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1 Introduction

Concurrent and distributed systems such as telecommunication protocols and process
control systems influence and affect the lives of millions of people daily all over the
world today. The design of these systems often involve so difficult problems related
to timing that the traditional testing and analysis methods are not adequate. One
possible solution to this problem is the discerning use of appropriate formal methods.

Reachability analysis, also known as exhaustive stmulation or state space generation,
is a powerful formal method for detecting errors in such concurrent and distributed
systems that have a finite state space. Tt suffers from the so called state space
explosion problem, however: the state space of the system can be far too large with
respect to the time and other resources needed to inspect all states in the space.
Fortunately, errors such as undesirable reachable terminal states, also called deadlocks,
can be detected in a variety of cases without inspecting all reachable states of the
system. What makes deadlocks especially interesting is the fact that the verification
of a safety property can often be reduced to the detection of deadlocks, as shown by
Godefroid and Wolper [30] among others.

Petri nets [8, 43, 64] are a widely used model for concurrent and distributed sys-
tems. This report concentrates on the problem of detecting reachable terminal states
in place/transition nets, a class of Petri nets. Two promising methods are studied:
Valmari’s stubborn set method [70, 71, 73, T4, 75, 76, 78, 79, 80] and Godefroid’s
sleep set method [25, 27, 28, 29, 30, 26, 36, 86, 87]. Both methods utilize the indepen-
dence of transitions to cut down on the number of states inspected during the search.
These methods have also been combined by Wolper and Godefroid [86], Godefroid
and Pirottin [28], and Wolper, Godefroid, and Pirottin [87] to further reduce the
number of inspected states. All of these methods guarantee that all reachable termi-
nal states are found if the complete state space is finite. Though we shall concentrate
on place/transition nets, we shall also make some remarks concerning high-level nets
[8, 43]. Place/transition nets of actual systems tend to be very large. On the other
hand, using high-level nets one can make compact models in a natural way. Fortu-
nately, a high-level net can often be unfolded into a behaviourally equivalent finite
place/transition net, and, using the inverse mapping of the unfolding mapping, the
place/transition net can be folded back into the high-level net [24, 40]. This provides
a path of extending results on place/transition nets to high-level nets.

The application of the stubborn set method and the sleep set method is not limited
to Petri nets. The methods have been applied to several models of concurrency by
Valmari [75, 79], Godefroid and Pirottin [28], Wolper and Godefroid [86], and Peled
[59] among others. Valmari [71], and Godefroid and Kabanza [27] have presented
how the stubborn set method and the sleep set method can be used to improve
the graph search methods used for artificial intelligence. The independence of rules in
production systems of artificial intelligence [56] resembles the independence of actions
in concurrent and distributed systems in many senses. The essential point in the
stubborn set method and the sleep set method is that they utilize the independence
of actions or rules. Refined independence relations are important since the more
refined is the independence relation the less states usually have to be inspected.
Best and Lengauer [5], and Katz and Peled [47] among others have studied refined
independence relations and developed general concepts of independence.



The application of the stubborn set method and the sleep set method is not limited
to the detection of reachable terminal states either. Both methods can be extended
to verify properties expressed as linear temporal logic formulae without a next state
-operator, as shown by Valmari [76, 79], Godefroid and Wolper [29], and Peled [59].

The rest of this section has been organized as follows: reachability analysis is pre-
sented in Subsection 1.1. Subsection 1.2 presents the stubborn set method and the
sleep set method. In Subsection 1.3 we give a brief description of the contributions
of this report. Related work is considered in Subsection 1.4. Subsection 1.5 shows
how the rest of this report has been organized.

1.1 Reachability Analysis

A classic way to detect errors in a system is testing. However, it is often difficult to
test the system sufficiently even if the system is sequential. If the system is concurrent
or distributed, there can be errors that depend on the order of execution of actions
in the system. When a test is executed twice in exactly the same circumstances, such
errors may remain undetected or occur only in one of the executions.

Reachability analysis inspects the states of a formal abstract model of the system,
aiming to find even such elusive errors. The complete state space can be seen as a
graph having the states that are reachable from a given initial state of the model as
vertices, and all the state transitions between the states as edges. Many properties
can easily be checked from such graph if it is finite. If the complete state space is
infinite, it is still possible to detect errors by inspecting some finite set of states. On
the other hand, a finite complete state space can be far too large with respect to
the time and other resources needed to inspect all states in the space. The number
of states in the complete state space may grow exponentially or superexponentially
with respect to some parameter of the model. We thus have the so called state space
explosion problem.

Fortunately, many properties can be verified without inspecting all reachable states.
For example, reachable terminal states can sometimes be found by inspecting only
some of the paths from the initial state to the terminal states. A terminal state can
be acceptable or undesirable. Undesirable reachable terminal states are often called
deadlocks. Godefroid and Wolper [30] among others have shown how the verification
of a safety property can often be reduced to the detection of deadlocks. Intuitively,
a safety property states what should not happen whereas a liveness property states
what should happen in the modelled system. A detected error such as a deadlock
may be caused by an improper design of the modelled system but it is also possible
that the model is improper. The problem whether the model corresponds to the
modelled system properly is a challenging area of research. We shall not pursue it
further in this report, however.

1.2 Two Methods for Efficient Verification

Valmari’s stubborn set method [70, 71, 73, 74, 75, 76, 78, 79, 80] and Godefroid’s
sleep set method [25, 27, 28, 29, 30, 26, 36, 86, 87] utilize the independence of state



transitions of the model to eliminate such paths of the complete state space that are
redundant with respect to the verification of a given property. These two methods
have been combined by Wolper and Godefroid [86], Godefroid and Pirottin [2§],
and Wolper, Godefroid, and Pirottin [87] to further reduce the number of states
inspected during the search. We shall study the stubborn set method, the sleep set
method, and their combination in this report. We are mainly interested in finding all
reachable terminal states by inspecting as few states as possible. All of these methods
guarantee that all reachable terminal states are found if the complete state space is
finite. It is possible to extend the methods to verify more sophisticated properties,
even properties expressed as linear temporal logic formulae [29, 59, 76, 79], but
the more properties of the complete state space are preserved, the greater is the
number of states inspected during verification. The state space explosion problem
often appears even if we limit ourselves to detecting of reachable terminal states.
Valmari has shown that the problem whether a reachable terminal state exists is a
polynomial space hard problem for finite place/transition nets having a finite set of
reachable states [72]. The hardness of the detection of reachable terminal states is not
characteristic to concurrent and distributed systems only: the state space explosion
problem also appears in sequential systems having nondeterministic choices.

Dijkstra’s Dining Philosophers Problem [19] has been widely used in computer science
to popularize concurrency control problems. Both the stubborn set method and the
sleep set method have been shown to inspect only a polynomial number of states
with respect to the number of philosophers in a model of the Dining Philosophers
Problem, while the complete state space of the model has an exponential number of
states with respect to the number of philosophers [70, 25]. This shows some of the
promise contained in the methods.

1.3 Contributions of the Report

This work shows that the stubborn set method and the sleep set method can be
combined without any of the assumptions previously placed on the stubborn sets as
far as the detection of reachable terminal states in place/transition nets is concerned.
The obtained result is actually more general and gives a sufficient condition for a
method to be compatible with the sleep set method in the detection of reachable
terminal states in place/transition nets. We also give justifications for our claim that
a result equivalent to the obtained result should hold in the models of concurrency
presented by Wolper and Godefroid [86], and Godefroid and Pirottin [28].

The number of enabled transitions in a stubborn set can drastically affect the num-
ber of states inspected by the stubborn set method during the search for reachable
terminal states. This work presents some heuristics for relieving the problem.

This report emphasizes the value of dynamically stubborn sets as a useful generaliza-
tion of stubborn sets and shows some results that improve the understanding of the
stubborn set method.



1.4 Related Work

The stubborn set method is closely related to, though not necessarily based on Over-
man’s algorithms [57]. These, according to Valmari [73, T9], are somewhat limited
and not so efficient as the stubborn set algorithms. The stubborn set method can also
be considered a dynamic priority method in contrary to the static priority method
mentioned by Valmari and Tiusanen [82], Rauhamaa [63], and Valmari [79] among
others. The static priority method is in turn a generalization of the virtual coarsen-
ing of atomic actions presented by Ashcroft and Manna [1], and advocated later by
Pnueli [60].

The sleep set method was originally inspired by Mazurkiewicz’s trace theory [53]. An
early version of the sleep set method [25] was essentially faithful to Mazurkiewicz’s
trace semantics. Later, inspired by Katz’s and Peled’s work [47], the method has
been refined to take into account conditional independence [28]. As suggested in
[86, 87] and seen in this work, representing traces is sometimes not necessary at all.

Katz and Peled have, independently of Valmari, developed verification algorithms
that use faithful decompositions [46]. Peled [59] states that faithful decompositions
are similar to stubborn sets. Peled has recently improved and extended [59] Valmari’s
and Godefroid’s linear temporal logic verification algorithms.

There is often some symmetry in a model. For example, some processes may have
been be modelled as if they were executing the same code, which in some communi-
cation topologies results in distinct symmetries. It is possible to reduce verification
effort by taking into account symmetries and letting an equivalence class of states
be represented by one state. Valmari has shown [78] that the stubborn set method
is compatible with the symmetry method presented by Huber, Jensen, Jepsen, and
Jensen [37] as far as the detection of reachable terminal states is concerned. Later,
Tiusanen has shown [69] that the stubborn set method is compatible in a very wide
sense with the more general symmetry method presented by Starke [68], and Schmidt
and Starke [67]. The symmetry method in [37] includes an algorithm that checks
whether two states are equivalent or not. Starke and Schmidt have not presented
any corresponding algorithm, but, as mentioned by Clarke, Filkorn, and Jha [12],
a unique representative of the equivalence class of a state can be computed using
Bryant’s BDD’s (binary decision diagrams) [10] and Lin’s and Newton’s method
[50, 51]. Emerson and Sistla have also studied symmetries in model checking [20].

During the last few years, much work has been done in the area of on-the-fly-
verification. This refers to a property being verified during the inspection of states
with the inspection being stopped when the truth or falsity of the property is
known. Both the stubborn set method and the sleep set method support on-the-
fly-verification [29, 80]. Consequently, they are compatible with the memory saving
techniques presented by Holzmann [34, 35], Courcoubetis, Vardi, Wolper, and Yan-
nakakis [17], Godefroid, Holzmann, and Pirottin [26], and Wolper and Leroy [88].

There are many approaches attacking the state space explosion problem. We list a
few of them, excluding those that have already been mentioned:

e Time Petri nets are used as models of real-time systems. Earliest and latest
firing times are associated with transitions. Yoneda, Shibayama, Schlingloff,
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and Clarke [89] have presented a method for efficient verification in time Petri
nets. They mention that their method shares some ideas with the stubborn set
method.

Janicki and Koutny [38, 39] have presented optimal simulations in state ma-
chine decomposable nets. According to them, these Petri nets have the same
expressive power as I-safe place/transition nets. Though they do not actually
define what is meant by a 1-safe place/transition net, it seems that the defi-
nition given later in this report is consistent with their concept. We base this
claim on the fact that in their state machine decomposable nets, a self-loop
associated with a transition does not prevent the transition from firing, and
also on their description of how a state machine decomposable net can be “col-
lapsed” into a behaviourally equivalent 1-safe place/transition net, and how a
1-safe place/transition net can be transformed into a behaviourally equivalent
state machine decomposable net by adding complement places. Their optimal
simulations respect Mazurkiewicz’s trace semantics [38, 39, 53].

The occurrence net of a place/transition net represents the partial orders of
transitions. McMillan [54] has presented a verification technique that con-
structs such fragment of the occurrence net that is large enough to represent all
of the reachable states of the place/transition net. McMillan’s technique is ori-
ented to the verification of asynchronous circuit models. According to McMillan
[54], Valmari’s stubborn set method and Godefroid’s sleep set method, the lat-
ter being called trace automaton method in [54], are “ineffective in reducing the
state explosion problem for asynchronous circuit models, because of the ubig-
uity of confusion in such models”. The behaviour machine method of Probst
and Li [61] also builds a representation of the partial orders of transitions and
is also oriented to the verification of asynchronous circuit models.

Reduction rules can be used to transform a Petri net into a smaller net equiva-
lent in some particular sense. Berthelot and Roucairol [3], Berthelot [2], Colom,
Martinez, and Silva [15], and Haddad [33] among others have studied net re-
ductions.

Quemada [62], Dams, Grumberg, and Gerth [18], and Fernandez, Kerbrat, and
Mounier [21] among many others have studied bisimulation. Here a model is
abstracted into a smaller model in such a way that the smaller model and the
original model simulate each other in a well-defined sense.

Burch, Clarke, McMillan, Dill, and Hwang [11] have presented a celebrated
symbolic model checking technique that expresses many states in one formula
of p-calculus and uses a BDD as a normal form.

It might be possible to develop the parameterized reachability tree method of
Lindqvist [52] further, though Rauhamaa [63] considers the method impracti-
cal and its theoretical profits questionable. A parameterized reachability tree
represents many states in one node, parameterized on the values of given vari-
ables. The basic problem of the method is that the state space represented
by the tree may contain states and state transitions that represent no state or
state transition in the true state space of the model.
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e Vautherin [84] and Findlow [22] employ a more drastic abstraction than Lind-
qvist. For a high-level net, they construct a skeleton by ignoring the identities
of tokens. The skeleton can under some circumstances be used to find the
reachable terminal states of the original net. Both have presented conditions
which guarantee that the set of reachable terminal states of the skeleton corre-
sponds to the set of reachable terminal states of the original net. The skeleton
can have a much smaller reachability graph than the original net. However, as
shown by Rauhamaa [63], there are instances where the opposite is the case,
the skeleton has a larger reachability graph than the original net.

e Murata, Shenker, and Shatz [55] have shown how the linear place and transition
invariants of a Petri net can be used in the detection of reachable terminal
states. The linear invariants can be obtained from a linear system of equations.
It is sometimes possible to conclude the absence of reachable terminal states
from the invariants. More generally, the invariants give candidates that might
be reachable terminal states, and one can then perform a restricted, partial
state space search to find out whether a candidate is a reachable terminal state
or not.

e Compositional verification has been studied by Valmari [77], Graf and Steffen
[31], Finkel and Petrucci [23], Valmari and Tienari [81], Kaivola and Valmari
[45], and Peled [58] among others. The idea of the compositional verification
is that a model is decomposed into modules, the property to be verified is
decomposed into subproperties to be verified in the modules, the truth values
of which determine the truth value of the property.

To our knowledge, there are only a few computer tools that include the stubborn set
method or the sleep set method. Valmari and others have implemented the stubborn
set method in the TORAS tool [85], a part of the FORSEE environment [6] of Telecom
Australia Research Laboratories as well as in the ARA tool of Technical Research
Centre of Finland [48]. Godefroid and others have implemented the sleep set method
in the Partial-Order Package [28, 86, 87] which is an add-on package for the SPIN
tool of Holzmann [35]. Varpaaniemi has implemented the stubborn set method in the
PROD tool developed by Rauhamaa and others in Helsinki University of Technology
(32, 83].

1.5 Structure of the Report

In Section 2, we introduce place/transition nets. The presentation does not go be-
yond what is necessary for the remaining sections. The stubborn set method is then
presented in Section 3. Dynamically stubborn sets [63, 78] are shown to be a use-
ful generalization of stubborn sets. Some problems related to the computation of
stubborn sets are highlighted. The compatibility of the stubborn set method and
high-level nets is also discussed. Section 4 considers the sleep set method and its
combination with the stubborn set method. We conclude in Section 5 by summariz-
ing the results obtained and briefly discussing possible directions for future research.
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2 Place/Transition Nets

In this section we give definitions of place/transition nets [64, 65] that will be used
in later sections.

The definitions in Subsection 2.1 are somewhat basic. Subsection 2.2 is more oriented
to the following sections and introduces the concepts of an alternative sequence and
the independence of transitions.

2.1 Basic Definitions

We shall use “iff” to denote “if and only if”. The power set (the set of subsets) of a
set A is denoted by 24. The set of partial functions from a set A to a set B is

{RCAXxB|Vte AVye BVze B ((¢,y) € RA(z,2) € R) = y = z}.
The set of total relations from a set A to a set B is
{RCAXxB|VeeAdye B (z,y) € R}

The set of functions from a set A to a set B, denoted by (A — B), is the set of
those partial functions from A to B that are total relations from A to B. So there
is always an empty function from an empty set to any set but there is no function
from a nonempty set to an empty set. The set of natural numbers, including 0, is
denoted by N. We shall use w to denote a formal infinite number, and N, to denote
N U {w}. Relation < over N is extended to N, by defining

Yn € Ny, n < w.
Addition and subtraction are extended similarly by defining
VneNw+n=wAw—-n=uw.

Clearly, w € N since no natural number can be substituted for w in these conditions
in such a way that the conditions would hold.

Definition 2.1 A place/transition net is a 6-tuple (S, T, F, K, W, My) such that

S is the set of places,

o T is the set of transitions, SNT =0,

F is the set of arcs, FF C (S x TYU (T x S),

K is the capacity function, K € (5 — N,),

W is the arc weight function, W € (F — (N \ {0})), and

My is the initial marking (initial state), My € M where M is the set of mark-
ings (states), M ={M € (S — N)|Vse S M(s) < K(s)}.
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If t € SUT, then the set of input elements of x is

*z={y|(y,z) € F},

the set of output elements of x is

z* ={y|(z,y) € F},

and the set of adjacent elements of z is £®* U *z. The function W is extended to a
function in ((SxT)U(T xS)) — N) by defining W(z,y) =0 iff (z,y) ¢ F. The net
is finite iff SUT is finite. Ares (z,y) € F and (z',y') € F form a self-loop iff z' =y
and y' = x. The net has a self-loop iff some arcs of the net form a self-loop. A place
s has an infinite capacity iff K(s) = w. The net is a net with infinite capacities iff
each place has an infinite capacity. For any k € N, the net is k-safe iff

VseSVteT K(s) <kANW(s,t) <kAW(t,s)<k.

If s is a place of a net and M is a marking of the net, then M (s) is called the number
of tokens in s at M. If each place has an infinite capacity, then the set of markings
of the net is simply (S — N). Reisig accepts infinite markings, where for some or all
s €9, M(s) =w, in [64] but omits them in [65]. We have omitted infinite markings
since infinite markings are redundant in finite place/transition nets and are normally
used only as covering markings in coverability graphs [64].

In our figures, places are circles, transitions are rectangles, and the initial marking is
shown by the distribution of tokens, black dots, onto places. The weight of an arc is
shown iff it is not 1. The capacity of a place is shown iff it is not w, by the inscription
K =n.

Definition 2.2 Let (S,T,F, K,W, My) be a place/transition net. A transition t is
enabled at a marking M iff

Vs et M(s) > W(s,t)

and

Vs et® M(s)—Wi(s,t)+ W(t,s) < K(s).

A transition t leads (can be fired) from a marking M to a marking M' (M[tyM' for
short) iff t is enabled at M and

Vse S M'(s) = M(s) — W(s,t)+ W(t,s).

A transition t is disabled at a marking M iff t is not enabled at M. A marking M
15 terminal iff no transition is enabled at M. A marking M is nonterminal iff M
is not terminal. A place s is a disabling place of a transition ¢ at a marking M
iff M(s) < W{(s,t) or M(s) —W(s,t)+ W(t,s) > K(s). A partial function f from
M x T to S is a scapegoat generator of the net iff for each marking M and each
disabled transition t at M, f(M,t) is a disabling place of t at M.

If each place has an infinite capacity, then the output places of a transition do not
affect the enabledness of the transition. Our enabledness condition is weaker than
Reisig’s enabledness condition [64, 65] that requires M (s) + W (t,s) < K(s) instead
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of M(s) — Wi(s,t) + W(t,s) < K(s). Our enabledness condition guarantees that
our 1-safe place/transition nets are behaviourally equivalent to Godefroid’s 1-safe
place/transition nets [25]. The definition of a disabling place is consistent with the
definition of disabledness since a transition is disabled at a marking iff some place is
a disabling place of the transition at the marking. Definition 2.2 does not define a
scapegoat generator to be a function since S can be empty.

Finite transition sequences and reachability are introduced in Definition 2.3. We
shall use ¢ to denote the empty sequence.

Definition 2.3 Let (S, T, F, K,W, My) be a place/transition net. For any Ts C T,

Tso = {eh
(Vne NTM' = {ot|oceTrAteT,}), and
) = {o|IneNoeTl}

T is called the set of finite sequences of transitions in T, and T™ s called the set of
finite transition sequences of the net. A finite transition sequence o' is a prefix of a
finite transition sequence o iff there exists a finite transition sequence o' such that
o=oc'c". A finite transition sequence o leads (can be fired) from a marking M to a

marking M' iff M[o)M' where
VM e M Ms)M, and

VMeMVM e MVseT*VteT
M[et)M' & (AM" € M M[6YM" N M"[t)M").

A finite transition sequence o is enabled at a marking M (M|[o) for short) iff o leads
from M to some marking. A finite transition sequence ¢ is disabled at a marking
M iff o is not enabled at M. A marking M' is reachable from a marking M iff
some finite transition sequence leads from M to M'. A marking M' is a reachable
marking iff M' is reachable from My. A marking M' is globally unreachable iff M’
is not reachable from any other marking in M than M'. For any k € N, the net is
k-bounded iff for each reachable marking M and for each place s € S, M(s) < k.
The (full) reachability graph of the net is the pair (V, A) such that the set of vertices
V' is the set of reachable markings, and the set of edges A is

UM, M"Y | MeVAM eVAteTANM[t)M'}.

A finite transition sequence is merely a string. It can be thought of as occurring as a
path in the full reachability graph iff it is enabled at some reachable marking. Clearly,
every k-safe place/transition net is k-bounded, but the converse does not hold. In
fact, each place/transition net can be transformed into a behaviourally equivalent
net with infinite capacities by adding so called complement places [64, 65]. For
each k-safe place/transition net, there is thus a behaviourally equivalent k-bounded
place/transition net with infinite capacities.

Definition 2.4 Let (S,T,F, K, W, My) be a place/transition net. Let f be a function
from M to 2T A finite transition sequence o f-leads (can be f-fired) from a marking
M to a marking M' iff M[o)sM', where

VM e M M) M, and
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YMeMVYM e MYseT*VteT
Moty M' & (IM" e M M) M" Nt € f(M)ANM"[t)M").

A finite transition sequence o is f-enabled at a marking M (M[o)s for short) iff
o f-leads from M to some marking. A marking M' is f-reachable from a marking
M iff some finite transition sequence f-leads from M to M'. A marking M' is an
f-reachable marking iff M' is f-reachable from My. The f-reachability graph of the
net is the pair (V, A) such that the set of vertices V is the set of f-reachable markings,
and the set of edges A is

{Mt, MY MeVAM eV Ate f(M)ANM[t)M'}.

Definition 2.4 is like a part of Definition 2.3 except that a transition selection func-
tion f determines which transitions are fired. If f is clear from the context or is
implicitly assumed to exist and be of a kind that is clear from the context, then the
f-reachability graph of the net is called the reduced reachability graph of the net.
Note that the reduced reachability graph of the net can even be the full reachability
graph of the net, e.g. in the case where f(M) =T for each M € M.

Definition 2.5 Let (S, T, F, K,W, My) be a place/transition net. The set of infinite
transition sequences of the net is the set of functions from N to T, (N — T). The
function ¢ from (N — T) x N to T* is defined by

(Vo e (N —=T)¢(0,0)=¢), and
(Vo e (N —=T)V¥ne N ¢(o,n+1) =c¢(o,n)o(n)).

If o is an infinite transition sequence and n € N, (o, n) is called the prefix of length
n of 0. An infinite transition sequence o is enabled at a marking M (M[o) for short)
iff for each n € N, the prefix of length n of o is enabled at M. An infinite transition
sequence o s disabled at a marking M iff o is not enabled at M. Let f be a function
from M to 2T. An infinite transition sequence o is f-enabled at a marking M (M|[c);
for short) iff for each n € N, the prefiz of length n of o is f-enabled at M.

An infinite transition sequence is merely a function. It can be thought of as occurring
as a path in the full reachability graph iff it is enabled at some reachable marking.

2.2 Alternative Sequences and the Independence of Transi-
tions

Most of the definitions in Subsection 2.1 can be found in some form or another
in the literature [64, 65]. This subsection is more oriented to the following sections.
Especially, the concepts of an alternative sequence and the independence of transitions
are introduced.

Definition 2.6 Let (S,T,F, K, W, My) be a place/transition net. A transition se-
quence ¢ is an alternative sequence of a finite transition sequence ¢ at a marking M
iff 6 is a finite transition sequence, o is enabled at M, and 6 leads from M to the
same marking as o. A transition sequence ¢ is a length-secure alternative sequence
of a finite transition sequence o at a marking M iff ¢ is an alternative sequence of
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o at M and not longer than o. The functions n and 9 from T* x M to 2(T7) are
defined as follows: for each finite transition sequence o and marking M, n(o, M) is
the set of alternative sequences of o at M, and ¥(o, M) is the set of length-secure
alternative sequences of ¢ at M.

Clearly, for each finite transition sequence o and marking M, ¥(o, M) C n(o, M).
Also, n(o, M) is empty iff o is not enabled at M.

Definition 2.7 Let (S,T,F, K, W, My) be a place/transition net. A transition se-
quence 6 is a permutation of a finite transition sequence o iff 6 is a finite transition
sequence and for each transition t, the number of t’s in 6 is equal to the number of
t’s in . A transition sequence ¢ is an enabled permutation of a finite transition se-
quence ¢ at a marking M iff 6 is a permutation of o and enabled at M. The function
7 from T* x M to 2(T") is defined as follows: for each finite transition sequence o
and marking M, (o, M) is the set of enabled permutations of ¢ at M.

Clearly, if finite transition sequences are enabled permutations of each other at a
marking M, they lead to the same marking from M. So, if a finite transition sequence
o is enabled at a marking M, then n(o, M) C ¥(o,M). The set w(o, M) can be
nonempty even if ¢ is not enabled at M since some permutation of ¢ can be enabled
at M. The set of length-secure alternative sequences, as well as the set of alternative
sequences, of an enabled finite transition sequence ¢ at a marking can always be
partitioned into sets of enabled permutations of sequences at the marking. Of course,
only one of those sets is the set of enabled permutations of o.

Definition 2.8 Let (S,T,F, K,W, My) be a place/transition net. Transitions t and
t' commute at a marking M iff M[tt') and Mt't). Transitions t and t' are indepen-
dent at a marking M ff

(Mtt"y N M[t't)) vV (= M[t) N ~M[t')V
(M[t) AN =Mty A =M[tt")) vV (M) A =M[t) A =M[t't)).

Our definition of independence corresponds to Godefroid’s and Pirottin’s [28] def-
inition of conditional independence which in turn is based on Katz’s and Peled’s
[47] corresponding definition. Our definition of independence can be obtained from
Godefroid’s and Pirottin’s definition of valid conditional dependency relations, Defi-
nition 5 in [28], by taking the necessary conditions for a triple of two transitions and
one state to be in the complement of a valid dependency relation, and substituting
terms of place/transition nets for the terms of the model of concurrency in [28] in an
obvious way.

The following can clearly be seen from the above.
e Different transitions are independent at a marking iff neither of them can be

fired at the marking making the other transition turn from enabled to disabled
or from disabled to enabled.

e A transition? commutes with itself at a marking iff ¢¢ is enabled at the marking.

e A transition t is independent of itself at a marking iff ¢¢ is enabled or ¢ is
disabled at the marking.
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n(o, M) | the set of alternative sequences of a finite transition sequence ¢ at M
d(o, M) | the set of length-secure alternative sequences of a finite transition
sequence ¢ at M

(o, M) | the set of enabled permutations of a finite transition sequence o at M
t(o, M) | the conditional trace of a finite transition sequence o at M

Figure 1: The functions n, ¥, 7, and .

¢ Transitions commute at a marking iff they are enabled and independent at the
marking.

Definition 2.9 Let (S, T, F, K,W, My) be a place/transition net. A transition se-
quence ¢ is a neighbour of a finite transition sequence ¢ iff there exist transitionst and
t', and finite transition sequences o' and o' such that o = o'tt'c" and 6 = o't'to".
A transition sequence 6 is an enabled neighbour of a finite transition sequence o at
a marking M iff 6 is a neighbour of o and enabled at M. Let M be a marking and R
the binary relation on T such that o RO iff o and ¢ are enabled neighbours of each
other at M. The conditional trace of a finite transition sequence o at M is the set
of finite transition sequences such that a sequence ¢ is in the conditional trace of o
at M iff o is enabled at M and c R*6 where R* is the reflexive-transitive closure of
R. A set is a conditional trace at M iff the set is the conditional trace of some finite
transition sequence at M. The function ¢ from T* x M to 2(T") is defined as follows:

for each finite transition sequence o, and marking M, (o, M) is the conditional trace
of o at M.

In other words, a conditional trace is a set of enabled finite transition sequences at a
marking that can be obtained from each other by repeatedly interchanging adjacent
independent transitions. We did not have to mention independence in Definition 2.9
since transitions commute at a marking iff they are enabled and independent at the
marking. The reflexive-transitive closure of R in Definition 2.9 is clearly an equiv-
alence relation, and the conditional trace of an enabled finite transition sequence is
the equivalence class of the sequence with respect to the equivalence relation. Our
definition of a conditional trace corresponds to Godefroid’s and Pirottin’s [28] def-
inition which in turn is based on Katz’s and Peled’s [47] corresponding definition.
The conditional trace of an enabled finite transition sequence at a marking is nat-
urally a subset of the enabled permutations of the sequence at the marking. Thus
t(oc, M) C w(o, M) holds for each ¢ and M. Moreover, the set of enabled permuta-
tions of an enabled finite transition sequence at a marking can always be partitioned
into conditional traces at the marking. Of course, only one of those conditional traces
is the conditional trace of the sequence. Note that if a finite transition sequence o is
disabled at a marking M, then the conditional trace of o at M is empty.

Figure 1 presents the functions n, ¥, 7, and ¢ in a nutshell.

A conditional trace is a generalization of a Mazurkiewicz’s trace [53]. Mazurkiewicz
presented his traces for condition/event nets. A condition/event net is behaviourally
close to a 1-safe place/transition net that does not have a self-loop. However, the
concept of a Mazurkiewicz’s trace can meaningfully be generalized to concern all
place/transition nets. Assuming the convention used by Wolper and Godefroid [86],
we can say that a Mazurkiewicz’s trace is a set of finite transition sequences that
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can be obtained from each other by repeatedly interchanging adjacent globally inde-
pendent transitions. There are many levels of global independence. We could define
that transitions are globally independent iff they are independent at every marking
that is reachable from the initial marking [28]. Or, we could define that transitions
t and t' are globally independent iff no adjacent place of ¢ is an adjacent place of
t' 25, 53]. The former definition has the problem that it is computationally hard
to check whether two transitions are globally independent. The latter definition is
somewhat coarse if the net has self-loops.

Definition 2.10 Let (S, T, F, K,W, My) be a place/transition net. Let f be a func-
tion from M to 2T. Then we say that f represents all sets of alternative sequences
to terminal markings iff

Vo € T* VM € M (Mlo) AVt € T =Mlot)) = (36 € n(o, M) M[6)).

Correspondingly, [ represents all sets of length-secure alternative sequences to ter-
minal markings iff

Vo e T*VYM e M (M[o) ANVt € T =Mlot)) = (36 € ¥(o, M) M[6)y).
Respectively, f represents all sets of enabled permutations to terminal markings ¢ff
Vo e T" VM e M (M[o) AVt €T =Mlot)) = (36 € w(o, M) M[6)¢).

Finally, f represents all conditional traces to terminal markings iff
Vo e T* VM e M (Mlo) AVt €T ~M[ot)) = (36 € (o, M) M[b)y).
The following can clearly be seen from the above.
¢ A function reperesenting all conditional traces to terminal markings represents

all sets of enabled permutations to terminal markings.

e A function representing all sets of enabled permutations to terminal markings
represents all sets of length-secure alternative sequences to terminal markings.

e A function representing all sets of length-secure alternative sequences to termi-
nal markings represents all sets of alternative sequences to terminal markings.
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3 Stubborn Set Method

In this section we present Valmari’s stubborn set method [70, 71, 73, 74, 75, 76, T8,
79, 80]. Subsection 3.1 is concentrated on dynamically stubborn sets [63, 78]. All the
stubborn sets that have been defined in the literature are known to be dynamically
stubborn. Dynamically stubborn sets seem to have all the nice properties of (stat-
ically) stubborn sets except that the definition of dynamic stubbornness does not
seem to imply a practical algorithm for computing dynamically stubborn sets. We
base the definitions on Rauhamaa’s principles [63]. We also present Godefroid’s and
Pirottin’s definitions of persistent and conditionally stubborn sets [28] in the context
of place/transition nets.

In Subsection 3.2, we show that dynamically stubborn sets are really useful. We
consider how reachable terminal markings are preserved by a dynamically stubborn
set selective reachability graph generation, that is, reachability graph generation that
at each encountered marking selects a dynamically stubborn set and fires the enabled
transitions in the set, without firing other transitions. All reachable terminal mark-
ings are shown to occur in the reduced reachability graph. Also, if there is an infinite
path in the full reachability graph, then the reduced reachability graph is shown to
have an infinite path, too. We end Subsection 3.2 by showing a property which is
the basis for Valmari’s algorithms for detecting ignored transitions and eliminating
the ignoring phenomenon [75]. A transition is ignored at a marking iff the transition
is enabled at the marking but not fired at any marking that is reachable from the
marking. The existence of ignored transitions is called the ignoring phenomenon.

True (or static) stubbornness is defined in Subsection 3.3. As we are interested in
detecting reachable terminal markings by inspecting as few markings as possible, we
have chosen a very weak definition of stubbornness. Qur definition is the definition
in [70] modified by taking advantage of the remarks in [70].

The incremental algorithm for computing stubborn sets [70, 73] is presented in Sub-
section 3.4, and the deletion algorithm [71, 73] in Subsection 3.5. The deletion al-
gorithm is slower than the incremental algorithm, but the incremental algorithm is
not guaranteed to produce minimal stubborn sets in any practical sense, unlike the
deletion algorithm. The compatibility of the stubborn set method and high-level nets
[8, 43] is discussed in Subsection 3.6.

One critical factor in the incremental algorithm possibly producing unnecessarily
large stubborn sets is the choice of a scapegoat. A scapegoat is a disabling place
chosen during the execution of the incremental algorithm for a disabled transition. In
Subsection 3.7, the gravity of the problem together with some heuristics for choosing
a scapegoat are described in the context of a classical example.

3.1 Dynamic Stubbornness

We define dynamic stubbornness on the basis of Rauhamaa’s principles [63].

Definition 3.1 Let (S, T, F, K,W, My) be a place/transition net. Let M be a mark-
ing of the net. A set T, C T fulfils the first principle of dynamic stubbornness (D1



~15 —

for short) at M iff
Vo e (T\Ts)"Vte T, Moty = M[to).
A transition t is a key transition of a set T, C T at M iff t € Ts and
Vo e (T\Ts)" Mlo) = M]ot).

A set Ty C T fulfils the second principle of dynamic stubbornness (D2 for short) at
M iff Ty has a key transition at M. A set T, C T fulfils the principle of conventional
dynamic stubbornness (CD for short) at M iff

Vo € (T\T,)* V6 € (T \T,)* Vi € T, Mlo6t) = M]ots).

A set Ty, C T fulfils the first principle of strong dynamic stubbornness (SD1 for
short) at M iff
Vo e (T\Ts)" Vte T, Mlot) = M]|t).

A set T, C T fulfils the second principle of strong dynamic stubbornness (SD2 for
short) at M iff

Vo € (T\T,)* Vt € T, (M[t) A M[o)) = (M]ot) A M[to)).

A set Ty C T is dynamically stubborn at M iff T fulfils D1 and D2 at M. A set
Ty C T is conventionally dynamically stubborn at M iff T, fulfils CD and D2 at M.
A set Ty, C T is unconventionally dynamically stubborn at M iff T, is dynamically
stubborn but not conventionally dynamically stubborn at M. A set Ts C T is strongly
dynamically stubborn at M iff Ty fulfils SD1 and SD2 at M and 3t € T, M|t).

The principles D1, D2, CD, SD1, and SD2 are illustrated in Figure 2. The principles
D1, D2, SD1, and SD2 are Rauhamaa’s Principles 1*, 2*, 1, and 2, respectively
[63]. Clearly, a key transition of a set at a marking is enabled at the marking.
Our key transitions are similar to Valmari’s key transitions [75]. The difference is
that Valmari’s key transitions satisfy a condition that can be checked easily and is
sufficient but not necessary for a transition to be a key transition in the sense of our
definition.

We shall see in Subsection 3.2 that dynamic stubbornness alone is sufficient as far
as the detection of reachable terminal markings is concerned, conventional dynamic
stubbornness is related to conditional traces, and strongly dynamically stubborn sets
are useful when one wants to eliminate the ignoring phenomenon. The term “conven-
tional” refers to the often used heuristic that every sequence of such transitions that
are not in a given stubborn set should leave the set stubborn. Valmari has shown
that the heuristic has some advantages when the so called candidate list algorithm,
briefly discussed in Subsection 3.3, is used for computing stubborn sets [70].

Valmari has also defined dynamically stubborn sets [78]. Valmari’s dynamically stub-
born sets are considered later in this subsection.

Lemma 3.2 If a set is conventionally dynamically stubborn at @ marking, the set is
dynamically stubborn set at the marking. A set is strongly dynamically stubborn at a
marking iff the set is dynamically stubborn at the marking and each enabled transition
in the set is a key transition of the set at the marking.
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Figure 2: The principles of dynamic, conventional dynamic, and strong dynamic
stubbornness.
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Figure 3: The set {a, b} is unconventionally dynamically stubborn.

Proof. The results follow trivially from Definition 3.1. O
The result in Lemma 3.2 is due to Valmari [75] but has missed explicit treatment.

As one might expect, unconventionally dynamically stubborn sets exist. In the net
in Figure 3, {a, b} is dynamically stubborn but not conventionally dynamically stub-
born at the initial marking since My[cdeb) and = Mg[edb). The set {c} is strongly
dynamically stubborn at the initial marking.

A set can be conventionally dynamically stubborn without being strongly dynami-
cally stubborn. In the net in Figure 4, the only dynamically stubborn sets at the
initial marking are {to,t1}, {t1,%2}, and {to,%1,%2}. The sets {to,t1} and {t1,1,} are
conventionally dynamically stubborn but not strongly dynamically stubborn at the
initial marking since =~ My[t1t2) and = My[t1tg).
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Figure 4: The set {tg,} is conventionally but not strongly dynamically stubborn.

Lemma 3.3 Let (S, T, F, K,W, My) be a place/transition net. Let M be a marking
of the net. A set Ty C T fulfils SD2 at M iff

Vo € (T\T,)* V6 € (T\T,)* ¥t € T, (M[t) A M[o5)) = M][ot6).

Proof. The “if”-part is obvious. Let’s prove the “only if” -part. Let a set Ty C T
fulfil SD2 at M. Let ¢ € (T'\ Ts)*, 6 € (T'\Ts)*, t € Ts, M[t), and MJ[oé). Using
SD2 for both ¢é and o, we get M[tod) and M|ot). As ot and to lead to the same
marking, we have M[oté). O

The result in Lemma 3.3 is due to Valmari [75] but has missed explicit treatment.

Lemma 3.4 If a set is strongly dynamically stubborn at a marking, the set is con-
ventionally dynamically stubborn at the marking.

Proof. The result follows trivially from Definition 3.1 and Lemma 3.3. O

The result in Lemma 3.4 is due to Valmari [75] but has missed explicit treatment.

Lemma 3.5 Let (S,T,F, K,W, M) be a place/transition net. Let M € M. A set
Ty C T is strongly dynamically stubborn at M iff

Vo e (IT'\T,)* VM' e M
Mo)M' = (T is strongly dynamically stubborn at M').

Proof. The “if”-part is obvious since M[s)M. Let’s prove the “only if” -part. Let a
set Ty C T be strongly dynamically stubborn at M. Let o € (T'\ T5)*, 6 € (T'\ Ts)*,
teTs, M' € M, and M[o)M'. If M'[6t), we have M[oét), so by SD1 and SD2 for
M it follows that M[ct), which implies M'[t). The set T thus fulfils SD1 at M'. If
M'[t) and M'[6), we have M[ot) and M[oé), so by SD1 and SD2 for M and Lemma
3.3 it follows that M[cét) and M[oté), which implies M'[6t) and M'[té). The set T}
thus fulfils SD2 at M'. If M|t), SD2 for M implies M|[ot), so M'[t). Some transition

in T, is thus enabled at M’ since some transition in T is enabled at M. O
The result in Lemma 3.5 is new though inspired by Valmari [75].

Lemma 3.5 states that every sequence of such transitions that are not in a given
strongly dynamically stubborn set leaves the set strongly dynamically stubborn.
Lemma 3.6 states the similar result for conventionally dynamically stubborn sets.
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Lemma 3.6 Let (S,T,F, K, W, My) be a place/transition net. Let M € M. A set
Ty C T is conventionally dynamically stubborn at M iff

Vo e (T\Ts)* VM' e M
MoYM' = (Ts is conventionally dynamically stubborn at M').

Proof. The “if”-part is obvious since M[e)M. Let’s prove the “only if” -part. Let
a set Ty, C T be conventionally dynamically stubborn at M. Let ¢ € (T \ T,)*,
b€ (IT\Ty)*, 8" e (T'\Ty)*, t € T,, M' € M, and M[o)M'. If M'[66't), we have
Mleéé't), so by CD for M it follows that M[oété'), which implies M'[6té"). The
set T, thus fulfils CD at M'. Let 7 be a key transition of T, at M. If M'[¢), we
have M|[od), so by D2 for M it follows that M[oéT). The transition 7 is thus a key
transition of T, at M'. O

The result in Lemma 3.6 is new though inspired by Valmari [75].

There is no lemma analogous to Lemmas 3.5 and 3.6 for all dynamically stubborn
sets. Let Mo[c)M' and M'[d)M" in the net in Figure 3. The set {a,b} is dynamically
stubborn at My and M' but not at M" since M'"'[eb) and —~M"[b).

Lemma 3.7 states that a set is conventionally dynamically stubborn iff the set is
dynamically stubborn and every sequence of such transitions that are not in the set
leaves the set dynamically stubborn.

Lemma 3.7 Let (S,T,F, K,W, My) be a place/transition net. Let M € M. A set
Ty C T is conventionally dynamically stubborn at M iff

Vo e (T\Ts)* VM' e M
MoYM' = (Ts is dynamically stubborn at M').
Proof. The “only if” -part follows directly from Lemmas 3.2 and 3.6. Let’s prove the
“if7-part. Let Ty, C T, and
Vol € (T\T)* VM' e M M[o'"YM' = (T, is dynamically stubborn at M").

Let 0 € (T\T;),6 € (T\T;),t € Ts, and M' € M be such that M[oét) and M[c)M'.
By D1 for M' we have M'[té), so M[otd). The set T thus fulfils CD at M. Since
Me)M, Ty is dynamically stubborn at M. The set T, thus fulfils D2 at M. i

The result in Lemma 3.7 is new though inspired by Valmari [70].

Lemma 3.7 gives a useful alternative characterization of conventionally dynamically
stubborn sets. We shall use this alternative characterization in Subsection 3.3.

Lemma 3.8 Let (5,1, F, K,W, My) be a place/transition net. Let M be a marking
of the net, and Ty and T, subsets of T such that

{t e T,

M[t)} CTe, and T, C T

If Ty is dynamically stubborn at M, T, is dynamically stubborn at M. If T, is con-
ventionally dynamically stubborn at M, T, is conventionally dynamically stubborn at
M. If T, is strongly dynamically stubborn at M, T, is strongly dynamically stubborn
at M.
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Proof. (i) Let Ts be dynamically stubborn at M. We show that
Vo e (T\T.)" Mlo) =0 € (T\T)".

Let 0 € (T'\T.)* and ¢ € (T'\ Ts)* be such that M[o) and 6 is the longest prefix
of ¢ not containing any transition in 7Ts. If 6 # o, the first transition after 6 in o
is enabled at M by D1 for 7. Since no transition in T \ T, is enabled at M, we
conclude that § = o, s0o o € (T'\ Ts)*.

(ii) Since conventionally dynamically stubborn sets and strongly dynamically stub-
born sets are dynamically stubborn by Lemma 3.2, the result of part (i) holds for
them, too. Then D1 for Ty implies D1 for T, D2 for T implies D2 for T., CD for
T,, implies CD for T, SD1 for 1T implies SD1 for 7., and SD2 for T, implies SD2
for T.. O

The result in Lemma 3.8 is new though inspired by Godefroid and Pirottin [28].

Lemma 3.8 states that if we remove disabled transitions from a dynamically stubborn
(conventionally dynamically stubborn, strongly dynamically stubborn) set, the re-
maining set is dynamically stubborn (conventionally dynamically stubborn, strongly
dynamically stubborn). For example, if a dynamically stubborn set is minimal with
respect to set inclusion, by Lemma 3.8 the set consists of enabled transitions only.

We define persistence and conditional stubbornness in such a way that the definitions
correspond to the definitions given by Godefroid and Pirottin [28]. Our definitions
can be obtained from Godefroid’s and Pirottin’s Definitions 7 and 8 in [28] by sub-
stituting terms of place/transition nets for the terms of the model of concurrency in
[28] in an obvious way.

Definition 3.9 Let (S,T,F, K, W, My) be a place/transition net. Let M € M. A
set Ty C T fulfils the principle of persistence and conditional stubbornness (PE for
short) at M iff

Voe (T\T)*VteT, V' e T\ T, VM' e M
(M[ty AN M[o)M' A M'[t")) =
(t and t' are independent at M').

A set Ty C T ispersistent at M iff Ty fulfils PE at M and ¥t € Ty M[t). A set T, CT
is conditionally stubborn at M iff Ty fulfils SD1 and PE at M and 3t € T; M]|t).

Clearly, the “M[t)A” in PE is redundant in the definition of persistence since all
transitions in persistent sets are enabled. Looking at PE and proceeding inductively
with respect to the length of o, one observes that “commute” could be substituted for
“are independent” in PE. Combining this observation with Lemma 3.3, one concludes
that PE is nothing but SD2. Consequently, we rid ourselves of the concepts of
persistence and conditional stubbornness

Lemma 3.10 A set fulfils PE at a marking iff the set fulfils SD2 at the marking. A
set is conditionally stubborn at a marking iff the set is strongly dynamically stubborn
at the marking.
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Proof. We show that PE is equivalent to SD2. The second statement then follows
directly from Definitions 3.1 and 3.9. Let (S,T, F, K,W, My) be a place/transition
net. Let M e M and T, C T.

(i) We prove that SD2 implies PE. Let T fulfil SD2 at M. Let o € (T'\ Ts)*, t € T,
the T\Ts, M' € M, M[t), M[o)M', and M'[t'). By Lemma 3.3 we have both M'[t't)
and M'[tt"). The transitions t and ¢ are thus independent at M'.

(ii) We prove that PE implies SD2. Let 7 fulfil PE at M. We use induction on the
length of finite transition sequences to show that T fulfils SD2 at M. The principle
SD2 is fulfilled trivially when restricted to £. Our induction hypothesis is that SD2 is
fulfilled when restricted to finite transition sequences of length n > 0. We show that
SD2 is then fulfilled when restricted to finite transition sequences of length n+ 1. Let
6 € (T\T)*, t' € T\ Ts, and t € Ty be such that M|t), M[6t'), and § is of length n.
Let M' € M be such that M[é)M'. The transition ¢’ is then enabled at M'. By the
induction hypothesis we have M[6t) and M|té). The transition ¢ is thus enabled at
M'. The principle PE then implies that ¢ and ' are independent at AM'. Transitions
commute at a marking iff they are enabled and independent at the marking. So ¢ and
t' commute at M'. Thus M'[tt') and M'[t't), and consequently M [6tt') and M [6t't).
As already mentioned, we have M|td), so té leads from M to the same marking as
6t. We thus have M|[tét'). O

The result in Lemma 3.10 is new.

Lemma 3.11 A set is a nonempty persistent set at a marking iff the set is a con-
ditionally stubborn set at the marking and does not contain any transition that is
disabled at the marking. The set of enabled transitions of any conditionally stubborn
set is @ nonempty persistent set.

Proof. The first statement follows from the fact that a persistent set fulfils SD1
trivially since all its transitions are enabled. The second statement follows trivially
from the first statement and Lemmas 3.8 and 3.10. O

The result in Lemma 3.11 is due to Godefroid and Pirottin [28] but the proof is new.

Lemma 3.12 A set is a nonempty persistent set at a marking iff the set is a strongly
dynamically stubborn set at the marking and does not contain any transition that is
disabled at the marking. The set of enabled transitions of any strongly dynamically
stubborn set is a nonemply persistent set.

Proof. The result follows trivially from Lemmas 3.10 and 3.11. O

We now turn to Valmari’s dynamically stubborn sets [78]. The prefix AV used in the
sequel comes from the name Antti Valmari.

Definition 3.13 Let (S, T, F, K, W, My) be a place/transition net. Let M be a mark-
ing of the net. A set Ty C T fulfils the principle of AV-strong dynamic stubbornness
(AVSD for short) at M iff

Vte T, V' e T\Ts YM' € M (M[t) A M'[t) A M'[t')) = (M[tt") A M[t't)).

A set Ty C T is AV-strongly dynamically stubborn at M iff Ts fulfils SD1 and AVSD
at M and 3t € T, M]t).
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Figure 5: The principle of AV-strong dynamic stubbornness.
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Figure 6: The set {c} is strongly but not AV-strongly dynamically stubborn.

Our AV-strong dynamic stubbornness is equivalent to Valmari’s strong dynamic stub-
bornness [78], because of the obvious equivalence between our Definition 3.13 and
Valmari’s Definition 2.2 in [78]. The principle AVSD is illustrated in Figure 5.

Lemma 3.14 If a set is AV-strongly dynamically stubborn set at @ marking, the set
s strongly dynamically stubborn at the marking.

Proof. Valmari’s Theorem 2.5 in [78] shows that if a set is AV-strongly dynamically
stubborn set at a marking, the set fulfils D1 at the marking. An AV-strongly dy-
namically stubborn set contains an enabled transition by Definition 3.13. By Lemma
3.2 it then suffices to show that each enabled transition of an AV-strongly dynam-
ically stubborn set at a marking is a key transition of the set at the marking. Let
(S,T,F,K,WW, Mg) be a place/transition net. Let M be a marking of the net, and
Ts a subset of T such that T, is AV-strongly dynamically stubborn at M. Let a
transition ¢ € T be enabled at M. We show that

Vo € (T\ Ty)* M[o) = M[ot).

We use induction on the length of ¢. The claim holds trivially when restricted to
o = ¢. Our induction hypothesis is that the claim holds when restricted to any o of
lengthn > 0. Let 0 € (T'\ T5)*, t' € T\ Ts, and M' € M be such that o is of length
n, M{o)M' and M'[t"). Using the induction hypothesis, we get M[ot) which implies
M'[t). We already have M[t) and M'[t"). Since T, fulfils AVSD at M, M'[t't). Thus
Mlot't). a

The result in Lemma 3.10 is due to Valmari [78] but has missed explicit treatment.

The converse of Lemma 3.14 does not hold. In the net in Figure 6, {c} is strongly dy-
namically stubborn but not AV-strongly dynamically stubborn at the initial marking
since My|cc), Moled), and —My|ced).

The motivation behind the definition of AV-strongly dynamically stubborn sets seems
to be related to the aim to find static conditions for computing statically stubborn
sets. We shall discuss this subject in Subsection 3.4.
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Figure 7: Four classes of dynamically stubborn sets at a marking.

Figure 7 illustrates the classes of dynamically, conventionally dynamically, strongly
dynamically, and AV-strongly dynamically stubborn sets at a marking M. The in-
clusions follow from Lemmas 3.2, 3.4, and 3.14. By the presented examples related
to Figures 3, 4, and 6 we know that some or all of the inclusions can be strict.

3.2 Usefulness of Dynamically Stubborn Sets

We now consider what is preserved by a dynamically stubborn set selective reacha-
bility graph generation. The results presented in this subsection show the usefulness
of dynamically stubborn sets.

Definition 3.15 Let (S,T,F, K,W, My) be a place/transition net. Let f be a func-
tion from M to 2. Then we say that f is dynamically stubborn iff for each nontermi-
nal marking M, f(M) is dynamically stubborn. Correspondingly, f is conventionally
dynamically stubborn iff for each nonterminal marking M, f(M) is conventionally
dynamically stubborn. Respectively, f is unconventionally dynamically stubborn iff
f is dynamically stubborn but not conventionally dynamically stubborn. Correspond-
ingly, f is strongly dynamically stubborn iff for each nonterminal marking M, f(M)
s strongly dynamically stubborn. Finally, f ts AV-strongly dynamically stubborn iff
for each nonterminal marking M, f(M) is AV-strongly dynamically stubborn.
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Theorem 3.16 Let (S, T,F, K, W, My) be a place/transition net. Let f be a dy-
namically stubborn function from M to 2T. Then f represents all sets of enabled
permutations to terminal markings.

Proof. We show that
Vo' e T* VM € M (M[c") AVt € T -M|[c"t)) = (36 € w(a", M) M[6)).

We use induction on the length of ¢'. The claim holds trivially when restricted to
o' = €. Our induction hypothesis is that the claim holds when restricted to any ¢
of length n > 0. Let ¢ € T*, M € M, and M' € M be such that ¢ is of length
n+1, Mlo)M', and ¥Vt € T =M'[t). The set f(M) is dynamically stubborn at M
since some transition is enabled at M. The sequence ¢ must contain a transition in
f(M) since otherwise some transition in f(M) would be enabled at M’ by D2. Let
b€ (T\f(M))*,t € f(M),and &' € T* be such that o = §t6'. By D1 we have M]|t6),
so M[téé"). Let M" € M be such that M[t)M". Now M|t);M". By the induction
hypothesis, 3o’ € w(66', M") M"[o") ;. We thus have to' € (o, M) and M|to');. O

The result in Theorem 3.16 is due to Valmari [70, 75] but has missed explicit treat-
ment.

Theorem 3.16 has the consequence that if a finite transition sequence leads from a
marking M to a terminal marking, and M occurs in the reduced reachability graph,
then an enabled permutation of the sequence occurs in the graph. A dynamically
stubborn set selective search thus certainly finds all reachable terminal markings if
the net and the set of reachable markings are finite. If the set of reachable markings
is infinite but the net is finite and a dynamically stubborn set selective search is
performed in a breadth-first order for some time, then reachable terminal markings
“near the initial marking” can be found. As we shall see in Section 4, the permutation
preserving property makes the stubborn set method compatible with the sleep set
method in the detection of reachable terminal markings though a weaker property
would suffice.

Theorem 3.17 Let (S,T,F, K,W, My) be a place/transition net. Let f be a conven-
tionally dynamically stubborn function from M to 2T. Then f represents all condi-
tional traces to terminal markings.

Proof. We show that
Vo' e T* VM e M (M[c") AVt €T =M[c"t)) = (36 € o(c", M) M[6)y).

We use induction on the length of ¢'. The claim holds trivially when restricted to

o' = ¢. Our induction hypothesis is that the claim holds when restricted to any o

of length n > 0. Let 0 € T*, M € M, and M' € M be such that ¢ is of length
n+ 1, Mlo)M', and ¥t € T =M'[t). The set f(M) is conventionally dynamically
stubborn at M since some transition is enabled at M. The sequence ¢ must contain
a transition in f(M) since otherwise some transition in f(M) would be enabled at
M'"by D2. Let 6 € (T'\ f(M))*,t € f(M), and ¢' € T* be such that ¢ = §té'. By CD
we have M[t6), so M[t6é"). Moreover, CD implies that ¢6 is in the conditional trace
of 6t at M. The sequence t66' is thus in ¢(o, M), the conditional trace of o at M.
Let M" € M be such that M[t)M". Now M[t);M". By the induction hypothesis,
Jo' € (68", M") M"[0")s. We thus have to' € o(0, M) and M[tc'). O
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Figure 8: An unconventionally dynamically stubborn f represents all conditional
traces to terminal markings.

The result in Theorem 3.17 is new though inspired by Wolper and Godefroid [86].

Theorem 3.16 has the consequence that if f is a conventionally dynamically stubborn
function, a finite transition sequence leads from a marking M to a terminal marking,
and M occurs in the f-reachability graph, then some member of the conditional trace
of the sequence occurs in the graph.

There are dynamically stubborn functions that do not represent all conditional traces
to terminal markings. Let h be any dynamically stubborn function in the net in
Figure 3 such that h(My) = {a,b}. The transition sequence cdebdf leads from My
to a terminal marking. The function kA does not represent the conditional trace of
cdebdf at My since cdebdf is the only member of the conditional trace of cdebdf at
M.

There are unconventionally dynamically stubborn functions that represent all condi-
tional traces to terminal markings. Let’s consider an example having the additional
property that some set is dynamically stubborn but not conventionally dynamically
stubborn at some marking from which some terminal marking is reachable. In the
net in Figure 8, {a,b} is dynamically stubborn but not conventionally dynamically
stubborn at the initial marking since My[cdb) and = My[cb). Let f be the unconven-
tionally dynamically stubborn function defined by f(My) = {a,b} and f(M) =T
when M # M. There is one and only one terminal marking that is reachable from
My. Let M' be the terminal marking and My[o)M'. Since a is independent of other
transitions at all markings, there exists ¢ such that aé is in the conditional trace of
o at My. For each M € M, no transition leads from M to My, so My is globally
unreachable by Definition 2.3. The global unreachability of My and the definition of
f now imply Mo[abd)s. If M # My and Mc'), the global unreachability of M, and the
definition of f imply M[o');. We have thus shown that f represents all conditional
traces to terminal markings.
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Figure 9: Finite reduced reachability graph though the full reachability graph is
infinite.

Theorem 3.18 Let (S,T,F, K, W, My) be a place/transition net. Let f be a dy-
namically stubborn function from M to 27. Then for each marking M and for each
infinite transition sequence o, if o is enabled at M, there exists an infinite transition
sequence o' such that M[o').

Proof. Let an infinite transition sequence ¢ be enabled at a marking M. We construct
an infinite transition sequence ¢’ and a function é from N to the set of infinite transi-
tion sequences such that for each n and k in N, M[¢(o',n)) s and M[s(o',n)s(6(n),k)).

We use induction on n. We set §(0) = ¢. Our induction hypothesis is that ¢'(k) has
been set for each £ < n and 6(k) for each k < n in such a way that M[s(o’,n))s and
Vk e N Ms(o',n)s(é6(n),k)). Our goal is to set o'(n) and 6(n+1) in such a way that
Mls(o',n+1))s andVk € N M[s(o',n+1)s(6(n+1),k)). Let M’ € M be such that
M[s(a',n)) s M'. The set f(M') is dynamically stubborn at M' since M'[¢(6(n),1)).

Let’s first consider the case where 35 € N §(n)(j) € f(M'). Let ¢ be the least such j.
Let M" € M be such that M'[c(6(n),i+1))M". Then ¢(6(n),i+1) = ¢(é(n),i)é(n)(7)
by Definition 2.5. By D1 we have M'[é(n)(i)s(6(n),7))M". We reach our goal by
setting o'(n) = é(n)(i) and

VE €N (k<iAs(n+1)(k)=6n)(k)V (k>iAsn+1)(k)=6n)(k+1)).

Let’s then consider the case where Yk € N é(n)(k) ¢ f(M'). By D2, a key transition
of f(M'") at M' exists. Let t" be any key transition of f(M') at M'. Then

Vk € N M[s(6(n),k)t"). Using D1 we get Yk € N M|[t'"s(6(n), k)). We reach our goal
by setting o'(n) = ¢"" and 6(n 4+ 1) = é(n). O

The result in Theorem 3.18 is due to Valmari [74, 75, 78] but has missed explicit
treatment. Our proof is like the proof in [78] which is more general than the proof

in [75].

Theorem 3.18 states that for each marking in the reduced reachability graph, if an
infinite transition sequence is enabled at the marking, the graph contains an infinite
path that starts from the marking. If there is no loop in a finite reduced reachability
graph, Theorem 3.18 implies that the full reachability graph is finite and has no loop
either. If one instead generates a finite reduced reachability graph having a loop,
it is still possible that the full reachability graph is infinite. Let My[a)M' in the
net in Figure 9. Let’s define f by f(My) = {a}, f(M') = {b}, and f(M) =T for
other markings M. Then f is an AV-strongly dynamically stubborn function, and the
f-reachability graph has only two vertices and two edges though the full reachability
graph is infinite.
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We now turn to the ignoring phenomenon. A transition is ignored at a marking
iff the transition is enabled at the marking but not fired at any marking that is
reachable from the marking [75]. The existence of ignored transitions is called the
ignoring phenomenon. For example, if there is an isolated transition, we easily get a
reduced reachability graph containing only one vertex and one edge, thus leaving the
behaviour of the other parts of the net uninvestigated. Valmari has shown [75] that
if ignoring does not occur, a transition occurs in the reduced reachability graph iff it
occurs in the full reachability graph. Liveness of a transition in the sense defined by
Reisig [64] is also preserved if ignoring does not occur [75].

Valmari has developed an algorithm for detecting ignored transitions and an algo-
rithm for eliminating the ignoring phenomenon. The elimination algorithm requires
that the chosen dynamically stubborn sets are strongly dynamically stubborn. The
detection algorithm does not have that limitation. The detection algorithm works in
time at most linear in the number of vertices and edges of the reduced reachability
graph. The elimination algorithm works in time at most proportional to the number
of vertices and edges of the resulting reduced reachability graph multiplied by the
number of transitions of the net [75].

Valmari’s algorithms for detecting and eliminating the ignoring phenomenon are
based on the property that is stated in Lemma 3.19.

Lemma 3.19 Let (S,T,F, K,W, My) be a place/transition net. Let f and g be func-
tions from M to 27 such that f is dynamically stubborn and

VM eMgM)C{te f(M)|Yée(T\ f(M)* M[6) = M[ét)}.
Then

VoeT*"VteTVYM e M (Mlo), N M[t) ANYé € T* = M[6t)y) = M[ot).

Proof. We use induction on the length of the above ¢. The above claim holds trivially
when restricted to an empty o. Our induction hypothesis is that the above claim
holds when restricted to every ¢ of length n > 0. Let ¢ € T*, t' € T, t € T,
M € M, and M' € M be such that o is of length n, M[t"),M', M'[c),, M|[t), and
V6 € T* = M[ét)¢. The set f(M) is dynamically stubborn at M since M[t). As M[t)
and ~M|[t)s, we have t € f(M). As t' € g(M), we then have t' € f(M) and M[tt').
Using D1 we get M[t't), so M'[t). From M[t');M' and V6 € T* ~M|[6t)s it follows
that Vé' € T* =M'[6't) s. Using the induction hypothesis we get M'[ot), so M[t'ot).
O

The result in Lemma 3.19 is due to Valmari [75] but has missed explicit treatment.

Let’s assume that f is a dynamically stubborn function, and there is a path leading
from a marking M to a marking M’ in the f-reachability graph such that for each
edge (M" t, M"") on the path, t is a key transition of f(M'") at M". From Lemma
3.19 it then follows that any transition ignored at M is ignored at M’', too.

Let f and g be as in Lemma 3.19. By Definition 3.1,

{te f(M)|V6e (T\T,)* M[)= M[st)}
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is then the set of key transitions of f(M) at M and nonempty. We can thus require
that g(M) is nonempty when M is nonterminal. Let’s further assume that the g-
reachability graph is finite. For each transition that is ignored at some marking in
the f-reachability graph, by Lemma 3.19 there is then a terminal maximal strongly
connected component of the g-reachability graph such that for each marking in the
component, the transition is enabled but not fired at the marking. Valmari’s al-
gorithm for detecting ignored transitions inspects the terminal maximal strongly
connected components of such g-reachability graph [75].

All enabled transitions of a strongly dynamically stubborn set are key transitions of
the set by Lemma 3.2. If f is a strongly dynamically stubborn function, we can then
choose g(M) to be the set of enabled transitions in f(M) with the consequence that
the g-reachability graph is the f-reachability graph. Let’s further assume that the
f-reachability graph is finite. For each transition that is ignored at some marking
in the f-reachability graph, there is then a terminal maximal strongly connected
component of the f-reachability graph such that for each marking in the compo-
nent, the transition is enabled but not fired at the marking. Valmari’s algorithm for
eliminating the ignoring phenomenon utilizes this property [75].

3.3 Stubbornness

We define true stubbornness in place/transition nets with infinite capacities. As
mentioned in the discussion after Definition 2.3, each place/transition net can be
transformed into a behaviourally equivalent net with infinite capacities by adding
complement places [64, 65]. As we are interested in detecting reachable terminal
markings by inspecting as few markings as possible, we have chosen a very weak
definition of stubbornness.

Definition 3.20 Let (S,T,F, K,W, My) be a place/transition net with infinite capac-
ities. The function Ey from M x S to 2T, the functions Ey and E3 from M x T x S
to 2T, and the function E4 from S to 2T are defined as follows: let M € M, t €T,
and s € S. Then

E((M,s) = {t’e‘s|M(s)2W(s,t)/\W(t’,s)>W( )},

Ey(M,t,s) = Eu(s)U{t' €s*| Wi(s,t)>W(t,s)A
W(s, ) > M(s) = W(s,t) + W(t, )},
Es(M,t,s) = E(M,s)U{t' €°*s| M(s)>W(s,t')A ( ) Wi(t,s)}, and

Eu(s) = {¢ Eo'|W(o,t)>W(t,s)}.

Intuitively, E1(M,s) is the set of transitions that could increase the number of to-
kens in s and are not disabled by s at M. Correspondingly, E2(M,t,s) is the set of
transitions that could decrease the number of tokens in s or get disabled because of
the firing of ¢ at M. Respectively, F3(M,t,s) is the set of transitions that are not
disabled by s at M and could increase the number of tokens in s or deposit more
tokens to s than ¢. Finally, F4(s) is the set of transitions that could decrease the
number of tokens in s.
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Definition 3.21 Let (S, T, F, K,W, My) be a place/transition net with infinite ca-
pacities. A set Ty C T is stubborn at a marking M iff

VieT, (Ise*t M(s) <W(s,t)NE((M,s) CT,)V
(M[t)y N (Vs €t W(s,t) <W(t,s)V Ex(M,t,5) CT,V Es(M,t,s) CTy))

and
Ire Ty M[r) A (Vs € 1 Ey(s) CTy).

Definition 3.21 is the definition in [70] modified by taking advantage of the remarks in
[70]. According to Valmari [75], the definition in [70] is not intuitive. We use Defini-
tion 3.21 merely because it gives us a feasible way to compute dynamically stubborn
sets and is very weak. The weakness is good as far as the detection of reachable
terminal markings is concerned, since the weaker is the definition of stubbornness,
the better are the chances to find stubborn sets having a small number of enabled
transitions. We do not know any better simple heuristic for minimizing the number
of markings inspected during the search for reachable terminal markings than the
minimization of the number of transitions fired at a marking.

Theorem 3.22 If a set is stubborn at a marking, the set is dynamically stubborn at
the marking.

Proof. The definition of F4 guarantees that any transition matching the 7 in Defini-
tion 3.21 is a key transition of Ts at M. Valmari has shown in the proof of his Theorem
2.2 and in the remarks immediately below the proof in [70] that our stubborn sets

fulfil D1. O
The result in Theorem 3.22 is due to Valmari [70].

If we remove “W(s,t) < W(t,s)V” from Definition 3.21, we get a definition for the
stubborn sets in [70]. Such stubborn set is conventionally dynamically stubborn since
by Valmari’s Lemma 2.5 in [70], every sequence of such transitions that are not in
the set leaves the set stubborn, and we can then use our Theorem 3.22 and Lemma

3.7.

Let’s return to some of the examples of Subsection 3.1. In the net in Figure 3,
{a, b} is stubborn but not conventionally dynamically stubborn, and {c} is stubborn
and strongly dynamically stubborn at the initial marking. In the net in Figure 4,
{to,t1} and {t;,15} are stubborn and conventionally dynamically stubborn but not
strongly dynamically stubborn at the initial marking. In the net in Figure 6, {c} is
stubborn and strongly dynamically stubborn but not AV-strongly stubborn at the
initial marking.

As one might expect, a dynamically stubborn set is not necessarily stubborn. In the
net in Figure 10, {a} and {b} are strongly dynamically stubborn but not stubborn
at the initial marking.

Valmari has presented three algorithms for finding a suitable stubborn set: the candi-
date list algorithm [70], the incremental algorithm [70, 73], and the deletion algorithm
[71, 73]. Let’s assume that 7 is the set of transitions and g is the maximum number
of input places of a transition. The candidate list algorithm selects the first stubborn
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Figure 10: The set {a} is strongly dynamically stubborn but not stubborn.

set in a given candidate list Ty, ..., T}, T. The time taken by an execution of the
candidate list algorithm is at most proportional to Y !, |T;|. The candidate list
determines the size of the reduced reachability graph. We do not know good heuris-
tics for automatic candidate list construction, so we concentrate on the incremental
algorithm and the deletion algorithm that are automatic by nature. Both of these
two algorithms contain nondeterministic choices, and there are cases where manual
preliminary preparations can be useful.

Lemma 3.10 suggests a natural definition of strong dynamic stubbornness in the
models of concurrency of [28, 86]: a set is strongly dynamically stubborn iff it is
conditionally stubborn. Godefroid and Pirottin [28], and Wolper and Godefroid
[86] have defined static stubbornness corresponding to conditional stubbornness and
shown how statically stubborn sets can be computed much in the same way as in
place/transition nets, with the limitation that the computed sets are conditionally
stubborn. On the other hand, we do not currently know how to define other levels of
dynamic stubbornness in the models of concurrency of [28, 86] in a useful way. There
are two essential difficulties. The first difficulty is the fact that in those models,
it matters in which order the transitions are fired: there can be finite transition
sequences ¢ and ¢ such that ¢ and ¢ are enabled permutations of each other at a
state M but lead to different states from A4. The second difficulty is the problem
of how to compute dynamically stubborn sets: a definition of dynamic stubbornness
should be justified by a corresponding definition of static stubbornness and a feasible
algorithm to compute statically stubborn sets.

Godefroid and Pirottin [28] have presented a technique for finding some conditionally
stubborn sets that, according to Godefroid and Pirottin [28], cannot be easily found
by algorithms that are based on static definitions of stubbornness. The technique
seems to require a lot of human work, but Godefroid and Pirottin have presented
cases where the technique seems to be justified [28].

3.4 Incremental Algorithm

We now turn to the incremental algorithm [70, 73] for computing stubborn sets.

Definition 3.23 Let (S, T, F, K, W, My) be a place/transition net with infinite capac-
ities. Let G be the set of scapegoat generators of the net and B the set of functions
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from M xT x S to {2,3}. The function E14 from G x Bx M x T to 2T is defined by

VieGYbe BYM e MVteT
_ El(*Maf(Mat)) ifﬁ*M[t%
E14(f7 va’t) - { U5€°t(Eb(MJ,5)(‘M7t7S) U E4(S)) ZfM[t>

The function Ris from G x B x M to 21*T is defined by

VieGYbe BYM e M
Rias(f, o, M) ={(t,t") e T x T |t € Ea(f,b,M,1)}.

For each f € G, b€ B, and M € M, the reflexive-transitive closure of Ry4(f,b, M)
is denoted by (Ri4(f,b,M))*. The function Ef, from G x Bx M x T to 2T is defined
by

VfeGYbe BYM e MYteT

EY (f,0,M,t) ={t"| (t,t') € (Rya(f,0,M))*}.

For each f € G, b€ B, and M € M, the (f,b)-dependency graph at M is the pair
(V, A) such that the set of vertices V is T, and the set of edges A is Ry4(f,b, M).

Clearly, the set Eq4(f,b, M,t) is the set of transitions immediately succeeding ¢ in the
(f,b)-dependency graph at M. Respectively, E,(f,b, M,t) is the set of transitions
accessible from ¢ in the (f,b)-dependency graph at M. Note that Definition 3.20
implies Fy(M,t,5) U Ey(s) = E2(M,1,s).

Lemma 3.24 Let (S,T,F, K,W, My) be a place/transition net with infinite capaci-
ties. Let G be the set of scapegoat generators of the net and B the set of functions
from M x T x S to {2,3}. Let f € G, b€ B, M € M, t €T, and M[t). Then
Ef (f,b,M,t) is both stubborn and strongly dynamically stubborn at M.

Proof. Stubbornness is obvious. Theorem 3.22 then implies dynamic stubbornness.
Strong dynamic stubbornness follows from dynamic stubbornness and the definition
of Fi. O

The result in Lemma 3.24 is due to Valmari [70, 75].

The stubborn set in Lemma 3.24 is stubborn in the sense of the definition in [70],
since the “W (s,t) < W (t,s)V” in Definition 3.21 is not utilized in Definition 3.23.

The incremental algorithm in [70] modified for our definitions can be described as
follows. Let (S,T, F, K,W, My) be a finite place/transition net with infinite capaci-
ties. Let GG be the set of scapegoat generators of the net and B the set of functions
from M x T x S to {2,3}. Let f € G, b € B, and M € M be such that M is
nonterminal. The algorithm produces a set T such that for some enabled transi-
tion 7 at M, Ty, = EY,(f,b,M,7), and Vt € Ts M[t) = 7 € Ef,(f,b,M,t). The
enabled transitions of T, are in one maximal strongly connected component of the
(f,b)-dependency graph at M. The enabled transitions of T, are found by traversing
the (f,b)-dependency graph in depth-first order, starting from an enabled transition,
applying Tarjan’s algorithm for computing maximal strongly connected components
[66], and stopping when the first maximal strongly connected component having an
enabled transition is found.
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Figure 11: The function Fj3 is potentially useful in the incremental algorithm.

The time taken by an execution of this algorithm is at most proportional to uv|T|,
where p is the maximum number of input places of a transition, and v is the maximum
number of adjacent transitions of a place. The number i can be |S|, the number v can
be |T'|, and |S]| can be far greater than |7|. We have made the practical assumption
that the time taken by the computation of f(M,t) is at most proportional to uv, and
the time taken by the computation of b(M,t,s) is at most proportional to v. Even if
we assumed that the computation of f and b takes no time, we would have the same
time complexity for the incremental algorithm.

Without change in complexity, the incremental algorithm can be optimized [79, 83]:
T, is chosen to be such Ef,(f,b, M,7) that contains the least number of enabled
transitions. (As above, 7 has to be enabled at M.) All what is needed is to complete
the depth-first search and application of Tarjan’s algorithm in such a way that all
enabled and only enabled transitions are checked in the outermost loop of the search.
If the optimized incremental algorithm is used, the functions f and b are the only
nondeterministic factors that affect the number of enabled transitions in 7.

The reachability graph generation algorithm using the incremental algorithm pro-
duces a g-reachability graph of the net such that for each marking M in the graph,
g(M) is the Ts at M if there is an enabled transition at M. (If no transition is enabled
at M, then any subset of T' is valid for g(M).)

The function b in Definition 3.23 makes our incremental algorithm more refined than
the incremental algorithm in [70]. If b has the value 2 everywhere, our algorithm
behaves as the algorithm in [70]. Let’s consider the net in Figure 11. If 6( My, a,p) =
b(My,d,r) = 3, the computed stubborn set at My is either {a} or {d}, independently
of the scapegoat generator. Let f be a scapegoat generator such that f(My,c) = ¢
and f(Mo,e) = z. If f is used in the computation and b( My, a,p) = b(Mo,d,r) = 2,
the computed stubborn set at My is {a,c,d,e}.

The refinement is due to Valmari [70] but has missed explicit treatment. The incre-
mental algorithm in [70] is a “compromise between generality and practicality” [70],
and so is our incremental algorithm since our algorithm computes strongly dynam-
ically stubborn sets though we are mainly interested in the detection of reachable
terminal markings.

The incremental algorithm sometimes produces stubborn sets that are not AV-
strongly dynamically stubborn, even if the choice function b has the value 2 ev-



— 33 —

erywhere. Let’s consider the net in Figure 6. If b(My,c,p) = 2, the computed
stubborn set at My is {c}, independently of the scapegoat generator. By the remark
immediately after Lemma 3.24 we know that {c} is stubborn also in the sense of the
definition in [70]. The set {c} is strongly dynamically stubborn but not AV-strongly
dynamically stubborn at My since My[cc), My[cd), and = My|[ced).

Of course, we can choose another definition of static stubbornness if we want to
compute AV-strongly dynamically stubborn sets only. Such definitions occur in [78].
The “unnecessary strength” of AV-strong dynamic stubbornness is caused by the
global condition in AVSD. The global condition seems to be related to Valmari’s
older comment: “... stubborn set theory aims at finding a sufficient and statically
computable condition ...” [75]. Definition 3.21 contains many conditions that depend
on the marking and are thus not statically computable.

We end this subsection by describing what is meant by a pseudo-random scapegoat
generator. An explicit description of a pseudo-random scapegoat generator would be
far too complicated to be presented here. Therefore, only an informal description is
given. Let ry,72,73,... be an infinite pseudo-random number sequence [66]. Let f be
the scapegoat generator to be defined. For each marking M and transition ¢, f(M,t)
is not defined earlier than necessary. If (M,t) is the ith pair for which f(M,t) has
to be defined, then f(M,t) is defined to be the ((r; mod k) + 1)th disabling place of
t at M, where the list of disabling places of ¢ at M is of length £ and determined by
some fixed list of the input places of ¢.

3.5 Deletion Algorithm

The stubborn sets computed by the incremental algorithm may contain unnecessarily
many enabled transitions. To solve this problem, Valmari has developed the deletion
algorithm [71, 73]. The deletion algorithm finds a stubborn set which is minimal in
the sense that no proper subset of its enabled transitions can be the set of enabled
transitions of any stubborn set. The deletion algorithm utilizes the definition of
stubbornness completely, unlike the incremental algorithm. To our knowledge, no
one has presented any algorithm that would find a stubborn set having a minimum
number of enabled transitions in polynomial time with respect to the number of
places and transitions. On the other hand, Valmari has given an example [73] where
always choosing such set leads unavoidably to a greater number of vertices and a
greater number of edges in the reduced reachability graph than there are in a reduced
reachability graph produced by a certain different strategy. Of course, if we are to
choose between a set of enabled transitions and its proper subset, it is better to
choose the proper subset.

Looking at the deletion algorithm for so called variable/transition systems in [71],
it is not quite obvious how to get a deletion algorithm for place/transition nets.
Though variable/transition systems can be transformed into place/transition nets,
the problem remains that the definition of stubbornness in [71] is much stronger than
our definition. Moreover, both the incremental and the deletion algorithm utilize the
whole definition of stubbornness in [71], which may make one draw incorrect conclu-
sions about the correspondence between the incremental and the deletion algorithm
in general. A solution to our problem, given by Valmari in a private discussion, is to
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derive the deletion algorithm from the definition of stubbornness in a way faithful to
the definition of stubbornness. This general idea is used in Definition 3.25.

Definition 3.25 Let (S, T, F, K,W, My) be a place/transition net with infinite ca-
pacities and M a marking of the net. The and/or-graph at M is a triple
(Vanp, Vor, A) such that the set of and-vertices Vanp is

{s|3teT -M[t) As e *t}U
{teT | M[t)}U
{(t,s,i) |[te TANM[t)Nse tAW(s,t) > W(t,s)Nie€{2,3}},

the set of or-vertices Vopr is

{teT|-Mt)}u
{(t,s) |t eT ANM[ty ANs €t AW (s, t) > W(t s)},

and the set of edges A is

{(s,0) | It eT -M[t) ANs €t Nt € Ey(M,s)}U
{(t,(t,s)) | teT ANM[t)Ns €t A\W(s,t) > W(t,s)}U
{({(t,s,0),t") | te T AM[t)Nse tANW(s,t) > W(t s)A
i €{2,3} At € E;y(M,t,s)}U
{(t,s) | te T AN=-Mt) AN s € *t}U
{((t,s),(t,s,i)y |[te TAMI)Ns e tANW(s,t)>W(t,s)ANie{23}}.

A set Vs g VAND U VOR 1S legal Zﬁ

(V.I? e Vs N Vanp Yy € Vanp U Vor <x,y> € A= Yy € Vs),
(Ve e VenVorp Iy eV, (z,y) € A), and
Ar e VsnNT M[t) A (Vs € °1 Ey(s) C V).

Lemma 3.26 The set of transitions of any legal set is stubborn. For each stubborn
set, there exists a legal set such that the set of transitions of the legal set is the stubborn
set. The set of vertices of the and/or-graph is legal iff the marking is nonterminal.

Proof. The above results follow trivially from Definitions 3.20 and 3.25. O
The result in Lemma 3.26 is due to Valmari [71, 73].

The deletion algorithm can be described as follows. Let the net be finite and the
marking nonterminal. Let’s use the terms of Definition 3.25 though it is not necessary
to construct any explicit and/or-graph. Only such vertex that is both accessible from
some enabled transition and backwards accessible from some enabled transition by
the reflexive-transitive closure of A has to be explicitly presented if the and /or-graph
is constructed. The set of vertices of the and/or-graph is a legal set, maximal with
respect to set inclusion, that contains all enabled transitions. Let then V, be a legal
set, maximal with respect to set inclusion, such that the set of transitionsin Vj is a
stubborn set 1. Let t € T be enabled. An attempt to remove ¢t from V; is performed
by starting from ¢, moving backwards in the and/or-graph, and attempting to remove
those vertices that must be removed to get a legal subset, maximal with respect to
set inclusion, of Vi \ {t}. When such vertex is encountered that does not have to be
removed, the backward search is not continued from the vertex. The special condition
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related to £, (the last condition in the definition of legal sets) is not checked until the
cumulative removal attempt is over. If the set of vertices that were not attempted
to remove from V; is legal, the cumulative removal attempt is realized. The set of
transitions in the new legal set is then a stubborn subset, maximal with respect to set
inclusion, of T \ {t}. On the other hand, if the attempt to remove ¢ from V; fails, it is
not possible to remove ¢ from any subset of V; either. The deletion algorithm proceeds
by repeatedly attempting to remove a new enabled transition from the current legal
set and realizing each successful attempt. The set of vertices of the and/or-graph is
the initial legal set. The algorithm stops when it is no longer possible to remove any
enabled transition from the current legal set. The set of transitions of the final legal
set is minimal in the sense that no proper subset of its enabled transitions can be the
set of enabled transitions of any stubborn set. This result is based on what is stated
above about the set of transitions of the current legal set before and after removing
an enabled transition.

The time taken by an execution of this algorithm is at most proportional to uv|T|?,
where p is the maximum number of input places of a transition, and v is the maximum
number of adjacent transitions of a place. Qur deletion algorithm has no factor that
would make it more than a constant times slower than the deletion algorithm in [71].

3.6 Stubborn Set Method and High-Level Nets

Place/transition nets of actual systems tend to be very large. On the other hand,
using high-level nets [8, 43] one can make compact models in a natural way. Fortu-
nately, a high-level net can often be unfolded into a behaviourally equivalent finite
place/transition net, and, using the inverse mapping of the unfolding mapping, the
place/transition net can be folded back into the high-level net [24, 40]. If such un-
folding exists, one can apply the stubborn set method to the result of the unfolding
and then fold the reduced reachability graph. However, even a high-level net, the set
of reachable markings of which is finite, may be difficult to unfold since the unfold-
ing procedure usually needs explicit bounds on the possible transition instances. If
suitable bounds are not known, these have to be estimated.

Unfolding can be implicit in the sense that no place/transition net is constructed
but the transition instances of the high-level net are used just like transitions of a
place/transition net. Implicit unfolding supports determining the enabled transition
instances by unifying the arc expressions with the current marking.

Valmari has presented the stubborn set method in coloured Petri nets [40, 41, 78].
He mentions the possibility to ignore the colour information but states [78]: “Some
preliminary experiments have demonstrated that ignoring the colour information
usually leads to grossly unnecessarily large stubborn sets.” He then turns to implicit
unfolding.

The need for unfolding can be reduced to the need to use disabled transition instances
in the computation of a stubborn set in a high-level net. If there were a practical
algorithm for computing the set of enabled transition instances of a stubborn set
without using disabled transitions, we would only have to determine the enabled
transition instances and apply the algorithm. The set of disabled transition instances



— 36 —

could then be arbitrarily large, even infinite. We shall not, however, pursue this
matter further, but leave it for future research to resolve.

3.7 On Choosing a Scapegoat in the Incremental Algorithm

As mentioned at the beginning of Subsection 3.5, the stubborn sets computed by the
incremental algorithm may contain unnecessarily many enabled transitions. As the
next example shows, the problem is serious.

Figure 12 presents a data base system of n > 2 data base managers. The predi-
cate/transition net [24] in the figure is equivalent to the coloured Petri net in [40].
The contained resource allocation and a great amount of concurrency makes the sys-
tem inherently very suitable for the stubborn set method. Let’s assume the most
obvious unfolding [24] into a place/transition net with infinite capacities. The im-
age of a transition instance of the predicate/transition net is a transition of the
place/transition net, the image of a place-tuple pair of the predicate/transition net
is a place of the place/transition net, etc. The resulting place/transition net has no
self-loop. The full reachability graph of the place/transition net has n - 3"~ + 1
vertices and 2n(1+ (n—1)-3"72) edges [73, 75]. The stubborn set method is capable
of producing a reduced reachability graph having 2n* — n + 1 vertices and 2n? edges
[73, 75]. In the reduced reachability graph in question (unique up to isomorphism),
the vertex corresponding to the initial marking has n immediate successors. Every
other vertex has one and only one immediate successor. From now on, this reduced
reachability graph will be called the A-graph.

We shall now investigate the behaviour of the incremental algorithm in the above
place/transition net. Clearly, the net has no self-loop, so Definition 3.20 implies that
for each marking M, transition ¢, and place s, Fy(M,t,s) = Fy4(s). The function F,
is thus certainly preferable to the function F3 in the incremental algorithm as far as
this net is concerned. So we choose the corresponding choice function b (that occurs
in Definition 3.23) to be the function that has the value 2 everywhere.

We shall present four scapegoat generators, called «, 3, 7, and é. The scapegoat
generator « is a pathological scapegoat generator not leading to any reduction. The
scapegoat generators 3, v, and ¢ look much like @ but 4 and ¢ lead to the A-graph,
and [ leads close to the size of the A-graph. In addition, pseudo-random scapegoat
generators are considered. They tend to be almost as bad as a.

The scapegoat generator « is defined as follows: a(M',t") is defined iff the transition
t' is disabled at the marking M'. Let a transition ¢ be disabled at a marking M. Let
(M, t,py,...,p;) denote the first element in a place list py,...,p; that is a disabling
place of t at M. Then

( E(IM, t, <I,>inactive7 <>exclusion7 (J($l7 1))unused7 ey (J($l7 n— 1))unused)

3 — !
ift = <'17 >update and send messages»

O[( M t) — E(IM, t7 (J(I,y 1))acknowledged7 ey (J(.I,‘,, n— 1))acknowledged7 <$l>waiting)
’ ift = <x’>receive acknowledgements
g(*Ma ta <yl>inactive7 <$,7 yl>sent) ift = <Il7 y,>receive message

\ E(*Mv tv <yl>performing7 <xlv yl>received) ift = <Il7 yl>send acknowledgement -
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Figure 12: A data base system.
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Note that (z', y'receive message COTTesponds to the instance of the high-level transition
“receive message” with z = 2z’ and y = y’ whereas (2',y')¢ent corresponds to the
pair of the high-level place “sent” and tuple (z',y'). The other indexed tuples are
analogous.

It is straightforward to show that for each marking M that is reachable from the
initial marking and for each transition ¢ that is enabled at M, Ef,(«, b, M,t) contains
all transitions that are enabled at M. This means that the incremental algorithm
(optimized or not) has no reductive effect. The rotation from s to the next possible
manager in the definition of a(M, (2')receive acknowledgements) is the actual pathological
property of a. This kind of stepping from a manager to another manager occurs very
often when a pseudo-random scapegoat generator is used. As a result, pseudo-random
generators tend to be almost as bad as a.

The pathological property of o can be eliminated by using a fixed manager when
possible. Let H(z',7) be (z',7) if 2’ > i, and (a',7 4+ 1) if ' < i. The scapegoat
generator [ is defined as a with the following exception:

ﬁ(Mv t) = E(A47 t7 (H(xla 1))acknowledged7 ey (H(x', n — 1))acknowledged7 <xl>waiting>
if £ = (2')receive acknowledgements and t is disabled at M.

When the incremental algorithm (optimized or not) and 3 are used, the reduced
reachability graph has 4(n — 2) vertices and 8(n — 2) edges more than the A-graph.
On the branches where manager 1 or 2 is waiting for acknowledgements, each vertex
has exactly one immediate successor. On each of the other n—2 branches, the number
of vertices having exactly two immediate successors is four, and every other vertex
on the branch has exactly one immediate successor. It is rather straightforward to
prove these results.

In the scapegoat generator «, the places representing the phases of the managers have
the highest priority. The scapegoat generator + is defined as a with the following
exception:

7(*M7 t) = E(Ma t, <x’>waiting7 (‘](1’.’7 1))acknowledged7 ey (J(Ila n— 1))acknowledged)
if t = (2')1eceive acknowledgements and t is disabled at M.

The scapegoat generator ¢ has been got by considering that if a transition has a
unique characteristic input place, then that place should have the highest priority.
The scape goat generator ¢ is not pure in that sense but shows the sufficient inter-
change to transform « into an optimal scapegoat generator. The scapegoat generator
0 is defined as a with the following exception:

6(M7 t) = E(*M7 ta <$l7 yl>received7 <yl>performing)
if t = (%', 9" )send acknowledgement and t is disabled at M.

It is straightforward to show that for each non-initial marking M that is reachable
from the initial marking and for each transition ¢ that is enabled at M, the set of
enabled transitions in EY,(vy,b, M,t) is {t}, and the set of enabled transitions in
Ef,(6,b,M,t) is {t}. As a consequence, the incremental algorithm (optimized or not)
produces the A-graph.
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The above example suggests some heuristics for choosing a scapegoat. The scapegoat
generator § suggests absolute ordering with respect to identity numbers, the scape-
goat generator v suggests giving a process control place the highest priority, and the
scapegoat generator ¢ suggests giving a unique characteristic input place the highest
priority. All these strategies are fixed order strategies in the sense that always the
first possible alternative in a fixed list is chosen.

Some strategies work without knowledge of the modelled system. One of such strate-
gies minimizes the number of enabled immediate successors of a vertex that are not in
any maximal strongly connected component already found in the dependency graph.
On the second priority level, it minimizes the number of all immediate successors of
the vertex that are not in any maximal strongly connected component already found.
On the third priority level, it minimizes the number of those immediate successors
of the vertex that have not been visited yet.

A pseudo-random scapegoat generator is probably far from optimal if the incremental
algorithm is as instable as in the above example. On the other hand, it is often
useful to compare a given strategy to a pseudo-random strategy to see how good the
strategy is. A pseudo-random strategy is a good measuring stick since it employs no
knowledge of the system. If a strategy gives better (worse) results than a pseudo-
random strategy, there must be something good (bad) in the strategy.

The deletion algorithm can also be used to estimate how good the incremental al-
gorithm could be even though the deletion algorithm may sometimes compute a
stubborn set containing more enabled transitions than a stubborn set computed by
the incremental algorithm. The choice of an enabled transition to be deleted is a
nondeterministic factor. In the case of the net in Figure 12, the nondeterminism as-
sociated with the deletion algorithm does not affect the number of enabled transitions
in the computed stubborn set.
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4 Sleep Set Method

In this section we present Godefroid’s sleep set method [25, 27, 28, 29, 30, 26, 36, 86,
87]. The plain sleep set method preserves at least one sequence from each conditional
trace leading from the initial state to a terminal state. To prevent a transition from
firing, it is put into a so called sleep set.

Wolper and Godefroid [86], Godefroid and Pirottin [28], and Wolper, Godefroid, and
Pirottin [87] have combined the sleep set method with the stubborn set method.
The combination is justified by the fact that the stubborn set method alone is some-
times bound to fire independent transitions at a state. The combination presented
in [28, 86, 87| is such that at each encountered nonterminal state a nonempty per-
sistent set is computed. Let us recall from Lemma 3.12 that a set is a nonempty
persistent set iff the set is a strongly dynamically stubborn set consisting of enabled
transitions only. In [86, 87|, persistence is defined on the basis of global independence
but since global independence implies independence at each reachable state, the per-
sistent sets in [86, 87] are persistent in the sense defined by Godefroid and Pirottin
[28]. As mentioned immediately above Definition 3.9, our definition of persistence
in Definition 3.9 corresponds to Godefroid’s and Pirottin’s definition [28]. The plain
sleep set method can be thought as a special case of the combined method: a simple
heuristic for computing a persistent set is used. We shall not consider the plain sleep
set method further.

Subsection 4.1 presents an algorithm for detecting reachable terminal states in pla-
ce/transition nets. The practicalities related to the algorithm are considered in Sub-
section 4.2.

4.1 A Terminal Marking Detection Algorithm

In this subsection, we concentrate on a generalized version of Wolper’s and Gode-
froid’s terminal state detection algorithm [86]. The generalized version is in Figure
13. The intuitive idea of the algorithm is to eliminate such redundant interleavings
of transitions that are not eliminated by the transition selection function f. We show
that the algorithm is guaranteed to find all reachable terminal markings of any finite
place/transition net with a finite set of reachable markings. Any dynamically stub-
born function is valid for f, but the algorithm is not limited to dynamically stubborn
sets. It suffices that f represents all sets of length-secure alternative sequences to
terminal markings. The set Tj can be any subset of transitions that are disabled
at the initial marking. The ¢ in Figure 13 can be any truth-valued function on
M x T x T x 2T that satisfies: if p(M,t,t',Ty), then either ¢ and ¢/ commute at M
and t' € Ty, or tt' is disabled at M. For example, p(M,t,t',T,) could be

e “either ¢ and ¢’ commute at M and t' € T, or tt' is disabled at M”,
e “t and t' are independent at M and t' € T,”,

e “t and t' commute at M and ¢’ € T,”, or simply

o “false”.
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make Stack empty; make H empty;
push (M, Ty) onto Stack;
while Stack is not empty do {
pop (M, Sleep) from Stack;
if M is not in H then {
Fire= {t € f(M)\ Sleep| M[t)};
if Fire and Sleep are both empty then print “Terminal state!”;
enter (M, a copy of Sleep ) in H;

}
else {

let hSleep be the set associated with M in H;

Fire= {t € hSleep \ Sleep | M[t)};

Sleep = hSleep N Sleep;

substitute a copy of Sleep for the set associated with M in H;

}

for each ¢ in Fire do {
let M[t)M';
tSleep={t' € T' | (M, t,t',Sleep)};
push (M' a copy of tSleep ) onto Stack;
Sleep = {t}U Sleep;

}

Figure 13: A terminal marking detection algorithm.

Note that if M[t)M’', then tt' is disabled at M iff t' is disabled at M'. So the first
alternative in the above list has the effect that if ¢ is fired from M to M’ in the
algorithm in Figure 13, then the sleep set pushed onto the stack with M' contains all
those transitions that are disabled at M'. We shall consider the practicalities related
to ¢ and Ty in Subsection 4.2.

The algorithm in Figure 13 is similar to Wolper’s and Godefroid’s algorithm [86].
The only essential differences are that Wolper and Godefroid assume that the set
corresponding to f(M) is persistent, the set corresponding to Tp is empty, and the
condition corresponding to ¢(M,t,t',T,) is “t and t' are globally independent and
teT,”.

Theorem 4.1 Let (S,T,F, K, W, My) be a finite place/transition net such that the
set of markings reachable from My is finite. Let f be a function from M to 2T such
that f represents all sets of length-secure alternative sequences to terminal markings.
Let Ty be a subset of transitions that are disabled at My. Let ¢ be a truth-valued
function on M x T x T x 27 such that for each marking M, for all transitionst and
t', and for each Ty C T, if o(M,t,t',T), then either t and t' commute at M and
t' e Ty, or tt' is disabled at M. Then the algorithm in Figure 13 finds all terminal
markings that are reachable from M.

Proof. Slight modifications of the proof of Theorem 6 in [86] suffice. There are only
two essential differences. The first essential difference is that if we are visiting M, and
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a finite transition sequence ¢ leads from M to a terminal marking, the set of length-
secure alternative sequences of o at M, ¥(o, M), is used in the reasoning instead of the
trace of o. The second essential difference is that instead of independence, the weaker
property satisfied by ¢ is used. The modified proof concentrates on showing that if
no length-secure alternative sequence of a finite transition sequence leading from a
marking of a stack element to a terminal marking has its first transition in the sleep
set of the stack element, the terminal marking is visited. This is sufficient since at the
time of entering the “while-loop”, the stack contains only the initial marking with
a sleep set containing disabled transitions only. In the proof, an arbitrary terminal
marking that is reachable from the initial marking is considered, and induction is
used on the length of a finite transition sequence leading from a marking on the
stack to the terminal marking. Since the length-secure alternative sequences of a
finite transition sequence ¢ are of length less than or equal to the length of o, the
induction hypothesis is of the form “for each & < n” instead of “for n”. The above
property of ¢ is needed in showing that if M[¢t)M', M'[t'YM", t is fired at M, and ¢/
is in the sleep set pushed onto the stack with M’ when ¢ is fired at M, then ¢’ € Sleep
at the time of the push and M[t't)M". O

The result in Theorem 4.1 is new though inspired by Wolper and Godefroid [86],
Godefroid and Pirottin [28], and Wolper, Godefroid, and Pirottin [87].

Let us recall from Theorem 3.16 that dynamically stubborn functions represent all
sets of enabled permutations to terminal markings. So they represent all sets of
length-secure alternative sequences to terminal markings, too. From Theorem 4.1
it thus follows that the algorithm in Figure 13 is compatible with all dynamically
stubborn sets.

The stack in the algorithm in Figure 13 could be replaced by a set, a queue, or a
priority queue since a set, a queue, as well as a priority queue would suffice in the
proof of Theorem 4.1. Wolper and Godefroid do not utilize the characteristics of
stacks in their corresponding proof either [86]. Unfortunately, there seems to be no
easy way to find the reachable terminal markings in the order of shortest distance
from the initial marking since new transitions can be fired when a marking “near the
initial marking” is revisited. By the shortest distance we mean the shortest distance
with respect to the paths of the full reachability graph traversed during the execution
of the algorithm.

The proof of Theorem 4.1 takes advantage of the possibility to fire new transitions
when a marking is revisited. On the other hand, we do not currently know whether it
is possible to improve the algorithm in Figure 13 in such a way that no marking would
be visited more than once but all reachable terminal markings would still be found.
We do not either know whether it is possible to weaken the conditions for f and ¢ in
the algorithm in Figure 13 in such a way that all reachable terminal markings would
still be found. However, the next example suggests that our condition for f may at
least be a good approximation of the weakest condition for f if such condition exists.

Let’s consider an example which shows that the statement obtained from Theorem
4.1 by removing the word “length-secure” is not valid. Let (M, t,t',T,) iff t and ¢/
commute at M and t' € Ts. Let Ty = (). Let My[a) My, M, [d) Ms, and M;[bc) M3 in the
net in Figure 14. Let f be defined by f(Mo) = {a} and f(M) =T when M # M,.
For each M € M, if My is reachable from M, then M = My or M = M;. The
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Figure 14: A deceptive f makes the algorithm in Figure 13 fail.

marking Ms is the only terminal marking that is reachable from M. The function
f thus represents all sets of alternative sequences to terminal markings. However, f
does not represent all sets of length-secure alternative sequences to terminal markings
since Mo[ed) M3 but for each o € T™* of length less than or equal to 2, =My[o) s Ms.

During the first visit to My, the algorithm in Figure 13 inserts (My,{) into H and
pushes (M, ) onto the stack. The algorithm then visits M;. The transitions b and
d are the enabled transitions in f(My) = T at M. Let b be fired before d at M.
The algorithm pushes ( My, ) and (M,, {b}) onto the stack since b and d commute at
M. The algorithm then visits M2 but does not fire the sleeping b which is the only
enabled transition at M. No transition is fired during the second visit to My since
the sleep set associated with My in H is empty. The execution of the algorithm is
then over. No terminal marking was found though Mj is a terminal marking that is
reachable from M.

It is possible to extend the algorithm in Figure 13 and Theorem 4.1 to high-level
nets [8, 43]. The most straightforward way to do this is to turn each transition into a
transition instance. The computation of f(M) is the only part of the algorithm that
may require knowledge about the bounds on the set of possible transition instances.

Though the models of concurrency in [28, 86] are more sophisticated than place/trans-
ition nets, we claim that a result equivalent to Theorem 4.1 should hold for those
models. We justify the claim as follows.

¢ The concept of an alternative sequence of a finite transition sequence at a state
is general and suits the models of concurrency in [28, 86] perfectly.

e In those models, transitions ¢ and ¢’ commute at a state M iff ¢¢ and t't are
enabled at M and t't leads from M to the same state as tt'. (In place/transition
nets, if ¢¢' and t't are enabled at a marking M, then ¢t leads from M to the
same marking as ¢t'.)

e The algorithm in Figure 13 suits those models as such.

¢ The proof of Theorem 4.1 can thus essentially be repeated for those models.
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4.2 Practicalities

The practicalities related to the algorithm presented in Subsection 4.1 are considered
in this subsection. We start by considering the practicalities related to the ¢ and the
Tp in the algorithm in Figure 13.

Lemma 4.2 Let (S, T, F, K,W, My) be a finite place/transition net. Let ¢ be a truth-
valued function on M x T x T x 2T such that for each marking M, for all transitions
t and t', and for each Ty C T, if o(M,t,t',T), then t and t' are independent at M
and t' € T,. Let Ty = (). Then in the algorithm in Figure 13, each sleep set associated
with a marking contains only transitions that are enabled at the marking.

Proof. If a transition t' is in the sleep set pushed onto the stack with a marking M’
when a transition ¢ is fired from a marking M to M’, then t' € Sleep at the time of
the push, and each transition in Fire is enabled at A. The sleep set associated with
the initial marking at the beginning of the execution of the algorithm is empty. If
transitions ¢ and ¢" are enabled and independent at a marking M, and M[t)M", then
t" is enabled at M". The result thus follows by a trivial induction. O

The result in Lemma 4.2 is due to Wolper and Godefroid [86] despite the differences
between the algorithm in Figure 13 and their terminal state detection algorithm.

In Figure 15, an implementation of the algorithm in Figure 13 with respect to ¢
and Tp is presented. The algorithm in Figure 15 can be obtained from the algorithm
in Figure 13 by making 7y empty, removing the checking of enabledness from the
“else-block”, and defining: ¢(M,t,t',T;) iff t and t' commute at M and t' € Ts. We
know that transitions commute at a marking iff they are enabled and independent at
the marking. Checking commutation should be easier than checking independence.
Lemma 4.2 implies that the algorithm in Figure 13 is equivalent to the algorithm in
Figure 15 when Ty is empty and ¢ is defined: (M, t,t',Ty) iff t and ¢’ commute at
M and t' € T,. Lemma 15 thus also implies that in the algorithm in Figure 15, each
sleep set associated with a marking contains only transitions that are enabled at the
marking.

Lemma 4.3 Let (S, T, F, K,W, My) be a finite place/transition net such that the set
of markings reachable from My s finite. Let Ty be a subset of transitions that are
disabled at My. Let ¢ be a truth-valued function on M x T x T x 2T such that for
each marking M, for all transitions t and t', and for each Ts C T, if o(M,t,t',Ty),
then either t and t' commute at M and t' € T, or tt' is disabled at M. Let’s further
require that for each marking M, for all transitions t and t', and for each T, C T,
if t and t' commute at M and t' € Ty, then o(M,t,t',T,). Let’s assume that the
sets, the set operations (insertion, union, intersection, and difference), the stack, the
stack operations, the “for-loop”, and the computation of f(M) in the algorithms in
Figure 13 and 15 are implemented exactly in the same way. Then the algorithms visit
exactly the same markings and fire exactly the same transitions in exactly the same
order.

Proof. Let’s assume that a transition ¢ is being fired from a marking M to a marking
M'" in the algorithm in Figure 13. If a transition ¢’ is enabled at M’ and is in the
sleep set pushed onto the stack with M’ when ¢ is fired at M, then ¢(M,t,t', Sleep)
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make Stack empty; make H empty;
push (Mp, () onto Stack;
while Stack is not empty do {
pop (M, Sleep ) from Stack;
if M is not in H then {
Fire={t € f(M)\ Sleep | M[t)};
if Fire and Sleep are both empty then print “Terminal state!”;
enter (M, a copy of Sleep ) in H;
¥
else {
let hSleep be the set associated with M in H;
Fire = hSleep \ Sleep;
Sleep = hSleep N Sleep;
substitute a copy of Sleep for the set associated with M in H;
}
for each ¢ in Fire do {
let M[t)M';
tSleep = {t' € Sleep| ¢t and t' commute at M };
push (M’ a copy of tSleep ) onto Stack;
Sleep = {t}U Sleep;

}

Figure 15: A practical implementation of the algorithm in Figure 13 with respect to
¢ and Tp.
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holds at the time of the push but ¢t is enabled at M, so ¢t and ' commute at M,
t' € Sleep at the time of the push, and ¢ is enabled at M. The result now follows by
a trivial induction. a

The result in Lemma 4.3 is new though inspired by Wolper and Godefroid [86].

Lemma 4.3 states that there is no more refined implementation of the algorithm in
Figure 13 with respect to ¢ and Ty than the algorithm in Figure 15 if ¢ and T are
required to satisfy the assumptions in Theorem 4.1. Lemmas 4.2 and 4.3 suggest the
heuristic that each sleep set associated with a marking should only contain transitions
that are enabled at the marking.

Let’s consider the complexity of the algorithm in Figure 15. The time taken by a
check of whether two transitions commute at a marking is at most proportional to v,
where v is the maximum number of adjacent places of a transition. The cumulative
time per marking spent in the “for-loop” is at most proportional to vp?, where p
is the maximum number of enabled transitions of a marking, and all visits to the
marking are counted. This is based on the fact that each sleep set associated with
a marking contains only transitions that are enabled at the marking. The time per
visit to a marking spent in the operations related to H is the time of the search
for the marking plus a time that is at most proportional to p. The searches in H
are something that cannot be avoided easily whether or not we use sleep sets at all.
It depends much on the net how many times a marking is visited and how many
simultaneous occurrences of a marking there are in the stack. One stack element
requires space for the marking and at most p transitions. It is not necessary to
store copies of markings and transitions since pointers suffice. More clever ways
to cut down on space consumption in sleep set algorithms have been presented by
Godefroid, Holzmann, and Pirottin [26].

The combination of the sleep set method and the stubborn set method can really be
better than the plain stubborn set method as far as the number of inspected markings
is concerned. More precisely, there can be a dynamically stubborn function f such
that f(M) can be computed by using a feasible algorithm such as the incremental
algorithm, and for each dynamically stubborn function ¢, the number of vertices in
the g-reachability graph is greater than the number of markings that are inspected
by the algorithm in Figure 15 that uses f. The net in Figure 16 is a simple example
showing this. The example is essentially the same as can be found in [87].

An exhaustive investigation shows that at each reachable nonterminal marking of
this net, there is one and only one dynamically stubborn set that is minimal with
respect to set inclusion. By Lemma 3.8 we know that a dynamically stubborn set that
is minimal with respect to set inclusion only contains enabled transitions. Another
exhaustive investigation shows that at each reachable nonterminal marking of this
net, the set of enabled transitions of any stubborn set computed by the incremental
algorithm, using our definition or any of the definitions of stubbornness in [70, 75, 78],
is a dynamically stubborn set that is minimal with respect to set inclusion. If M
is a nonterminal marking, let f(M) be the set of enabled transitions of a stubborn
set computed by the incremental algorithm. Then f(M) is the only dynamically
stubborn set at M that is minimal with respect to set inclusion. Thus, for each
dynamically stubborn function g, the f-reachability graph is a subgraph of the g-
reachability graph.
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Figure 16: A net showing some of the power of the algorithm in Figure 15.

We have f(My) = {a,c}. Let a be fired before ¢ at My in the algorithm in Figure
15. Let My[e)M'. Since @ and ¢ commute at My and a is fired before ¢, (M', {a}) is
pushed onto the stack. Let’s consider the visit to M’ where (M',{a}) is popped from
the stack. We have f(M') = {a, b}, but the sleeping a is not fired. Let M'[a)M". By
executing the algorithm in Figure 15 completely, we see that M" is never encountered,
and no nonterminal marking is visited more than once. The latter observation is
important since it guarantees that all transitions that are fired at a marking M are
in f(M). The set of inspected markings is thus a proper subset of the markings of
the f-reachability graph.

The statistics in [28, 86, 87] concerning some analyzed protocols do not give direct
information for comparing the stubborn set method with the combination of the sleep
set method and the stubborn set method.
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5 Conclusions

We have studied Valmari’s stubborn set method [70, 71, 73, 74, 75, 76, 78, 79, 80] and
Godefroid’s sleep set method [25, 27, 28, 29, 30, 26, 36, 86, 87| and their combination
[28, 86, 87] in place/transition nets [64, 65].

We have shown dynamically stubborn sets [63, 78] to be a useful generalization of
stubborn sets. Dynamically stubborn sets seem to have all the nice properties of
stubborn sets except that the definition of dynamic stubbornness does not seem to
imply a practical algorithm for computing dynamically stubborn sets.

We have chosen a weak definition of stubbornness [70] and presented the incremental
algorithm [70, 73] and the deletion algorithm [71, 73] for computing such stubborn
sets. The deletion algorithm is guaranteed to find a minimal stubborn set in the
sense that no proper subset of its enabled transitions can be the set of enabled
transitions of any stubborn set. The time taken by an execution of the incremental
algorithm is at most proportional to pr|T|, where y is the maximum number of
input places of a transition, v is the maximum number of adjacent transitions of a
place, and T is the set of transitions of the net. Respectively, the time taken by an
execution of the deletion algorithm is at most proportional to uv|T|?. However, the
incremental algorithm often pays the price in the size of the computed stubborn set
and consequently in the size of the reduced reachability graph. The deletion algorithm
can be used to estimate how good the incremental algorithm could be even though the
deletion algorithm may sometimes compute a stubborn set containing more enabled
transitions than a stubborn set computed by the incremental algorithm.

The choices made about of disabling places (scapegoats) in the incremental algorithm
can seriously affect the number of enabled transitions in the resulting stubborn set.
We considered an example that suggests three fixed order strategies for choosing
a scapegoat: absolute ordering with respect to identity numbers, giving a process
control place the highest priority, and giving a unique characteristic input place
the highest priority. It is also easy to develop simple strategies that work without
knowledge of the modelled system. To see how good a given strategy is, one can
compare it to a pseudo-random strategy.

The known practical algorithms for computing stubborn sets in high-level nets [78]
use disabled transition instances. Consequently, the high-level net is unfolded into a
finite place/transition net at least implicitly during analysis. Unfolding requires that
if suitable bounds for the possible transition instances are not known, these have to
be estimated.

The stubborn set method alone is sometimes bound to fire independent transitions
at a state, so the sleep set method can further be used to eliminate redundant inter-
leavings of transitions. We have generalized Wolper’s and Godefroid’s terminal state
detection algorithm [86] and shown that the generalized version detects all reachable
terminal markings of any finite place/transition net with a finite full reachability
graph, given that the transition selection function represents all sets of length-secure
alternative sequences to terminal markings. As already known, dynamically stubborn
functions represent all sets of enabled permutations to terminal markings. They thus
also represent all sets of length-secure alternative sequences to terminal markings.
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The contributions of this report are the following:

e We have generalized Wolper’s and Godefroid’s terminal state detection algo-
rithm [86]. We have shown that the generalized version detects all reachable
terminal markings of any finite place/transition net with a finite full reachabil-
ity graph if the transition selection function represents all sets of length-secure
alternative sequences to terminal markings. We have also given justifications

to our claim that an equivalent result should hold in the models of concurrency
of Wolper and Godefroid [86], and Godefroid and Pirottin [28].

e We have found heuristics for choosing a scapegoat in the incremental algorithm
which computes stubborn sets. Bad choices of scapegoats can seriously affect
the number of states explored in a reachability analysis.

¢ We have proven that conventionally dynamically stubborn functions represent
all conditional traces to terminal markings.

e We have presented Godefroid’s and Pirottin’s definitions of persistence and
conditional stubbornness [28] in the context of place/transition nets. For these,
we have shown that a set is conditionally stubborn iff it is strongly dynamically
stubborn. Consequently, a set is a nonempty persistent set iff the set is a
strongly dynamically stubborn set consisting of enabled transitions only.

o We have improved the theory of dynamically stubborn sets by presenting some
important results that have been known for long but have missed explicit treat-
ment.

e We have improved the understanding of dynamically and statically stubborn
sets by showing some small but interesting results and presenting many coun-
terexamples.

Wolper and Godefroid [86], and Wolper, Godefroid, and Pirottin [87] suggest that the
stubborn set method and the sleep set are compatible in a broad area of verification.
The compatibility should certainly be studied further since all available means should
be utilized in attacking the state space explosion problem, and in our opinion, only the
detection of reachable terminal states has obtained more than cursory treatment so
far. Linear temporal logics seem to form the most central area of research since they
have a great expressive power, and the stubborn set method alone as well as the sleep
set method alone can be extended to verify properties expressed as linear temporal
logic formulae without a next state -operator [29, 59, 76, 79]. The combination of the
stubborn set method and the sleep set method should be studied in all those models
of concurrency where each of these two methods alone are applicable. Also, it should
be studied whether it is possible to compute suitable stubborn sets in high-level nets
without using disabled transition instances, though it may seem that such possibility
does not exist. Finally, we have the problem of how efficient the algorithms are in
practice and what could be done to improve their efficiency.
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