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Abstract. Differentials with low probability are used in improbable dif-
ferential cryptanalysis to distinguish a cipher from a random permuta-
tion. Due to large diffusion, finding such differentials for actual ciphers re-
mains a challenging task. At Indocrypt 2010, Tezcan proposed a method
to derive improbable differential distinguishers from impossible differ-
ential ones. In this paper, we discuss the validity of the assumptions
made in the computation of the improbable differential probabilities. In
particular, we show based on experiments that such improbable differ-
ential cryptanalysis can fail. The validity of the improbable differential
cryptanalyses on PRESENT and CLEFIA is discussed.
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1 Introduction

Since the introduction of differential cryptanalysis [2] in the beginning of the
90’s, many generalizations of this attack have been proposed to cryptanalyse a
large number of block ciphers. While most of them exploit differentials with high
probability, in the impossible differential cryptanalysis context [1] attackers take
advantage of zero-probability differentials. Recently a variation of this attack
called improbable differential cryptanalysis have been introduced by Tezcan [21]
at Indocrypt 2010 and by Mala, Dakhilalian and Shakiba [15]. In this context,
differentials with low probabilities are used to distinguish the cipher from a
random permutation.

While in theory this attack could be efficient on some ciphers, in practice, it
may be hard to find differentials or truncated differentials with such small prob-
abilities. In [15,21] a method based on the knowledge of impossible differentials
is proposed. The computation of improbable differential probabilities is then
obtained based on the assumption that all other differentials than the known
impossible ones on the r1 last rounds of the cipher are uniformly distributed.

In this paper, we recall and explain the assumptions made in [15,21] to derive
improbable differentials from impossible ones. Based on experiments on SPN
and Feistel ciphers, we show that the assumptions made in the computation
of the improbable differential probabilities are not correct. In particular, the



validity of the improbable differential attack by Tezcan on 11, 12 and 13 rounds
of PRESENT [22,23] and 13, 14 and 15 rounds of respectively CLEFIA-128,
CLEFIA-192 and CLEFIA-256 [21] is discussed.

This paper is organized as follows. In Section 2, we recall the principle of
improbable differential cryptanalysis and the method described in [21] to derive
improbable differentials from impossible ones. In Section 3, based on experi-
ments on a 24-bit block cipher, we show that the assumptions made in the
computation of the improbable differential probabilities are not valid and that
the corresponding key-recovery attack can fail. In Section 4, a comparison be-
tween the assumptions in truncated differential cryptanalysis and in the method
proposed by Tezcan is made to support the discussion regarding the validity of
the latter one. Section 5 is dedicated to the two improbable differential crypt-
analyses proposed in the literature on PRESENT and CLEFIA and constructed
from that model.

2 Improbable Differential Cryptanalysis

2.1 Improbable Differential Distinguisher

In this paper, iterated block ciphers E with block size n parameterized by a
key K are considered. Among the different cryptanalyses on block ciphers, the
statistical ones make use of a non-uniform behavior of the cipher. A key-recovery
attack is often derived from a distinguisher that compares the probability of a
particular characteristic, such as the probability of a differential with the uni-
form one. By a slight abuse of notation, as in this paper we will focus on the
distinguishing part of the statistical attack (adaptation to a key-recovery at-
tack can be done easily), we will denote by E the part of the cipher we aim at
distinguishing.

While contemporary ciphers are designed to be resistant to the classical dif-
ferential cryptanalysis, by improving the different existing methods, attackers
are often able to show a non-random behavior of a reduced number of rounds of
the cipher. Among the different generalizations of differential cryptanalysis, we
focus in this paper on the truncated differential cryptanalysis [12], the impossible
differential cryptanalysis [1], and the improbable differential cryptanalysis [22].
As all of these attacks rely on truncated differentials1, we first recall the defini-
tion of a truncated differential.

Definition 1. A truncated differential on E is a pair (A,C) where A ⊂ (Fn2 )∗

(where (Fn2 )∗ = Fn2\{0}) is a set of input differences and C ⊂ (Fn2 )∗ a set of
output differences.

1 Notice that in impossible differential cryptanalysis if only one output difference
is taken into consideration, the complexity of the attack will be close to the full
codebook, as in the case of the simple zero-correlation presented in [8].



The expected probability of the truncated differential (A,C) on the cipher E
is defined by

p = P [A
E→ C] =

1

|A|
∑
a∈A

PX,K[EK(X)⊕ EK(X ⊕ a) ∈ C]. (1)

The probability of such truncated differential (A,C) for a random permutation

is pU = |C|
2n−1 and is usually called uniform probability.

Depending on the probability p different key-recovery attacks are imple-
mented. As in the impossible differential setting p = 0, all the key candidates for
which the truncated differential occurs are discarded. In the truncated and im-
probable differential key-recovery attacks a threshold T is introduced to reduce
the set of potential candidates. The number Sk of occurrences of the truncated
differential is then compared with the threshold T for each key candidate k. In
classical truncated differential cryptanalysis, as p > pU , the correct key should
be among the ones such that Sk ≥ T , whereas in improbable differential crypt-
analysis, as p < pU , the correct key should satisfy Sk ≤ T . To avoid confusion,
we call “probable differential” a truncated differential with probability p > pU .

For most of the cases in the probable differential context or for the described
improbable differential cryptanalyses in [21,22], the probability p of a truncated
differential can be expressed relative to the uniform probability pU . The sign
of the bias ε = p − pU indicates if the truncated differential is probable or
improbable.

The data complexity of such distinguishing attacks has been heavily studied.
While tight estimates of their complexities can be obtained from the algorithms
presented in [4] and [21], an asymptotic behavior can be derived from an expan-
sion of the Kullback-Leibler divergence between two binomial distributions with
respective probabilities pU and pU±ε. As presented in Table 3 of [4], the number
NS of samples2 required to distinguish two distributions with probabilities pU
and p = pU ± ε is proportional to 2pU

ε2 .
The data complexity of an impossible differential distinguisher is inverse pro-

portional to pU . A discussion regarding the advantages and the disadvantages
of an improbable, or almost impossible, differential in comparison with an im-
possible differential in key-recovery attack on the same number of rounds of a
cipher is provided in [15].

2.2 Construction of Improbable Differentials: Using Impossible
Differential

In practice, due to the large number of trails composing a differential, having
a good estimate of its probability can be challenging. Based on assumptions,
such as the Markov assumption [14], the probability of a differential trail is often
computed by multiplying the probabilities round by round. Nevertheless, it is

2 The ratio between the number NS of samples and the data complexity depends of
the number of input differences.



well known that this kind of assumption is not always true and in particular a key
dependency can occur [11,3]. Although, finding all trails relative to a differential
is impossible for almost all ciphers, underestimate of a differential probability
can be obtained by summing up the probability of trails in a subset. Therefore,
using standard methods, finding improbable differentials for a particular cipher
can be a challenging task.

In [21,15], the authors proposed a method based on the knowledge of im-
possible differentials. Without loss of generality3, we assume that an impossible
distinguisher (B,C) on the r1 last rounds of E is combined with a truncated
differential (A,B) on the r0 first rounds of E. We denote by E0 and E1 the
corresponding partial ciphers: E = E1 ◦E0 and by q the probability of the trun-

cated differential (A,B) on E0: q = P [A
E07→ B] (see Figure 1). From these two

partial distinguishers, Tezcan proposed a method to compute the probability of
the truncated differential (A,C) on E. While in [21], the following assumption
is not explicitly written, this one seems necessary to compute the probability of
the distinguisher as in Proposition 1.

Assumption 1 For all b̄ /∈ B, b̄ 6= 0, the probabilities P [b̄
E17→ C] on the r1

rounds of E1 are equal.

Notice that for any permutation, for any fix input difference we have:∑
c∈Fn

2
P [b→ c] = 1 and

∑
b∈Fn

2

∑
c∈Fn

2
P [b→ c] = 2n.

As depicted in Figure 1, in the improbable differential context of Tezcan the
set (Fn2 )∗\B of intermediate differences which are not in B play an important
role. In the following, we denote by B̄ this set: B̄ = (Fn2 )∗\B.
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Fig. 1: Improbable differential from impossible differential

Based on the previous assumption, the probability of the improbable differ-
ential can be computed as followed:

Proposition 1. Let E = E1 ◦ E0 be a Markov cipher with probable truncated
differential (A,B) on E0 and impossible differential (B,C) on E1 with |B| <
2n − |C| − 1. Let q = P [A

E0→ B] be the probability of the differential (A,B).

3 A more general description can be found in [21].



Assuming independent rounds keys and under Assumption 1, the truncated dif-

ferential (A,C) has probability p =
|C|

2n − |B| − 1
(1 − q) ≈ |C|

2n
(1 − q) and is

improbable.

Proof. Based on Assumption 1, as E1 is a permutation of Fn2 we deduce from

that for all b̄ /∈ B, b̄ 6= 0, we have P [b̄
E17→ C] =

|C|
2n − |B| − 1

.

Then assuming that the cipher is a Markov cipher, we have

p =
1

|A|
∑
a∈A

∑
c∈C

P [a
E7→ c]

=
1

|A|
∑
a∈A

∑
b̄∈B̄

∑
c∈C

P [a
E07→ b̄]P [b̄

E17→ c]

=
|C|

2n − |B| − 1

1

|A|
∑
a∈A

∑
b̄∈b̄

P [a
E07→ b̄]

=
|C|

2n − |B| − 1
(1− q)

ut

In the following sections, the validity4 of Assumption 1 is discussed using
a comparison between the expected probability p of the improbable differential
with the experimental one pE for different ciphers. In particular, we show that
the different cases can occur: pE = p, pE < p, pE > p and even pE > pU . In the
last two cases, the attack can fail due to an overestimate of the data complexity
or a wrong threshold selection.

3 Experimental Improbable Distinguisher

As accurate experiments are possible on a 24-bit cipher, we design5 a 24-bit gen-
eralized Feistel Network with 6 branches to test the validity of Assumption 1.
The experiments aim at computing the probability of some 11-round improbable
differential of the cipher with round function given by Figure 2. In order to limit
the number of assumptions in the computation of the experimental probabil-
ity, independent round keys have been selected. For the presented experimental
results of this section, the 4-bit Sbox S of the cipher PRESENT [7] has been
chosen6. Using an impossible differential on 10 rounds of this cipher, and a trun-

4 In some cases Assumption 1 on the last rounds can be replaced by an assumption
on the first rounds. The validity can nevertheless be discussed in the same way.

5 This example is proposed in an illustrative and easy to understand purpose. For dif-
ferent reasons, experiments on reduced versions of existing ciphers such as CLEFIA
may not reflect the behavior of the real ciphers.

6 Experiments with different Sboxes have also been performed and the provided results
are similar.
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1 round ⇐ q = 2−3.91
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10 rounds ⇐ Impossible
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Fig. 2: Round function of a 24-bit cipher build for experimental purpose and
the 11-round improbable distinguisher where X,Y, Z are non-zero nibble values.

cated differential on the first round (see Figure 2) we conducted experiments to
determine the probability pE of the truncated differential (A,C).

The results of the experiments are shown in Table 1 for different sets of
input differences. In this table we can see that the experimental probabilities are
different from the theoretical ones. In particular, we always have that pE > p
and ε2

E > ε2. A theoretical estimate of the data complexity would then have
been overestimated. The first attack setting presented in Table 1 illustrates a
failed attack since pE > pU .

X,Y ∈ {0x1..0xF}
q p pE 2−19.88(1− q)

such that

All 2−3.90 2−20.10 2−19.94 2−19.98

δ(X,Y ) ≥ 2 2−2.68 2−20.24 2−20.14 2−20.12

δ(X,Y ) ≥ 4 2−2 2−20.42 2−20.28 2−20.29

Table 1: Experiments of 11 rounds of the experimental cipher for different sets
of input differences defined regarding the quantity δ(a, b) = #{x ∈ (F4

2)∗|S(x)⊕
S(x⊕ a) = b}.

As Proposition 1 requires Assumption 1, these experiments show that this
assumption may not be correct. More detailed experiments targeting the claim

proposed in Assumption 1 confirm the non-equality of the probabilities P [b̄
E1→

C]. In particular, we observe a large deviation between expected probabilities

P [b̄
E1→ C] and the uniform probability pU : while some are impossible, some are

of order of magnitude 23pU or 2−3pU .

As Assumption 1 has some similarities with the assumptions made in proba-
ble differential cryptanalysis, in the next section, we recall the assumptions made
in the truncated differential cryptanalysis context and discuss the difference be-
tween the two cryptanalysis methods.



4 Validity of the Assumptions

Assumptions similar to Assumption 1 are made in probable differential crypt-
analysis when computing truncated differential probabilities using a truncated
differential trails. For this section, we denote by FKi (1 ≤ i ≤ r) the round
functions of the cipher EK and by (A0, A1, · · · , Ar−1, Ar) a truncated differen-
tial trail. To compute the truncated differential probability of the differential
(A0, Ar), the following assumption is commonly made.

Assumption 2 For all ai ∈ Ai and for all ai+1 ∈ Ai+1, the probabilities

P [ai
FKi→ ai+1] are equal.

Proposition 2. Assuming a Markov cipher for differential cryptanalysis. If the
rounds keys are independent under Assumption 2 the probability of the truncated

differential trail (A0, A1, · · · , Ar−1, Ar) is equal to
∏r−1
i=0 P [Ai

FKi→ Ai+1].

In many of the published truncated differential cryptanalysis (see for instance
[18,17]) a comparison between the experimental probability of a truncated dif-
ferential and the formula provided in Proposition 2 on a reduced number of
rounds of the cipher is made to check if Assumption 2 can be bypassed. Some of
them, such as [17], show that the experimental probabilities can be larger than
the theoretical ones, which in the context of truncated differential cryptanalysis
provides an underestimate of the attack complexity but does not challenge its
validity.

By comparing Assumption 2 with Assumption 1, we observe that the latter

is stronger and the probabilities P [b̄
E1→ C] are less likely to be equal. Indeed

a simple comparison between the different existing attacks show that often in
truncated differential cryptanalysis, the sets Ai correspond to a small number of
Sboxes while in improbable differential setting, the intermediate state is of size
2n−|B| meaning that more probabilities are required to be equal. Since the dif-
fusion grows with the number of rounds, the number r1 of involved rounds in the
improbable differential context may also influence deviations of the probabilities
and contradiction with Assumption 2 may be more likely.

In the literature, there is no complete match between the truncated differentials
(A, B̄) on E0 and (B̄, C) on E1. In particular it may occur that the set D such

that P [A
E0→ D] = 1 is a small subset of Fn2 . In that case, if we know the truncated

probability P [D
E1→ C] (which may be different from

|C|
2n − |B| − 1

) we may, based

on Assumption 2, be able to compute the probability of the truncated differential
(A,C).

To illustrate this behavior, we provide some explanations on the cryptanalysis
presented in Section 3. In particular we show that based on Assumption 2, we are
able to explain the experimental probabilities provided in Table 1. As r0 = 1,
it is easy to see from Figure 2 that D = {0XW000 | X,W ∈ F4

2, X 6= 0}.
An experimental computation of the probability show that P [D\B E1→ C] =



2−19.88 and is far from the uniform probability pU = 2−20. Using Proposition 2,

and the knowledge of P [A
E0→ B] we are able to compute the probability of

the truncated differential (A,C). The results of this computation are provided
in the last column of Table 1. The quasi-nonexistent deviation between these
new theoretical probabilities and the experimental ones illustrates that a tight

estimate of the probability P [D
E1→ C] is necessary to the computation, and can

not be derived directly from the impossible differential (B,C).

5 Improbable Differential in the Literature

5.1 The Improbable Attack on PRESENT

PRESENT is a 64-bit lightweight block cipher designed in 2008 [7] by Bogdanov
et al. The description of this cipher can be found in [7]. The security of a version
reduced to 26 out of the 31 rounds have been threaten by a multidimensional
linear cryptanalysis [10].

In [22], Tezcan presents an improbable differential cryptanalysis on this block
cipher. This attack on a version reduced to 11 rounds is derived from a 9-round
improbable distinguisher. In Table 2, we describe this distinguisher based on
combination of a 3-round differential with the 6-round impossible differential.

A 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0001
DifferentialX1,S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 1001

X1,P 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001
X2,S 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100

with q = 2−12
X2,P 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000
X3,S 0000 0000 0000 0011 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000
X3,P 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 1001 0000 0000

B 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 ???0 0000 0000

Impossible

X4,P 0000 0000 0?00 0000 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0000 0000
X5,S 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000
X5,P 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000
X6,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000
X6,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0

X6,P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???x ???x ???x ???x
X7,S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 000x 000x 000x 000x
X7,P ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? xxxx
X8,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? ???1
C ???0 ???0 ???0 ???? ???0 ???0 ???0 ???? ???0 ???0 ???0 ???? ???0 ???0 ???0 ???1 pU = 2−13

X9,S 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 0001
X9,P 000? 000? 000? 0000 111? 111? 111? 1110 000? 000? 000? 0000 111? 111? 111? 1111 pU = 2−48

Table 2: A 3-round truncated differential combined with a 6-round impossible
differential on PRESENT as in [22]. The four bits x can not be zero at the
same time. Xi,S denotes the state after the non-linear layer and Xi,P after the
permutation at round i.

As depicted in Table 2, the truncated output difference describes a set of size
212. Therefore, an experimental verification of the expected probability of this
distinguisher on 9 rounds of PRESENT is out of reach since pU ≈ 2−48.



Nevertheless, by piling-up only one round of this distinguisher, we are able to
compute the probability of the 8 first rounds of the improbable distinguisher of
Table 2. As depicted in Table 2, this distinguisher is derived from a 3-round dif-
ferential composed with a 5-round impossible differential. As the uniform prob-
ability to obtain the truncated output differences is pU = 2−13, according to
Proposition 1 if Assumption 1 was true, the theoretical probability of the trun-
cated differential on the 8-round distinguisher would be smaller than pU . Our
experiments with 300 keys and 232 plaintexts show that this truncated differ-
ential have a probability which vary depending of the key between 2−12.96 and
2−12.98 and is not improbable.

We thus believe that if the improbable differential distinguisher does not
work on these 8 rounds, the proposed attack on 11 rounds of PRESENT derived
from the 9-round distinguisher of Table 2 is not correct. From the fact that 22
rounds of PRESENT can be distinguished from a random permutation [10], we
can also deduce that Assumption 1 is not true for 6 rounds.

In [23], Tezcan proposed an attack on 12 and 13 rounds of PRESENT. In
this extended version of [22], Tezcan explains how to use undisturbed bits to
find impossible differentials on some ciphers. Using the theory a 5-round and
a 6-round impossible distinguisher on PRESENT are proposed. While the 6-
round distinguisher correspond to the one of Table 2, the probability of the
(5+5)-rounds distinguisher is estimated p = 2−16(1 − 2−17.84). No experiments
on the full improbable distinguisher can be performed. To derive the attack on 12
and 13 rounds, the 5-round impossible distinguisher is combined with a 5-round
differential. As based on the previous discussions, Assumption 1 is not valid on
5 rounds of PRESENT, the different cases presented at the end of Section 2.2
can occur.

As impossible differentials are harder to find on a large number of rounds of an
SPN cipher with diffusion similar to the one of PRESENT than a linear or differ-
ential distinguisher (even using undisturbed bits as in [23]), it may be impossible
to build improbable differentials using this technique for this type of cipher. Ad-
ditionally due to the large diffusion, it is hard to believe that Assumption 1 can
be true for SPN ciphers.

5.2 The Improbable Attack on CLEFIA

In Appendix C of [21], an experimental attack on 5 rounds of CLEFIA [19] is
proposed to illustrate the theory developed in the same paper. In this section,
we discuss the choices taken to run these experiments. The sets A, B, C chosen
for the experimental attack in [21] are such that a truncated differential on 1
round with probability q = 10

256 is combined with an impossible differential on 4
rounds. By the choice taken for the set C, the uniform probability pU = 1−2−32

is very close to 1 and is the deterministic factor which made this experimental
attack succeed. Indeed under Assumption 1, the probability of the improbable
differential is p = (1 − 2−32)(1 − q) ≈ (1 − q) and the conducted experiments
confirm this probability. Notice that even if the probability P [D 7→ C] would be



slightly different from (1−232), it will only marginally influence the probability p
which is close to 1− 10

256 and no experiment will be able to detect this deviation.

In [21], an attack on 13 rounds of CLEFIA-128 using an improbable distin-
guisher on 1+9 rounds is proposed. As CLEFIA is a 128-bit word oriented block
cipher, it is more difficult to conduct sensible experiment on a reduced number
of rounds than it is for the SPN cipher PRESENT. Nevertheless, the number
of impossible differentials on 9 rounds of this cipher presented in [24] tends to
induce that the probability of the truncated differential (B̄, C) is not close to
the uniform one pU . Based on this believe and on the discussion provided in Sec-
tion 4, we want to say that the probability of the truncated differential (A,C)
on 10 rounds of CLEFIA may be badly estimated. If this is the case, the whole
improbable differential attack on this cipher may be wrong. Nevertheless others
attacks [20,16] on 13 rounds of CLEFIA using one of the 9-round impossible dif-
ferential are done by taking into consideration the key-schedule of the cipher. To
our knowledge7, in the single key model, the best known attack which were pro-
posed at SAC 2013[6] are zero-correlation attacks on 14 rounds of CLEFIA-192
and 15 rounds of CLEFIA-256.

Similar arguments as the ones provided for CLEFIA, may hold for many gen-
eralized Feistel constructions since many impossible and multidimensional zero-
correlation distinguishers8 are often derived from the same number of rounds of
the cipher and the validity of Assumption 1 can be challenged in the same way.
Therefore, we claim that it may be hard to use the method proposed in [21] to
derive an improbable distinguisher using impossible differentials.

6 Conclusion

In this paper, we discussed the assumptions made when deriving improbable dif-
ferential distinguishers from impossible differential distinguishers. In particular
we show that assuming that almost all differentials of the cipher have similar
probability is a strong assumption which leads to a wrong estimate of the trun-
cated differential probability and which can turn out to not be improbable.

Other improbable differential attacks exist in the literature [9,13]. As the
computation of the truncated differential probability does not depend on the
same assumption we believe that these attacks remain valid. This article provides
then new insights on improbable differential cryptanalysis.

Acknowledgments. I would like to thank Kaisa Nyberg and Hadi Soleimany
for the advices provided when writing this article.

7 Notice that the recent proposed attack [25] on the full CLEFIA is not a valid one
due to the involved complexities.

8 Using the link between zero-correlation and impossible differential provided in [5]
we can convert a zero-correlation distinguisher to an impossible differential one.
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