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Abstract

Our aim is to find syntactic and semantic relationships and roles of words based on
the analysis of corpora. We study three methods for analyzing words in contexts
as potential methods for solving this task. The methods are latent semantic anal-
ysis, self-organizing map and independent component analysis. Latent semantic
analysis is a simple method for automatic generation of concepts that are useful,
e.g., in encoding documents for information retrieval purposes. However, these
concepts cannot easily be interpreted by humans. Self-organizing maps can be
used to generate an explicit diagram which characterizes the relationships between
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words. A word map reflects syntactic categories in the overall organization and
semantic categories in the local level. The self-organizing map does not, however,
provide any explicit distinct categories for the words. Theemergent syntactic and
semantic categories are only implicit. Independent component analysis applied
on word context data gives distinct features which reflect syntactic and semantic
categories. Thus, independent component analysis gives features or categories
that are both explicit and can easily be interpreted by humans. This result can be
obtained without any human supervision or tagged corpora that would have some
predetermined morphological, syntactic or semantic information.

1 Introduction

A word can belong to several syntactic categories simultaneously. The number of
categories is even higher if one takes into account the semantic categories. Tra-
ditionally, such categorization is determined by hand: thecategories into which a
word belongs to are described in a dictionary.

In the following, we will study the emergence of linguistic representations through
the analysis of words in contexts. First, we give a general description of the ap-
proach and describe two methods that have widely been used for the analysis,
latent semantic analysis and self-organizing map. Then we introduce a novel ap-
proach based on independent component analysis.

1.1 Analysis of Words in Contexts

Contextual information has widely been used in statisticalanalysis of natural lan-
guage corpora (consider, e.g., (Church and Hanks, 1990; Schütze, 1992; Manning
and Schütze, 1999)). Handling computerized form of writtenlanguage rests on
processing of discrete symbols. How can a symbolic input such as a word be
given to a numeric algorithm? Similarity in the appearance of the words does not
usually correlate with the content they refer to. As a simpleexample one may
consider the words “window”, “glass”, and “widow”. The words “window” and
“widow” are phonetically close to each other, whereas the semantic relatedness of
the words “window” and “glass” is not reflected by any simple metric.
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One useful numerical representation can be obtained by taking into account the
sentential context in which the words occur. First, we represent each word by a
vector in an n-dimensional space, and then code each contextas an average of
vectors representing the words in that context. In the simplest case, the dimen-
sion n can be taken equal to the number of different words, and each word is
represented by a vector with one element equal to one and others equal to zero.
Then the context vector simply gives the frequency of each word in the context.
For computational reasons, however, the dimension may be reduced by differ-
ent methods. In information retrieval, a similar approach is called bag-of-words
applied in methods, e.g., related to the vector space model (Salton et al., 1975).

1.2 Latent Semantic Analysis

In latent semantic analysis (Deerwester et al., 1990), a technique known as singu-
lar value decomposition (SVD) is used to create a latent semantic space. First, a
term by document matrixA is generated. Every term is represented by a row in
matrixA, and every document is represented by a column. An individual entry in
A, ai j , represents the frequency of the termi in documentj. Next, SVD is used
to decompose matrixA into three separate matrices. The first matrix is a term
by concept matrixB. The second matrix is a concept by concept matrixC. The
third matrix is a concept by document matrixD. The context for each word in the
basic LSA is the whole document. This is a special case of the coding of contexts
explained in above: the context is one whole document in the LSA.

In (Landauer and Dumais, 1997) the LSA is described in terms of learning and
cognitive science. The claim is that the LSA acquired knowledge about the full
vocabulary of English at a comparable rate to school-children. The development
of the LSA has also been motivated by practical applications(Furnas et al., 1987).

One problem with the LSA is that the concept space is difficultto understand
by humans. The self-organizing map, that will be introducedin the next section,
creates a visual display of the analysis results which is readily understandable for
a human viewer.
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1.3 Self-Organizing Map of Words

The self-organizing map (Kohonen, 1982) can be visualized as a two-dimensio-
nal, sheet-like grid. The grid consists of a number of processing elements (units or
nodes). In a self-organizing map, the nodes become specifically tuned to various
inputs in an orderly fashion. The learning process is unsupervised. A much more
detailed description of the method and its numerous applications can be found in
(Kohonen, 2001).

Earlier, the self-organizing map has been used in the analysis of word context
data, e.g., by (Ritter and Kohonen, 1989) (artificially generated short sentences),
and (Honkela et al., 1995) (Grimm fairy tales). In (Finch andChater, 1992), a self-
organizing map analysis of word contexts was performed witha one-dimensional
map in order to find synonymous words. The results of an analysis similar to the
one conducted in (Honkela et al., 1995) are shown in Fig.12. The result can be
called a self-organizing map of words, or a word category map. Earlier, the name
self-organizing semantic map has also been used. Similar results have also been
presented by Miikkulainen (Miikkulainen, 1990; Miikkulainen, 1993; Miikku-
lainen, 1997). The analysis here is made for illustration purposes and one should
consider (Ritter and Kohonen, 1989) and (Honkela et al., 1995) for more thorough
analysis and explanation of the methodology.

The map was made using SOM Toolbox for Matlab (Vesanto et al.,2000). The
analysis used thesom_makefunction that creates, initializes, and trains a SOM
using default parameters with map size of 120 units. The datawas a collection of
e-mails sent to the connectionists list. One hundred commonwords were chosen
to be mapped and the contextual information was calculated using the 2000 most
common types. The preparation of the data will be discussed in more detail in
Chapter 2.1.

Areas or local regions on a word category map can be considered as implicit cat-
egories or classes that have emerged during the learning process. Single nodes in
the map can be considered as adaptive prototypes. Each prototype is involved in
the adaptation process in which the neighbors influence eachother and the map is
gradually finding a form in which it can best represent the input.

One classical approach for defining concepts is based on the idea that a concept
can be characterized by a set of defining attributes. In contrast, the prototype
theory of concepts involves that concepts have a prototype structure and there is
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no delimiting set of necessary and sufficient conditions fordetermining category
membership that can also be fuzzy. Instances of a concept canbe ranked in terms
of their typicality. Membership in a category is determinedby the similarity of
an object’s attributes to the category’s prototype. The development of prototype
theory is based on the works by, e.g., Rosch (Rosch, 1977) andLakoff (Lakoff,
1987).

MacWhinney (MacWhinney, 1989) discusses the merits and problems of the pro-
totype theory. He mentions that prototype theory fails to place sufficient emphasis
on the relations between concepts. MacWhinney also points out that prototype
theory has not covered the issue of how concepts develop overtime in language
acquisition and language change, and, moreover, it does notprovide a theory of
representation. MacWhinney’s competition model has been designed to overcome
these deficits. MacWhinney has presented a model of emergence in language
based on the SOM (MacWhinney, 1997). Recently, (Gärdenfors, 2000) has pre-
sented theoretical foundations for conceptual modeling inwhich the SOM is an
important element (consider also (Gärdenfors, 1996; Gärdenfors, 1997)).

The emergent categories on a word category map are implicit.The borderlines
for any categories have to be determined separately. It would be beneficial if one
could find the categories in an automated analysis. Moreover, each word appears
in one location of the map. This means, among other things, that one cannot
have a map in which several characteristics or categories ofone word would be
represented unless the the categories overlap and accordingly the corresponding
areas of the map overlap. In some cases, this is the case: it ispossible to see
the area of modal verbs inside the area of verbs, e.g., in the map in (Honkela
et al., 1995). However, one might wish to find a sparse encoding of the words in
such a way that there would be a collection of features associated with each word.
For instance, a word can be a verb, a copula and in past tense. It is an old idea
in linguistics to associate words with features. The features can be syntactic as
well as semantic like, e.g., proposed already in (Fillmore,1968). However, these
features are given by hand, and the membership is crisp.

1.4 Independent Component Analysis of Word Contexts

In the following, we propose the use of independent component analysis (ICA)
(Comon, 1994; Jutten and Hérault, 1991; Hyvärinen et al., 2001) for the extrac-
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tion of linguistic features from text corpora and present a detailed methodological
description. ICA learns features in an unsupervised manner. Several such fea-
tures can be present in a word, and ICA gives the explicit values of each feature
for each word. We expect the features to coincide with known syntactic and se-
mantic categories: for instance, we expect ICA to be able to find a feature that is
shared by words such as “must”, “can” and “may”. In earlier studies, independent
component analysis has been used for document level analysis of texts (see, e.g.,
(Bingham et al., 2002)).

2 Data and methods

2.1 Data collection

The data used in the experiments consists of collection of e-mails sent to the con-
nectionists mailing list1. The texts were concatenated into one file. Punctuation
marks were removed and all uppercase letters were replaced by the corresponding
lowercase letters. The resulting corpus consists of 4,921,934 tokens (words in the
running text) and 117,283 types (different unique words).

One hundred common words were manually selected and the contextual informa-
tion was calculated using the 2000 most common types. We formed a context
matrixC in whichci j denotes the number of occurrencesjth word in the immedi-
ate context ofith word, i.e,ith word followed byjth word with no words between
them. This provided a 100×2000 matrix. A logarithm of the number of occur-
rences was taken in order a reduce the effect of the very most common words in
the analysis and finally each word vector was normalized to unit length.

2.2 Independent component analysis

We will give a brief outline of the basic theory of independent component analysis
(Hyvärinen et al., 2001). The classic version of the ICA model can be expressed
as

x = As (1)

1http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/connect/connect-archives/
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wherex = (x1,x2, . . .,xn)
T is the vector of observed random variables, the vector

of the independent latent variables is denoted bys= (s1,s2, . . . ,sn)
T (the “inde-

pendent components”), andA is an unknown constant matrix, called the mixing
matrix. If we denote the columns of matrixA by a j the model can be written as

x =
n

∑
I=1

aisi (2)

The goal in ICA is to learn the decomposition in Eq. (1) in an unsupervised man-
ner. That is, we only observex and want to estimate bothA ands. ICA can be
seen as an extension to principal component analysis and factor analysis which
underlie LSA. However, ICA is a more powerful technique capable of finding the
underlying factors when the classic methods would fail.

The starting point for the ICA is the simple assumption that thesi are statistically
independent. Two variables,y1 and y2, are independent if information on the
value ofy1 does not give any information on the value ofy2, and vice versa. This
does not need to hold for the observed variablesxi . In case of two variables, the
independence holds if and only ifp(y1,y2) = p(y1)p(y2). This definition extents
to any number of random variables.

The are three properties of the ICA that should be taken into account when con-
sidering the analysis results. First, one cannot determinethe variances of the
independent componentssi . The reason is that, boths andA being unknown, any
scalar multiplier in one of the sourcessi could always be canceled by dividing the
corresponding columnai of A by the same scalar. As a normalization step, one
can assume that each component has a unit variance,E{si

2} = 1. The ambiguity
of the sign still remains: one could multiply a component by−1 without affecting
the model.

The second property to be remembered is that one cannot determine the order of
the components. While bothsandA are unknown one can freely change the order
of the terms in Eq. (2) and call any of the components the first one.

The third important property of ICA is that the independent components must be
nongaussian for ICA to be possible (Hyvärinen et al., 2001).Then, the mixing
matrix can be estimated up to the indeterminacies of order and sign discussed
above. This is in stark contrast to such techniques as principal component analysis
and factor analysis, which are only able to estimate the mixing matrix up to a
rotation, which is quite insufficient for our purposes.
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For our ICA analyses we applied FastICA2 software package for Matlab. We fed
the word-context matrixC to the FastICA algorithm (Hyvärinen, 1999) so that
each column was considered one data point, and each row one random variable.

We used the standard maximum-likelihood estimation by setting the nonlinearity
g to the tanh function, and using symmetric orthogonalization (Hyvärinen et al.,
2001) (p. 212). The dimension of the data was reduced to 10 by principal com-
ponent analysis (this is implemented as part of the software)3. Reduction of the
dimension is often used to reduce noise and overlearning (Hyvärinen et al., 2001)
(p. 267).

3 Results

The results of the ICA analysis corresponded in most cases very well or at least
reasonably well with our preliminary intuitions. The system was able to automat-
ically create distributed representations as a meaningfulcollection of emergent
linguistic features; each independent component was one such feature.

In the following, we will show several examples of the analysis results. In con-
sidering the feature distributions, it is good to keep in mind that the sign of the
features is arbitrary. As was mentioned earlier, this is because of the ambiguity of
the sign: one could multiply a component by−1 without affecting the model (see
Section 4.1).

Fig. 1 shows how the third component is strong in the case of nouns in singular
form. A similar pattern was present in all the nouns with three exceptional cases
with an additional strong fourth component indicated in Fig. 2. The reason appears
to be that “psychology”, “neuroscience”, and “science” share a semantic feature
of being a science or a scientific discipline. This group of words provide a clear
example of distributed representation where, in this case,two components are
involved.

An interesting point of comparison for Fig. 1 is the collection of plural forms of

2htt p : //www.cis.hut. f i/pro jects/ica/ f astica/
3The Matlab code for the operations was as follows:

LC = log(C+1);
[A,W] = f astica(LC,′ approach′,′ symm′,′g′,′ tanh′,′ lastEig′,10,′epsilon′,0.0005);
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Figure 1: ICA features for “model”, “network” and “problem”.
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Figure 2: ICA features for “neuroscience”, “psychology” and “science”.

the same nouns in Fig. 3. The third component is strong as withthe singular nouns
but now there is another strong component, the fifth.
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Figure 3: ICA features for “models”, “networks” and “problems”.

Fig. 4 shows how all the possessive pronouns share the feature number nine.

Modal verbs are represented clearly with component number ten as shown in
Fig. 5. Here, slightly disappointingly the modal verbs are not directly linked with
verbs in general through a shared component. This may be because of the distinct
nature of the modal verbs. Moreover, one has to remember thatin this analysis we
used ten as the number of ICA features which sets a limit on thecomplexity of the
feature encoding. We used this limit in order to demonstratethe powerfulness and
usefulness of the method in a simple manner. A higher number of features can be
used in order to obtain more detailed feature distinctions.
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Figure 4: ICA features for “his”, “our” and “their”.
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Figure 5: ICA features for “can”, “may” and “must”.

Fig. 6 shows how the adjectives are related to each other through the shared feature
number eight, and even number nine in the opposite direction. Quite interestingly
this component number nine is associated with ing-ending verbs (see Fig. 7 such
as “modeling”, “training”, and “learning” that can, naturally, serve in the position
of an adjective or a noun (consider, for instance, “trainingset” versus “network
training”).
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Figure 6: ICA features for “adaptive”, “artificial” and “cognitive”.

Fig. 8 shows how the three articles use two feature dimensions, namely the sixth
and seventh.

Finally, there are individual words, particularly some verbs for which the result
is not as clear as for other words. In Fig. 9 it is shown how the verb “include”
and the copula “is” have several features present in a distributed manner. The
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Figure 7: ICA features for “modeling”, “training” and “learning”.
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Figure 8: ICA features for “a”, “an” and “the”.

word “is” shares, however, clearly the feature number two with the word “have”.
This slight anomaly particularly concerning “include” mayalso be related to the
fact that ten features were used for the hundred words. For a related reason, a
collection of particles and similar common words were excluded in the analysis
because many of them are rather unique in their use considering the contexts in
which their appear. This phenomenon was already discernable in the analysis
word contexts using the self-organizing map (Honkela et al., 1995).
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Figure 9: ICA features for “include”, “is” and “have”.

The categorical nature of each component can also be illustrated by listing the
words that are strongest in each component (see Fig. 10 and Fig. 11). The result
shows some very clear components such as 3 to 5 which can be considered noun
categories. These three components were already discussedearlier. Component
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number 8 is populated by adjectives whereas number 10 contains modal verbs.
Verbs “to be” and “have” are in their different forms in the component 2. We can
also see a certain kind of component overloading in components 1 and 2. This
is explained by the limited number of component in use. With alarger number
of components, more detailed categories can be gained and ambiguity inside a
category can be avoided.

1 2 3 4 5
or is paper science networks

and are information university systems
is have it engineering learning

are has papers research models
have i system psychology processing
has we work neuroscience algorithms
use they networks technology recognition
... ... ... ... ...

Figure 10: The most representative words for the first five features (components),
in the order of representativeness, top is highest.

The nouns “network” and “control” in component 8 in Fig. 11 are often used in
the corpus in noun phrases like “neural network society”. Ingeneral, the area and
style of the texts in the corpus are, of course, reflected in the analysis results.

6 7 8 9 10
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the an computational our can
and and cognitive your may
or or network my should

their their adaptive learning would
its its control research must

your are learning processing did
... ... ... ... ...

Figure 11: The most representative words for the last five features (components),
in the order of representativeness, top is highest.

12



4 Discussion

In this article, we started by discussing some advantages and limitations of latent
semantic analysis and the self-organizing maps in the analysis of word contexts.
Latent semantic analysis suffers from the limitation that the underlying semantic
space remains implicit. The self-organizing map is able to explicate the semantic
space as relationships on the map. However, the categories remain implicit and
there is only one position for each word in the map which is a limitation con-
sidering the intuitive idea that a word may very well belong to several categories
simultaneously.

We have shown how independent component analysis can bring an additional ad-
vantage of finding explicit features that characterize words in an intuitively ap-
pealing manner. We have considered the methods for the analysis of words as
they appear in text corpora. All these methods are beneficialas automatic statis-
tical methods for linguistic analysis. However, independent component analysis
appears to make possible a qualitatively new kind of result which have earlier been
obtainable only through hand-made analysis.

The analysis results show how the ICA analysis was able to reveal underlying
linguistic features based solely on the contextual information. The results in-
clude both an emergence of clear distinctive categories or features as well as a
distributed representation based on the fact that a word maybelong to several cat-
egories simultaneously. For illustration purposes we keptthe number of features
low, i.e., ten. However, similar approach scales well up to higher numbers of
dimensions.

Future research directions include analysis of larger corpora for extracting larger
number of independent components. Various options for, e.g., determining the
contextual window will be tested. On a qualitative level, polysemy will be consid-
ered. Whether the component values can be applied as degreesof membership for
each word in each category is a question of further analysis.The distributed rep-
resentation can be used as a well-motivated low-dimensional encoding for words
in various applications. The limited number of dimensions brings computational
efficiency whereas the meaningful interpretation of each component provides ba-
sis for intelligent processing. To interpret the estimatedcomponents as linguistic
features, it is necessary to measure how well they capture linguistic information.
We will also study the closeness of match between the emergent components and
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manually determined linguistic categories4.

We are optimistic that the approach will be relevant in areaslike language tech-
nology in the form of practical applications in informationretrieval and machine
translation; as well as in cognitive linguistics as a provider of additional under-
standing on potential cognitive mechanisms in natural language learning and un-
derstanding.

4This research is currently conducted by Jaakko J. Väyrynen.
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Figure 12: Word category map where the position of each word is determined
by the self-organizing map algorithm. The input data for thealgorithm consisted
of averaged contexts for each word, capturing the information on what are the
neighboring words in the text collection.

18


