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Céline Blondeau · Benôıt Gérard ·
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Abstract Many attacks on encryption schemes rely on statistical consider-
ations using plaintext/ciphertext pairs to find some information on the key.
We provide here simple formulae for estimating the data complexity and the
success probability which can be applied to a lot of different scenarios (differ-
ential cryptanalysis, linear cryptanalysis, truncated differential cryptanalysis,
etc.). Our work does not rely here on Gaussian approximation which is not
valid in every setting but use instead a simple and general approximation of
the binomial distribution and asymptotic expansions of the beta distribution.
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1 Introduction

Statistical attacks against ciphers aim at determining some information on
the key. Such attacks rely on the fact that some phenomenon occurs with
different probabilities depending on the key. Here we focus on the case where
the attacker has a certain amount of plaintext/ciphertext pairs from which
he extracts, for each possible key, N binary samples whose sum follows a
binomial distribution of parameters (N, p0) in the case of the good key and
(N, p) otherwise. Such attacks are referred as non-adaptive iterated attacks
by Vaudenay [1]. The problem addressed by all these attacks is to determine
whether the sample results from a binomial distribution of parameters p0 or
p. The variety of statistical attacks covers a huge number of possibilities for
(p0, p). For instance, in linear cryptanalysis [2–4], p0 is close to p = 1

2 while in
differential cryptanalysis [5], p is small and p0 is quite larger than p.

In order to compare these attacks, the success probability must be eva-
luated. It is crucial to determine how this quantity behaves in terms of data
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complexity (or the other way round how the data complexity depends on the
success probability). To achieve this, it is necessary to have accurate estimates
for the tails of binomial distributions.

This kind of work has already been done for differential and linear crypt-
analysis. A normal approximation of the binomial law provides formulae of
the success probability [6] and the data complexity [3] in the case of linear
cryptanalysis. For differential cryptanalysis a well-known formula of the data
complexity is obtained using a Poisson approximation for the binomial law [8].
To the best of our knowledge, no explicit formulae of the data complexity and
success probability are given for other types of statistical cryptanalyses such
as truncated differential attack [9] for instance.

1.1 Related work

The difficulty in finding the data complexity comes from the fact that the bino-
mial law is not easy to handle in the cryptanalytic range of parameters. Ideally,
we would like to have an approximation that can be used on the whole space
of parameters. Actually, binomial tails vary with the number of samples N as
a product of a polynomial factor Q(N) and an exponential factor e−ΓN :

Q(N)e−ΓN . (1)

The asymptotic behavior of the exponent has been exhibited by Baignères,
Junod and Vaudenay [10–12] by applying some classical results from statis-
tics. However, for many statistical cryptanalyses, the polynomial factor is non
negligible. As far as we know, all previous works give estimates of this value
using a Gaussian approximation that recovers the right polynomial factor but
with an exponent which is only valid in a small range of parameters. For in-
stance, the deep analysis of the complexity of linear attacks due to Junod [13,
10,14] is based on a Gaussian approximation and cannot be adapted directly
to other scenarios, like the different variants of differential cryptanalysis.

1.2 A practical instance: comparing truncated differential and differential
attacks

The initial problem we wanted to solve was to compare the data complexity
of a truncated differential attack and a differential attack. In a truncated
differential cryptanalysis the probabilities p0 and p are slightly larger than in
a differential cryptanalysis but the ratio p0/p is closer to 1.

Definition 1 Let F be a function with input space X and output space Y .
A truncated differential for F is a pair of subsets (A,B), A ⊂ X, B ⊂ Y .
The probability of this truncated differential is:

Px∈X [F (x) + F (x+ a) ∈ B|a ∈ A] .



Hereafter we present both attacks on generalized Feistel networks [15] defined
in Appendix 7.1. As a toy example, we study a generalized Feistel network with
four S-boxes and ten rounds. The S-boxes are all the same and are defined over
the field GF (28) by the power permutation x 7→ x7.

Let T be a partition of GF (28) into cosets of the subfield GF (24). If η is a
generator of GF (28) with minimal polynomial x8 +x4 +x3 +x2 + 1, we define
two cosets of GF (24) by T1 = η7 +GF (24) and T2 = GF (24). Let

A = (T1, 0, 0, 0, 0, 0, 0, 0) and B = (T1, T2, ?, ?, ?, ?, T1, T2).

Note that A is the set of vectors of the form (a, 0, 0, 0, 0, 0, 0, 0) where a ∈ T1.
Also ’?’ in B means any elements of GF (28) (see Appendix 7.1).
For ten rounds of this generalized Feistel network with good subkeys, the
probability of the truncated differential characterized by (A,B) is

p0 = 1.18× 2−16.

For the wrong subkeys, the output difference is supposed to be independent
from the input difference. Thus, the probability for the output to be in B is :

p =
(
24/28

)4
= 2−16.

The best differential cryptanalysis is derived from the same characteristic but
with T1 and T2 reduced to one element (T1 = {α85} and T2 = {0}). In this
case, we have

p0 = 1.53× 2−27 and p = (1/28)4 = 2−32.

The problem is then to determine whether the data complexity of the
truncated differential cryptanalysis is lower than the data complexity of the
differential cryptanalysis or not.

1.3 Our contribution

The main difficulty in expressing the data complexity comes from the fact that
the binomial tails are not easy to handle. In this paper we use a simple ap-
proximation that is valid over a wide range of parameters. The approximation
catches the right behavior of the polynomial term and the right exponential
term as well as in (1).
We will compute the amount of data which is needed or the success probability
in terms of the data complexity in two different scenarios:

(i) when the probability β that a wrong key is accepted is fixed,
(ii) when the size of the list of the kept candidates is fixed.



To simplify the expressions in scenario (i), we fix the success probability to 50%
and give, in this case, an accurate estimate of the data complexity in terms of
β. We also provide an asymptotic expression of this quantity for several types
of cryptanalyses. Then we study scenario (ii) and provide a generalization of
the formula of Selçuk [6] which gave an accurate expression for the probability
of success only in the case of linear cryptanalysis. This formula relies heavily
on Gaussian approximations which are not valid anymore in the case of dif-
ferential cryptanalysis. On the contrary, the generalization presented in this
paper is obtained using the aforementioned approximation of the binomial tail
and asymptotic expansion of the tail of the beta distribution. Our formula
gives an accurate expression which is valid for various cryptanalyses (and thus
including differential cryptanalysis, truncated differential cryptanalysis and
linear cryptanalysis).

2 Statistical cryptanalysis

The core of a statistical cryptanalysis is to use some statistical phenomenon
to extract some information on the key used to encipher the intercepted plain-
text/ciphertext pairs. We denote by N the number of available samples of
plaintext/ciphertext. A sample can be composed of one pair (linear crypt-
analysis), two pairs with chosen plaintexts (differential cryptanalysis), etc.
Generally, the observed phenomenon only gives information on a subkey of
the master key. Such attacks basically consists in three steps:

– Distillation phase: some statistic Σ is extracted from the available data.
– Analysis phase: from Σ, the likelihood of each possible subkey is computed

and a list L of the likeliest keys is suggested.
– Search phase: for each subkey in L, all the possible corresponding master

keys are exhaustively tried until the good one is found.

We denote by K the random variable corresponding to the correct subkey. The
likelihood of a subkey k is then P [K = k|Σ]. In most of the case, the statistic
Σ is a set of counters Σk that correspond to the number of times some phe-
nomenon (called characteristic) is observed for a subkey k. For a fixed subkey
k, let Xi

k be a random variable that takes value 1 if the characteristic appears
in the sample number i and takes value 0 otherwise. Thus, X1

k , .., X
N
k are N

binary random variables which are independent and identically distributed.
The counter Σk then corresponds to the sum of the Xi

k’s:

Σk
def=

N∑
i=1

Xi
k .

We denote by p0 the probability that the characteristic is observed when k is
the correct subkey k0:

p0
def= P (X1

k0 = 1) = · · · = P (XN
k0 = 1).



We assume that the Wrong-Key Randomization Hypothesis holds [7]: the phe-
nomenon is observed with the same probability p independently of the value
of the wrong key k:

p
def= P (X1

k 6=k0 = 1) = · · · = P (XN
k 6=k0 = 1).

The counter Σk thus follows a binomial law with parameters (N, p0) if k is the
correct subkey and (N, p) otherwise (p < p0). In our setting, likelihoods are
directly linked to counters Σk. Let k and k′ be two subkeys,

P [K = k|Σ] ≤ P [K = k′|Σ]⇐⇒ Σk ≤ Σk′ .

This is actually the case for standard statistical cryptanalyses. From this set-
ting, two paradigms can be studied. The first one is to fix some threshold and
to accept in L all the subkeys with a likelihood more than this threshold. The
second one is to fix the size of L to some integer ` and then keep the ` likeliest
subkeys. These two paradigms are studied in the following two subsections.

2.1 Hypothesis Testing

Here we deal with the hypothesis testing paradigm. The problematic consists
in fixing a threshold T and comparing the counter Σk with T :

If Σk ≥ T then k ∈ L else k /∈ L.

From the N samples, the attacker either decides that k = k0 holds or that
k 6= k0 is true. Two kinds of errors are possible:

– Non-detection: It occurs if one decides that k /∈ L when k = k0 holds.
We denote by α the non-detection error probability.

– False alarm: It occurs if one decides that k ∈ L when k 6= k0 holds. We
denote by β the false alarm error probability.

Using well known results about hypothesis testing it follows that, for some
integer 0 ≤ T ≤ N , {Σk , Σk ≥ T} is an optimal acceptance region. The
meaning of optimal is stated in the following lemma.

Lemma 1 [16]Neyman-Pearson lemma :
If distinguishing between two hypotheses k = k0 and k 6= k0 with the help of N
variables (Xi

k)i and using a test of the form

P (X1
k , . . . , X

N
k |k = k0)

P (X1
k , . . . , X

N
k |k 6= k0)

≥ t

gives error probabilities α and β, then no other test can improve both non-
detection and false alarm error probabilities.

A standard calculus (detailed in [16] for the Gaussian case) shows that com-
paring the ratio of Lemma 1 with a real number t is equivalent to compare Σk
with an integer 0 ≤ T ≤ N .



2.2 Key ranking

Here we deal with the key ranking paradigm. The problematic is not to decide
if a subkey is the good one or not but to distinguish the correct subkey from
many incorrect ones. We denote by n the total number of possible subkeys:
the correct one k0 plus n− 1 incorrect subkeys k1, . . . , kn−1. Then, the idea is
to keep a list L of the ` subkeys that are the more likely to be the correct one.

∀k 6∈ L , ∀k′ ∈ L , Σk ≤ Σk′

The cryptanalysis is a success if the correct key belongs to this list.

Definition 2 We define the success probability of a statistical cryptanalysis as
the probability that the correct subkey k0 belongs to the list of the ` likeliest
subkeys.

PS
def= P [k0 ∈ L] .

The following section give estimates for the error probability in order to find a
simple expression of the data complexity. We will go back to the key ranking
problem in Section 5 where we give a simple formula to estimate PS .

3 Approximating error probabilities

3.1 The binomial distribution

Since it is difficult to handle the binomial law, we need to approximate it.
A particular quantity will play a fundamental role here, the Kullback-Leibler
divergence.

Definition 3 Kullback-Leibler divergence [16]
Let P and Q be two Bernoulli probability distributions of respective param-
eters p and q. The Kullback-Leibler divergence between P and Q is defined
by:

D (p||q) def= p ln
(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
.

We use the convention (based on continuity arguments) that 0 ln 0
p = 0 and

p ln p
0 =∞.

Lemma 2 Let τ be a relative threshold 0 ≤ τ ≤ 1. Let Σk be a random
variable that follows a binomial law of parameters (N, p). We have:

P (Σk = bτNc) =

√
1

2πN(1− τ)τ
e−ND(τ ||p)

[
1 +O

(
1
τN

)]
. (2)



Proof We recall the probability function of the binomial law:

P (Σk = bτNc) =
(

N

bτNc

)
pbτNc(1− p)N−bτNc.

Using the Stirling approximation we have(
N

bτNc

)
=

√
1

2πNτ(1− τ)
e−N [τ ln(τ)−(1−τ) ln(1−τ)]

[
1 +O

(
1
τN

)]
and writing

pτN (1− p)N−τN = eτN ln(p)+(N−τN) ln(1−p),

we obtain

P (Σk = bτNc) =

√
1

2πτ(1− τ)
· e−N[τ ln( τp )+(1−τ) ln( 1−τ

1−p )]
[
1 +O

(
1
τN

)]
.

ut

Lemma 3 Let Σk be a random variable that follows a binomial law of para-
meters (N, p). Let A and B be two integers such that 0 ≤ A ≤ B ≤ N . Let
γ+

def= 1−p
p max

(
B

N−B+1 ,
A+1
N−A

)
and γ−

def= 1−p
p min

(
B

N−B+1 ,
A+1
N−A

)
. Then,

we have

P (Σk = B)
1− γB−A+1

−
1− γ−

≤
B∑
i=A

P (Σk = i) ≤ P (Σk = B)
1− γB−A+1

+

1− γ+
,

P (Σk = A)
1− 1/γB−A+1

+

1− 1/γ+
≤

B∑
i=A

P (Σk = i) ≤ P (Σk = A)
1− 1/γB−A+1

−
1− 1/γ−

,

Proof We can see that

P (Σk = i− 1) =
1− p
p

i

N − i+ 1
P (Σk = i), for 0 < i ≤ N .

This leads to:
BX
i=A

P (Σk = i) = P (Σk = B)

"
1 +

(1− p)B
p(N − B + 1)

+ · · ·+
(1− p)B−AB · · · (A+ 1)

pB−A(N − B + 1) · · · (N − A)

#
.

We deduce that

P (Σk = B)
B−A∑
i=0

γi− ≤
B∑
i=A

P (Σk = i) ≤ P (Σk = B)
B−A∑
i=0

γi+.

This implies the lemma.
ut

Notation 1 Writing f ∼
N→∞

g means that lim
N→∞

f(N)
g(N) = 1.



The next theorem is known in another context (see. [17]). We can derive
for instance the first expression (3) from the previous lemmas by writing
for A def= dτNe that P (Σk ≥ τN) =

∑N
i=A P (Σk = i) =

∑B
i=A P (Σk =

i) +
∑N
i=B+1 P (Σk = i), and by applying Lemma 3 to the first sum and by

choosing B such that
(i) the second sum is negligible in front of the first one,
(ii) and such that γ+ ≈ γ−.

Theorem 1 Let p0 and p be two real numbers such that 0 < p < p0 < 1 and
let τ such that p < τ < p0. Let Σk and Σ0 follow a binomial law of respective
parameters (N, p) and (N, p0). Then,

P (Σk ≥ τN) ∼
N→∞

(1− p)
√
τ

(τ − p)
√

2πN(1− τ)
e−ND(τ ||p), (3)

and

P (Σ0 ≤ τN) ∼
N→∞

p0

√
1− τ

(p0 − τ)
√

2πNτ
e−ND(τ ||p0). (4)

3.2 Comparison with other approximations

A formula valid in many cases. The approximation given in Theorem 1 is
quite accurate over a very wide range of parameters (whether p is small or not
whether τ is close to p or not). This is in sharp contrast with the approxima-
tions which have been used up to now. In the case of differential cryptanalysis
where p is small and τ is significantly different from p, a Poisson approxima-
tion is used. It gives a sharp estimate but it is not valid anymore in the case of
linear cryptanalysis where p is close to 1/2 and τ is close to p. In this case, a
Gaussian approximation is used instead, see [13,10,14,11,12,6]. However this
Gaussian approximation gives poor estimates for differential cryptanalysis.

On the exponential behavior of the binomial tails. Binomial tails are well
known to decrease exponentially in N . The correct exponent has been given
in several places. For instance, in [11,12], the aim of the authors is to derive
an asymptotic formula for the best distinguisher, that is the distinguisher that
maximizes |1− α− β|. The following result is derived:

max(α, β) .= 2−NC(p0,p) (5)

where f(N) .= g(N) means f(N) = g(N)eo(N) and C is the Chernoff informa-
tion.

In the general case where p0 /∈ {0, 1}, such a distinguisher has an accep-
tance region of the form mentioned by Lemma 1 with t equals to 1. In this
setting, the value of the relative threshold τ fulfills the equality D (τ ||p0) =
D (τ ||p). Actually, this value of the Kullback-Leibler divergence is equal to the



Chernoff information C(p0, p) times ln(2) (see [16, Section 12.9]). Thus, the
exponent in (3) and (4) is the same as the one given by (5):

α
.= e−ND(τ ||p0) .= 2−NC(p0,p) and, β

.= e−ND(τ ||p) .= 2−NC(p0,p).

In the case p0 = 0 or p0 = 1, in impossible or higher order differential crypt-
analysis for instance, the relative threshold τ is equal to p0 and the non-
detection error probability α vanishes. Thus, max(α, β) = β

.= e−ND(p0||p) .=
2−NC(p0,p). The last equality is directly derived from the definition of the
Kullback-Leibler divergence. The correct exponential behavior in ND (τ ||p) is
captured by our Theorem 1 but we also have an additional polynomial term

(1−p)
√
τ

(τ−p)
√

2πN(1−τ)
which is non negligible. Taking only the exponential term in

(5) is too coarse in many cases as Figure 1 shows.
For instance in Figure 1, the data complexity given by the formula of [12] is
four times larger than the real value N . Moreover, the lack of the polynomial
term gives worse results when considering error probabilities. The error on the
probabilities can be more than 50%.

On the polynomial behavior of the binomial tails. In [11], a polynomial factor
is taken into account. However it is only suitable when the Gaussian approxi-
mation of binomial tails can be used. In this case, the data complexity is:

N ≈
2 · Φ−1(α+β

2 )2

D (p0||p)
, (6)

where Φ−1 is the inverse cumulative function of a Gaussian random variable.
For instance, this formula gives a poor estimate in the case of differential
cryptanalysis. In general this formula is too optimistic as it can be seen in
Figure 1.

Explanation of Figure 1. Hereafter we compare the real value of the data
complexity N (the required number of samples) to the estimates obtained
using (5) and (6). The value of log2(N) is obtained thanks to Algorithm 1
presented in Subsection 4.1. An additional column contains the estimate found
using (3) and (4). Notice that these estimate tends towards N as β goes to
zero.

4 On the required Data Complexity

4.1 General method for finding the Data Complexity

We are interested in this section in finding an accurate number of samples to
reach given error probabilities.

Let Σk (resp. Σ0) be a random variable which follows a binomial law
of parameters N and p (resp. p0) in the hypothesis testing paradigm. The
acceptance region is defined by a threshold T , thus both error probabilities



log2(N) (3) & (4) [11] [12]

Linear
p0 = 0.5 + 1.49 · 2−24 p = 0.5

α = 0.1 β = 0.1
47.57 47.88 47.57 49.58

Linear
p0 = 0.5 + 1.49 · 2−24 p = 0.5

α = 0.001 β = 0.001
50.10 50.13 50.10 51.17

Differential
p0 = 1.87 · 2−56 p = 2−64

α = 0.1 β = 0.1
56.30 56.77 54.44 57.71

Differential
p0 = 1.87 · 2−56 p = 2−64

α = 0.001 β = 0.001
58.30 58.50 56.98 59.29

Truncated
differential

p0 = 1.18 · 2−16 p = 2−16

α = 0.001 β = 0.001
26.32 26.35 26.28 27.39

Fig. 1 Comparison of estimates of log2(N) from [11,12] and our work for various param-
eters.

can be rewritten as P (Σ0 < T ) and P (Σk ≥ T ). Let α and β be two given real
numbers (0 < α, β < 1). The problem is to find a number of samples N and a
threshold T such that the error probabilities are less than α and β respectively.
This is equivalent to find a solution (N,T ) of the following system{

P (Σ0 < T ) ≤ α,
P (Σk ≥ T ) ≤ β.

(7)

In practice, using real numbers avoids troubles coming from the fact that the
set of integers is discrete. Thus, we use estimates on error probabilities that
are functions with real entries N and τ = T/N (relative threshold). Formulae
from Theorem 1 can be used for those estimates.

We denote respectively by Gnd(N, τ) and Gfa(N, τ) the estimates for non-
detection and false alarm error probabilities. These estimates are chosen is such
a way that they are decreasing functions in N for a given τ . In consequence,
the problematic boils down to find N and τ such that

Gnd(N, τ) ≤ α and Gfa(N, τ) ≤ β. (8)

For a given τ , we compute the values Nnd(τ) and Nfa(τ) such that:

Gnd(Nnd(τ), τ) = α and Gfa(Nfa(τ), τ) = β.

One of these two values may be greater than the other one. In this case, the
threshold should be changed to balance Nnd and Nfa: for a fixed N , decreasing



τ means accepting more candidates and so non-detection error probability
decreases while false alarm error probability increases.

Algorithm 1 then represents a method for computing the values of N and
τ which correspond to balanced Nfa and Nnd. It is based on the following
lemma.

Lemma 4 Let Gnd(N, τ) and Gfa(N, τ) be two functions of N and τ , defined
on [0,+∞) × [p, p0], with the following properties:

– for a fixed τ , both are decreasing functions of N ;
– for a fixed N , Gnd(N, τ) (resp. Gfa(N, τ)) is increasing (resp. decreasing)

in τ ;
– lim

N→0
Gnd(N, τ) ≥ 1 , lim

N→0
Gfa(N, τ) ≥ 1;

– lim
N→∞

Gnd(N, τ) = lim
N→∞

Gfa(N, τ) = 0.

Let us recall that for fixed α, β in [0, 1] and τ in [p, p0], Gnd(Nnd(τ), τ) = α
and Gfa(Nfa(τ), τ) = β.
We introduce N(τ) = max(Nnd(τ), Nfa(τ)) which represents the minimal N
such that (N, τ) fulfils (8).
Then, for p ≤ m ≤ p0,

if Nnd(m) > Nfa(m), then, for all τ > m, N(τ) > N(m);
if Nnd(m) < Nfa(m), then, for all τ < m, N(τ) > N(m).

Proof Both proofs are similar, so we only prove the first statement. Since
Nnd(m) > Nfa(m), we have Gnd(N(m),m) = α and Gfa(N(m),m) < β.
Using the increasing/decreasing properties of Gnd/Gfa, we can say that for
τ > m, Gnd(N(m), τ) > α and Gfa(N(m), τ) < β. Then, since those functions
are decreasing with N , we deduce that N(τ) > N(m). ut

Algorithm 1 Computation of the exact number of samples required for a
statistical attack (and the corresponding relative threshold).

Input: Given error probabilities (α, β) and probabilities (p0, p).
Output:N and τ : the minimum number of samples and the corresponding relative thresh-
old to reach error probabilities less than (α, β).

Set τmin to p and τmax to p0.
repeat

Set τ to
τmin + τmax

2
.

Compute Nnd such that ∀N > Nnd, Gnd(N, τ) ≤ α.
Compute Nfa such that ∀N > Nfa, Gfa(N, τ) ≤ β.
if Nnd > Nfa then
τmax = τ .

else
τmin = τ .

end if
until Nnd = Nfa.
Return N = Nnd = Nfa and τ .



The computation of Nnd and Nfa can be made thanks to a dichotomic search
but a more efficient way of doing that is explained in Appendix 7.2.

4.2 Asymptotic behaviour of the Data Complexity

The aim of this section is to provide a simple criterion to compare two different
statistical attacks. An attack is defined by a pair (p0, p) of probabilities where
p (resp. p0) is the probability that the phenomenon occurs for a wrong key
output k 6= k0 (resp. for the good key output k = k0).

In order to simplify the following computation, we take a threshold τ = p0

that gives a non-detection error probability α of order 1
2 . In statistical attacks,

the time complexity is related to the false alarm probability β, thus, it is
important to control this probability. That is why taking τ = p0 is a natural
way of simplifying the problem.

Then, we can use Theorem 1 to derive a sharp approximation of N intro-
duced in the following theorem.

Theorem 2 Let p0 (resp. p) be the probability of the phenomenon to occur
in the good key parametrization (resp. the wrong key parametrization). For a
relative threshold τ = p0, a good approximation of the required number of sam-
ples N to distinguish between the correctly keyed permutation and a incorrectly
keyed permutation with false alarm error probability less or equal to β is

N ′
def= − 1

D (p0||p)

[
ln

(
νβ√

D (p0||p)

)
+ 0.5 ln (− ln(νβ))

]
, (9)

since

N ′ ≤ N∞ ≤ N ′
[
1 +

(θ − 1) ln(θ)
ln(N ′)

]
,

for

ν
def=

(p0 − p)
√

2π(1− p0)
(1− p)√p0

and θ
def=
[
1 +

1
2 ln(νβ)

ln
(
− ln(νβ)
D (p0||p)

)]−1

.

(10)
Where N∞ is the value obtained with Algorithm 1 using (3) and (4) as esti-
mates of error probabilities.

Proof See Appendix 7.4. ut

This approximation with N ′ is tight: we estimated the data complexity of some
known attacks (see Figure 2) and observed θ’s in the range (1, 6.5]. Moreover,
for β = 2−32, observed values of θ’s were less than 2.

Equation (9) gives a simple way of roughly comparing the data complexity
of two statistical attacks. Indeed, N ′ is essentially a decreasing function of



D (p0||p). Therefore, comparing the data complexity of two statistical crypt-
analyses boils down to comparing the corresponding Kullback-Leibler diver-
gences.

Moreover, it can be proved that ln(2
√
πD (p0||p)) is a good estimate of

ln(ν). Thus, a good approximation of N ′ is

N ′′
def= − ln(2

√
πβ)

D (p0||p)
. (11)

Experimental results given in Section 4.3 show that this estimation is quite
sharp and becomes better as β goes to 0.

To have a more accurate comparison between two attacks (for instance in
the case α 6= 0.5), Algorithm 1 may be used. Notice that the results we give
are estimates of the number of samples and not of the number of plaintexts.
In the case of linear cryptanalysis it remains the same but in the case of dif-
ferential, a sample is derived from a pair of plaintexts with a given differential
characteristic. Thus, the number of required plaintexts is twice the number of
samples. The estimate of the number of plaintexts is a more specific issue we
will not deal with.

4.3 Experimental results

Here we present some results found with Algorithm 1 to show the accuracy of
the estimate given by Theorem 2.

Let us denote by N the exact number of required samples, we want to
compare it to both estimates. Let us write again both approximations of N
given in Subsection 4.2, namely:

N ′ = − 1
D (p0||p)

[
ln

(
νβ√

D (p0||p)

)
+ 0.5 ln (− ln(νβ))

]

N ′′ =
− ln(2

√
πβ)

D (p0||p)
.

In Figure 2, N is given with two decimal digits precision. This table compares
the values of N ′ and N ′′ to the real value N for some parameters. We can see
in Figure 2 that N ′ and N ′′ tend to N as β goes to 0.

4.4 Application on statistical attacks

Now that we have expressed N in terms of Kullback-Leibler divergence, we
see that the behavior of N is dominated by D (p0||p)−1. Hereafter, we esti-
mate D (p0||p)−1 for many statistical cryptanalyses. We recover the format of



β = 2−8

p p0 log2(N) log2(N ′) log2(N ′′)

L 0.5 0.5 + 1.19 · 2−21 42.32 42.00 (−0.32) 42.60
DL 0.5 0.5 + 1.73 · 2−6 11.26 11.15 (−0.11) 11.52
D 2−64 1.87 · 2−56 54.57 54.68 (+0.11) 54.82
Dgfn 2−32 1.53 · 2−27 27.14 26.80 (−0.34) 26.94
TDgfn 2−16 1.18 · 2−16 23.85 23.66 (−0.19) 24.13

β = 2−16

p p0 log2(N) log2(N ′) log2(N ′′)

L 0.5 0.5 + 1.19 · 2−21 43.62 43.54 (−0.08) 43.79
DL 0.5 0.5 + 1.73 · 2−6 12.54 12.52 (−0.02) 12.71
D 2−64 1.87 · 2−56 55.85 55.94 (+0.09) 56.02
Dgfn 2−32 1.53 · 2−27 28.27 28.05 (−0.22) 28.14
TDgfn 2−16 1.18 · 2−16 25.15 25.11 (−0.04) 25.33

β = 2−32

p p0 log2(N) log2(N ′) log2(N ′′)

L 0.5 0.5 + 1.19 · 2−21 44.78 44.76 (−0.02) 44.88
DL 0.5 0.5 + 1.73 · 2−6 13.70 13.69 (−0.01) 13.80
D 2−64 1.87 · 2−56 56.98 57.06 (+0.08) 57.11
Dgfn 2−32 1.53 · 2−27 29.13 29.17 (+0.04) 29.23
TDgfn 2−16 1.18 · 2−16 26.31 26.30 (−0.01) 26.42

Fig. 2 Estimates and real value of the data complexity for som parameters β, p and p0.

– L : DES linear cryptanalysis recovering 26 key bits [4].
– DL : DES differential-linear cryptanalysis [18].
– D : DES differential cryptanalysis [19].
– Dgfn/TDgfn : Generalized Feistel networks (truncated) differential cryptanalysis

presented in this paper.

known results and give new results for truncated differential and higher order
differential cryptanalysis. Let us recall the Kullback-Leibler divergence

D (p0||p) = p0 ln
(
p0

p

)
+ (1− p0) ln

(
1− p0

1− p

)
.

In Appendix 7.3, Lemma 7 gives an expansion of Kullback-Leibler divergence

D (p0||p) = p0

[
log
(
p0

p

)
− p0 − p

p0
+

(p0 − p)2

2p0(1− p0)

]
+O(p0 − p)3.

From this, we derive the asymptotic behavior of the number of sample for set
of parameters depending of the type of cryptanalysis.



Attacks Asymptotic behavior Asymptotic behavior Known or
of the of the chosen plaintexts

number of samples number of plaintexts (CP/KP)

Linear
1

2(p0 − p)2
1

2(p0 − p)2
KP

Differential
1

p0 ln(p0/p)− p0
2

p0 ln(p0/p)− p0
CP

Differential-linear
1

2(p0 − p)2
1

(p0 − p)2
CP

Truncated
differential

p

(p0 − p)2
p · γ

(p0 − p)2
, 1 < γ < 2 CP

Impossible
differential

1

p

2

p
CP

i-th order
differential

−
1

ln p
−

2i

ln p
CP

Fig. 3 Asymptotic data complexity for some statistical attacks.

Explanation of Figure 3

Linear cryptanalysis. In the case of linear cryptanalysis, p0 is close to p = 1/2.
If we use the notation of linear cryptanalysis (p0 − p = ε), we recover 1/2ε2,
which is a well-known result due to Matsui [3,4].

Differential cryptanalysis. In this case, both p0 and p are small but the dif-
ference p0 − p is dominated by p0. The result we found is slightly different
from the standard result, e.g. 1/p0 in [8] because it involves ln(p0/p). How-
ever, the commonly used result requires some restrictions on the ratio p0/p so
it is natural that such a dependency appears.

Differential-linear cryptanalysis. This attack presented in [18] combines a 3-
round differential characteristic of probability 1 with a 3-round linear approx-
imation. This case is very similar to linear cryptanalysis since we observe a
linear behavior in the output.

Truncated differential cryptanalysis. In the case of truncated differential crypt-
analysis, p0 and p are small but close to each other [9].

Impossible differential. This case is a particular one. The impossible differ-
ential cryptanalysis [20] relies on the fact that some event cannot occur in
the output of the key dependent permutation. We have always assumed that
p0 > p but in this case it is not true anymore (p0 = 0). However, the formula
holds in this case too.



Higher order differential. This attack introduced in [9] is a generalization of
differential cryptanalysis. It exploits the fact that a i-th order differential of
the cipher is constant (i.e independent from the plaintext and the key). A
typical case is when i = deg(F + 1)), any i-th order differential of F vanishes.
Therefore, for this attack, we have p0 = 1. Moreover, p = (2m − 1)−1 where
m is the block size so p is small. An important remark here, is that in a
cryptanalysis of order i, a sample corresponds to 2i chosen plaintexts.

5 Success probability of a key-recovery attack

In this section we deal with the key ranking paradigm introduced in Section 2.
We present a simple formula that is a good estimate of the success probability
expressed in terms of n, the number of key candidates, `, the size of the list
to keep and N the number of samples.

5.1 Ordered statistics

Let us denote by (ξi)0≤i<n−1 the random variables corresponding to the Σki ’s.
The analysis phase sorts the Σki ’s and keeps the ` largest. We denote by ξ∗i
the i-th largest value of the ξi’s. We are interested in the distribution of ξ∗`
because we keep only a list of keys of size `. The right key k0 is in the list if
and only if ξ0 ≥ ξ∗` . The success probability is then:

PS = P [ξ∗` ≤ ξ0] =
N∑
i=0

P [ξ0 = i] · P [ξ∗` ≤ i] .

Let us denote by F the cumulative distribution function of ξi’s (i 6= 0)

F (x) = P [ξ1 ≤ x] = · · · = P [ξn−1 ≤ x] .

It is well known (see for instance [21]) that F (ξ∗` ) follows a beta distribution
with parameters n− `− 1 and `− 1. Let us denote by g this density function.
We denote by f0 the function f0(x) = P [ξ0 = bxc]. Then, we can write

PS =
N∑
i=0

f0(i) · P [ξ∗` < i]

=
N∑
i=0

f0(i) · P [F (ξ∗` ) < F (i)]

=
N∑
i=0

f0(i) ·
∫ F (i)

0

g(t) dt (12)



5.2 Success probability

The aim of this section is to derive a simple expression giving an estimate of
the success probability of a statistical cryptanalysis.

More precisely, we extend a result given by Selçuk in [6] which was a normal
distribution approximation of the binomial distribution. To derive the formula
of the success probability, it is assumed in [6] that the `-th order statistic is
in the limit normally distributed.
Let us denote by f̃0 the density of the normal distribution with mean Np0

and variance Np0(1− p0). We also define F̃−1 the inverse cumulative normal
distribution function with mean Np and variance Np(1 − p). Then the work
of Selçuk gives the following approximation for the success probability:

PS ≈
∫ ∞
F̃−1(1−`/n)

f̃0(x) dx. (13)

Taking the normal distribution as an estimate of the binomial distribution may
be misleading for some sets of parameters as stated previously. In this section
we derive a similar formula without the help of the Gaussian distribution. Our
result is based on the fact that the beta distribution is concentrated around
t0

def= n−`−1
n−2 . A last definition is required before giving the principal result of

this section.

Definition 4 Let F be the cumulative function of a binomial law with pa-
rameters (N, p), that is

F (x) def=
∑
i≤x

(
N

i

)
pi(1− p)N−i.

We define the inverse function F−1 by

F−1(x) = min{t ∈ N|F (t) ≥ x}.

Remark: It is easy to see that the equality F (F−1(x)) = x may not hold. The
definition of F−1 implies that

∑F−1(x)
i=0 f(x) ≥ x and

∑F−1(x)−1
i=0 f(x) < x.

Hence, we can bound the error term,

F (F−1(x))− x < f(F−1(x)). (14)

Theorem 3 Let PS be the success probability of a statistical attack that keeps `
keys candidates among n. Let N be the number of available samples.We denote
by f0(i) the probability that the key counter corresponding to the good key takes
value i, that is f0(i) =

(
N
i

)
p0
i(1 − p0)N−i. We denote by F the cumulative

distribution function of the key counters corresponding to the other keys and



by F−1 its inverse function given in Definition 4. Let

λ
def=

`− 1
n− 2

= 1− t0

B
def= F−1(1− λ) (15)

δ
def=

B−1∑
i=0

f0(i) (16)

Cλ
def=

p

p

p0(N + 1)−B
B − p0(N + 1)

(17)

If λ ≤ 1
4 then

PS = 1− δ +O

(
δ(1 + Cλ)

√
ln(`/δ2)

`
+

1
l2

+
1
n

)
.

Discussion

On the values taken by Cλ. It turns out that Cλ is for all parameters of cryp-
tographic interest a small constant. To avoid too complicated statements, we
avoid giving here general upper-bounds on Cλ. Roughly speaking, this con-
stant is the biggest in the case of linear cryptanalysis, when p0 and p are very
close to each other. In this case, the Gaussian approximation is quite good. If
we bring in the Gaussian cumulative function

Q(x) def=
∫ ∞
x

e−u
2/2

√
2π

du,

then it can be checked from the very definition of B (Equation (15)) that

B ≈ pN + x
√
Np(1− p)

where x def= Q−1(λ). Notice that x ∼
λ→0+

√
−2 lnλ. Moreover from the definition

of δ (Equation (16)) we also get that

B ≈ p0N − y
√
Np0(1− p0),

where y def= Q−1(δ). We also have y ∼
λ→0+

√
−2 ln δ. Putting all these facts

together, we obtain

Cλ ≈
p

p0

y
√
Np0(1− p0)

x
√
Np(1− p)

≈
√
− ln δ
− lnλ

(where we also used that p0 ≈ p). Notice that δ can be viewed as an approxi-
mation of 1−PS and thus is generally aimed to be around 0.05. For complexity
reasons, λ has to be kept small, for instance λ = 10−5. In this case we have
Cλ ≈ 0.5.



Expression of the error term. In [6] an estimate of the success probability is
given. In this paper, we give a generalisation of this estimate but we also com-
pute the error PS−

∑N
i=F−1(1− `−1

n−2 ) f0(i). This error term decreases when n and
` tend to infinity but it also decreases with δ. Let us recall that δ ≈ 1 − Ps
thus, the error induced by using our formula decreases when the success prob-
ability grows.

Link with Section 4 In the previous section we express the data complexity in
terms of non detection and false alarm error probabilities. Let us recall that β
is the probability to accept a wrong key in the list of kept candidates. In this
case, the size of the list of kept candidates is not fixed and has a mean of βn.
Thus, it seems natural to take β = `/n. Moreover, α is the probability to reject
the correct key and thus, α may be chosen to be equal to 1−PS . If we use (7) to
express α in terms of β, we obtain α =

∑F−1(1−β)−1
i=0 f0(i). Using the suggested

values for both probabilities, this leads to PS = 1−
∑F−1(1−`/n)−1
i=0 f0(i) what

corresponds to the result of Theorem 3.

Proof of Theorem 3.
The idea is to split the sum around the critical point t0. Let ε > 0,

PS =
N∑
i=0

f0(i)
∫ F (i)

0

g(t) dt

=
F−1(t0−ε)−1∑

i=0

f0(i)
∫ F (i)

0

g(t) dt+
F−1(t0)−1∑
i=F−1(t0−ε)

f0(i)
∫ F (i)

0

g(t) dt

+
N∑

i=F−1(t0)

f0(i)
∫ F (i)

0

g(t) dt

We focus on the third term of the sum
N∑

i=F−1(t0)

f0(i)
∫ F (i)

0

g(t) dt =
N∑

i=F−1(t0)

f0(i)−
N∑

i=F−1(t0)

f0(i)
∫ 1

F (i)

g(t) dt.

The success probability is essentially
∑N
i=F−1(t0)

f0(i) thus we will now prove
that the other terms are negligible.

PS −
N∑

i=F−1(t0)

f0(i) =
F−1(t0−ε)−1∑

i=0

f0(i)
∫ F (i)

0

g(t) dt︸ ︷︷ ︸
S1

+
F−1(t0)−1∑
i=F−1(t0−ε)

f0(i)
∫ F (i)

0

g(t) dt

︸ ︷︷ ︸
S2

−
N∑

i=F−1(t0)

f0(i)
∫ 1

F (i)

g(t) dt

︸ ︷︷ ︸
S3



The first argument is that the beta distribution is concentrated around t0. This
means that integrals with domains far enough from t0 are negligible. This is
the case of the integral in S1, but also for some terms in the sum S3 (denoted
by S5).

S3 =
F−1(t0+ε)−1∑
i=F−1(t0)

f0(i)
∫ 1

F (i)

g(t) dt

︸ ︷︷ ︸
S4

+
N∑

i=F−1(t0+ε)

f0(i)
∫ 1

F (i)

g(t) dt

︸ ︷︷ ︸
S5

To sum-up, we now have an error term of S1 + S2 − S4 − S5 with S1 and S5

negligible because of the beta distribution. We focus now on S2 − S4.

|S2 − S4| ≤ max(S2, S4)

≤ max

 F−1(t0)−1∑
i=F−1(t0−ε)

f0(i),
F−1(t0+ε)−1∑
i=F−1(t0)

f0(i)


Here the argument is that the sums vanish or are negligible compared to δ.
The following lemmas justify the two arguments given in the proof. The first
one gives an estimate for the beta distribution tails.

Lemma 5 Let g be the density function of the beta distribution of parameters
(n− `− 1, `− 1):

g(t) def= (n− 1) ·
(
n− 2
`− 1

)
· tn−`−1(1− t)`−1.

The maximum of g is reached at t0
def=

n− `− 1
n− 2

. Let ε def= z ·
√
`− 1
n− 2

. If

z = o
(√

`
)

and ` ∈ [1, n/2], we have:

∫ t0+ε

t0−ε
g(t) dt = 1 +O

(
1
`2

+
1
n

+
e−z

2/2

z

)
.

Proof see Appendix 7.5. ut

The second one expresses S2 as a function of δ ≈ 1−PS . Notice that this can
be done for S4 in a similar way.

Lemma 6 Let ε = z
√
`−1
n for some value z where z = o(

√
`) when ` goes to

infinity. If λ ≤ 1
4 , then

F−1(t0)−1∑
i=F−1(t0−ε)

f0(i) = O

(
zCλδ√
`− 1

)
.

Proof see Appendix 7.6. ut



We go back to the proof of Theorem 3. Let us recall that we want to bound
the error

PS −
N∑

i=F−1(t0)

f0(i) = S1 + S2 − S4 − S5.

We bound S1 and S5:

S1 =
F−1(t0−ε)−1∑

i=0

f0(i)
∫ F (i)

0

g(t) dt ≤
∫ t0−ε

0

g(t) dt,

S5 =
N∑

i=F−1(t0+ε)

f0(i)
∫ 1

F (i)

g(t) dt ≤
∫ 1

t0+ε

g(t) dt.

Moreover, |S1 − S5| ≤ S1 + S5 ≤ 1−
∫ t0+ε
t0−ε g(t) dt. Thus, using Lemma 5,

|S1 − S5| = O

(
1
`2

+
1
n

+
e−z

2/2

z

)
(18)

To show that S2 is negligible we use Lemma 6. This lemma can be slightly
modified to prove that S4 is negligible too. Hence,

|S2 − S4| = O

(
δ
z√
`

)
. (19)

Adding (18) and (19) gives the following result

PS −
N∑

i=F−1(t0)

f0(i) = O

(
1
`2

+
1
n

+
e−z

2/2

z
+ δ

z√
`

)
.

The final step consists in choosing a particular z. Taking z =
√

ln
(
`
δ2

)
gives 1

PS −
N∑

i=F−1(t0)

f0(i) = O

(
δ

√
ln(`/δ2)

`
+

1
`2

+
1
n

)
.

ut

1 The point of choosing z like this is that it can be easily checked that e
−z2/2

z
= O

“
δ z√

`

”
.



5.3 Experimental results

In Figure 4 we compare our formula for the success probability

Ps ≈
N∑

i=F−1(1− `−1
n−2 )

f0(i) (20)

with Formula (13) given by Selçuk [6] and the true value. This value is numer-
ically computed using (12) with large precision.
In the case of linear cryptanalysis, as the Gaussian approximation is valid, our
expression of the success probability is the same as the one given by Selçuk.
However, in the case of differential cryptanalysis, the formula given by Selçuk
is too optimistic, while our Expression (20) is close to the true value.

Type Parameters our estimate estimate [6]
of Probabilities N = 248 PS of PS of PS

cryptanalysis n = 220 (20) (13)

Linear
p = 0.5

p0 = p+ 1.49 · 2−24 ` = 215 0.8681 0.8681 0.8681

Linear
p = 0.5

p0 = p+ 1.49 · 2−24 ` = 210 0.4533 0.4533 0.4533

Differential
p = 2−64

p0 = 2−47.2 ` = 215 0.8257 0.8247 0.9050

Differential
p = 2−64

p0 = 2−47.2 ` = 210 0.8250 0.8247 0.9050

Fig. 4 Comparision of the estimates (20) and (13) with the true value of the success
probability.

The point of Figure 5 is to demonstrate that when we choose N of the
form 2

N = −c · ln(2
√
π · `/n)

D (p0||p)
,

then the success probability PS depends essentially only on c and is basically
independent of the type of cryptanalysis. We have computed in Figure 5 several
values of the success probability for n = 260 for various values of ` and types
of cryptanalysis.

6 Conclusion

In this paper, we give a general framework to estimate the number of samples
that are required to perform a statistical cryptanalysis. We use this frame-
work to provide a simple algorithm which accurately computes the number of

2 This choice is guided by Theorem 2 and (11) where we have shown that data complexity

is of order O
“
− ln(2

√
π·`/n)

D(p0||p)

”
.



c = 1 c = 1.5

Parameters ` `
210 220 230 210 220 230

p = 0.5
p0 = p+ 1.49 · 2−24 0.5855 0.5898 0.5949 0.9799 0.9687 0.9500

p = 0.5
p0 = p+ 1.23 · 2−11 0.5856 0.5899 0.5950 0.9799 0.9687 0.9500

p = 2−30

p0 = 1.2 · 2−30 0.5802 0.5921 0.5875 0.9766 0.9650 0.9446

p = 2−40

p0 = 1.2 · 2−40 0.5802 0.5827 0.5875 0.9766 0.9650 0.9446

p = 2−64

p0 = 2−60 0.5801 0.5257 0.5544 0.9249 0.9070 0.8844

p = 2−32

p0 = 2−29 0.5993 0.6179 0.6443 0.9605 0.9375 0.9241

Fig. 5 Success probability for various parameters with n = 260 and N = −c · ln(2
√
π·`/n)

D(p0||p)

samples which is required for achieving some given error probabilities. Further-
more, we provide an explicit formula (Theorem 2) which gives a good estimate
of the number of required samples (bounds on relative error are given). A fur-
ther simplification of the data complexity shows that the behavior of the num-
ber of samples is dominated by D (p0||p)−1. We show that D (p0||p)−1 gives
the same order of magnitude as known results excepted in differential crypt-
analysis where a dependency on ln(p0/p) is emphasized. We also extend these
results to other statistical cryptanalyses, for instance, truncated differential
cryptanalysis.

On the other hand, we provide a simple formula for the success probability
in terms of n, the number of key candidates, `, the size of the list of kept
candidates, and N , the number of available samples (Theorem 3). This for-
mula is a generalization of a formula obtained by Selçuk using in particular
a Gaussian approximation for the binomial distribution. Since we do not use
such an approximation, our result is valid for all sets of parameters (p0, p),
including differential cryptanalysis. Moreover, we give an estimate of the error
made using this formula for the success probability. Finally, using this expres-
sion, we compute some success probabilities for some sets of parameters and
notice that when N is of the form

N = c · − ln(2
√
πl/n)

D (p0||p)

as suggested by Theorem 2 and (11), the success probability seems to only
depend on c.
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schémas d’authentification. PhD thesis, Université Paris 11 Orsay (1997)
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7 Appendix

7.1 Generalized Feistel networks

A generalized Feistel network [15] is an iterated block cipher whose round
function is depicted in Figure 6.

Definition 5 In a generalized Feistel network with block size 2dn, the plain-
text X is split into 2n blocks of size d. It uses n S-boxes of dimension d × d
denoted by S1, ..., Sn and the round function (X1, ..., X2n) 7→ (Y1, ..., Y2n) is
defined by:

Zn+1−i = Xn+1−i ⊕ Si(Xi+n ⊕Ki) for i = 1, ..., n
Zi = Xi for i = n+ 1, ..., 2n
Yi = Zi−1 for i 6= 1
Y1 = Z2n

where ⊕ is the modulo 2 addition.
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Fig. 6 Generalized Feistel network with 4 S-boxes

7.2 Discussion on Algorithm 1: Finding Nnd and Nfa

A more efficient technique than dichotomic search can be used to find Nnd and
Nfa in Algorithm 1. If we fix the non-detection error probability to α, (4) can
be rewritten as:

N ∼ 1
D (τ ||p0)

ln
(

p0

√
1− τ

α(p0 − τ)
√

2πNτ

)
Using the same fixed point argument as in Appendix 7.4, we can find Nnd by
iterating the function with a first point x0 = D (τ ||p0)−1. The same thing can
be done with (3) in order to find Nfa.



7.3 Taylor expansions of the Kullback-Leibler divergence

This appendix contains three lemmas giving the asymptotic behavior of some
expressions that involve the Kullback-Leibler divergence and that are used all
over the paper.

Lemma 7 Let 0 < a < b < 1 such that O
(
b−a
1−a

)
= O (b− a). Then,

D (b||a) = b

[
ln
(
b

a

)
− b− a

b
+

(b− a)2

2b(1− b)

]
+O(b− a)3

Proof Using the Taylor theorem, we get

(1− b) ln
(

1− b
1− a

)
= a− b+

(a− b)2

2(1− b)
+O(b− a)3.

Therefore,

D (b||a) = b ln
(
b

a

)
+ (1− b) ln

(
1− b
1− a

)
= b ln

(
b

a

)
+ a− b+

(a− b)2

2(1− b)
+O (b− a)3

= b

[
ln
(
b

a

)
− b− a

b
+

(b− a)2

2b(1− b)
+O(b− a)3

]
.

Lemma 8 Let ε > 0 be a real number such that O
(
ε
a

)
= O

(
ε

1−a

)
= O (ε).

Then,

D (a+ ε||a) =
ε2

2a(1− a)
+O

(
ε3
)
.

Proof Using Lemma 7, we have that

D (a+ ε||a) = (a+ ε)
[
ln
(

1 +
ε

a

)
− ε

a+ ε
+

ε2

2(a+ ε)(1− a− ε)

]
+O

(
ε3
)
.

Since ε/a = O (ε), we expand the logarithm to get

D (a+ ε||a) = (a+ ε)
[
ε

a
− ε2

2a2
− ε

a+ ε
+

ε2

2(a+ ε)(1− a− ε)
+O

(
ε3

a3

)]
+O

(
ε3
)

= (a+ ε)
[

ε2 a

2a2(a+ ε)(1− a− ε)
+O

(
ε3
)]

+O
(
ε3
)

=
ε2

2a(1− a)
+O

(
ε3
)
.

ut



Lemma 9 If O
(
ε
a

)
= O

(
ε

1−a

)
= O (ε), then,

∆ε = D (a||a− ε)−D (a||a+ ε) =
2
3
ε3 · 1− 2a

a2(1− a)2
+O

(
ε4
)
.

Proof We split ∆ε into two terms.

∆ε = D (a||a− ε)−D (a||a+ ε)

= a ln
(
a+ ε

a− ε

)
+ (1− a) ln

(
1− a− ε
1− a+ ε

)
= ∆ε,a +∆ε,1−a

Expanding the logarithm in the first term gives:

∆ε,a = a ln
[
1 +

2ε
a− ε

]
= a

[
2ε
a− ε

− 2ε2

(a− ε)2
+

8ε3

3(a− ε)3
+O

(
ε4
)]

=
1

1− ε
a

[
2ε− 2ε2

a− ε
+

8ε3

3(a− ε)2
+O

(
ε4
)]

=
[
1 +

ε

a
+
ε2

a2
+ o

(
ε2
)]
·
[
2ε− 2ε2

a− ε
+

8ε3

3(a− ε)2
+O

(
ε4
)]

= 2ε− 2ε2

(a− ε)
+

8ε3

3(a− ε)2
+

2ε2

a
− 2ε3

a(a− ε)
+

2ε3

a2
+O

(
ε4
)

= 2ε
[
1 + ε

(
1
a
− 1
a− ε

)
+ ε2

4
3a2

+O
(
ε3
)]
.

Similarly, we get

∆ε,1−a = 2ε
[
−1 + ε

(
1

1− a
− 1

1− a+ ε

)
− ε2 4

3(1− a)2
+O

(
ε3
)]

Summing the two terms we obtain,

∆ε = ∆ε,a +∆ε,1−a

= 2ε2
[

1
a
− 1
a− ε

+
1

1− a
− 1

1− a+ ε
+ ε

(
4

3a2
− 4

3(1− a)2

)
+O

(
ε2
)]

= 2ε2
[
ε · 2a− 1

a2(1− a)2
+ ε

(
4

3a2
− 4

3(1− a)2

)
+O

(
ε2
)]
.

And finally,

∆ε =
2
3
ε3 · 1− 2a

a2(1− a)2
+O

(
ε4
)
.

ut



7.4 Proof of Theorem 2

Proof Recall that τ = p0 so that non-detection error probability is around 1
2 .

We want to control false alarm error probability that we fix to β. Equation
(3) in Theorem 1 gives

N ≈ − ln(νβ
√
N)

D (p0||p)
(21)

where ν def= (p0−p)
√

2π(1−p0)
(1−p)√p0 . Formula (21) suggests to bring in the contractive

function f :

f(x) def= − ln(νβ
√
x)

D (p0||p)
.

Applying f iteratively with first term N0 = 1 gives a sequence (Ni)i≥0 which
can be shown to have a limit N∞ which is the required number of samples.
Since f is decreasing, consecutive terms satisfyN2i ≤ N∞ ≤ N2i+1. Function
f can be written as

f(x) = a− b ln(x) with a
def= − ln(νβ)

D (p0||p)
and b

def=
1

2D (p0||p)
.

It is worth noticing that a corresponds to the second term, N1, of the sequence.
Now, we want to show that the third term, N2, provides a good approximation
of N∞. As N2 ≤ N∞ ≤ N3, it is desirable to express N3 in terms of N2.

N3 = N1 − b ln(N1) + b ln (N1/N2)
= N2 + b ln (N1/N2)

Let us define θ =
[
1 + 1

2 ln(νβ) ln
(
− ln(νβ)
D (p0||p)

)]−1

, as in Equation (10) in

Theorem 2. Then,

N2

N1
= 1 +

b ln(a)
a

= 1 +
ln(a)

2 ln(νβ)

=
[
1 +

1
2 ln(νβ)

ln
(
− ln(νβ)
D (p0||p)

)]
= θ−1.

The bound on N∞ becomes:

N2 ≤ N∞ ≤ N2

[
1 +

b ln(θ)
N2

]
.

in order to show thatN2 is a good approximation ofN∞, we focus on b ln(θ)/N2

and compare it with 1. Since N2/b = a/b−ln(a), we try to bound a/b. We have
θN2 = N1 implying a/b = θ ln(a)/(θ − 1). Since f is a decreasing function,
N1 > N2 leading to N2/b ≥ ln(N2)/(θ − 1).



Finally, N3 ≤ N2

[
1 +

(θ − 1) ln(θ)
ln(N2)

]
and

N2 ≤ N∞ ≤ N2

[
1 +

(θ − 1) ln(θ)
ln(N2)

]
where N2 is equal to the value of N ′ in Theorem 2.

7.5 Concentration of the beta density function (proof of Lemma 5)

The proof of Lemma 5 relies heavily on the following expansion.

Lemma 10 Let φ(t) be a function defined on (0, 1) that is four times dif-
ferentiable. Suppose that this function has a minimum value of 0 reached at
t0 ∈ ( 1

2 , 1) and that φ′′(t0) > 0. Let λ be a positive real number. Then, for
ε ∈ (0, 1− t0),∫ t0+ε

t0

e−λφ(t) dt =
∫ φ(t0+ε)

0

[
1√

2τφ′′(t0)
− 1

3
φ′′′(t0)
φ′′2(t0)

+At0
√
τ + o

(√
τ
)]
e−λτdτ

and∫ t0

t0−ε
e−λφ(t) dt =

∫ φ(t0−ε)

0

[
1√

2τφ′′(t0)
+

1
3
φ′′′(t0)
φ′′2(t0)

+At0
√
τ + o

(√
τ
)]
e−λτdτ.

Where At0
def=

√
2

24φ′′(t0)5/2

(
5φ(3)(t0)2

φ′′(t0)
− 3φ(4)(t0)

)
.

Proof Substituting τ for φ(t), we obtain∫ t0±ε

t0

e−λφ(t)dt =
∫ φ(t0±ε)

0

G(τ)e−λτdτ

with G(τ) =
1

φ′(t)

∣∣∣∣
t=φ−1(τ)

.

First of all, we are going to express t− t0 as a function of τ using the following
expansion of φ.

φ(t) =
φ′′(t0)

2
(t− t0)2 +

φ(3)(t0)
6

(t− t0)3 +
φ(4)(t0)

24
(t− t0)4 + o

(
(t− t0)4

)
.

We turn now to the asymptotic behavior of t− t0. Without loss of generality,
we assume that t > t0.

(t−t0)2 =
2φ(t)
φ′′(t0)

[
1 +

1
3
φ(3)(t0)
φ′′(t0)

(t− t0) +
1
12
φ(4)(t0)
φ′′(t0)

(t− t0)2 + o
(
(t− t0)2

)]−1

(22)



This gives t − t0 =
√

2τ
φ′′(t0)

[1 +O (
√
τ)]. Plugging this expression back into

(22) leads to

t− t0 =

√
2τ

φ′′(t0)

[
1−
√

2
6

φ(3)(t0)
φ′′(t0)3/2

√
τ + o(

√
τ)

]
.

Then, going one step further leads to:

(t− t0)2 =
2τ

φ′′(t0)

[
1 +
√

2
3

φ(3)(t0)
φ′′(t0)3/2

[
1−
√

2
6

φ(3)(t0)
φ′′(t0)3/2

√
τ

]
√
τ +

1
6
φ(4)(t0)
φ′′(t0)2

τ + o (τ)

]−1

t− t0 =

√
2τ

φ′′(t0)

[
1 +
√

2
3

φ(3)(t0)
φ′′(t0)3/2

√
τ +

(
1
6
φ(4)(t0)
φ′′(t0)2

− 1
9
φ(3)(t0)2

φ′′(t0)3

)
τ + o (τ)

]−1/2

And we finally get:

t−t0 =

√
2τ

φ′′(t0)

[
1−
√

2
6

φ(3)(t0)
φ′′(t0)3/2

√
τ −

(
1
12
φ(4)(t0)
φ′′(t0)2

− 5
36
φ(3)(t0)2

φ′′(t0)3

)
τ + o (τ)

]
.

(23)
Using the same method we show that, if t < t0, then

t−t0 = −

√
2τ

φ′′(t0)

[
1 +
√

2
6
φ(3)(t0)
φ′′(t0)2

√
τ −

(
1
12
φ(4)(t0)
φ′′(t0)2

− 5
36
φ(3)(t0)2

φ′′(t0)3

)
τ + o(τ)

]
.

(24)
Now that we have an expression of t− t0 as a function of τ we go back to the
computation of G(τ). We use the following Taylor series:

φ′(t) = φ′′(t0)(t− t0) +
φ(3)(t0)

2
(t− t0)2 +

φ(4)(t0)
6

(t− t0)3 + o
(
(t− t0)3

)
.

This gives the following expression of 1
φ′(t) :

1
φ′(t)

=
1

φ′′(t0)(t− t0) + 1
2φ

(3)(t0)(t− t0)2 + 1
6φ

(4)(t0)(t− t0)3 + o ((t− t0)3)

=
1

φ′′(t0)(t− t0)

[
1 +

1
2
φ(3)(t0)
φ′′(t0)

(t− t0) +
1
6
φ(4)(t0)
φ′′(t0)

(t− t0)2 + o
(
(t− t0)2

)]−1

=
1

φ′′(t0)(t− t0)

[
1− φ(3)(t0)

2φ′′(t0)
(t− t0) +

(
3
φ(3)(t0)2

φ′′(t0)
− 2φ(4)(t0)

)
(t− t0)2

12φ′′(t0)
+ o

(
(t− t0)2

)]
=

1
φ′′(t0)(t− t0)

− φ(3)(t0)
2φ′′(t0)2

+
(

3
φ(3)(t0)2

φ′′(t0)
− 2φ(4)(t0)

)
t− t0

12φ′′(t0)2
+ o (t− t0) .



We are now going to plug (23) in this formula. The first term can be written
as:

1
φ′′(t0)(t− t0)

=
1√

2φ′′(t)τ

[
1−
√

2
6

φ(3)(t0)
φ′′(t0)3/2

√
τ −

(
1
12
φ(4)(t0)
φ′′(t0)2

− 5
36
φ(3)(t0)2

φ′′(t0)3

)
τ + o (τ)

]−1

=
1√

2φ′′(t)τ
+

φ(3)(t0)
6φ′′(t0)2

+
(
φ(4)(t0)− φ(3)(t0)2

φ′′(t0)

) √
2

24φ′′(t0)5/2
√
τ + o

(√
τ
)
.

And the second one:(
3
φ(3)(t0)2

φ′′(t0)
− 2φ(4)(t0)

)
t− t0

12φ′′(t0)2
=
(

6
φ(3)(t0)2

φ′′(t0)
− 4φ(4)(t0)

) √
2

24φ′′(t0)5/2
√
τ+o (τ) .

Putting these results together leads to

G(τ) =
1√

2φ′′(t0)τ
− φ(3)(t0)

3φ′′(t0)2
+

√
2

24φ′′(t0)5/2

(
5
φ(3)(t0)2

φ′′(t0)
− 3φ(4)(t0)

)√
τ+o (τ) .

In the case t < t0, using (24), we get

−G(τ) =
1√

2φ′′(t0)τ
+
φ(3)(t0)
3φ′′(t0)2

+
√

2
24φ′′(t0)5/2

(
5
φx(3)(t0)2

φ′′(t0)
− 3φ(4)(t0)

)√
τ+o (τ) .

ut

We are now going to use this result to prove Lemma 5.
Lemma 5

g(t) = (n−1)·
(
n− 2
`− 1

)
·tn−`−1(1−t)`−1, t0

def= 1−λ =
n− `− 1
n− 2

, and ε = z·
√
`− 1
n− 2

.

Then, under the conditions 1 ≤ ` ≤ n/2 and z > 0, z = o
(√

`
)

, we have

∫ t0+ε

t0−ε
g(t) dt = 1 +O

(
1
`2

+
1
n

+
e−z

2/2

z

)
Proof First, we apply Stirling approximation to the binomial coefficient.(
n− 2
`− 1

)
=

√
1

2π

(
n− 2

n− `− 1

)n−`−1/2(
n− 2
`− 1

)`−1/2 [
1− 1

12(`− 1)
+O

(
1
n

+
1
`2

)]
.

We simplify the expression(
n− 2

n− `− 1

)n−`−1(
n− 2
`− 1

)`−1

tn−`−1(1− t)`−1 = e−(n−2)D(t0||t).

This leads us to define a new function g̃.

g̃(t) = Cn,` · e−(n−2)D(t0||t).



with Cn,` = (n− 1) ·
√

n−2
2π(`−1)(n−`−1) .

Then,

g(t) = g̃(t) ·
[
1− 1

12(`− 1)
+O

(
1
n

+
1
`2

)]
.

The structure of g̃ suggests to use Lemma 10 with λ = n − 2 and φ(t) =
D (t0||t). Then,

φ′′(t0) =
1
t0

+
1

1− t0
=

1
t0(1− t0)

> 0,

φ(3)(t0) =
2

(1− t0)2
− 2
t20

= 2
2t0 − 1

t20(1− t0)2
,

φ(4)(t0) =
6

(1− t0)3
+

6
t30

= 6
3t20 − 3t0 + 1
t30(1− t0)3

,

and At0 =
13t20 − 13t0 + 1
6
√

2t0(1− t0)
.

Since φ′′(t0) > 0 and φ(t0) = φ′(t0) = 0, we can apply Lemma 10 under
the two constraints z = o

(√
`
)

and ` < n/2. The first one comes from the
restriction on ε and will be fulfilled by our final choice for z. The second one
comes from the restriction on t0 and means that we want to discard at least
half of the candidates what is actually the case for cryptanalytic applications.
Thus, we will need to compute the three following integrals.

Lemma 11 Let a > 1 be a real number, we have:

1.
∫ a
0
e−t · t−1/2 dt =

√
π − e−aa−1/2 +O(e−aa−3/2).

2.
∫ a
0
e−t dt = 1− e−a.

3.
∫ a
0
e−t · t1/2 dt =

√
π

2
− e−a

√
a+O(e−aa−1/2).

Proof This is easily done using integration by parts. ut

Hence, applying this to Lemma 10, we have:

∫ t0+ε

t0

e−λφ(t) dt =
√

π

2λφ′′(t0)
+O

(
e−λφ(t0+ε)

λ
√
φ′′(t0)φ(t0 + ε)

)

− 1
3λ

φ(3)(t0)
φ′′2(t0)

+O

(
1
λ

φ(3)(t0)
φ′′2(t0)

e−λφ(t0+ε)

)
+
At0
2λ

√
π

λ
+O

(
At0

e−λφ(t0+ε)

λ

√
φ(t0 + ε)

)



and,

∫ t0

t0−ε
e−λφ(t) dt =

√
π

2λφ′′(t0)
+O

(
e−λφ(t0−ε)

λ
√
φ′′(t0)φ(t0 − ε)

)

+
1

3λ
φ(3)(t0)
φ′′2(t0)

+O

(
1
λ

φ(3)(t0)
φ′′2(t0)

e−λφ(t0−ε)
)

+
At0
2λ

√
π

λ
+O

(
At0

e−λφ(t0−ε)

λ

√
φ(t0 − ε)

)
.

Summing the two integrals gives:

∫ t0+ε

t0−ε
e−λφ(t) dt =

√
2π

λφ′′(t0)
+O

(
e−λ(φ(t0−ε) + e−λφ(t0+ε))

λεφ′′(t0)

)
+ O

(
1

3λ
φ(3)(t0)
φ′′2(t0)

(
e−λφ(t0−ε) + e−λφ(t0+ε)

))
+
At0
λ

√
π

λ
+O

(
At0ε

λ

√
φ′′(t0)

(
e−λφ(t0−ε) + e−λφ(t0+ε)

))
=

√
2π

λφ′′(t0)
·
[
1 +

√
φ′′(t0)

At0
λ

]
+ O

(
1
λ

[
e−λφ(t0−ε) + e−λφ(t0+ε)

] [ 1
εφ′′(t0)

+
φ(3)(t0)
3φ′′2(t0)

+At0ε
√
φ′′(t0)

])
.

We now substitute the real values for λ and the derivatives of φ.

∫ t0+ε

t0−ε
g̃(t) dt =

∫ t0+ε

t0−ε
Cn,`e

−(n−2)D(t0||t) dt

= Cn,` ·
√

2πt0(1− t0)
n− 2

·
[
1 +

13t20 − 13t0 + 1
12(n− 2)t0(1− t0)

]
+R

=
n− 1
n− 2

·
[
1 +

13t20 − 13t0 + 1
12(n− 2)t0(1− t0)

]
+R

=
[
1 +

1
n− 2

]
·
[
1 +

13t20 − 13t0 + 1
12(n− 2)t0(1− t0)

]
+R

= 1 +
13t20 − 13t0 + 1

12(`− 1)t0
+O

(
1
n

)
+R.

With R equals to:

R = O

(
Cn,`
n

(
e−λφ(t0−ε) + e−λφ(t0+ε)

)[ t0(1− t0)
ε

+
2
3

(2t0 − 1) +
13t20 − 13t0 + 1

12t0(1− t0)
· ε
])



The sum into the brackets is dominated by the first term which is of order√
`/z thus,

R = O

(√
`Cn,`
z · n

[
e−(n−2)D(t0||t0−ε) + e−(n−2)D(t0||t0+ε)

])

= O

( √
`

z · n
Cn,`e

−(n−2)D(t0||t0−ε)
[
1 + e−(n−2)∆ε

])
.

Using Lemma 8 gives

R = O

(
e−z

2/2

z

[
1 + e−(n−2)∆ε

])
.

Then, applying Lemma 9 leads to

e−(n−2)∆ε = O

(
e
− 2z3

3
√
`

)
.

Thus, R = O
(
e−z

2/2

z

)
. To conclude this proof:

∫ t0+ε

t0−ε
g(t) dt =

[
1 +

13t20 − 13t0 + 1
12(`− 1)t0

+O

(
1
n

+
e−z

2/2

z

)]

·
[
1− 1

12(`− 1)
+O

(
1
n

+
1
`2

)]
= 1− (1− t0)

13t0 − 1
12t0

· 1
`− 1

+O

(
1
`2

+
1
n

+
e−z

2/2

z

)

= 1 +O

(
1
`2

+
1
n

+
e−z

2/2

z

)
ut

7.6 Proof of Lemma 6

We recall that we want to show that

F−1(t0)−1∑
i=F−1(t0−ε)

f0(i) = O

(
zCλδ√
`− 1

)
,

where δ =
∑F−1(t0)−1
i=0 f0(i) and z is defined from ε by ε = z

√
`−1
n .

First, and to simplify formulae, we denote by B and Bε the values B def=
F−1(t0) and Bε

def= F−1(t0 − ε). In the case B = Bε, there is no term in the
sum and thus, the lemma is proved. We now assume that B ≥ Bε + 1.



The proof of Lemma 6 is based on Lemma 3. Thus, we will use coefficients

γ0
def=

(1− p0) ·B
p0 · (N −B + 1)

and γ
def=

(1− p) ·B
p · (N −B + 1)

. (25)

Some technical lemmas are required to prove Lemma 6. The first one is given
by

Lemma 12 If `−1
n−2 ≤

1
4 and ε is chosen of the form ε = z

√
`− 1
n

with

z = o(
√
`) as ` goes to infinity, then we have

(B −Bε)(γ − 1) = O

(
z√
`− 1

)
when ` goes to infinity.

Proof On the one hand, by using Lemma 3 and by splitting the sum as ex-
plained above Theorem 1, it can be easily derived that

N∑
i=B+1

f(i) = θ

(
f(B)

1− 1/γ

)
= θ

(
γ
f(B)
γ − 1

)
(26)

On the other hand, still using Lemma 3,

(γB−Bε− − 1)
f(B)
γ− − 1

≤
B∑

i=Bε+1

f(i) (27)

with

γ−
def=

1− p
p

min
(

B

N −B + 1
,

Bε + 2
N −Bε − 1

)
From the fact that `−1

n−2 is smaller than 1
4 we infer that B > Np and for `

large enough Bε > Np (this is the only reason why we choose `−1
n−2 ≤

1
4 ).

Therefore for ` large enough we have γ− = γ. From the hypothesis made on
ε we know that

∑B
i=Bε+1 f(i) = o

(∑N
i=B+1 f(i)

)
as ` goes to infinity. This

is only possible if γB−Bε− − 1 goes to zero as ` goes to infinity. This in turn
implies that γB−Bε− − 1 ∼ (B − Bε)(γ− − 1) as ` goes to infinity. This also
implies the same statement with γ replacing γ− (since γ− coincides with γ
for ` large enough). Putting all these remarks together with (27) and (26) we
obtain

(B −Bε)(γ − 1) ∼
`→∞

γB−Bε− − 1

= O

(
B∑

i=Bε+1

f(i)
γ − 1
f(B)

)

= O

(∑B
i=Bε+1 f(i)∑N
i=B+1 f(i)

)



Then, we express the sums appearing in this fraction as functions of ε and t0

B∑
i=Bε+1

f(i) = F (F−1(t0))− F (F−1(t0 − ε)) = ε

[
1 +O

(
f(Bε)
ε

)]
,

and
N∑

i=B+1

f(i) = 1− F (F−1(t0)) = (1− t0)
[
1 +O

(
f(B)
1− t0

)]
.

And we finally obtain

(B −Bε)(γ − 1) = O

(
ε

1− t0

[
1 +O

(
f(Bε)
ε

)])
.

It is straightforward to check that O
(
f(Bε)
ε

)
= O (1). Substituting the values

taken for ε and t0 we obtain

(B −Bε)(γ − 1) = O

(
z√
`− 1

)
.

ut

Proof We now prove Lemma 6.
We can apply Lemma 3 and derive from it the following expressions

B−1∑
i=0

f0(i) = θ

(
f0(i)

1− γ0

)
(28)

B∑
i=Bε

f0(i) = θ

(
(1− γB−Bε0 )f0(i)

1− γ0

)
(29)

We observe now that

1− γB−Bε0 = O ((B −Bε)(1− γ0))
= O (Cλ(γ − 1)(B −Bε))

= O

(
Cλ

z√
`− 1

)
.

By putting this back into Equation (29) and using that δ def=
∑B−1
i=0 f0(i) we

finally obtain Lemma 3.
ut


