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Abstract. Proving bounds on the expected differential probability (EDP)
of a characteristic over all keys has been a popular technique of arguing
security for both block ciphers and hash functions. In fact, to a large
extent, it was the clear formulation and elegant deployment of this very
principle that helped Rijndael win the AES competition. Moreover, most
SHA-3 finalists have come with explicit upper bounds on the EDP of a
characteristic as a major part of their design rationale. However, despite
the pervasiveness of this design approach, there is no understanding of
what such bounds actually mean for the security of a primitive once a
key is fixed — an essential security question in practice.

In this paper, we aim to bridge this fundamental gap. Our main result
is a quantitative connection between a bound on the EDP of differential
characteristics and the highest number of input pairs that actually satisfy
a characteristic for a fixed key. This is particularly important for the
design of permutation-based hash functions such as sponge functions,
where the EDP value itself is not informative for the absence of rekeying.
We apply our theoretical result to revisit the security arguments of some
prominent recent block ciphers and hash functions. For most of those,
we have good news: a characteristic is followed by a small number of
pairs only. For Keccak, though, currently much more rounds would be
needed for our technique to guarantee any reasonable maximum number
of pairs.

Thus, our work — for the first time — sheds light on the fixed-key differ-
ential behaviour of block ciphers in general and substitution-permutation
networks in particular which has been a long-standing fundamental prob-
lem in symmetric-key cryptography.

Keywords: block cipher, hash function, differential cryptanalysis, dif-
ferential characteristic, expected differential probability, Grøstl.

? ”There is a tide in the affairs of men / Which, taken at the flood, leads on to
fortune; / Omitted, all the voyage of their life / Is bound in shallows and in
miseries. / On such a full sea are we now afloat; / And we must take the current
when it serves, / Or lose our ventures”. The Tragedy of Julius Caesar by William
Shakespeare. Act 4, Scene 3.
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1 Introduction

Block Ciphers and Hash Functions. Block ciphers and hash functions are at
the very core of cryptography today, being accountable for absolutely most data
encryption and authentication occurring in the field. It is not by accident that
block ciphers (AES) and hash functions (SHA) are among the few cryptographic
algorithms standardized by NIST, the U.S. National Institute of Standards and
Technology. The security properties of block ciphers and hash functions are
largely interconnected. The traditional way of building a hash function has been
to employ a block cipher in a mode of operation, such as Davies-Meyer, Matyas-
Meyer-Oseas, Miyaguchi-Preneel or Hirose. Rather lately, it has become popular
to build hash functions from permutations which are usually obtained by fixing
a key in a well-understood block cipher. While SHA-1 and SHA-2 conform to the
former design principle (having the SHACAL block ciphers at their foundation),
SHA-3 (Keccak) — building upon the sponge construction [3] — adopts the
latter one. In the paper, we will deal with the cryptographic fixed-key properties
of block ciphers (or, equivalently, with properties of permutations) — a research
field that, rather unduly as we think, has not received much attention recently.

Differential Cryptanalysis, Differential Characteristics, Probabilities.
Any sound newly developed block cipher or hash function comes with strong
arguments against differential cryptanalysis. It was introduced in 1990 by Bi-
ham and Shamir [7] for recovering the key of round-reduced DES — the former
U.S. Data Encryption Standard. Later they used it to attack the full DES [8].
Differential cryptanalysis was known to the designers of DES (IBM with NSA
involvement) back in the 1970s though [15]. Based on the seminal idea of differ-
ential cryptanalysis, plenty of extensions have been proposed [5,12,27,28,35]. In
fact, it was a variant of differential cryptanalysis that resulted in the first key
recovery for the full AES, though in a weak related-key model [9].

Since its publication for the case of DES, differential cryptanalysis has been
applied to numerous iterative block ciphers, that is, block ciphers whose data
transform consists of consecutive application of similar simpler maps (rounds).

In the differential cryptanalysis context, given a pair of inputs to the ci-
pher with a certain difference ∆0, one tracks the propagation of this differ-
ence through the r round transforms resulting in intermediate differences ∆i,
i = 1, . . . , r − 1, and an output difference ∆r. The sequence of all these r + 1
differences (∆0, . . . ,∆r) is called a differential characteristic. In a block cipher,
once the key K is fixed, the fixed-key differential characteristic probability (DP)
πK is the probability for a pair of inputs to follow this differential characteristic.
When πK is averaged over all round keys, one obtains the expected differen-
tial characteristic probability (EDP) π. The paper at hand contributes to the
fundamental understanding of the links between DP and EDP.

Hypothesis of Stochastic Equivalence and Plateau Characteristics. As
regards the connection between the fixed-key DP πK and the EDP π for a char-
acteristic in a cipher, the common hypothesis of stochastic equivalence [29] states



that π ≈ πK for almost all keys. However, there is an essential gap between EDP
π and DP πK , since there can be a significant discrepancy between those values.
Probably the most prominent example of a strictly non-equivalent behaviour is
actually constituted by the AES and its plateau characteristics, that is, differen-
tial characteristics that, depending on the key, have a probability of either 0 or
2h−n, where h is the height of the plateau characteristic and n is the block size.
One presumes that most characteristics over the full AES are plateau of height
1 [21,33] with n = 128. At the same time, it is well known that the value of EDP
for, say, AES-128 does not exceed 2−330.

Bounds on Differential Characteristic Probability as Security Argu-
ment. While the computation of the DP value or even its informative upper-
bounding is known to be a difficult problem in symmetric-key cryptography, it
turns out that it is possible to compute an upper bound on the value of EDP
for a characteristic — at least for some suitable ciphers and under some as-
sumptions. Both block cipher and hash function designers tend to compute such
a bound on the EDP whenever possible. This bound is widely accepted as a
valid security argument not only for block ciphers [14, 18, 26] but also for hash
functions [2, 4, 6, 24,36].

The starting point of computing an upper bound on EDP is the Markov
cipher assumption which requires the iterative cipher to be such that the tran-
sition probability π∆i,∆i+1

for differences ∆i → ∆i+1 over a round does not
depend on the actual input value, where the probability is taken over the keys.
Under the Markov cipher assumption and if round keys are independent, it can
be shown [29] that the product of all transition probabilities equals the EDP,
π =

∏
i π∆i,∆i+1

.

This approach gives the designers of new block ciphers and hash functions
a formal way of arguing the resistance of their primitives towards differential
cryptanalysis. Eventually, it took the symmetric-key community several years
since the introduction of differential cryptanalysis to come up with the paradigm
that finally manifested itself as a winning approach and stipulated the spread of
substitution-permutation networks: the wide trail design strategy [19] (decorrela-
tion theory [34] being another example of a similar but somewhat more general
approach). Here, one builds a primitive such that the minimum number of active
S-boxes (i.e. nonlinear components with nonzero input and output differences in
a differential characteristic) over all nontrivial differential characteristics is max-
imized. Then an upper bound on the difference propagation probability through
an S-box is used to compute the EDP for the full characteristic. In fact, to a
large extent, it was the clear formulation and elegant deployment of the wide
trail design strategy that helped Rijndael win the NIST AES competition.

The application of such approaches is by far not limited to block ciphers
though. Also three out of five SHA-3 finalists (Keccak [4], Grøstl [24] and JH [36])
– including the SHA-3 winner – have come with wide-trail type security ar-
guments, providing some bounds on the EDP. However, the exact meaning –
quantitative or even qualitative – of these bounds appears to have been unclear.



Criticism of the Expected Differential Characteristic Probability. In-
deed, while an upper bound on EDP does contain information on the behaviour
of a fixed-key differential characteristic on average, interpreting it can be rather
confusing, even for block ciphers. It is not clear what such a bound says when
the key is fixed, like it is the case in almost any block cipher based encryption
procedure or in permutation based hash functions.

As already mentioned above, an upper bound on EDP can get rather low.
For instance, consider the permutation P (or Q) of Grøstl-256. This is a permu-
tation on 512 bits and the designers show that, under the round independency
assumption, any differential characteristic has a probability of less than 2−972,
by using the wide-trail design strategy. Since 2511 (unordered) pairs are possible,
this might seem to indicate that any given characteristic is fulfilled by zero pairs.
But then, it is trivial to find many characteristics that are fulfilled by at least
one pair – just take two inputs with some difference ∆I , apply the permutation
P to it and note down the intermediate differences ∆i after each round.

Of course, this situation is not specific to Grøstl since similar arguments are
provided by, among many others, the designers of the SHA-3 winner Keccak,
SHA-3 finalist JH as well as lightweight hash functions such as spongent [13]
and photon [25]. Here, lower bounds on the number of differentially active S-
boxes can only be translated to upper bounds on the expected differential char-
acteristic probability (in other words, on the expected number of pairs following
a characteristic), averaged over all keys. At the same time, such designs rely
on a permutation which is a substitution-permutation network for a fixed key,
usually supplied in form of round constants. The assumption that the rounds
are independent can only be argued strictly if we have independent round keys.
Here this is clearly not the case as the key (resp. the round constants) is fixed.

The Motivation. The question of what bounds on expected differential charac-
teristic probabilities actually imply for permutation-based hash functions (like
Keccak, Grøstl and JH as well as many more recent hash functions such as
spongent and photon) – or even for a block cipher with a fixed key – remains
unanswered. Thus, there is a fundamental lack of understanding of what those
bounds mean. The significance of this problem is emphasized by the large num-
ber of designs that use such bounds without discussing their impact. So, given
that there will always be characteristics that are fulfilled by at least one pair,
what can we hope for? From a designer’s point of view — focusing on differential
characteristics — a reasonable goal will be that with high probability, there is
no characteristic that is fulfilled by more than one pair.

Now, the critical question is: How small should a bound be on the EDP
of a differential characteristic to guarantee this goal above? Concretely, in the
example of Grøstl-256, is 2−972 enough, too big or already far too small?

Somewhat more specifically, the research problem we aim to address in this
work is the following:
Given an upper bound on the expected differential characteristic probability (EDP)
π for a block cipher over all keys, what is the probability to have at most B pairs
of inputs following a differential characteristic for one fixed key?



Our Main Contribution. In this paper, we answer this question formally and
shed some light on what those bounds mean for constructions with a fixed key
or a fixed constant. The only assumption we are making in our work is that the
number of (unordered) pairs that satisfy a given characteristic follows a binomial
distribution over all possible keys (resp. round constants).

Now we formulate our main result. Let B be a bound on the number of
pairs of input that fulfill a differential characteristic in a block cipher (or a per-
mutation), once the key is fixed. Let qB be the probability that all nontrivial
characteristics are fulfilled by at most B pairs of inputs. Recall that we denote
the block size in bits by n. The main result of our paper is summarized in the
next theorem.

Theorem (Main Result). If π is an upper bound on the expected differential
characteristic probability (EDP) for a block cipher (or a permutation) over all
keys, the probability qB that all nontrivial characteristics are fulfilled by at most
B input pairs is lower-bounded by:

qB ≥ 1− πB

(B + 1)!2B
2(B+2)n.

Given this result, one can now obtain the greatest sufficient value of an
upper bound on EDP to achieve the design goal of a permutation having at
most B = 1: An upper bound on π of 2−3n−7 or lower suffices to attain this goal
with probability q1 ≥ 0.99. Using this theorem reciprocally for already existing
designs, we can state, for instance, that the designers’ upper bound of π = 2−972

on the EDP for the P or Q permutations in Grøstl is sufficient to have at most
3 pairs with a probability of at least q3 = 1− 2−363.58.

Though we do not consider the EDP and DP of differentials, our work does
shed light on a fundamental, previously ignored, problem in the design of (round-
based) fixed permutations. The only requirement to apply our result is to provide
a bound on the EDP of a characteristic, which is the only indicator of security
against differential cryptanalysis that designers are usually able to give.

2 Preliminaries

In this section, we introduce our notation and subsequently the statistical model
along with its single assumption. We want our model to deal with all differential
characteristics of a cipher. For this purpose, we introduce what we coin as the
differential characteristic spectrum of a cipher. In a nutshell, this is a list of
probabilities of characteristics along with their quantity. Note that, while this
spectrum is very suitable to model the differential behaviour of a given cipher, for
any real-world cipher it is completely out of reach to compute this spectrum. We
therefore will later, cf. Section 3.1, explain how to bypass the need to compute
the entire spectrum. In this sense, the introduction of the spectrum is a way of
eliminating most of it in a sound manner.



2.1 The Model

Let n denote the bit size of the primitive (permutation size or block size). Let
p denote the probability of a differential characteristic and Xp denote the ran-
dom variable (taken over independent round keys) which corresponds to the
number of pairs that fulfill a differential characteristic with probability p. Note
that we are always taking the whole input space into consideration. In order to
simplify the treatment, we furthermore always considered unordered pairs. The
sole assumption underlying our model, and thus our results, is that Xp follows
a binomial distribution. More precisely:

Assumption 1 Xp follows (over the independent round keys) a binomial dis-
tribution with parameters (N, p), i.e.

Xp ∼ B(N, p)

where N = 2n−1 is the total number of unordered pairs with a fixed difference.

This assumption has been used frequently in the literature, cf. Section 2.2 for
more details. The only class of characteristics that clearly do not follow a bino-
mial distribution we are aware of are plateau characteristics, most prominently
present in the AES [21,22,33]. We discuss plateau characteristics in Appendix A
and explain in which cases our result extends to those characteristics as well.

Now, as outlined above, we do not only deal with a single characteristic,
but with all characteristics at the same time. There are usually characteristics
with many different probabilities, and conversely many characteristics for a given
probability. Following [10] for a similar concept, we capture this information in
what we refer to as the differential spectrum of a cipher, cf. also the charac-
teristic weight counting function of [20]. For this, denote by (pi)i the set of all
occurring probabilities and by Ai the number of characteristics with probability
pi. For convenience we assume that pi ≥ pi+1, i.e. the probabilities are ordered
in descending order. Note that we explicitly exclude the trivial characteristics,
i.e. the characteristic with input difference 0.

Definition 1 (Differential Spectrum). The vector of pairs S = ((pi, Ai))i is
called the differential spectrum of a cipher.

The complete list of differential characteristics is modeled, according to Assump-

tion 1, by random variables X
(pi)
j ∼ B(pi, 2

n−1), where 1 ≤ j ≤ Ai. Clearly, it
holds that ∑

i

piAi = 2n − 1 (1)

simply as every pair follows some (non-trivial) characteristic. Actually, even more
is true, namely

Pr

∑
i

∑
j

X
(pi)
j = 2n−1(2n − 1)

 = 1.



From this perspective it seems reasonable to assume that the vector (X
(pi)
j )i,j

is multinomial distributed. However, this way one would assume that no other de-
pendency between the individual characteristic exists. This is especially doubtable
in the case of characteristics that are identical for a large number of rounds and
only diverge in the very last (or first) round.

Let us turn to our main focus, i.e. studying the question of what the max-
imal number of pairs is that follow a characteristic. In the above model, this
corresponds to studying the distribution of the random variable ZS defined as

ZS = max
i,j
{X(pi)

j }. (2)

The relevance of ZS is the following. If, for example, we can argue (within our
model) that Pr(ZS ≤ B) = 0.99, we are guaranteed that choosing random round
constants (resp. round keys), will result in 99 out of 100 cases in a permutation
such that no characteristic is followed by more than B pairs.

In particular, for ensuring that any characteristic is fulfilled by at most one
pair, Pr(ZS ≤ 1) should be close to one.

In the sequel, as in Assumption 1, N = 2n−1 will denote the number of
unordered pairs with a fixed difference. Furthermore, B will denote the bound
on the number of pairs we consider and qB = P (ZS ≤ B) denotes the probability
that no characteristic is fulfilled by more than B pairs. For a given spectra we
denote p = p0, i.e. the maximal probability of a characteristic (or an upper
bound on it).

2.2 Binomial Distribution

Since differential cryptanalysis is one of the major cryptanalytic techniques in
symmetric-key cryptography, the distributions of random variables associated
with differential characteristics and differentials have been extensively studied
over the past 20 years. In [1], examples with different EDP and fixed-key DP are
considered and it is noted that computing the average values does not in general
allow one to draw conclusions about the shape of the distributions. In a similar
direction, the work [23] develops a model derived from binomial distribution and
performs experiments in the case of a random permutation. Moreover, it provides
instances of ciphers for which this model holds and does not hold. In [22], it is
shown that for only 2 rounds of the AES, this model is not correct due to the
existence of plateau characteristics (see the discussion in Appendix A).

In [11], experiments show that — at least for some relevant ciphers — the
distribution is actually binomial, that is, as stated in Assumption 1. To estab-
lish a clear independent empirical basis for our theoretical study and to support
the meaningfulness of the assumption, we conducted experiments of our own
on a 16-bit reduced version of present [14]. The experiments depicted in Fig-
ure 1 correspond to 5, 6 and 7 rounds of SmallPresent: As the number of
rounds increases and the EDP of the best characteristic decreases, the deviation
from the binomial distribution is almost non-existant and clearly indicates that
Assumption 1 is realistic in that case.
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Fig. 1. Distribution for the characteristics of SmallPresent (n=16): Comparison be-
tween the distribution of different characteristics with EDP p and the binomial distri-
bution B(2n−1, p).

3 The Link: Bounding the Bound

In this section, we present and prove the main result of this work. First, we
show how to avoid computing the whole spectrum and still be able to make
useful statements about the distribution of ZS , as introduced in (2). Second, we
provide the proof of our main theorem outlined in the introduction.

3.1 Cutting the Spectrum of a Cipher

As introduced in Section 2, we assume that the number of pairs fulfilling a
given characteristic with a certain probability follows a binomial distribution.
As we are interested in primitives where no characteristic is satisfied by many
pairs, we consider the bound on the EDP which is smaller or equal to 2−n, i.e.
p = p0 ≤ 2−n in the sequel.

For a fixed B, we show, in this section, that an underestimate of the qB =
P (ZS ≤ B) can be obtained with partial knowledge of the spectrum. More
precisely, we study what we call a cut of a given spectrum.

Definition 2. Given a spectrum S = (pi, Ai)
w
i=0 we define a cut spectrum of

order t (1 ≤ t ≤ w) by St = (pi, A
′
i)
t
i=0 where

A′i = Ai for 0 ≤ i ≤ t− 1

and
A′t =

(2n − 1)−
∑t−1
i=0 Aipi

pt
.

The cut spectrum of order 0 is defined by S0 = (p0, A
′
0) with A′0 = 2n−1

p0
.

Thus, by studying a cut of order t of a spectrum, one assumes that all character-
istics with probability less than pt−1 actually have probability pt. The definition
of A′t then follows directly from (1).

The following theorem shows that, by studying cuts of a given spectrum, we
obtain an underestimate of the cumulative distribution of ZS , cf. (2). While this



might be intuitively reasonable, strictly proving it is rather technical, as we will
see below.

Note that all results presented here hold independently of any possible corre-
lation between the individual characteristics. Depending of their relations, tight-
ness of the results can differ but the results remain valid.

Theorem 1. Given a spectrum S and its cuts (St)t, the following holds for any
B ≥ 1.

qB = Pr(ZS ≤ B) ≥ Pr(ZSt ≤ B) ≥ · · · ≥ Pr(ZS0 ≤ B).

In order to prove the statement of the theorem, we first introduce two technical
lemmata.

Lemma 1. Let 2−n ≥ p1 ≥ p2 be two probabilities. For all, i ≥ 2 we have

pi−11 (1− p1)N−i − pi−12 (1− p2)N−i ≥ 0.

Proof. To prove this inequality, we shall prove that

T =

(
p1
p2

)i−1(
1− p1
1− p2

)N−i
≥ 1.

Assuming that p1 ≥ p2, we have

p1 − p2
p1

≤ − log(1− p1 − p2
p1

) = log(
p1
p2

).

Now the proof follows by a succession of inequalities:

N ≤ 1

2p1
≤ 1− p1
p1 − p2

p1 − p2
p1

⇒ (N − i) ≤ N ≤ 1− p1
p1 − p2

log(p1/p2)

⇒ (N − i)p1 − p2
1− p1

≤ log(p1/p2) ≤ (i− 1) log(p1/p2)

⇒ (N − i) log(1 +
p1 − p2
1− p1

) ≤ (N − i)p1 − p2
1− p1

≤ (i− 1) log(p1/p2)

⇒ 0 ≤ (i− 1) log(p1/p2)− (N − i) log(
1− p2
1− p1

)

⇔ 1 ≤ exp
[
(i− 1) log(p1/p2) + (N − i) log(

1− p1
1− p2

)

]
⇔ 1 ≤ T.

ut

Lemma 2. Given two random variables X1, X2 with Xi ∼ B(N, pi), i = 1 or 2,
and 2−n ≥ p1 > p2, for all B ≥ 1 it holds that

1

p1
Pr(X1 > B)− 1

p2
Pr(X2 > B) ≥ 0.



Proof. We consider

C =
1

p1
Pr(X1 > B)− 1

p2
Pr(X2 > B)

=

N∑
i=B+1

(
N

i

)[
pi−11 (1− p1)N−i − pi−12 (1− p2)N−i

]
.

From Lemma 1, if B ≥ 1, we have

pi−11 (1− p1)N−i − pi−12 (1− p2)N−i ≥ 0.

And we conclude that C ≥ 0. ut
Now, using these two lemmata, we can prove that the partial knowledge of the
spectrum allows the computation of an underestimate of qB = Pr(ZS ≤ B).

Proof (Proof of Theorem 1). To simplify the notation we denote by Xi a random
variable that follows a binomial distribution with parameters N and pi, i.e.
Xi ∼ B(N, pi).

Using the fact the probability of a union of events is smaller than the sum of
the probabilities of the different events, independently of the correlation between
the different variables Xi, the following holds for any B and any cut spectrum
St:

Pr(ZSt ≤ B) = 1− Pr(ZSt > B) ≥ 1−
t∑
i=0

A′i∑
j=1

Pr(X
(pi)
j > B)

≥ 1−
t∑
i=0

A′iPr(Xi > B)

For the cut spectra St = (pi, A
′
i)
t
i=0 and St−1 = (pi, Γ

′
i )
t−1
i=0, we first prove that:

∀t > 1

t∑
i=0

A′iPr(Xi > B) ≤
t−1∑
i=0

Γ ′iPr(Xi > B). (3)

Note that, as a consequence of (1), we have

A′t =
(2n − 1)−

∑t−2
i=0 A

′
ipi −A′t−1pt−1

pt
and Γ ′t−1 =

(2n − 1)−
∑t−2
i=0 Γ

′
ipi

pt−1
.

As for i < t− 1 we have A′i = Γ ′i , we obtain

C =

t∑
i=0

A′iPr(Xi > B)−
t−1∑
i=0

Γ ′iPr(Xi > B)

= A′t−1Pr(Xt−1 > B) +A′tPr(Xt > B)− Γ ′t−1Pr(Xt−1 > B)

=

[
A′t−1 −

(2n − 1)−
∑t−2
i=0 A

′
ipi

pt−1

]
Pr(Xt−1 > B) +A′tPr(Xt > B)

=

[
−

(2n − 1)−
∑t−2
i=0 A

′
ipi −A′t−1pt−1

pt−1

]
Pr(Xt−1 > B) +A′tPr(Xt > B)

= ptA
′
t

[
1

pt
Pr(Xt > B)− 1

pt−1
Pr(Xt−1 > B)

]
.



Given pt−1 > pt, from Lemma 2 it follows that C ≤ 0. The remaining of the
proof follows then applying (3) iteratively for all t. ut

Example. Figure 2 illustrates Theorem 1 for a reduced variant of present.
For SmallPresent [30] with a 16-bit block size, it is still feasible to compute
the spectrum using a branch and bound approach. Clearly, not all character-
istics have the same probability, but different probabilities occur with varying
frequency.

As predicted by Theorem 1, taking only part of spectrum into account, i.e.
studying ZSt , leads to an underestimate of qB = Pr(ZS ≤ B). In this example,
studying S7 already gives a rather tight estimate of the actual value of qB .

As mentioned above, for real-world ciphers even computing such a cut spec-
trum is hard. Indeed, for many primitives, designers can often only provide (a
bound on) the EDP of the most probable characteristic.
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Fig. 2. Influence of cut spectra on qB = P (ZS ≤ B): Experiments on 6 rounds of
SmallPresent with fixed input difference.

3.2 At the Limit: Considering the Bound only

In practice, for many primitives, designers are only able to compute (a bound on)
the EDP. In that case, the spectrum is cut to its maximum and is defined by S0 =
(π,A0), where π is an upper bound (or exact value) of the EDP and, following
(1), A0 = 2n−1

π is the total number of these potential characteristics. To simplify
the notation, in this section the random variable associated to characteristics of
this sort is denoted by X.

We recall here the main result of this paper presented in the introduction,
now stated formally:

Theorem 2 (Main Result). Under Assumption 1, if π is an upper bound on
the expected differential characteristic probability (EDP) for a block cipher over
all keys (or a permutation over all round constants), the probability qB that all
nontrivial characteristics are fulfilled by at most B input pairs is lower-bounded
by:

qB ≥ 1− πB

(B + 1)!2B
2(B+2)n. (4)



Proof. From Theorem 1 and (3), we have:

Pr(ZS ≤ B) ≥ Pr(ZS0 ≤ B) ≥ 1−A0P (X > B) ≥ 1− 2n

π
P (X > B).

Meaning that when only π is known, the tail of cumulative function of ZS can
be bounded by:

Pr(ZS ≤ B) ≥ 1− 2n

π
Pr(X > B). (5)

As we have

Pr(X > B) =

N∑
i=B+1

(
N

i

)
πi(1− π)N−i ≤

N∑
i=B+1

(
N

i

)
πi

≤
N∑

i=B+1

N i

(B + 1)!
πi ≤ 2

(Nπ)B+1

(B + 1)!
,

we conclude that

Pr(ZS ≤ B) ≥ 1− 4

(B + 1)!
NB+2πB .

ut

4 The Impact: Shallows and Miseries?

In this section, we inspect the impact of our main result on the practical con-
structions, both block ciphers with a fixed key and permutation-based hash
functions.

4.1 Sufficient Condition

From our main result stated in Theorem 2, we can deduce that the upper bound
on the EDP of a characteristic in a primitive, should be of order of magnitude
π ≈ 2−[(B+2)/B]n, in order for our result to guarantee that no characteristic is
fulfilled by more than B pairs. More precisely, from Theorem 2, we immediately
obtain the following estimate of π:

Corollary 1 (Sufficient Condition). Let CB defined by

CB =
[
(1− qB)(B + 1)!2B

]1/B
.

To guarantee with probability qB = P (ZS ≤ B) that no characteristic is ful-
filled by more than B pairs, it suffices to have the maximal probability π of a
characteristic such that

π ≤ CB2−[(B+2)/B)]n.



By computing the exact value of CB introduced in Corollary 1, in order
to guarantee that for 99% of the keys or fixed constants, no characteristic is
fulfilled by more than one pair, we should consider permutations where the
maximal EDP is lower than 2−3n−7. For B = 2, the maximum EDP can be up
to 2−2n−2. For larger values of B, CB ≈ 1 and the same security claims can
be achieved if π ≤ 2−[(B+2)/B]n. In Figure 3, we illustrate that the sufficient
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Fig. 3. Bringing it all together: qB as a function B and EDP bound for characteristics.
The dotted curves are computed with (4). The continuous curves are computed using
(5) in the case where n = 64.

condition of Corollary 1 is rather tight. Note that though computations have
been performed for n = 64, results are similar for larger values of n. Most
importantly, Figure 3 shows that the distributions are extremely steep at around
2−[(B+2)/B)]n. Thus, a value of π slightly below this threshold does not guarantee
anything any more, while a value slightly larger guarantee the non-existence of
characteristics followed by more then B pairs almost certainly.

4.2 Revisiting the Security Arguments of Prominent Primitives

In here, we consider only primitives that come with informative bounds on the
EDP of their differential characteristics which excludes ARX-based designs, for
instance, where no efficient way of arguing tight bounds on EDP is known. How-
ever, we prominently note here that this by no means indicate per se that those
designs are stronger or weaker in cryptanalytic terms. This only says that we can
state much less about those constructions using the state-of-the-art techniques.

The major findings of this section are presented in Table 1. Not all bounds
provided by the respective designers of the primitives mentioned in the table are
actually tight. Proving better bounds on the EDP would improve the probabil-
ities qB for those constructions.

As it usually gets harder to provide strong diffusion with the increase of the
block size, bigger variants of primitives often have a higher value of B0. The
notable exceptions are constituted by the lightweight hash functions photon
and spongent: For photon, while the maximum number of fulfilling pairs



Table 1. Lower bound on the probability to have at mostB pairs following a differential
characteristic for various primitives. The primitives are either block ciphers with a fixed
key (public or secret) or fixed permutations. n: block size. qB : the probability for all
nontrivial characteristics to be fulfilled by at most B input pairs. π: an upper bound on
the the expected differential characteristic probability averaged over all keys. − means
that Theorem 2 does not provide any informative indication for the parameter set. B0

is the minimum value of B such that qB is close to 1.

Primitives n π q1 ≥ q2 ≥ q3 ≥ B0

AES-128 128 2−330 - 1− 2−152.6 1− 2−357.6 2

AES-192 128 2−450 1− 2−68 1− 2−392.6 1− 2−717.6 1

AES-256 128 2−480 1− 2−98 1− 2−452.6 1− 2−807.6 1

Rijndael-192/192 192 2−450 - 1− 2−136.6 1− 2−397.6 2

Rijndael-192 /256 192 2−480 - 1− 2−196.6 1− 2−487.6 2

Rijndael-256 256 2−480 - - 1− 2−167.6 3

present-80/-128 64 2−122 - - 1− 2−53.6 3

LED-64 64 2−400 1− 2−210 1− 2−548.6 1− 2−887.6 1

LED-128 64 2−600 1− 2−410 1− 2−948.6 1− 2−1487.6 1

spongent-88/80/8 88 2−176 - 1− 2−4.6 1− 2−95.6 2

spongent-128/128/8 136 2−272 - 1− 2−4.6 1− 2−143.6 2

spongent-160/160/16 176 2−352 - 1− 2−4.6 1− 2−183.6 2

spongent-224/224/16 240 2−480 - 1− 2−4.6 1− 2−247.6 2

spongent-256/256/16 272 2−544 - 1− 2−4.6 1− 2−279.6 2

photon-80 100 2−216 - 1− 2−36.6 1− 2−155.6 2

photon-128 144 2−294 - 1− 2−16.6 1− 2−169.6 2

photon-160 196 2−384 - - 1− 2−179.6 3

photon-224 256 2−486 - - 1− 2−185.6 3

photon-256 288 2−882 1− 2−20 1− 2−616.6 1− 2−1213.6 1

Grøstl-224/256 512 2−972 - - 1− 2−363.6 3

Grøstl-384/512 1024 2−1469 - - - 5

JH-224/-256/-384/-512 1024 2−1184 - - - 13

grows first with the size, it gets much lower for its biggest version, which is due
to the special case design of the largest permutation [25]. For spongent, the
distribution of B0 is very smooth because of its clearly stated design goal: the
EDP bound of 2−2n for an n-bit permutation [13].

SHA-3 finalists certainly deserve special treatment. The standard behavior
of B0 (its increase as n grows) is clearly visible in Grøstl. The EDP bounds are
not tight for either version of Grøstl though. With the designers’ bounds, one
can state that it is good news for Grøstl since not more than 5 pairs can satisfy a



characteristic here (and only at most 3 pairs for the smaller variant). The bound
of JH is only sufficient to show a maximum of 13 satisfying pairs.

Table 1 does not contain Keccak. The reason is that the best existing bound
for the 24 rounds of Keccak-f [1600] (with a permutation size of n = 1600 bits)
is actually only 2−296 [16]. So, if one aims to attain the goal of having at most two
satisfying pairs for a Keccak-type permutation given this bound, 10 times more
rounds (240 rounds) would be needed in Keccak-f [1600]. To achieve B0 = 18,
it suffices to take 6 times more rounds (144 rounds). However, if the special
case of 1- to 8-symmetric characteristics is considered, a bound of 2−1648 can
be proven for 18 rounds [4], which leads to B0 = 60 with q60 = 1 − 2−18.1 for
the 18 rounds. Again, we emphasize that this by no means indicates any type
of weakness in Keccak. Having high upper bounds on the EDP of a differential
characteristic prohibits our model from providing any informative bounds on the
number of pairs following a differential characteristic.

5 Conclusion and Future Work

In this paper, we establish the fundamental link of a bound on EDP of a dif-
ferential characteristic to its fixed-key DP, i.e. the maximum number of input
pairs that follow a characteristic. We apply our framework to prominent hash
function and block cipher designs. Once the key is fixed (which is almost always
the case in practice), our result is the only formal foundation for arguing the
crucial differential security properties of symmetric-key primitives available so
far.

Having said that, we also clearly state some important open problems which
are out of scope of this paper. First, though we constrain ourselves to consider-
ing the EDP and DP of differential characteristics here, a much more interesting
object of study would be the connection between EDP and DP for differen-
tials, which are sets of differential characteristics with certain input and output
differences. However, since even bounding EDP for those is notoriously difficult
(though not impossible, at least for several rounds of suitable constructions [17]),
studying similar questions for differentials seems out of reach given the current
techniques (note that [23] considered the differential behaviour of random per-
mutation — a work that technically bears some similarities with ours). Second,
though the basic differential cryptanalysis is certainly the most essential differen-
tial attack to consider, more advanced techniques such as the rebound attack [31]
often pose a more critical threat, even in the case where the probabilities of any
differential characteristic over the full permutation is very small. However, for
rebound attacks, considering differential characteristics over smaller parts of a
permutation makes a lot of sense: A good bound over a fraction of rounds will
imply that there are only a small number of pairs satisfying a characteristic,
so those values are not easy to find. Multiple inbound stages might undermine
this reasoning though and it is still an open problem to argue provable security
against rebound attacks. We think however that our result opens up the possibil-



ity of making at least some basic security arguments for rebound attacks where
it has not been feasible so far to come up with a sound bound considerations.

We believe that those are some of the most important fundamental problems
in symmetric-key cryptography open today and would like to see the results of
this paper as a first step towards their solution.
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The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

32. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, volume 6917 of LNCS. Springer, 2011.

33. Vincent Rijmen, Deniz Toz, and Kerem Varici. AES Characteristics. In WCC
2013, To appear.

34. Serge Vaudenay. Decorrelation: A theory for block cipher security. J. Cryptology,
16(4):249–286, 2003.

35. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of LNCS, pages 156–170. Springer, 1999.

36. Hongjun Wu. The Hash Function JH, 2011.



A Plateau Characteristics and Our Model

Especially for the AES, the existence of so called plateau characteristics (intro-
duced in [21, 22]) is a well studied phenomena. Basically, a given characteristic
is plateau if there are only two possible values, 0 and 2h−1 for some positive
integer h, for the number of pairs following this characteristics. In other words,
the number of right pairs following a plateau characteristic with EDP p can be
modeled by a random variable Y satisfying

Y =

{
2h−1 with probability p2n−h

0 with probability (1− p)2n−h .

The value of h is called the height of the characteristic1.
Plateau characteristics for two rounds of AES are well understood. In partic-

ular it has been shown that for two rounds plateau characteristics of height up
to 5 exist. Recently, in [33] some four-round plateau characteristics with height
greater than one have been presented for AES. We are not aware of any results
for more than 4 rounds of AES.

Note that a plateau characteristic of height one for a round-reduced variant
of the primitive, trivially extends to any number of rounds simply because the
number of right pairs never increases as the number of rounds grows. This is not
(in general) the case for plateau characteristic of height greater than one.

Clearly, a plateau characteristic does not follow a binomial distribution. Even
more, in the case where the height h is greater than one, the binomial distribution
clearly underestimates the probability of the characteristic to be fulfilled by 2h−1

or more pairs. Thus, in this case our model does not fit as is.
However, plateau characteristics of height 1 actually do not pose a problem

for our model. In this case, the characteristic is never fulfilled by more than one
pair. By assuming a binomial distribution in our model, we therefore overesti-
mate the probability of having more than one right pair.

Intuitively, plateau characteristics of height greater than one for all rounds of
AES (or similar constructions) seem unlikely. However, until now their existence
cannot be excluded an, thus, some doubts on the unrestricted applicability of
our model remain.

Finally note that our model can tolerate plateau characteristics of height
greater than one as long as they are not too frequent. More precisely, assume
the existence of A plateau characteristics of height h with EDP below p. In
this case the probability that at least one of them is fulfilled by 2h−1 pairs is

upper bounded by Ap2n−h. Thus is A is sufficiently smaller than 2h−n

p with good
probability all those plateau characteristics are fulfilled by zero pairs and thus
do not affect the validity of our bounds.

1 The “−1” in 2h−1 stems from the fact that we consider unordered pairs, i.e. the total
number of pairs is N = 2n−1 while [22] considers ordered pairs.


