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1 Introduction

Differential cryptanalysis is the first statistical attack proposed for breaking iterated block

ciphers. Its presentation (Biham and Shamir, 1991) then gave rise to numerous works which

investigate the security offered by different types of functions with respect to differential

Copyright © 2010 Inderscience Enterprises Ltd.
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attacks. This security is quantified by the so-called differential uniformity of the Substitution

box used in the cipher. Most notably, finding appropriate S-boxes which guarantee that the

cipher using them resist differential attacks is a major topic for the last 15 years. Power

permutations, that is, monomial permutations, form a class of suitable candidates since

they usually have a lower implementation cost in hardware. Moreover, their properties

regarding differential attacks can be studied more easily since they are related to the weight

enumerators of some cyclic codes with two zeroes (Carlet et al., 1998). However, using

power permutations which are optimal for differential cryptanalysis might not be suitable

in a cryptographic context.

One reason is that generally such permutations on F2n are not known for n even (which

is obviously the case in most applications). Actually, the non-existence of almost perfect

nonlinear (APN) permutations for even n was conjectured, until the recent announcement

of such mappings for n = 6 by Dillon (2009). A second important point is that optimal

functions usually correspond to extremal objects, which possess very strong algebraic

structures. Then, optimal functions might introduce some unsuitable weaknesses within

a cipher. Some examples of such weaknesses have been exploited in cryptanalysis, for

instance in Jakobsen and Knudsen (1997); Courtois and Pieprzyk (2002) and Canteaut and

Videau (2002). For all these reasons, it is important to find some functions which have an

almost optimal low differential uniformity. Also, the security of the underlying cipher is

affected by some other properties related to the behaviour of the function when the input

difference is fixed, besides its differential uniformity.

In this context, this paper investigates the differential properties, namely the whole

differential spectrum, of power permutations which have a low differential uniformity.

Section 2 recalls some definitions and properties related to the resistance of a function

to differential attacks. Section 3 then focuses on differentially four-uniform power

permutations, and it points out that the whole differential spectrum of a power permutation

may influence its security regarding some variants of differential cryptanalysis, especially

truncated differential attacks. Section 4 then investigates the link between the differential

spectrum of a power function and the weight enumerators of cyclic codes with two zeroes.

Section 5 focuses on the special case of power permutation with a two-valued differential

spectrum.

2 Definitions and basic properties

In the whole paper, #E denotes the cardinality of any set E. This paper investigates some

properties of functions from F2n into F2m , m ≥ 1. It mainly focuses on the case m = n,

but Boolean functions, that is, with m = 1, are also involved. Thus, for the sake of clarity,

capital letters (e.g. F ) are used for denoting vectorial functions (i.e. for m > 1), and small

letters (e.g. f ) are dedicated to Boolean functions.

2.1 Differential characteristics of a function

The resistance of a cipher to differential attacks and to its variants is quantified by some

properties of the derivatives of its S(ubstitution)-box, in the sense of the following definition.

It is worth noticing that this definition is general: it deals with mappings from F2n into F2m

for any m ≥ 1.
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Definition 1: Let F be a function from F2n into F2m . For any a ∈ F2n , the derivative of F

with respect to a is the function DaF from F2n into F2m defined by

DaF(x) = F(x + a) + F(x), ∀x ∈ F2n

The resistance to differential cryptanalysis is related to the following quantities.

Definition 2: Let F be a function from F2n into F2n . For any a and b in F2n , we denote

δ(a, b) = #
{
x ∈ F2n , DaF (x) = b

}
Moreover, δ(1, b) will be often denoted δ(b). Then, the differential uniformity of F is

δ(F ) = max
a �=0, b∈F2n

δ(a, b)

Those functions for which δ(F ) = 2 are said to be APN.

The APN property can be equivalently defined as follows.

Proposition 1: Let F be any function on F2n . Then, F is APN if and only if, for any non-zero

a ∈ F2n , the set {DaF(x), x ∈ F2n} has cardinality 2n−1, that is the functions DaF are

2-to-1.

2.2 Walsh spectrum of a function

We now recall some classical tools used for studying the functions from F2n into F2m .

Any function F from F2n into F2n can be expressed as a univariate polynomial in F2n [X].
The degree of F is then the maximal Hamming weight of its exponents:

deg

(
2n−1∑
i=0

λiX
i

)
= max

{
wt(i)|λi �= 0

}
where λi ∈ F2n and the weight is calculated on the 2-ary expansion of i. We denote by Tr

the trace function on F2n , that is, Tr(β) = β + β2 + · · · + β2n−1
.

The function F can also be represented by n Boolean functions of n variables, its Boolean

coordinates. Note that the coordinates are sometimes called the components of F , but it is

more convenient for our purpose to use the following definition, like in Nyberg (1995).

Definition 3: Let F be a function from F2n into F2n . The linear combinations of the

coordinates of F are the Boolean functions

fλ : x ∈ F2n �→ Tr(λF (x)), λ ∈ F2n

where f0 is the null function. The functions fλ are called the components of F .

We denote by Bn the set of Boolean functions on F2n . In our context, the linear functions

in Bn are the functions ϕa , defined by

ϕa : x ∈ F2n �→ Tr(ax), a ∈ F
∗
2n (1)

The following notation will be extensively used in this paper. For any f ∈ Bn, we denote

by F(f ) the following value related to the Fourier (or Walsh) transform of f :

F(f ) =
∑

x∈F2n

(−1)f (x) = 2n − 2wt(f ) (2)



152 C. Blondeau, A. Canteaut and P. Charpin

where wt(f ) is the Hamming weight of f , that is, the number of x ∈ F2n such that

f (x) = 1. The function f is said to be balanced if and only if F(f ) = 0 or, equivalently,

wt(f ) = 2n−1.

Definition 4: The Walsh spectrum of f ∈ Bn is the multiset{F(f + ϕa), a ∈ F2n

}
The non-linearity of f is its Hamming distance to the set of all affine functions. It is given

by

2n−1 − 1

2
L(f ) where L(f ) = max

a∈F2n

∣∣F(
f + ϕa

)∣∣
The lowest possible value for L(f ) is 2n/2 and this bound is achieved for bent functions.

A special class of Boolean functions, which includes the bent functions, is the class of

plateaued functions.

Definition 5 (Zhang and Zheng, 1999; Canteaut et al., 2000): Let f ∈ Bn. The function f

is said to be plateaued if its Walsh coefficients take at most three values, namely 0, ±L(f ).

Then, L(f ) = 2s with s ≥ n/2.

If s = n/2 (and n even) then f is bent and its Walsh coefficients take two values only,

namely ±2n/2. Moreover, f is said plateaued optimal if s = (n + 1)/2 for odd n and

s = (n + 2)/2 for even n.

The fact that s ≥ n/2 comes from the well-known Parseval relation:∑
a∈F2n

F2(f + ϕa) = 22n

An important remark is that the class of plateaued functions includes all quadratic functions.

The non-linearity of a function F from F2n into F2n is now defined by means of the

non–linearities of its components.

Definition 6: Let F be a function from F2n into F2n with components fλ, λ ∈ F
∗
2n . The

non-linearity of F is the minimal value of the non-linearities of the fλ. It is equal to

N (F ) = 2n−1 − �(F)

2
where �(F) = max

λ∈F
∗
2n

L(fλ)

The non-linearity of F is a measure of its vulnerability to linear attacks. The functions that

have maximal non-linearity are called almost bent (AB) functions. They exist for odd n

only.

Definition 7: Let F be a function from F2n into F2n with components fλ, λ ∈ F2n . Then,

�(F) ≥ 2(n+1)/2

The functions F which satisfy

�(F) = 2(n+1)/2

are said to be AB. They exist when n is odd only. Moreover, if F is AB, then for any a ∈ F2n

and for any non-zero λ{
F(

fλ + ϕa

)
, λ ∈ F

∗
2n , a ∈ F2n

}
= {

0, ±2(n+1)/2
}

(3)

that is, all fλ, λ �= 0, are plateaued optimal.
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The Walsh spectrum of a Boolean function and its derivatives are related by the so-called

sum-of-square indicator introduced in Zhang and Zheng (1995) and extensively studied

in Canteaut et al. (2000, 2001) and Zhang and Zheng (1999). The proof of the following

theorem can be found in Canteaut et al. (2000) and Zhang and Zheng (1999).

Definition 8: The sum-of-square indicator of f ∈ Bn is defined by:

ν(f ) =
∑

a∈F2n

F2
(
Daf

) = 2−n
∑

a∈F2n

F4
(
f + ϕa

)

Theorem 1: Any f ∈ Bn satisfies ν(f ) ≤ 2nL2(f ). Equality occurs if and only if f is

plateaued, that is

L(f ) = 2s and ν(f ) = 2n+2s ,
n

2
≤ s ≤ n (4)

3 A new point of view on differential cryptanalysis

Most attacks on symmetric cryptographic algorithms are related to some properties of

the functions describing the system. For iterated block ciphers, the efficiency of the main

cryptanalytic techniques can be measured by some quantities related to the confusion part of

the round function, usually named S(ubstitution)-box. In this paper, we focus on the S-boxes

which guarantee a high resistance to differential cryptanalysis. This attack successfully

applies when two plaintexts with fixed difference lead after the last but one round to outputs

whose difference takes a certain value with a high probability.

More precisely, the attacker aims at exploiting this property for distinguishing the cipher

from a random permutation. Then, the relevant quantity in the attack is the bias with respect

to the uniform probability: for an S-box F from F2n into F2n , the attacker aims at finding a

pair (a, b) of input and output differences such that Pr[F(x+a)+F(x) = b] is significantly

higher than 2−n.

We focus on the case where the S-box is a power function, that is, a monomial function

on F2n . In other words, F(x) = xd over F2n . This power function will be denoted by Fd .

Power functions are very popular S-boxes for symmetric ciphers since they have a relatively

low implementation complexity in hardware environments. Studying their resistance to

differential attacks is then of great interest. In the case of a power function, Fd(x) = xd ,

the differential properties can be analysed more easily since, for any non-zero a ∈ F2n , the

equation (x + a)d + xd = b can be written

ad

((x

a
+ 1

)d +
(x

a

)d
)

= b

implying that δ(a, b) = δ(1, b/ad) for all a �= 0. Then, if Fd : x �→ xd is a monomial

function, the differential characteristics of Fd are determined by the values δ(1, b), b ∈ F2n .

From now on, this quantity δ(1, b) is denoted by δ(b).

Since

# {b ∈ F2n |δ(a, b) = i} = # {b ∈ F2n |δ(b) = i} for all a �= 0,

the differential spectrum of Fd can be defined as follows.
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Definition 9: Let Fd(x) = xd be a power function on F2n . We denote by ωi the number of

output differences b that occur i times:

ωi = #
{
b ∈ F2n |δ(b) = i

}
The differential spectrum of Fd is the set of ωi: S = {ω0, ω2, . . . , ωδ(F )}.
There are basic transformations which preserve S.

Definition 10: Let F(x) = xd and G(x) = xe be permutations of F2n .

• We say that G is in the class of F if it exists k such that e = 2kd mod 2n − 1.

• We say that G is the inverse of F if e = d−1 mod 2n − 1

The following lemma is well-known.

Lemma 1: Let F(x) = xd with gcd(2n−1, d) = 1. Let G be another monomial permutation

on F2n . If G is in the class of F or if G is the inverse of F then G has the same differential

spectrum as F .

Now, we wish to point out that, other than the differential uniformity, the whole differential

spectrum of the S-box affects the resistance of the cipher to differential attacks and to its

variants.

3.1 Power permutations with δ(F) = 4

We focus on S-boxes which are power permutations on F2n . Some classes of APN power

permutations are known when n is odd but APN power permutations do not exist when n

is even. Hence, power permutations which are differentially 4-uniform are of great interest

when n is even. All APN permutations have the same differential spectrum, which is

{2n−1, 2n−1}. But, when δ(F ) = 4, we have a number of distinct differential spectra as we

show in the next example.

Example 1: Let F(x) = x2n−2 over F2n . Nyberg (1993), proved that δ(F ) = 4 with ω4 = 1

when n is even. So the differential spectrum of F is

{
2n−1 + 1, 2n−1 − 2, 1

}
On the other hand, the permutations obtained from quadratic and Kasami exponents which

are differentially 4-uniform have a differential spectrum equal to {2n − 2n−2, 0, 2n−2} (see

Section 5). Another differential spectrum is calculated in Example 4.

If ω4 is large, the probability of having δ(a, b) = 4 for a fixed input difference a is not

negligible. This affects the security of the corresponding cipher. Indeed, an obvious strategy

for finding a good differential characteristic for the whole cipher consists in chaining several

one-round differentials with δ(a, b) = 4. This is usually much easier when there are some

degrees of freedom in the choice of the output difference. So when n is even, the power

permutations which offer the best resistance to differential cryptanalysis are the differentially

4-uniform S-boxes with ω4 small. A fortiori ω4 = 1 is the best value. In this context, the

inverse function has the best possible differential spectrum when n is even.
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3.1.1 Differentially 4-uniform power permutations for n between 6 and 25

Table 1 presents all power permutations that are differentially 4-uniform for n between 6

and 25. According to Lemma 1, we calculate the differential spectrum of xd where the

exponent d is the smallest element of its cyclotomic coset modulo 2n − 1.

For n = 12 (resp. n = 20), x73 (resp. x1057) belongs to the class xd with d = 22r +2r +1

and n = 4r (see Example 4). For n = 14, note that 319 is in the class of the Kasami exponent

319 × 26. Similarly, for n = 18,1279 is in the class of the Kasami exponent 1279 × 28. It

is also worth noticing that there is no differentially 4-uniform power permutation for odd n

between 15 and 25.

3.2 Differential squares for truncated differential cryptanalysis

We know that the inverse function for n even is the power permutation which offers the best

resistance to differential cryptanalysis because it is differentially 4-uniform with ω4 = 1.

But, other attacks may be mounted against the cipher, like algebraic cryptanalysis (Courtois

and Pieprzyk, 2002). Algebraic attacks exploit the intrinsic algebraic structure of a block

cipher. In its most common form, the attacker expresses the encryption transformation

as a large set of multivariate polynomial equations, and she subsequently attempts to

solve the system to recover information about the key. In a cipher, where the S-box is

the inverse function, the attacker exploits the fact that x × x2n−2 = 1 for all non-zero x.

Moreover, it has been pointed out in Canteaut and Videau (2002) that the use of AB functions

introduce another weakness which may be exploited in a higher-order differential attack.

This vulnerability comes from the fact that all values occurring in the Walsh spectrum of

an AB function are divisible by a high power of 2. Now, we are going to present another

type of vulnerability related to truncated differential cryptanalysis.

Truncated differential cryptanalysis form a class of attacks against block ciphers

introduced by Knudsen (1995). Here, we propose a variant where we group several input

and output differences together in a subset, named a square, of size v.

Definition 11: Let (a1, . . . , av) be v input differences and (b1, . . . , bv) be v output

differences. A differential square of size v and of parameter λ are a set (a1, . . . ,

av, b1, . . . , bv) such that

∀i ∈ {1 . . . v} and ∀j ∈ {1 . . . v} δ
(
ai, bj

) ≥ λ (5)

It is called a (λ, v)-differential square.

Example 2: To illustrate our purpose, we consider the APN power permutation F(x) = x3

on F2n with n = 3. Some (2, 2) differential squares are clearly identified in Table 2. For

instance, as

δ(010, 010) = δ(010, 100) = δ(011, 010) = δ(011, 100) = 2

((010, 011), (010, 100)) is a (2, 2)-differential square.

Our purpose, with this new variant, is to improve the complexity of the differential

distinguisher for the S-boxes F which have a small δ(F ) but a high ωδ(F). We will show that

such S-boxes may introduce some weaknesses regarding truncated differential cryptanalysis.

Since we aim at presenting the context of our study only, this cryptanalytic aspect is not

detailed: we only give an example in order to explain our approach.
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Table 1 Differentially 4-uniform power permutations for n between 6 and 25 and their

differential spectra

n Exponent/inverse ω0 ω2 ω4

6 5/13 48 0 16 Quadratic/Kasami

31/31 33 30 1 Inverse

7 19/47 85 22 21

8 127/127 129 126 1 Inverse

9 45/125 292 184 36

10 5/205 768 0 256 Quadratic

13/79 768 0 256 Kasami

17/181 768 0 256 Quadratic

29/247 573 390 61

103/149 588 360 76

223/367 603 330 91

511/511 513 510 1 Inverse

11 79/183 1,156 760 132

109/695 1,189 694 165

251/367 1,255 562 231

463/703 1,222 628 198

12 73/731 2,496 1,152 448 Bracken and Leander

2,047/2,047 2,049 2,046 1 Inverse

13 303/947 4,603 3,082 507

14 5/3,277 12,288 0 4,096 Quadratic

13/1,339 12,288 0 4,096 Kasami

17/2,893 12,288 0 4,096 Quadratic

65/2,773 12,288 0 4,096 Quadratic

205/241 12,288 0 4,096 Kasami

319/979 12,288 0 4,046 Kasami (4,033)

8,191/8,191 8,193 8,190 1 Inverse

16 32,767/32,767 32,769 32,766 1 Inverse

18 5/52,429 196,608 0 65,536 Quadratic

13/20,165 196,608 0 65,536 Kasami

17/46,261 196,608 0 65,536 Quadratic

241/12,101 196,608 0 65,536 Kasami

257/43,861 196,608 0 65,536 Quadratic

1,279/12,605 196,608 0 65,536 Kasami (65,281)

131,071/131,071 131,073 131,070 1 Inverse

20 1,057/306,539 651,264 270,336 126,976 Bracken and Leander

524,287/524,287 524,289 524,286 1 Inverse

22 5/838,861 3,145,728 0 1,048,576 Quadratic

13/322,639 3,145,728 0 1,048,576 Kasami

17/740,173 3,145,728 0 1,048,576 Quadratic

65/709,813 3,145,728 0 1,048,576 Quadratic

241/87,019 3,145,728 0 1,048,576 Kasami

257/734,419 3,145,728 0 1,048,576 Quadratic

1,025/699,733 3,145,728 0 1,048,576 Quadratic

3,277/16,639 3,145,728 0 1,048,576 Kasami (65,281)

4,033/246,739 3,145,728 0 1,048,576 Kasami

5,119/49,981 3,145,728 0 1,048,576 Kasami (1,047,553)

2,097,151/2,097,151 2,097,153 2,097,150 1 Inverse

24 8,388,607/8,388,607 8,388,609 8,388,606 1 Inverse
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Table 2 δ(a, b) for the power permutation F(x) = x3 for n = 3 (a and b are represented as

elements in F
3
2)

�������a

b
000 001 010 011 100 101 110 111

000 8 0 0 0 0 0 0 0

001 0 2 0 2 0 2 0 2

010 0 0 2 2 2 2 0 0

011 0 2 2 0 2 0 0 2

100 0 0 0 0 2 2 2 2

101 0 2 0 2 2 0 2 0

110 0 0 2 2 0 0 2 2

111 0 2 2 0 0 2 2 0

Any APN permutation is such that ω2 = 2n−1 (the maximal value). Fixing v, we

study the (2, v)-differential squares for an APN S-box. Since the derivatives of an APN

function are 2-to-1, the probability of any (2, v)-differential square is q∗ = v/2n−1. This

must be compared to the uniform probability for a (2, v)-differential square, which is

q = v/2n. Then, the following example compares our truncated differential attack on an

APN S-box with a classical differential cryptanalysis on a permutation which is differentially

8-uniform.

Example 3: Let n = 11. We consider two S-boxes:

• S1 is the inverse function, x �→ x2n−2, which is an APN permutation

• the second S-box S2 is defined by a differentially 8-uniform function.

Our computations lead to the following observations.

• For S1, a (2, 32)-differential square can be obtained. Its probability is

q∗ = (2 × 32)/211 = 2−5 while the uniform probability is q = (32/211) = 2−6.

• For S2, the maximal probability of a differential is p∗ = 8 × 2−11 = 2−8 while the

uniform probability of a differential is p = 2−11.

To compare both attacks, we need to compare the minimal number of plaintexts required

to distinguish both S-boxes from a random permutation. The number of samples needed

for the attacks can be computed with the algorithm presented in Section 4 of Blondeau and

Gérard (2009), with parameters α = 0.1 and β = 0.1:

• For S1, the number of samples is equal to 673. Then, the required number of

plaintexts/ciphertexts is equal to 673 × 33/32 = 694.

• For S2 the number of samples is equal to 955. Then, the required number of

plaintexts/ciphertexts is equal to 955 × 2 = 1, 990.

This example points out that the differential uniformity of an S-box does not completely

determine the complexity of a differential attack which aims at distinguishing this S-box

from a random permutation: the whole differential spectrum may affect the security of the

cipher. Most notably, the existence of large differential squares may lead to a truncated

differential attack which is more efficient than the differential attacks for another S-box

with a higher differential uniformity.

Remark 1: In the case where v = 1 and λ = 2, a (2, 1)-differential square corresponds

to a classical differential. It is worth noticing that (λ, v)-differential squares do not exist
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if ωλ < v. For instance, for a differentially 4-uniform function with ω4 = 1, all (λ, v)-

differential squares with v > 1 have parameter λ = 2. In this case, even if the function

is differentially 4-uniform, its behaviour regarding differential squares is the same as the

behaviour of APN functions. This occurs in particular when F is the inverse function on

F2n , with n even.

4 Power functions and cyclic codes

Let F be a function from F2n into F2n . Studying the APN property and the AB property

(for odd n) are equivalent to study the weights of an associated code CF and of its dual C⊥
F .

An extensive study of this link has been presented in Carlet et al. (1998) (see also Charpin,

1998).

In this section, we are mainly interested in power functions, Fd : x �→ xd . The associated

code CFd
will be then denoted by Cd . Since several results below do not need the condition

gcd(2n − 1, d) = 1, we will specify when this condition is necessary.

Let α be a primitive root of F2n . The code Cd associated to Fd : x �→ xd is a binary

code of length N = 2n − 1, defined by the following N × 2n-parity-check matrix

Hd =
(

1 α α2 · · · αN−1

1 αd α2d · · · αd(N−1)

)
(6)

where each entry is viewed as a binary vector. This code has dimension 2n − 2n − 1

except if Fd has a linear component, that is, if x �→ Tr(λxd) has degree 0 or 1 for some

non-zero λ.

Actually, Cd is the cyclic code with two zeroes, α and αd . And C⊥
d can be defined by

means of its so-called Mattson–Solomon polynomial. It is the space of binary codewords:{(
Tr

(
aαid + bαi

)∣∣i = 0, . . . , N
)
, a ∈ F2n and b ∈ F2n

}
When gcd(d, 2n − 1) = 1, the weight distribution of C⊥

d is determined by the weights of

the above codewords for a = 1 and b ∈ F2n only.

It is well-known that the code Cd has a minimum distance δ such that 3 ≤ δ ≤ 5 and that

Fd is APN if and only if d = 5 (Carlet et al., 1998, Theorem 5). We are going to look at the

codewords of weight 3 and 4. Note that c is a codeword of Cd if and only if Hdct = 0 where

ct is the transposed of the binary vector c of length N . The following result is currently

known (see Charpin et al. (1997) for more details).

Proposition 2: Let d be an integer which is not a power of 2. The code Cd has minimum

distance 3 if and only if the polynomial

Ud(x) = 1 + xd + (1 + x)d

has at least one root in F2n\{0, 1}. Moreover, the number of codewords of weight 3 in Cd is

B3 = (2n − 1)

6
#
{
x ∈ F2n\{0, 1}∣∣Ud(x) = 0

}
Sketch of proof: Any codeword of weight 3 is a pair (a, b) of elements of F

∗
2n which satisfies

ad + bd + (a + b)d = 0 with a �= b

Shifting by a−1 we get 1 + (b/a)d + (1 + (b/a))d = 0.
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Let W3 = {x ∈ F2n\{0, 1}|Ud(x) = 0}. For any x ∈ W3, we have x + 1 ∈ W3 and then

get, by shift, #W3(2
n − 1)/2 distinct codewords. Moreover, each codeword is taken three

times. �
On the other hand, any codeword of weight 4 in Cd is a triple (x, y, z) of three non-zero

distinct elements of F2n satisfying

xd + yd + zd + (x + y + z)d = 0

Since y = x + a for some a, we get an equivalent equation

xd + (x + a)d + zd + (a + z)d = 0

which is equivalent to

ad

((x

a

)d +
(x

a
+ 1

)d +
( z

a

)d +
( z

a
+ 1

)d
)

= 0

Thus, we have proved:

Lemma 2: The numbers B3 and B4 of codewords of weight 3 and 4 in Cd satisfy

B3 + B4 = (2n − 1)

24
#W4

where W4 is the following set:

W4 = {
(x, y) ∈ F2n × F2n |x �= y �= y + 1 and Ud(x) = Ud(y)

}
(7)

According to Definition 8, it is clear that the sum-of-square indicator is related to the quantity

#W4. A precise relationship is obtained when x �→ xd is a permutation.

Proposition 3: Let W4 be the set defined by (7). Let f (x) = Tr(xd) where d is coprime to

2n − 1. Then

ν(f ) = 2n#
{
(x, y) ∈ F2n × F2n |Ud(x) = Ud(y)

} = 22n+1 + 2n#W4

Proof: We simply compute ν(f ). For clarity, we use the notation e(P (x)) = (−1)Tr(P (x))

where P is any function on F2n .

ν(f ) =
∑

a∈F2n

⎛
⎝ ∑

z∈F2n

e
(
zd + (z + a)d

)⎞⎠
2

=
∑
a,u,v

e
(
ud + (u + a)d + vd + (v + a)d

)

=
∑
x,y

∑
a

e
(
ad

(
xd + (x + 1)d + yd + (y + 1)d

))
= 2n# {(x, y) ∈ F2n × F2n |Ud(x) = Ud(y)}

since a �→ ad is a permutation. It remains to see that there are 2n+1 pairs (x, y) such that

x = y or x = y + 1. �
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The previous proposition implies that, as soon as ν(f ) is known, the sum of the numbers

of codewords of weight 3 and 4 in Cd is known. But, in this case, we also have more

information on the differential spectrum of Fd . Recall that δ(Fd) and δ(b) = δ(1, b) (for

any b ∈ F2n ) are introduced in Definition 2.

Proposition 4: Let Fd(x) = xd be a power permutation of F2n , that is, with gcd(2n −1, d)

= 1. Let f (x) = T r(xd). Then

2−nν(f ) =
∑

x∈F2n

δ
(
xd + (x + 1)d

)

Consequently, δ(Fd) ≥ 2−2nν(f ).

Proof: Set 
 = 2−nν(f ). From Proposition 3, we get


 = #
{
(x, y) ∈ F2n × F2n

∣∣Ud(x) = Ud(y)
}

This implies


 =
∑

x∈F2n

#
{
y ∈ F2n |yd + (y + 1)d = b, b = xd + (x + 1)d

}

=
∑

x∈F2n

δ
(
xd + (x + 1)d

) ≤ 2nδ
(
Fd

)

since δ(b) ≤ δ(Fd) for any b. �
The previous relation between the sum-of-square indicator of a power permutation and its

differential spectrum leads to the following expression of the numbers of words of weight 3

and 4 in the cyclic code Cd . Recall that ωi = #{b ∈ F2n |δ(b) = i} (see Definition 9).

Corollary 1: Let Fd(x) = xd be a power permutation of F2n , that is, with gcd(2n − 1, d)

= 1. The numbers B3 and B4 of codewords of weight 3 and 4 in Cd are given by:

B3 = (2n − 1)

6
(δ(1) − 2)

B4 = (2n − 1)

24

⎛
⎝ ∑

b∈F2n

δ(b)2 − 2n+1 − 4(δ(1) − 2)

⎞
⎠

= (2n − 1)

24

(
2n∑
i=0

(i2 − 2)ωi

)
− B3

Proof: First, B3 is deduced from Proposition 2 by noticing that the cardinality of

{x ∈ F2n , Ud(x) = 0} equals δ(1). Now, Lemma 2 and Proposition 3 imply that

B3 + B4 = (2n − 1)

24

(
2−nν(f ) − 2n+1

)
where f : x �→ Tr(xd). Moreover, it is known from Proposition 4 that

2−nν(f ) =
∑

b∈F2n

δ(b)2 =
2n∑
i=0

i2ωi (8)

which leads to the result. �
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Another consequence of Proposition 4 is that the differential spectrum of a differentially

4-uniform power permutation is determined by its sum-of-square indicator ν(f ).

Corollary 2: Let Fd(x) = xd a power permutation of F2n , that is, with gcd(2n −1, d) = 1.

Assume that δ(Fd) = 4. Then, its differential spectrum is given by

ω2 = 2n−1 − 2ω4 and ω4 = ν(f )

2n+3
− 2n−2 (9)

where f (x) = T r(xd). Consequently, ν(f ) = 2n+3κ with 2n−2 < κ ≤ 2n−1. In particular,

if κ = 2n−1 then ω2 = 0.

Proof: Equation (8) can be written as

2−nν(f ) = 22ω2 + 24ω4 with 2ω2 + 4ω4 = 2n

By replacing ω2 by (2n−1 − 2ω4), we get ω4 = ν(f )/2n+3 − 2n−2 and then prove (9).

We deduce that ν(f ) = 2n+3κ with κ > 0. Since 0 < ω4 ≤ 2n−2, we must have

2n−2 < κ ≤ 2n−1. In particular, ω2 = 0 if and only if κ = 2n−1. �
Example 4: According to Definition 8, ν(f ) is known as soon as the Walsh spectrum of f

is known. It is the case for the following function defined on F2n , where n = 4r with r odd:

f (x) = Tr(Fd(x)), Fd(x) = xd, d = 22r + 2r + 1

It is known that Fd is a permutation whose components are highly non-linear. More

precisely, it was proved by Dobbertin (1998) that the Walsh spectrum of f is:

F(f + ϕu) Number of u

−22r+1 (2n−2 − 23(r−1))/3 − 22r−2

−22r (2n−1 + 23r−1)/3

0 2n−1 − 23r−2

22r (2n−1 + 23r−1)/3

−22r+1 (2n−2 − 23(r−1))/3 + 22r−2

Then

2nν(f ) = 24(2r+1) (2
n−1 − 23(r−1)+1)

3
+ 28r (2n + 23r )

3

= 28r (2n+3 − 23r+2 + 2n + 23r )

3

= 28r (9.2n − 3.23r )

3
= 211.r (3.2r − 1)

so that ν(f ) = 27r (3.2r −1). Recently, Bracken and Leander (2009) proved that δ(Fd) = 4.

Thus, with notation of Corollary 2, we get κ = 23r−1(3.2r − 1), implying

ω4 = 23r−3(2r+1 + 2r − 1) − 24r−2 = 23r−3(2r − 1)

and

ω2 = 24r−1 − 23r−2(2r − 1) = 24r−2 + 23r−2 = 23r−2(2r + 1)
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5 Two-valued differential spectra

A function F is APN if and only if δ(F ) = 2. This last condition means that for any pair

(a, b), a ∈ F
∗
2n and b ∈ F2n , we have δ(a, b) ∈ {0, 2}. In this section, we will examine

the case where δ(a, b) takes two values only, that is, δ(a, b) ∈ {0, κ} for any (a, b) and for

κ ≥ 2.

5.1 General properties

First, we observe that in this case κ must be a power of 2. This result holds for any function

F from F2n into F2n , not only for power functions. In this general case, the differential

spectrum of the function is composed of the values δ(a, b), for all non-zero a ∈ F2n and all

b ∈ F2n .

Lemma 3: Let F be a function from F2n into F2n . Assume that F has a two-valued

differential spectrum. Then δ(F ) = 2s for some s, 1 ≤ s ≤ n.

Proof: It is simply because in this case the function x �→ DaF(x) is δ(F )-to-1 for any

fixed a. Then, δ(F ) is a power of 2 since

#{b|δ(a, b) �= 0} = 2n

δ(F )

�
One major characteristic of power permutations Fd with a two-valued differential spectrum

is that the sum-of-square indicator and the number of codewords of weight 3 and 4 in the

associated code Cd are completely determined by the value of δ(Fd).

Proposition 5: Let Fd(x) = xd be a power permutation of F2n with a two-valued differential

spectrum where δ(Fd) = 2s for some 1 ≤ s ≤ n. Let f (x) = T r(xd). Then, ν(f ) = 22n+s .

Moreover, the associated code Cd has minimum distance 3 and the numbers B3 and B4 of

codewords of weight 3 and 4 in Cd are given by:

B3 = (2n − 1)

3

(
2s−1 − 1

)

B4 = (2n − 1)

3

(
2n−2 − 1

)(
2s−1 − 1

)
Proof: The value of ν(f ) is deduced from Proposition 4. The numbers of codewords of

weight 3 and 4 are obtained by Corollary 1, using that δ(1) �= 0 since x = 0 and x = 1

both satisfy (x + 1)d + xd = 1. �
We are going to examine specific functions which may have a two-valued differential

spectrum. The first family that we investigate is the family of plateaued functions.

Proposition 6: Let d be an integer such that gcd(d, 2n − 1) = 1. Let Fd(x) = xd and

f (x) = T r(xd). Assume that f is a plateaued Boolean function with Walsh spectrum

{0, ±2(n+k)/2}.
Then δ(Fd) ≥ 2k with equality if and only if δ(b) ∈ {0, 2k} for any b. Moreover, if any

non-zero δ(b) is greater than or equal to 2k then δ(b) ∈ {0, 2k} for any b.
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Proof: Since f is plateaued then ν(f ) = 22n+k (see Definition 5 and Theorem 1). Now,

from Proposition 4, we get

2n+k =
∑

x∈F2n

δ
(
xd + (x + 1)d

)

which implies 2k ≤ δ(Fd). Thus, δ(Fd) ≥ 2k and equality holds if and only if any

δ
(
xd + (x + 1)d

)
above is equal to 2k . On the other hand, it is clearly impossible to have

δ(b) ≥ 2k , for any non-zero δ(b), unless δ(b) ∈ {0, 2k} for any b. �
Note that, in the case of plateaued functions with Walsh spectrum {0, ±2(n+k)/2}, the sum

of the numbers of codewords of weight 3 and 4 in the associated code is fixed and given by

B3 + B4 = 2n − 1

24

(
2−nν(f ) − 2n+1

)
= 2n − 1

24

(
2n+k − 2n+1

)
In the remainder of this section, we will examine some examples.

5.2 The quadratic exponents

In this section, we consider functions Qt on F2n defined by Qt(x) = x2t+1. Such a power

function is said to have a quadratic exponent.

Recall that (cf. McEliece, 1987, Lemma 11.1)

gcd(2t + 1, 2n − 1) =
{

1, if gcd(t, n) = gcd(2t, n)

2gcd(t,n) + 1, if 2 gcd(t, n) = gcd(2t, n)
(10)

Also, the Walsh spectrum of f (x) = Tr(x2t+1) is known (see McEliece, 1987, Chapter 11).

It is, with notation k = gcd(2t, n):

F(f + ϕu) Number of u

0 2n − 2n−k

2(n+k)/2 2n−k−1 + 2(n−k−2)/2

−2(n+k)/2 2n−k−1 − 2(n−k−2)/2

(11)

For functions with quadratic exponents it is very easy to compute δ(Qt). Indeed, we have

x2t+1 + (x + 1)2t+1 = x2t + x + 1

And for any b, the equation x2t +x + 1 +b = 0 has either 0 solution or 2s solutions, where

s = gcd(t, n). Thus, for any t , we have clearly δ(Qt) = 2s with δ(b) ∈ {0, 2s}. Note that

we find again a well-known result: the function Qt is APN if and only if gcd(t, n) = 1. For

further purposes, we will need a more precise result on the structure of the set of solutions

of Qt(x) + Qt(x + a) = b in this case.

Lemma 4: Let Qt be the function on F2n defined by Qt(x) = x2t+1 where gcd(t, n) = s

with s ≥ 1. Let us consider the equation

Qt(x) + Qt(x + a) = b (12)

for any a, b in F2n . If Equation (12) has at least one solution x, then the set of its solutions

is x + aF2s .



164 C. Blondeau, A. Canteaut and P. Charpin

Proof: Suppose that the pair (a, b) is such that (12) holds for at least one element, namely

y. Then, there is at least one solution of

x2t+1 + (x + a)2t+1 = x2t
a + a2t

x + a2t+1 = b (13)

Since we have here an equation of the form A(x) = 0 where A is an affine function on F2n ,

the number of the solutions of (13) is either 0 or the same as the number of solutions of the

linear part of A(x). That is

x2t
a + a2t

x = 0 (14)

But, x2t
a + a2t

x = ax(x2t−1 + a2t−1). Thus, the set of solutions of Equation (14) is clearly

aF2s . We conclude that (13) has 2s solutions; more precisely, by linearity the set of its

solutions is y + aF2s . �

5.3 Kasami exponents

In this section, we study a subclass of the power functions defined as follows.

Definition 12: Let t be an integer such that 2 ≤ t ≤ n/2. Let us define the functions

on F2n :

Kt : x �−→ x22t−2t+1

Any such exponent is called a Kasami exponent.

Remark 2: Recall the following identity that we will use in the proof of the next theorem:

23t + 1 = (2t + 1)(22t − 2t + 1) (15)

We can have 3t = n + k with k ≥ 0 and in this case 23t + 1 ≡ 2k + 1 modulo 2n − 1.

If 3t = n then the inverse function of Kt is x �→ x23t−1(2t+1). Indeed,(
x22t−2t+1

)2t+1 = x23t+1 = x2

So, when 3t = n, the differential spectrum of Kt is the same as the differential spectrum

of the quadratic function Qt , its inverse function.

It is well-known that Kt is APN if and only if gcd(t, n) = 1. So we will focus here

on those t satisfying s = gcd(t, n) > 1. Moreover, we will suppose that n/ gcd(t, n) is

odd, which implies that gcd(2rt + 1, 2n − 1) = 1 for any odd r . In this case, we deduce

from (15) that d = 22t − 2t + 1 is coprime to 2n − 1. Also, the Walsh spectrum of

ft (x) = Tr(Kt(x)) is known from Kasami (1971): it consists precisely of {0, ±2(n+s)/2} if

s = gcd(n, t) = gcd(n, 2t).

We begin by recalling a result which is proved in a more general context in Charpin et al.

(1997, Proposition 5). Note that, in the next lemma, the number B3 of codewords of weight

3 of Cd is given by Proposition 5.

Lemma 5: Let d = 22t − 2t + 1 with t > 1. Let s = gcd(t, n). Then

Ud(x) = (x2t + x)

(
x2t + x

x2 + x

)2t

Moreover, the associated code Cd has minimal distance 3 for any s > 1.
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The first part of the next theorem was given in Hertel and Pott (2008). Recall that δ(b) is

the number of x such that xd + (x + 1)d = b.

Theorem 2: Let Kt : x �→ x22t−2t+1 over F2n . We assume that n �= 3t and s = gcd(n, t)

with n/s odd. Then δ(b) ∈ {0, 2s} for any b and, consequently, δ(Kt) = 2s . More precisely,

whenever the equation xd + (x + 1)d = b has a solution x then the set of its solutions is

(y + aF2s )2t+1 where x = y2t+1, x + 1 = (y + a)2t+1

Proof: We assume that b is such that the following equation

x22t−2t+1 + (x + 1)22t−2t+1 = b (16)

has at least one solution. According to (18), t satisfies gcd(2t + 1, 2n − 1) = 1. Hence,

there are y and z such that x = y2t+1 and x + 1 = z2t+1. Moreover, there is a such that

z = y + a. Then (16) becomes

y23t+1 + (y + a)23t+1 = b (17)

where 23t + 1 is computed modulo (2n − 1) (if 3t = n + � with � ≥ 1 then 23t + 1 is

equivalent to 2� +1). Let gcd(3t, n) = k. Note that either k = s or k = 3s. From Lemma 4,

we know that if Equation (17) has a solution y then the set of its solutions is y +aF2k . Now

we want to prove that, for any β ∈ F2s , the element (y + βa)2t+1 is a solution of (16). Set

u = (y + βa)2t+1 and v = (y + (β + 1)a)2t+1. We have

u + v = (y + βa)2t
a + (y + βa)a2t + a2t+1

= ya2t + y2t
a + a2t+1

= y2t+1 + (y + a)2t+1

= x + (x + 1) = 1

Thus,

u22t−2t+1 + (u + 1)22t−2t+1 = u22t−2t+1 + v22t−2t+1

= (y + βa)23t+1 + (y + (β + 1)a)23t+1 = b

proving that (16) has at least 2s solutions. Hence, we have δ(b) ≥ 2s for any non-zero δ(b).

We deduce from Proposition 6 that δ(b) ∈ {0, 2s} for any b, since the function x �→ Tr(xd)

is plateaued with spectrum {0, ±2(n+s)/2}. Further, δ(Ft ) = 2s and the set of solutions are

as expected. �

5.4 Other exponents and a conjecture

Taking into account a number of numerical results (see Table 1), we propose the following

conjecture.

Conjecture 1: Any power permutation xd with a two-valued differential spectrum is such

that d is either a quadratic exponent or a Kasami exponent, up to any equivalence which

preserves the differential spectrum.
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In particular, this conjecture implies that, for power functions, the same Walsh spectrum

may correspond to several differential spectra. For instance, for any n ≡ 2 mod 4, there exist

some plateaued optimal functions with different differential spectra: the quadratic function

x �→ x5 is differentially 4-uniform and has a two-valued differential spectrum. On the other

hand, some other power functions Fd whose components are plateaued optimal have been

exhibited by Cusick and Dobbertin (1996), as pointed out in the following theorem. Some

of these functions do not have a two-valued differential spectrum.

Theorem 3 (Cusick and Dobbertin, 1996): Let n = 2m with m odd. Let fd(x) = T r(xd)

denotes a Boolean function on F2n . Then fd is plateaued with spectrum {0, ±2(n+2)/2} for

the following values of d:

(i) d = 2m + 2(m+1)/2 + 1

(ii) d = 2m+1 + 3.

Note that in both cases, we have gcd(d, 2n − 1) = 1 so that the function Fd : x �→ xd is

a permutation. Since any bijective power function on F2n (with n even) cannot be APN,

we know that Fd cannot be APN. Proposition 6 implies that either these functions Fd

are differentially 4-uniform with a two-valued differential spectrum, or δ(Fd) ≥ 6. Our

simulations show, that, for any n ≡ 2 mod 4, 10 ≤ n ≤ 18, both these power permutations

are differentially 8-uniform. Moreover, both of them have the same differential spectrum

which takes all five values, 0, 2, 4, 6 and 8 (Table 3).

Conjecture 2: Let n = 2m with m odd. Let Fd : x �→ xd be the power permutations

defined by the following values of d:

(i) d = 2m + 2(m+1)/2 + 1

(ii) d = 2m+1 + 3.

Then, for these values of d , Fd is differentially 8-uniform and all values 0, 2, 4, 6 and 8

appear in its differential spectrum.

Our first conjecture on the non-existence of power permutations with a two-valued

differential spectrum, except the quadratic exponents and the Kasami exponents, is

corroborated by the following results on the scarcity of such functions. Actually, it can

be proved that power permutations over F2n with a two-valued differential spectrum do not

exist for many sets of parameters.

Table 3 Differential spectra of the power permutations studied by Cusick and Dobbertin (1996):

Fd : x �→ xd over F2n with d = 2m + 2(m+1)/2 + 1 and d = 2m+1 + 3, for n ≡ 2 mod 4,

10 ≤ n ≤ 18

n Exponent/inverse δ(Fd) ω0 ω2 ω4 ω6 ω8

10 41/25 8 698 200 76 40 10

67/107 8 698 200 76 40 10

14 145/113 8 11,504 2,240 2,080 448 112

259/1,613 8 11,504 2,240 2,080 448 112

18 545/481 8 182,496 40,320 29,248 8,064 2,016

1,027/2,629 8 182,496 40,320 29,248 8,064 2,016
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Proposition 7: Let p be a prime and n = pm for some m ≥ 1. Let Fd : x �→ xd be

a non-linear power permutation over F2n with a two-valued differential spectrum where

δ(Fd) = 2s . Then, p > 2 and p divides (2s−1 − 1). Most notably,

(i) if p = 2, then there is no power permutation with a two-valued differential

spectrum

(ii) for any p, δ(Fd) �= 4

(iii) for any p �= 3, δ(Fd) �= 8

(iv) for any p �= 7, δ(Fd) �= 16.

Proof: Let us consider E = {b ∈ F2n , δ(b) �= 0}. Since∑
b∈F2n

δ(b) = 2n

we have that, if Fd has a two-valued differential spectrum with δ(Fd) = 2s , then #E = 2n−s .

But, for any b, δ(b) = δ(b2). Therefore, the set E consists of the union of some cyclotomic

cosets modulo (2n − 1). Moreover, E includes {1} since δ(1) ≥ 2. When n = pm, the sizes

of all cyclotomic cosets, except {1}, are divisible by p.

It follows that #E = 1 + pλ for some integer λ, leading to pλ = 2n−k − 1.

Note that λ ≥ 1 since the case λ = 0 corresponds to the case where δ(Fd) = 2n, that is,

Fd(x) = x2i
. This situation does not occur since Fd is assumed to be non-linear. Then, we

have

2pm−s − 1 ≡ 0 mod p (18)

Property (i) immediately follows since this cannot occur for p = 2 because s < pm.

Let us now suppose that p > 2. Euler’s totient theorem can be applied to 2pi−1
, since p

is an odd prime, for any i ≥ 1. It leads to(
2pi−1

)p−1 ≡ 1 mod p

implying 2pi ≡ 2pi−1
mod p. It then follows that

2pm ≡ 2 mod p.

Then, we deduce from (18) that 2pm ≡ 2s ≡ 2 mod p, that is, p divides 2s−1 − 1. �
With a very similar technique, we can prove the following result.

Proposition 8: Let p > 2 be a prime and n = 2pm for some m ≥ 1. Let Fd : x �→ xd

be a non-linear power permutation over F2n with a two-valued differential spectrum. Then,

δ(Fd) = 2s and p divides either (2s−2 − 1) or (3 × 2s−2 − 1). Most notably,

(i) for any p �= 5, δ(Fd) �= 8

(ii) for any p �∈ {3, 11}, δ(Fd) �= 16

(iii) for any p �∈ {7, 23}, δ(Fd) �= 32

(iv) for any p �∈ {3, 5, 47}, δ(Fd) �= 64.

If n = pm, we know from Lemma 3 and Proposition 7 that the only power permutations

with δ(Fd) ≤ 6 which have a two-valued differential spectrum are the APN power
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permutations. Now, we get some additional information on the differential spectrum of

the power permutations with δ(Fd) ≤ 6 since we show that they all satisfy δ(1) = 2.

Proposition 9: Let p > 2 be a prime and n = pm for some m ≥ 1. Let Fd : x �→ xd be a

nonlinear power permutation over F2n . Then, p divides (((δ(1))/2) − 1). Most notably, if

δ(Fd) = 4 or δ(Fd) = 6, then δ(1) = 2, implying that δ(b) = δ(Fd) for at least p values

of b.

Proof: Let

E = {b ∈ F2n , δ(b) �= 0}
The set E consists of the union of some cyclotomic cosets modulo (2n − 1). For n = pm,

the sizes of all cyclotomic cosets modulo (2n − 1) are divisible by p except the coset {1}.
It follows that∑

b∈F2n

δ(b) = δ(1) + p
∑

b∈I,b �=1

δ(b) = 2n

where I is a set of representatives of the cyclotomic cosets. Because all δ(b) are even, we

deduce that

δ(1)

2
+ pλ = 2n−1

for some λ. Moreover, λ �= 0 because Fd is not linear. It follows that p divides(
2pm−1 − (δ(1)/2)

)
. By Euler’s totient theorem, we have

2pm ≡ 2 mod p

Thus, p divides
(
2pm−1 − (δ(1)/2)

)
if and only if p divides ((δ(1)/2) − 1). It is worth

noticing that this condition cannot hold for δ(1) ∈ {4, 6}, implying that δ(1) = 2 when

δ(Fd) ≤ 6. �
Remark 3: Let p > 2 be a prime and n = pm for some m ≥ 1. Then, there is

no differentially 4-uniform power permutation over F2n having the following differential

spectrum: ω4 = 1, ω2 = 2n−1 − 2, ω0 = 2n−1 + 1.

6 Conclusions

Differentially 4-uniform permutations are of great interest for the design of symmetric

cryptographic primitives: in the lack of known APN permutations of an even number of

variables (except for six variables), they are those which guarantee the best resistance

to differential attacks in most practical cases. But, besides the differential uniformity, the

whole differential spectrum of its S-box affects the security of a cipher as shown in Section 3.

For power permutations, this differential spectrum is highly related to the number of low-

weight codewords in some cyclic codes with two zeroes. In this context, we have studied the

differential spectra of several infinite families of exponents and we have also investigated the

case of power permutations with a two-valued differential spectrum. Most notably, several

conjectures on such functions have been given.
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