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Abstract

Recently, different models of the statistical structure of natural images (and sequences) have
been proposed. Maximizing sparseness, or alternatively temporal coherence of linear filter outputs
leads to the emergence of simple cell properties. Taking account of the basic dependencies of
linear filter outputs enables modelling of complex cell and topographic properties as well. Here,
we propose a unifying framework for all these statistical properties, based on the concept of
spatiotemporal activity bubbles.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Natural images are not white noise; they have some robust regularities. Previous
research has built statistical models of natural images, and utilized them either for
modelling the receptive fields of neurons in the visual cortex, or for developing new
image processing methods. The following three properties seem to be the most im-
portant found so far: sparseness, temporal coherence, and topographic dependencies.
This paper proposes a new framework for modelling the statistical structure of natural
image sequences, combining these three properties. It leads to models where activation
of the simple cells takes the form of “bubbles”, which are regions of activity that are
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localized both in time and in space (space meaning the cortical surface). First, we will
review some of the existing literature and known properties of natural images.

1.1. Sparseness

Outputs of linear filters that mimic simple cell receptive fields maximize sparseness
[7]. Sparseness means that the random variable takes very small (absolute) values or
very large values more often than a gaussian random variable would; to compensate, it
takes values in between relatively more rarely. Thus the random variable is activated,
i.e. significantly nonzero, only rarely. The probability density of the absolute value of
a sparse random variable is often modelled as an exponential density, which has a
higher peak at zero than a gaussian density.

Sparseness has nothing to do with the variance (scale) of the random variable. To
measure the sparseness of a random variable s; with zero mean, let us first normalize
its scale so that the variance E{s?} equals some given constant. Then sparseness can be
measured as the expectation E{G(s?)} of a suitable nonlinear function of the square.
Typically, G is chosen to be convex, i.e. its second derivative is positive, e.g. G(s?)=
(s?)?. Convexity implies that this expectation is large when s? typically takes values
that are either very close to 0 or very large, i.e. when s; is sparse.

1.2. Temporal coherence

An alternative to sparseness is given by temporal coherence [2,9,10]. When the input
consists of natural image sequences, i.e. video data, the simple-cell receptive fields
optimize this criterion as well. Temporal coherence as defined in [2] is a nonlinear
form of correlation, defined, for example, as the temporal correlation of the squared
outputs. This means that the general activity level (variance) changes smoothly in time,
although the actual cell outputs cannot be predicted.

It must be noted that ordinary linear correlation is not able to produce well-defined
filters. Receptive fields maximizing linear correlation are more similar to Fourier com-
ponents and lack the localization properties of simple-cell RFs [2].

1.3. Topographic dependencies

Consider a number of representational components s;, i =1,...n, such as outputs of
simple cells. Now, we consider their statistical dependencies, assuming that the joint
distribution of the s; is dictated by the natural image input. Again, we must consider
nonlinear correlations like in the case of temporal coherence, since linear correlations
are typically constrained to zero. In image data, the principal dependency between two
simple-cell outputs seems to be captured by the correlation of their energies s?, that
is, the general activity levels or variances [8,3,4].

The dependencies of simple-cell outputs can be used to define a topographic organi-
zation. Let us assume that the s; are arranged on a two-dimensional grid or lattice as
is typical in topographic models. We have proposed a model [3,4] in which the ener-
gies are strongly positively correlated for neighboring cells. This means simultaneous
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activation of neighboring cells; such simultaneous activation is implicit in much of the
work in cortical topography.

1.4. Linear models of natural images

The statistical properties discussed above are usually utilized in the framework of a
generative model. Denote by /(x, y,¢) the observed data whose components are pixel
gray-scale values (point luminances) in an image patch at time point . The models
that we consider here express a monochrome image patch as a linear superposition of
some features or basis vectors a;:

I, 3,0) =Y ailx, »)si(h). (1)
i=1

The s;(¢) are stochastic coefficients, different from patch to patch. In a cortical interpre-
tation, the s; model the responses of (signed) simple cells, and the a; are closely related
to their classical receptive fields [7]. For simplicity, we consider only spatial receptive
fields in this paper. Estimation of the model consists of determining the values of both
s; and a; for all i, given a sufficient number of observed patches 7.

In the most basic models, the s; are assumed to be statistically independent, i.e. the
value of s; cannot be used to predict s; for i # j. Then we can use either sparseness
or temporal coherence to estimate the receptive fields [6]. If sparseness is used [7], the
temporal structure of the data is ignored; indeed, the data does not need to have any
temporal structure in the first place. The resulting model is called independent com-
ponent analysis (ICA) [6], and it can be considered a nongaussian version of factor
analysis. Temporal coherence leads to quite similar receptive fields [2]. When using
topography, the s; are not assumed to be independent anymore; instead, they have topo-
graphic dependencies as defined above. This leads to the topographic ICA model [3,4]
which combines the properties of sparse components and topographic dependencies in
a single model.

2. Activity bubbles as a unifying framework
2.1. Temporal bubbles

As discussed above, both maximization of the sparseness of linear filter outputs and
the maximization of their temporal coherence lead to receptive fields that have the
principal properties of simple cells. How is it possible that two quite different criteria
give quite similar receptive fields? What is the connection between the two criteria?

To answer these questions, we propose a model of the linear filter outputs that com-
bines the two properties. The model explains why both criteria give similar estimation
results from natural images, and can be expected to give an improved model of the
statistical structure of linear filter outputs. Here we only explain the basic idea of the
model, see [5] for more details.
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The new model is based on the concept of sparse temporal activity bubbles. (This
will be extended to sparse spatiotemporal activity bubbles below.) We assume that the
simple cell output s(¢) is a product of an underlying latent signal z(¢) and a variance
signal v(¢). Thus, we define

s(t) = v(1)z(t). 2)

The underlying signal z(¢#) does not need to have any special properties. In fact, we
assume here, for simplicity, that z(¢) is gaussian white noise with unit variance. The
interesting statistical properties of s(¢) are thus due to v(z) alone.

The crucial assumptions are that v(¢) is sparse and has temporal correlation. To
model such a signal, we assume that it is a low-pass filtered (smoothed) version of a
very sparse signal possibly followed by a pointwise (scalar) function:

u(t) = f(o(0) xu(t)) = f <Z p()u(t — f)>, 3)

where ¢ is a simple low-pass filter, such as the Gaussian kernel exp(—1?/(20?%)). The
random process u(t), which we call the bubble process, is obtained by sampling a
very sparse nonnegative random variable independently at each time point, resulting
in something similar to a point process with nonnegative values. The function f is a
technical addition that has little influence on the basic principle, and in most cases we
could take it just linear f.

The resulting signal s(¢#) has both sparseness and temporal coherence, as shown in
[5]. Thus, if one mixes linearly independent signals of this kind, the original signals can
be separated by using either of these two properties [6]. In particular, if we consider the
image sequences to be linear sums of spatial basis vectors as in Eq. (1), and assume
that the signals s;(¢) consist of temporal bubbles as defined above, it is natural that we
obtain similar basis vectors with either criterion, since both of them are applicable on
this kind of data [6]. We have also shown that temporal bubbles model characterizes the
outputs of Gabor-like linear filters better that either sparseness or temporal coherence
alone [5].

2.2. Spatiotemporal bubbles

Now, we will show how to combine the three properties discussed above: sparseness,
topography, temporal coherence. Combination of sparseness and topography means that
each input activates a limited number of spatially limited “blobs” on the topographic
grid. If these regions are temporally coherent, they resemble activity bubbles as found
in many earlier neural network models.

An activity bubble thus means the activation of a spatially and temporally limited
region. This is illustrated in Fig. 1 for a one-dimensional map. Such an activity bubble
corresponds to a basic element of visual input: A short (moving) luminance contour
that is of a given orientation and frequency and inside a small spatiotemporal window.
It is not quite the same as the spatial receptive field of a complex cell because the
bubble has temporal characteristics.
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Fig. 1. The four types of representation. The plots show activities of simple cells as a function of time and
the position of the cell on the topographic grid. For simplicity, the topography is here one-dimensional. In
the basic sparse representation, the filters are independent. In the topographic representation, the activations
of the filters are also spatially grouped. In the representation that has temporal coherence, they are temporally
grouped. The bubble representation combines all these aspects, leading to spatio-temporal activity bubbles.
Note that the two latter representation require that the data has a temporal structure, unlike basic sparse
coding.

Based on earlier work [3,2], we can formulate generative models based on activity
bubbles. We postulate a higher-order random process u that determines the variance at
each point. This nonnegative, highly sparse random process obtains independent values
at each point in time and space (space referring to the topographic grid). For simplicity,
let us denote the location on the topography by a single index i. Then, the variances
v of the observed variables are obtained by a spatiotemporal convolution followed by
a pointwise nonlinearity:

OEVE DI NIOEITOI (4)
J

where A(i, j) is the neighborhood function that defines the spatial topography, and ¢ is
a temporal smoothing kernel. The simple cell outputs are now obtained by multiplying
simple gaussian white noise z;(¢) by this variance signal:

si(1) = vi()zi(2). (5)
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Finally, the latent signals s;(¢#) are mixed linearly to give the image, as in Eq. (1).
The three Eqgs. (4), (5) and (1) define a statistical generative model for natural image
sequences. The basis vectors estimated in the bubble model are quite similar to those
obtained by topographic ICA [3]. The new contribution of the model is not in estimating
a new basis, but in providing a better model of the statistical of the components s;.
For more information, see [5].

3. Discussion

Why would the visual system bother about such a sophisticated model of natural
image statistics? First and foremost, bubble coding provides a suitable internal model
of the structure of natural stimuli. If we consider visual processing in a Bayesian
framework, it is paramount to obtain statistical models of the input that are as accurate
as possible. Second, estimating the bubble process may be more interesting for higher
areas than the activations of the single cells. In fact, temporal coherence has earlier
been proposed as a principle for learning invariant features [1,10], and topographic ICA
leads to emergence of features that are invariant to phase; in fact, they are very similar
to complex cell responses. Thus, the bubbles are quite strongly invariant features. A
further utility of temporal coherence may be that if the code is based on firing rates
of neurons, temporal stability makes it easier to “read” the firing rates and reduces the
Poisson noise that is inherent in such an operation.

To conclude, we have proposed a new framework for the low-level statistical struc-
ture of natural image sequences. This is based on the notion of spatio-temporal activity
bubbles. This combines the properties of sparseness (the bubbles being sparse), to-
pography (which corresponds to the spatial continuity of the bubbles), and temporal
coherence (which corresponds to the temporal continuity of the bubbles).
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