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Abstract—Some properties of the differential spectra of power
functions, i.e., monomials mappings on F2n , are investigated.
We focus in particular on functions with a small differential
uniformity and on some infinite families of power functions.

I. INTRODUCTION

Differential cryptanalysis is the first statistical attack pro-
posed for breaking iterated block ciphers. Its presentation [1]
then gave rise to numerous works which investigate the
security offered by different types of functions with respect
to differential attacks. This security is quantified by the so-
called differential uniformity of the Substitution box used in
the cipher. Most notably, finding appropriate S-boxes which
guarantee that the cipher using them resists differential attacks
is a major topic for the last fifteen years. Power permutations,
i.e., monomial permutations, form a class of suitable candi-
dates since they usually have a lower implementation cost
in hardware. However, using power permutations which are
optimal for differential cryptanalysis might not be suitable in
a cryptographic context.

One reason is that generally such permutations on F2n are
not known for n even (which is obviously the case in most
applications). Actually the nonexistence of APN permutations
for even n was conjectured, until the recent announcement of
such mappings for n = 6 by Dillon [2]. A second important
point is that optimal functions usually correspond to extremal
objects, which possess very strong algebraic structures. Then,
optimal functions might introduce some unsuitable weaknesses
within a cipher. Some examples of such weaknesses have been
exploited in cryptanalysis, for instance in [3]–[5]. For all these
reasons, it is important to find some functions which have
an almost optimal differential uniformity. Also, the security
of the underlying cipher is affected by some other properties
related to the behavior of the function when an input difference
is fixed, besides its differential uniformity. For instance, we
have pointed out in [6] that the whole differential spectrum
of a power permutation may influence its security regarding
some variants of differential cryptanalysis, especially truncated
differential attacks.

In this context, our purpose is then to investigate the
differential properties, namely the whole differential spectrum,
of power functions, with a particular interest in functions
which have a low differential uniformity. This paper is the
continuation of a recent work [6], where we focused on
differentially 4-uniform power permutations.

This paper is an extended abstract. Several results are given
without proof or with a shortened proof.

II. DEFINITIONS AND BASIC PROPERTIES

In the whole paper, #E denotes the cardinality of any set
E. The paper investigates some properties of functions from
F2n into F2m , m ≥ 1. It mainly focuses on the case m = n
and m = 1 (Boolean functions).

A. Differential characteristics of a function

The resistance of a cipher to differential attacks and to its
variants is quantified by some properties of the derivatives of
its S-box, in the sense of the following definition. It is worth
noticing that this definition is general: it deals with mappings
from F2n into F2m for any m ≥ 1.

Definition 1: Let F be a function from F2n into F2m . For
any a ∈ F2n , the derivative of F with respect to a is the
function DaF from F2n into F2m defined by

DaF (x) = F (x+ a) + F (x), ∀x ∈ F2n .

The resistance to differential cryptanalysis is related to the
following quantities.

Definition 2: Let F be a function from F2n into F2n . For
any a and b in F2n , we denote

δ(a, b) = #{x ∈ F2n , DaF (x) = b}.

Then, the differential uniformity of F is

δ(F ) = max
a 6=0, b∈F2n

δ(a, b).

Those functions for which δ(F ) = 2 are said to be almost
perfect nonlinear (APN).

B. Differential spectrum of power functions

We focus on the case where the S-box is a power function,
i.e., a monomial function on F2n . In other words, F (x) = xd

over F2n . This power function will be denoted by Fd. Power
functions are very popular S-boxes for symmetric ciphers
since they have a relatively low implementation complexity
in hardware environments. Studying their resistance to dif-
ferential attacks is then of great interest. In the case of a
power function, Fd(x) = xd, the differential properties can
be analysed more easily since, for any nonzero a ∈ F2n , the
equation (x+ a)d + xd = b can be written

ad
((x

a
+ 1
)d

+
(x
a

)d)
= b,

implying that δ(a, b) = δ(1, b/ad) for all a 6= 0. Then, if Fd :
x 7→ xd is a monomial function, the differential characteristics



of Fd are determined by the values δ(1, b), b ∈ F2n . From now
on, this quantity δ(1, b) is denoted by δ(b).

Since

#{b ∈ F2n |δ(a, b) = i} = #{b ∈ F2n |δ(b) = i} ∀a 6= 0,

the differential spectrum of F can be defined as follows.
Definition 3: Let Fd(x) = xd be a power function on F2n .

We denote by ωi the number of output differences b that occur
i times:

ωi = #{b ∈ F2n |δ(b) = i}.

The differential spectrum of Fd is the set of ωi:
S = {ω0, ω2, ..., ωδ(F )}.

A power function F is said differentially 2-valued if and only
if for any b ∈ F2n , we have δ(b) ∈ {0, κ} (and then only
two ωi are not zero in S). It is known that κ = 2r for some
r > 1. Note that APN functions are differentially 2-valued
with κ = 2 (see an extensive study in [6, Section 5]).

There are basic transformations which preserve S.
Lemma 1: Let Fd(x) = xd and Fe(x) = xe. If there exists

k such that e = 2kd mod 2n − 1 or if gcd(2n− 1, d) = 1 and
e = d−1 then Fd and Fe have the same differential spectrum.

Now, we wish to point out that, besides the differential
uniformity, the whole differential spectrum of the S-box affects
the resistance of the cipher to differential attacks.

Suppose for instance that a cipher involves a differentially
4-uniform function. If ω4 is large, the probability of having
δ(a, b) = 4 for a fixed input difference a is not negligible. This
affects the security of the corresponding cipher. Indeed, an
obvious strategy for finding a good differential characteristic
for the whole cipher consists in chaining several one-round
differentials with δ(a, b) = 4. This is usually much easier
when there are some degrees of freedom in the choice of the
output difference. So when n is even, the power permutations
which offer the best resistance to differential cryptanalysis are
the differentially 4-uniform S-boxes with ω4 small. A fortiori
ω4 = 1 is the best value. In this context, the inverse function
has the best possible differential spectrum when n is even.

III. GENERAL PROPERTIES OF THE DIFFERENTIAL
SPECTRUM

In order to evaluate δ(Fd) we study δ(b) for special values
of b. In this section, we denote by Sd(b) the set formed by
the solutions of

(x+ 1)d + xd = b. (1)

We here focus on b ∈ F2.
Lemma 2: Let d be such that gcd(d, 2n − 1) = s. Then

δ(0) = s− 1. In particular s = 1 if and only if δ(0) = 0.
The next result is partly in [7, Chapter V].

Lemma 3: Let k be any integer such that k ≥ 1. Consider
the trinomial over F2

P (x) = x2k

+ x+ 1.

Then all irreducible factors of P (x) have degrees 2s dividing
2k with s = gcd(2s, k). Consequently, x2s

+ x + 1 divides
P (x) for all such s.

Now, we denote by α a primitive element in F2n .
Theorem 1: Let Fd : x 7→ xd be a power function over

F2n . Let b ∈ F2. Assume that, no αi ∈ Sd(b), with i > 0, is a
root of x2k

+x+1 for some k ≥ 1. Then, Sd(b) \F2 consists
of some elements αi where i describes an even number of
cyclotomic cosets modulo (2n − 1).

Proof: Let us define the set

E = {i, 1 ≤ i ≤ 2n − 2, αi ∈ Sd(b)}.

For any x ∈ Sd(b), (1 + x) belongs to Sd(b) too. In other
words, i ∈ E if and only if its Zech logarithm Z(i) ∈ E where
the Zech logarithm is defined by αZ(i) = αi + 1. Since E is
a union of cyclotomic cosets modulo (2n − 1), we have

E =
⋃
i∈I

[Cl(i) ∪ Cl(Z(i))] ,

for some set I. Then, E contains an odd number of cyclotomic
coset if and only if it contains some element i such that
Cl(i) = Cl(Z(i)), which means that we have α2ki = αi + 1
for some k. But this is impossible, by hypothesis.

We later prove, using Lemma 3, that the hypothesis of
Theorem 1 is satisfied in many cases.

Proposition 1: The hypothesis of Theorem 1, say H, is
satisfied in the following cases.

(i) When n is odd, Sd(1) \ F2 and Sd(0) satisfy H.
(ii) When n = 2m and m is prime: if 3 divides d then

Sd(1) \ F2 otherwise Sd(0) satisfies H.
Proof: Set Eb(x) = xd+(x+1)d+b, b ∈ F2. When n is

odd, it is impossible to have an i such that α2ki+αi+1 = 0,
since for any i > 0

Tr(α2ki + αi + 1) = Tr(1) = 1.

Now, we consider even n, n = 2m. Suppose that there is i
such that α2ki + αi + 1 = 0 and αi ∈ Sd(b) for some k and
some b ∈ F2. As previously explained (see Lemma 3), we can
suppose that k is the smallest integer such that this property
holds for i. Hence αi is a root of an irreducible polynomial
P (x) of degree 2k, which is a factor of x2n

+ x. Thus 2k
divides 2m; further k divides m with 1 ≤ k < m (see Lemma
3). Note that k 6= m since x2m 6= x + 1 for any x ∈ F2n .
Hence, when m is prime the only possibility is k = 1.

The case k = 1 corresponds to the trinomial x2 + x + 1
which always divides x2n

+ x for even n. If gcd(d, 3) = 1,
then x2 + x+ 1 divides E1(x) and we have

E1(0) = E1(1) = 0 and xd + x2d + 1 = 0 when x ∈ F4 \ F2,

implying δ(1) ≥ 4. On the other hand x2 + x + 1 does not
divide E0(x) since in this case xd + x2d 6= 0 unless x ∈ F2.
If gcd(d, 3) = 3 then x2 + x+ 1 divides E0(x) and does not
divide E1(x).

And, the hypothesis H could imply some bound on δ(b).
For instance, we deduce directly:

Corollary 1: Let s be the smallest divisor of n such that
3 ≤ s ≤ n.



If n and d are such that Sd(1) \ F2 satisfies H, then either
δ(1) = 2 or δ(1) ≥ 2 + 2s. If n and d are such that Sd(0)
satisfies H then either δ(0) = 0 or δ(0) ≥ 2s.

IV. SOME GENERAL ISSUES

With our numerical results, several interesting problems ap-
peared (see, for instance, our tables in [6]). In a cryptographic
context, the functions Fd which have a small differential
uniformity are of most interest and, therefore, provided many
works (see, for instance, [8] and [9] and their references).
We first prove a general property for non-bijective functions.
Furthermore, we obtain a surprising result concerning the
bijective functions. Notably, we prove that the differentially
4-uniform functions are permutations when n is odd.

Proposition 2: Assume that n is odd and d is such that
gcd(d, 2n−1) = s with s > 1. Then s 6= 2i+1 for any i > 0.
Consequently Fd cannot be differentially 2-valued. Moreover,
if 3 divides n then δ(Fd) ≥ 6, otherwise δ(Fd) ≥ 10.

Proof: From Lemma 2, δ(0) = s − 1. Since n is odd,
gcd(2i + 1, 2n − 1) = 1 for any i. Thus one cannot have
s = 2i + 1 for some i. Therefore δ(b) cannot take two values
{0, κ}, with κ = 2i for some i.

Now we use Proposition 1. Note that we have proved
that s /∈ {3, 5, 9, . . . }. If 3 divides n then two irreducible
polynomials of degree 3 could have their roots in Sd(0) so
that δ(0) ≥ 6. Otherwise, δ(0) ≥ 10 since two irreducible
polynomials of degree 5 could have their roots in Sd(0).

Corollary 2: Consider any exponent d such that δ(Fd) ≤ 6.
Then we have:

(i) Assume that n is odd. Then Fd is a permutation when
• δ(Fd) ≤ 4;
• δ(Fd) = 6 with gcd(3, n) = 1.

When gcd(3, n) = 3 and δ(Fd) = 6 either 7 divides
d or Fd is a permutation. Morever, if δ(Fd) ≤ 6,
then δ(1) = 2, implying that ω2 6= 0.

(ii) Let n = 2m with m odd. Assume that gcd(3, d) = 1.
Then δ(Fd) ∈ {4, 6} and δ(1) = 4 and
• if δ(Fd) = 4 then Fd is a permutation;
• if δ(Fd) = 6 and gcd(3, n) = 1 then Fd is a

permutation.
When gcd(3, n) = 3 and δ(Fd) = 6 either 7 divides
d or Fd is a permutation.

Proof: Let n be odd. Then Sd(1) \ F2 and Sd(0) satisfy
H (Proposition 1). According to Corollary 1, if δ(Fd) ≤ 6
then δ(1) = 2 so that ω2 6= 0. Moreover δ(0) = 0 or δ(0) = 6
(since δ(Fd) ≤ 6).

Let s = gcd(2n − 1, d). Since δ(0) = s − 1, if Fd is not
a permutation then δ(0) = 6 (s = 7), implying δ(Fd) = 6,
which is possible only if 3 divides n.

Now, assume that n = 2m with m odd. Since 3 divides
2n − 1, if gcd(3, d) = 3 then Fd is not a permutation. Also,
we know that if Fd is APN then gcd(3, d) = 3. Thus, with
our hypothesis δ(Fd) ∈ {4, 6} and δ(1) = 4 (see the proof of
Proposition 1).

Let s = gcd(2n − 1, d); so s ∈ {1, 5, 7}, but s = 5
is impossible since gcd(2n − 1, 5) = 1 as soon as m is
odd. Hence s = 1 when δ(Fd) = 4, implying that Fd is a
permutation. If δ(Fd) = 6 then Fd is a permutation unless
s = 7 which is possible only if 3 divides n.
The existence of differentially 2-valued functions is related to
the problem of finding b such that δ(b) = 2. We think that
such b exists for almost all d. In [6], the following conjecture
is given but for permutations only.

Conjecture 1: Any power function xd which is not APN
and is differentially 2-valued is such that d is either a quadratic
exponent or a Kasami exponent, up to any equivalence which
preserves the differential spectrum.
This conjecture is corroborated by the results on the scarcity
of such functions, which we presented in [6]. Actually, it can
be proved that power permutations over F2n which are dif-
ferentially 2-valued do not exist for many sets of parameters.
Using the new results presented here, we can strengthen our
conjecture, especially when n is odd.

Corollary 3: Let d be such that Fd is not APN. Then for
odd n, Fd is not differentially 2-valued

– when Fd is not a permutation;
– when δ(Fd) = 4.

For even n, Fd is not differentially 2-valued when
gcd(2n − 1, d) = 3.

V. ON EXPONENTS d = 2t − 1

Now, we investigate the differential spectra of the power
functions Gt : x 7→ x2t−1 over F2n .

Theorem 2: Let Gt(x) = x2t−1, 2 ≤ t ≤ n− 1. Then,

Gt(x+ 1) +Gt(x) + 1 =
(x2t−1

+ x)2

x2 + x
. (2)

Consequently, for any b ∈ F∗2n , δ(b) is determined by the
number of roots in F2n of the linearized polynomial

Pb(X) = X2t

+ bX2 + (b+ 1)X.

And we have

δ(0) = 2gcd(t,n) − 2
δ(1) = 2gcd(t−1,n)

for any b ∈ F2n \ F2, δ(b) = 2r − 2

for some r with 1 ≤ r ≤ min(t, n− t+ 1).
Proof: To prove (2) we simply compute

(x2 + x)(1 + xd + (1 + x)d), d = 2t − 1.

Thus, δ(1) is directly deduced, while δ(0) is obtained from
Lemma 2. Let b ∈ F2n \ F2. Then x ∈ F2n \ F2 is a solution
of (x+ 1)d + xd = b if and only if it is a solution of

(x2t−1
+ x)2 = (b+ 1)x(x+ 1).

The proof is completed, since Pb is linear.
We now show how the previous theorem enables us to de-
termine the differential uniformity and some properties of the



differential spectrum of Gt : x 7→ x2t−1 for some particular
cases.

Remark 1: As a first easy corollary, we recover the fol-
lowing well-known form of the differential spectrum of the
inverse mapping, Gn−1 : x 7→ x2n−1−1 over F2n . Actually,
the previous theorem applied to t = n − 1 leads to δ(0) = 0
and δ(1) = 2 when n is odd and δ(1) = 4 when n is even.
For all b 6∈ F2, δ(b) ∈ {0, 2}. Therefore, we have
• if n is odd, δ(Gn−1) = 2 and ω0 = 2n−1, ω2 = 2n−1;
• if n is even, δ(Gn−1) = 4 and ω0 = 2n−1 + 1,
ω2 = 2n−1 − 2, ω4 = 1.

The family of power functions Gt : x 7→ x2t−1 then contains
several APN functions: the inverse permutation for n odd (t =
n − 1), the quadratic function x 7→ x3 (t = 2) and also the
function

x 7→ x2
n+1

2 −1 for n odd

which is the inverse of the quadratic mapping

x 7→ x2
n+1

2 +1.

Moreover, we raise the following conjecture.

Conjecture 2: Let Gt(x) = x2t−1, 2 ≤ t ≤ n− 1. If Gt is
APN then either t = 2 or n is odd and t ∈ {n+1

2 , n− 1}.

We now study some specific subclasses of the previous
family Gt : x 7→ x2t−1. An example is G7 for which we
are able to give the complete differential spectrum (the proof,
which is long and highly technical is not given here).

A. Exponent d = 2t − 1 with t = bn/2c
We now show that we are able to determine the differential

uniformity of Gt in the case t = bn/2c. We first consider the
case n even. Note that in this case, Gn/2 is not a permutation.

Theorem 3: Let n be an even integer, n > 4. Let Gn/2 :
x 7→ x2n/2−1. Then δ(Gn/2) = 2n/2 − 2 and the differential
spectrum of Gn/2 is:
• if n ≡ 0 mod 4,

ω2n/2−2 = 1

ωi = 0 for all 2 < i < 2n/2 − 2
ω2 = 2n−1 − 2n/2−1 + 1
ω0 = 2n−1 + 2n/2−1 − 2

• if n ≡ 2 mod 4,

ω2n/2−2 = 1

ωi = 0 for all 4 < i < 2n/2 − 2
ω4 = 1
ω2 = 2n−1 − 2n/2−1 − 1
ω0 = 2n−1 + 2n/2−1 − 1

Proof: From Theorem 2, we have δ(0) = 2n/2 − 2 and
δ(1) = 2 if n/2 is odd and δ(1) = 4 if n/2 is even. Now, for
all b 6∈ F2, we have to determine the number of roots in F2n

of Pb(X) = X2n/2
+ bX2 + (b+ 1)X . Any root of Pb is also

a root of

Qb(X) = Pb(X)2
n/2

+ b2
n/2
Pb(X)2 + (b2

n/2
+ 1)Pb(X)

= X2n

+ b2
n/2
X2n/2+1 + (b2

n/2
+ 1)X2n/2

+b2
n/2
X2n/2+1 + b2

n/2
b2X4 + b2

n/2
(b2 + 1)X2

+(b2
n/2

+ 1)X2n/2
+ (b2

n/2
+ 1)bX2

+(b2
n/2

+ 1)(b+ 1)X

= b2
n/2
b2X4 +

[
b2

n/2
(b2 + 1) + (b2

n/2
+ 1)b

]
X2

+
[
(b2

n/2
+ 1)(b+ 1) + 1

]
X

Since Qb is a linearized polynomial of degree 4, it has either
4 or 2 roots. The whole differential spectrum is derived by
using that

∑n
i=0 iωi = 2n and

∑n
i=0 ωi = 2n.

In the case where n is odd, the differential uniformity of
Gt, with t = n−1

2 , can be determined.
Theorem 4: Let n be an odd integer, n > 3. Let

Gn−1
2

: x 7→ x2
n−1

2 −1.

Then, Gn−1
2

is a permutation. And we have
• if n ≡ 0 mod 3, then δ(Gn−1

2
) = 8, and the differential

spectrum satisfies ωi = 0 for all i 6∈ {0, 2, 6, 8} and
ω8 = 1.

• if n 6≡ 0 mod 3, then δ(Gn−1
2

) ≤ 6 and the differential
spectrum satisfies ωi = 0 for all i 6∈ {0, 2, 6}.
Proof: From Theorem 2, we have δ(0) = 0 and δ(1) = 8

if 3 divides n and δ(1) = 2 otherwise. Now, for all b 6∈ F2,
we have to determine the number of roots in F2n of

Pb(X) = X2
n−1

2 + bX2 + (b+ 1)X.

We use that any root of Pb is a root of Qb defined as follows

where c = b2
n+1

2 :

Qb(X) = Pb(X)2
n+1

2 + cPb(X)4 + (c+ 1)Pb(X)2

= X2n

+ cX2
n+3

2 + (c+ 1)X2
n+1

2

+cX2
n+3

2 + cb4X8 + c(b4 + 1)X4

+(c+ 1)X2
n+1

2 + (c+ 1)b2X4

+(c+ 1)(b2 + 1)X2

= cb4X8 +
[
c(b4 + 1) + (c+ 1)b2

]
X4

+(c+ 1)(b2 + 1)X2 +X

The result then follows from the fact that Qb has degree 8,
and then it has either 8 or 4 or 2 solutions.

B. Exponent d = 2t − 1 with t = n/3, n = 3m

The technique used for proving Theorem 3 also applies to
the case where t corresponds to some other large divisor of
n, but the upper bound on the differential uniformity of the
function increases when t decreases. We then only give an
example corresponding to the case t = n/3.



Theorem 5: Let n = 3m with m > 1. Let

Gn/3 : x 7→ x2n/3−1.

Then δ(Gn/3) = 2n/3 − 2 and we have
• if n ≡ 3 mod 9, the differential spectrum satisfies ωi = 0

for all i 6∈ {0, 2, 6, 8, 2n/3−2} , ω8 = 1 and ω2n/3−2 = 1.
• if n ≡ 0 mod 9, the differential spectrum satisfies ωi = 0

for all i 6∈ {0, 2, 6, 2n/3 − 2}.
Proof: From Theorem 2, we have δ(0) = 2n/3 − 2 and

δ(1) = 8 if n ≡ 3 mod 9 and δ(1) = 2 otherwise. Now, for
all b 6∈ F2, we have to determine the number of roots in F2n

of Pb(X) = X2n/3
+ bX2 + (b+ 1)X . We use that any root

of Pb is a root of Qb defined as follows where c = b2
2n/3

and
d = b2

n/3
:

Qb(X) = Pb(X)2
2n/3

= X + cX22n/3+1
+ (c+ 1)X22n/3

= X + c[d2X2n/3+2
+ (d2 + 1)X2n/3+1

]

+(c+ 1)[dX2n/3+1
+ (d+ 1)X2n/3

]
= X + c[d2(bX2 + (b+ 1)X)4

+(d2 + 1)(bX2 + (b+ 1)X)2]
+(c+ 1)[d(b2X4 + (b2 + 1)X2)
+(d+ 1)(bX2 + (b+ 1)X)]

The result then follows from the fact that Qb has degree 8,
and then it has either 8 or 4 or 2 solutions.

C. Exponent d = 7

We now focus on Gt : x 7→ x2t−1 for t = 3, i.e., x 7→ x7,
and we completely determine its differential spectrum.

Theorem 6: Let F7 : x 7→ x7 over F2n . Then, F7 is
differentially 6-uniform and its differential spectrum is given
by:
• if n is odd,

ω6 =
2n + 1

24
− 1

8

(
1− i

√
7

2

)n
− 1

8

(
1 + i

√
7

2

)n
ω4 = 0
ω2 = 2n−1 − 3ω6

ω0 = 2n−1 + 2ω6;

• if n is even:

ω6 =
2n − 13

24
− 1

8

(
1− i

√
7

2

)n
− 1

8

(
1 + i

√
7

2

)n
ω4 = 1
ω2 = 2n−1 − 3ω6 − 2
ω0 = 2n−1 + 2ω6 + 1.

The proof of this theorem relies on the following lemma
where we characterize the values of b such that the linearized
polynomial

Pb(X) = X8 + bX2 + (b+ 1)X

has all its 8 roots in F2n .
Lemma 4: Let Pb(X) = X8 + bX2 + (b + 1)X and let

(pn)n≥4 be the sequence of polynomials which are recursively
defined by

pn(X) = X2n−4
pn−2(X) + (X2n−4

+ 1)pn−3(X) (3)

with p4(X) = X, p5(X) = X2 + 1, p6(X) = X5.

Then, we have:
• if all roots of Pb lie in F2n , then b belongs to F2n and b

is a root of mn = gcd(pn+1, pn);
• if b is a root of mn = gcd(pn+1, pn) in its splitting field,

then b belongs to F2n and all roots of Pb lie in F2n .

VI. CONCLUSIONS

Functions with a small differential uniformity are of great
interest for the design of symetric cryptographic primitives
as they guarantee the best resistance to differential attacks in
most practical cases. But, besides the differential uniformity,
the whole differential spectrum of its Substitution boxes affects
the security of a cipher. In this context, we have studied the
case of power functions with small differential uniformity. We
have also exhibited some properties and conjectures on the dif-
ferential spectra of several infinite families of power functions.
In particular, we have investigated the power function of the
form x 7→ x2t−1.
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