitors alsterpaullone, GW-8510 and 0175029-0000, and the
antimetabolites methotrexate and azacitidine, 5 of the top 20 between eaclymaiped

Most of the non-overlapping compounds in each component group are not linked functionally
or structurally in any obvious way, on the other hand. To verify that the components capture
different phenomena despite sharing several compounds, we compute chemical ammposit



and biological similarity matrices over all component pairs. We use thmdtmsimilarity

measure to compute overlap between the top 30 genes of each subcomponent pair; as shown
in Additional file 4: HeatMaps.pdf, Figure D. The analysis of biological sityjldetween

these subcomponents with compound overlap (out of top 20 compounds for each component)
indicates that there is minimal biological and chemical sharing betwgdwartomponents.
Almost all component pairs that are highly biologically similar have a nonfisant and

low chemical composition similarity, and vice versa. This is a strong inoiictitat we have
identified sets of VolSurf descriptors that link to different biological reseenin some

cases, several of these features can be identified in a single molecthe ld&ronic acid,

which is linked to both components 3 and 6. The chemical properties of component 6 are
connected with pharmacophoric features and component 3 with hydrogen bonding, while
biologically the components are related to differentiation and stress respspeEstively.

To get a deeper view of the underlying biological response mechanisms we eéxplor

response patterns of the components using heatmaps. In the first heatmap, wetbensider

most active genes in a subcomponent and plot their expression levels across the top
compounds of every subcomponent (Figure 6). In the figure we search for the subcomponents
that have a unique expression pattern across other subcomponents in a column. Components
2B and 10A show a unique structure. These seem to represent two separat@bBbésts

damage response, which are connected to two separate molecular featirogg)dbycity in
component 2B and shape-type VolSurf descriptors in component 10A. The gene expression
changes in both subcomponents are strongly linked to a DNA damage and mitotic arrest
response with many proto-oncogenic cell division and mitogenic signaling gemg down
regulated (Figure 6; Additional file 3: Top_Genes.xIs). The same genesmaneonly seen
upregulated in cancers (Additional file 4. HeatMaps.pdf, Figure B and C) and mtgnof

have been and are pursued as drug targets. Therefore both the components are similar on a
larger biological scale, but do in fact have little gene-wise overlap.

Figure 6 Finding interesting componentsHeatmap across the 10 highest scoring

significant CCA components: X-axis lists the top 30 significant genes Insedocomponent,
while y-axis represents the top 20 scoring compounds in each. Two unique components 2B
and 10A are zoomed in to show the detailed expression pattern along with 3D VolSurf
descriptors (green areas are the lipophilic fields and the purple wats).f@hly a subset (5
compounds and 10 genes) is shown in the zoomed version due to space constraints

To validate these hypotheses, we checked for reported growth inhibition for the top 20
chemicals in these two subcomponents in the NCI/DIRro cell line testing database

(NCI60 testing program, http://dtp.nci.nih.gov/docs/cancer/cancer_data.Rtuf

compounds from 2B and 10 from 10A were represented in the NCI60 datasets (Table 2). For
almost all of the compounds for which NCI160 data are available, in CMap the compounds
were used at doses that very effectively will stop the cells from grawvidl them.

Table 2 Growth Inhibition verification of 2B/10A Compounds

Chemical CMap (uM) GI50 (uM) Subcomponent Cell line
berberine 10 25.1 2B MCF7
irinotecan 100 6.3 2B, 10A MCF7
mitoxantrone 7.9 0.004 2B MCF7
amiodarone 6.3 4.C* 2B PC3

8-azaguanine 25.1 0.32 10A HL60




apigenin 15.9 25.1 10A HL60

azacitidine 15.9 0.79 10A PC3
camptothecin 12.6 <0.07** 10A MCF7
chrysin 15.9 15.6x** 10A MCF7
methotrexate 7.9 0.03 10A MCF7
thioguanosine 12.6 0.32 10A MCF7
esculetin 25.1 >100** 10A HL60
fulvestrant 1.0 >100** 10A PC3

GI50 values (drug concentration causing a 50% growth inhibition) from NCI/DTPawnens
along with the corresponding concentrations used in the Connectivity Map (CMa@ylata
comparing the GI50 and CMap values we can get an idea of expected iogjlddiiéct of the
drug in the CMap data. Drugs that are expected to eventually kill the cediscave in bold.
GI50 and CMap concentration values arahhscales.

* G150 value at the end of the tested range.

** Mean of GI50 values from HL60 and MCF7 cell lines.

*** VValue from HLG60 cell line.

Component 7B — A leukemia-specific subcomponent

Based on studying the heatmaps, 7B is another interesting subcomponent: It has atdomina
effect on HL60 as compared to MCF7 and PC3, indicating that this subcomponent and the
link between structure and gene expression may be specific for leukéimanckleukemic-
specific molecular targets.

Figure 7 shows the activity of most significant genes (columns) corresptadihe top
compounds (rows) across the three cell lines. The top drugs are mainly chrchawdgs
and these drugs are known to have a strong toxic effect on leukemic cells at the
concentrations used. It is worth noting that FLT3LG (FLT3 ligand) is one of the most
significantly up-regulated genes. The FLT3 receptor, to which FLT3LG binds,aserging
target in leukemia [22].

Figure 7 Heatmap for subcomponent 7BY-axis lists the top 10 active compounds in the
component, replicated over the three cell lines, while the X-axis lists thesigoicantly
active genes in the component. The genes are clearly activatedatysalynand exclusively
in the HL60O cell line, hence indicating an HL60 specific response

Conclusions

We have introduced a chemical systems biology approach for analyzing thexcomple
relationship patterns between chemical structures of drug molecules argkti@ne-wide
responses in cells. With Canonical Correlation Analysis, we are able todtrstical
dependencies between the two data spaces in the form of correlated components. We have
demonstrated quantitatively that these components are more informative aboutndergysi

than either chemical or biological data separately.

Our approach finds the relationships in an entirely data driven way without beiricactets
to known target information. Uncovering the detailed mechanisms of actions of a diverse



library of drugs, including those not having known target classes is a majochegeat.
Our approach provides the first step, by generating hypotheses for unexplored
polypharmacology and both target and off-target drug mechanisms.

In our study, we used gene sets to introduce biological knowledge into the anatisist
al. [8] have recently got promising results with an alternative method ofzamgalgene
expression responses. It is an interesting and non-straightforward negeestion whether
that approach can be generalized to searching for structure-respatisasbips.

We have also demonstrated the use of advanced visualization methods to facitie det
interpretation of the chemical and biological characteristics of the comizoi@ur findings
show connections between the biological responses of many known drug groups to their
general chemical properties (Table 1). As an example of the abilitye shodel to discover
detailed drug response mechanisms we were able to separate different Dafedam
responses that appear to be driven by different chemical features in compisural/se
considerable overlap. Subcomponents 2B, 3A, and 10A all contain classic chemotierapeut
and DNA damaging agents as described in the results section. Strikingly, subcota@éne
and 10A are driven primarily by hydrophobic/lipophilic descriptors and are moraisimi

their biological output. They both connect to the downregulation of many proto-oncogenic
and mitotic genes but notably still through almost entirely non-overlappingsgénand

genes. Subcomponent 3A, on the other hand, which is connected to hydrogen bonding and
hydrophilic features, connects to a very different cellular response: the tomofgnany
stress-induced “defense” genes. In other words, we document how within the same
compound or related compounds, hydrophobic and size features drive a mitotic arrest
response while hydrogen bonding and hydrophilic features drive a reparative eegposs
knowledge, in combination with gene expression data in the solid tumors may allow us to
design and utilize the chemotherapeutic agents with the appropriate balanceophhigd

size and hydrogen bonding for each cancer patient to hit the correct balancenlzetivee
growths to damage response induction for best possible efficacy.

Methods

Gene expression data

We used the Connectivity Map gene expression profile data set as biologjzaige

profiles to drug treatments, forming thimlogical spacelnstead of the rank-based procedure
of the original Connectivity Map paper, we used a different preprocessithgargnce

ranking amplifies noise. Even small differences in low intensities, whiclaicomostly noise
are ranked, and this has a significant impact on the identification of difféiyeatpressed
genes. Hence, we downloaded the raw data files in original CEL-format, from
http://www.broadinstitute.org/cmap/, which we RMA-normalized [23] before computing
differential expression. We used expression profiles from the most abundantrraicroa
platform (HT-HG-U133A) in the data collection. Differential expression thas taken with
respect to the control measurements in each measurement batch. In the casglef mul
controls per batch, we formed a more robust control by removing as an outlier loé cont
with the highest Euclidean distance to the other controls, and then used the mearsof the re
as the controls. To further reduce the noise in the expression data, we discardedes% of th
genes having the highest variance in the control measurements, that is, genghkigh

level of variation unrelated to chemical responses. As simple means of balagteregribthe



varying sample sizes for different chemicals in the CMap data, we darosach chemical
the one instance with the strongest effect, measured with the highest nosmooises on the
cell line for further analysis. The resulting gene expression data tasheisprofiles for 1159
compounds over 11,350 genes.

To bring in prior knowledge of biological responses, and to reduce the dimensionality of the
gene expression data, we performed Gene Set Enrichment Analysis (GSEA)g&8s as
output for each gene set the direction (positive/negative) and strength of thy,aagivi
measured by the false discovery rate (FDR) g-values, ranging frardi@ating highest

activity) to 1. We transformed the g-values for the CCA by first inverting|th&ues such

that 1 indicates the highest activity, and then further mirroring g-valudéisgaregatively
activated gene sets with respect to zero to take the sign of activity coendcThis results in

a reasonably unimodal distribution of the data around zero, with higher positive and negative
values indicating higher positive and negative activation of the gene sets, wedpelctithe
resulting data we have biological activation profiles over 1321 gene sets fodi$fiBet
chemicals (see Figure 1B).

As the gene sets, we used the C2 collection (curated gene sets v2.5) from the Molecula
Signatures Database (http://www.broadinstitute.org/gsea/msigdb/) x@érsiee collection

of gene sets covered 90% genes in our data and is thus a sensible representation of the
biological space. GSEA was computed with the Java software package version 2—2.05
(http://www.broadinstitute.org/gsea).

Chemical descriptors

Thechemical spac#vas formed by representing each chemical with a set of descriptas of it
structure and function. In the analysis, the chemical similarity will berdiepe on the

selected descriptors and thus the selection is of utmost importance. This iallysipeei

when the aim is to find small molecules that share targets and biologicabhswagardless

of structural similarity. We use the VolSurf descriptors, calculated WD version

2009.10 (http://www.chemcomp.com/software.htm). Original sdf-files werdatadsnto

3D using Maestro/LigPrep (Maestro version 9.0) since VolSurf descriptorssae ta 3D
molecular fields. The resulting data contains 76 descriptors for each cheilidaional file

5: VolSurf_Classification.xls lists these descriptors.

Canonical correlation analysis

Drug action mechanisms are indirectly visible in relationships betweamdmaical
properties of the drug molecules and the biological response profiles. Wewubargata-
driven search for such relationships with a method that searches for cdroelagonents in
the two spaces, as shown in Figure 1.

Canonical Correlation Analysis (CCA [9]) is a multivariate statiftiwadel for studying the
interrelationships between two sets of variables. CCA explores correlatioreehdhe two
spaces whose role in the analysis is strictly symmetric, wheressscelleregression

approaches like Partial Least Squares [24] typically explain one or possugsal response
variables in one space by a set of independent variables in the other one. The result of the
CCA analysis is an underlying component subspace relating chemical aesaniph gene

sets.



Let us consider two matricésandY, of the size oh x p andn x g, representing the chemical
and biological spaces. The rows represent the samples and the columns araertee(fpsie
set activation values or chemical descriptors). In the following we desbalf@CA learning
algorithm as a stepwise process.

First, two projection vectons; andv; are sought such that they maximize the correldion
between components of data formed by,

P =maxcoty, v, (Xwy Yv) .

subject to the constraint that the variance of the components is normiadized,
var(Xwi) = var(Yw) = 1.

The resulting linear combinatiodav; andYw are called the first canonical variates or
components, anH; is referred to as the first canonical correlation. The first canonical
variates explain the maximum possible shared variance of the two spaces ahghg lansar
pair of projectionsw; andvs.

The next canonical variates and correlations can be found as follows. For eachigeicces
steps= 2,3,...min(p,q), the projection vectorévs,Vvs), can be found by maximizing

Ps = max cofy, v ( Xws,Yvy

subject to the constraint (Xws) = var(Yw) = 1, and with a further constraint of
uncorrelatedness between different components.

Let Cx= XX' andCyy = YY denote the scaled sample covariance matrices for the two input
spaces, an@,y= XY the sample cross-covariance. Then the first canonical correlation is

R =w] Gy w/\/ W Goow,/ ¥ Gy v

If Cxx and Gy are invertible the vectors; andv, maximizing the above equation can be
found. Generally, in omics data and also in our study, the number of genes/genkasgss is
compared to the number of experiments. In such cases the classical CCA soaytioat
exist or it can be very sensitive to collinearities among the variablesisshes can be
addressed by introducing regularization [25-2¢€}, by penalizing the norms of the
associated vectors. Hence, we seek projection vectors that maximize theggecaiielation

- cxy |
o Coont + Lo [ Gy v+ 1

The regularization coefficients andL, were estimated with 20-fold cross validation over a
grid of values, while maximizing the retrieval performance on known drug pregeftie
retrieval procedure and performance measure are described in thentagtgivalidation
section below. In each fold, the model was first applied to a training data s#igaedt data
were then projected to the obtained components. Estimated regularization pareaes
werel; =100 and_,=0.001. We used R-package “CCA” [26].



Drug similarity validation procedure

To quantitatively validate the performance of the component model in extractinghaty
similar drugs, we carried out the following analysis. For a given dataedirst computed
pairwise similarities of drugs. In practice, we used each chemitainras a query, and
ranked the other chemicals based on their similarity to the query. For therigynmileasure,
we had three alternatives, similarity in the CCA component space, in the babkpace,
and in the chemical space. Finally, we computed the average precision ofrrgtrievi
chemicals that are functionally similar to the quesy,share at least one known property in
an external validation set. We report the mean of the average precisionsfamnaitals. We
repeat the results as a function of the number of the top ranked chemicals cmagute the
average precision (from 5 to 100).

We constructed the external validation set about the functional similarity dfufs from

their known protein targets and ATC (Anatomical Therapeutic Chemical,
http://www.whocc.no/atc_ddd_index/) codes. Drug target information was obtained from
ChEMBL (https://www.ebi.ac.uk/chembl/), DrugBank (http://www.drugbank.ca/pDU
(http://dud.docking.org/), and ZINC (http://zinc.docking.org/). We additionally etettlac
targets and ATC codes for the CMap chemicals from the supplementaryaiai@vided in

[8]. From the ATC codes we used the fourth level information, indicating the
chemical/therapeutic/pharmacological subgroup and hence high sinvladitygs. In total

we have 4427 associations between 821 CMap chemicals and 796 targets or ATC codes.

Visualizing through an “eye diagram”: relationship between gene sets,
extracted components, and VolSurf descriptors

The CCA components summarize statistical relationships between the ahamnadic

biological spaces. The relationships can be visualized as in Figure 1 and 3: The ecaspone

in the middle are connected to the chemical descriptors that activate tfigangeo the

gene sets that are differentially expressed when the component is actiseledted the top

10 significant components from the CCA model for the visualizations. The sigoésanh

the components were estimated by a permutation test, using the observedamsratat

test statistic. The samples in one of the spaces were randomly rearrangehgethe

relationship with the other space. One thousand such random permutations were formed and
their canonical correlations computed. Component significances were thenidetkas the
proportion of random correlations that are greater than the observed correlation.

The components were further split into two subcomponents labeled ‘A’ and ‘B’, in A the
canonical scores are positive and in B negative. Compounds in the two subcomponents
behave in the opposite fashion on the gene sets and VolSurf features, such that when one of
the subcomponents activates some biological processes, the other either hag ap effe
deactivates them. For visual clarity the eye diagram shows only the top l@teoriggne

sets for each component, out of the 1321 gene sets used. All 76 VolSurf features are shown.
The eye diagram was originally introduced in [28] for visualizing component models.



Differentially expressed genes and GO enrichment

To get a comprehensive view of the biology in each component we extracted thamgegne
Gene Ontology classes active in each one of them. For each component, we took the top 20
positively and top 20 negatively correlated gene sets and listed the genes.ifille

differential expression of these genes was tested for activation/repressine gene in the

top 10 active compounds in the component using a reguldrtesti[29]. The genes having
p-values< 0.05 were considered to be significantly activated by the compounds in the
component. This procedure ensures that the extracted genes are most repreesétitatiop
correlated gene sets in the component, hence contributing the most to the canonical
correlation.

The component-specific list of significantly differentially expressexeg was used to

compute the corresponding Gene Ontology Enrichment for each component. Enrichment was
computed for Biological Process classes using GOstats R-package
(www.bioconductor.org/help/bioc-views/release/bioc/html/GOstats.h#dijitional file 2:
Top_GOTerms.xls lists the top 10 significant GO terms for each componentAdhliteonal

file 3: Top_Genes.xls lists the top 30 significantly differentially exmeggenes.

Target enrichment procedure

The target enrichment analysis of each subcomponent was done based on sharing of know
targets. Specifically, the shared targets of top 20 compounds of each subcomponent was
compared to target sharing in 1000 random draws of the same number of compounds. P-value
is given by the proportion of enriched targets in the random samples. Additional file 6:
Target_Breakdown.xls lists the common targets and p-values for each subcomponent.

Drug Target data was obtained from ChEMBL (https://www.ebi.ac.uk/chembligBank
(http://www.drugbank.ca/), DUD (http://dud.docking.org/), and ZINC
(http://zinc.docking.org/). We additionally extracted targets from the supptamyanaterial
provided in [8]. In total 716 CMap chemicals had target information.

Characterizing drug response on breast cancer cells

We investigated if the components reveal interesting patterns in the resfodaess, by
plotting the transitions caused by each drug in the gene subspace defihedbmponent.
This was done by extracting the 100 most significant genes as an effectasergative of
changes caused by treatments in the genome (using the procedure describablanetiseib-
section). The profiles of 30 independent cell lines in a steady-state, unpetaruktions,
were included to act as references for calibrating the display. Tiwsgendent breast cancer
cell lines were obtained from ArrayExpress experiment ID E-MTAB-37
(www.ebi.ac.uk/arrayexpress) with replicates merged to make & seyglesentation for each
of the cell types. All cell lines were annotated as BasalA, BasalB,nalpar progenitor
using classifications by Kuemmerle et al.,[30]. Only MCF7 (breastecatreatments were
used from CMap data.

The breast cancer cell line and CMap data come from different Affynpdatborms, HG-
U133plus_2.0 and HT-HG-U133A, respectively. We therefore normalized them sephyately
computing differential expression as the expression value divided by the meah gérac
within the platform. These normalized data were scaled using log2.



Both the CMap-selected instances and breast cancer cell data weredaftra single
matrix. To visualize the transitions, pairwise correlation similanitiese computed over this
matrix and plotted using the state-of-the-art non-linear dimensionalitytreaand
visualization tool NeRV [18,19]. The result is a mapping of the high-dimensionalksiqre
profiles to a two-dimensional display for easier visualization, such that pomwas are

similar in the visualization, they can be trusted to have been similar befqrejbetions

also. NeRYV visualization of component 3A, which is analyzed in the Results, is shown in
Figure 5.
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Additional_file_1 as XLS
Additional file 1: Table S1. Top_Compounds.xIs. Contains lists of Top 20 active
compounds in each subcomponent

Additional_file_2 as XLS
Additional file 2: Table S2. Top_GOTerms.xls. Contains lists of Top 10 significant GO
Terms in each component

Additional_file_3 as XLS
Additional file 3: Table S3. Top_Genes.xls. Contains lists of Top 30 significant Genes in
each subcomponent

Additional_file_4 as PDF
Additional file 4: Figure S1. HeatMaps.pdf. Contains breast cancer patient heat maps and
chemical/biological composition plot

Additional_file_5 as XLS
Additional file 5: Table S4. VolSurf_Classification.xls. Contains lists of all VolSurf
features and their pharmacophoric classification

Additional_file_6 as XLS
Additional file 6: Table S5. Target Breakdown.xls. Contains list of commonly occurring
protein targets in each subcomponent
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