
Information Processing Letters 109 (2009) 356–359
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A randomized approximation algorithm for computing bucket orders

Antti Ukkonen a,b,∗, Kai Puolamäki a,b, Aristides Gionis d, Heikki Mannila a,b,c

a Helsinki Institute for Information Technology HIIT, Finland
b Helsinki University of Technology, Department of Information and Computer Science, P.O. Box 5400, Helsinki, Finland
c University of Helsinki, Finland
d Yahoo! Research Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2008
Received in revised form 2 December 2008
Available online 7 December 2008
Communicated by C. Scheideler

Keywords:
Approximation algorithms
Randomized algorithms
Ranking

We show that a simple randomized algorithm has an expected constant factor approxima-
tion guarantee for fitting bucket orders to a set of pairwise preferences.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction and problem definition

Let M = {1, . . . ,m} be a set of m items. A bucket order
B is a partial order defined by an ordered partition of M ,
i.e., a sequence M1, . . . , Mk of k disjoint subsets (buckets)
of M , with

⋃
i Mi = M . The item u ∈ M precedes the item

v ∈ M according to B, denoted u ≺B v , if and only if u ∈
Mi and v ∈ M j with i < j. If two items belong to the same
bucket they are unordered by B, denoted u ∼B v . We can
represent B as the m × m matrix B , with B(u, v) = 1 if
u ≺B v , B(u, v) = 1

2 if u ∼B v , and B(u, v) = 0 if v ≺B
u. We call B a bucket matrix. Note that we always have
B(u, v) + B(v, u) = 1.

Let C be an m × m matrix with entries in the interval
[0,1], so that C(u, v) + C(v, u) = 1. (C(u, u) = 1

2 for all u.)
We call C the pair order matrix, and interpret C(u, v) as the
probability that the item u precedes the item v . Our task
is to find a bucket order B that fits these probabilities as
well as possible. We do this by finding a bucket matrix B

* Corresponding author at: Helsinki University of Technology, Depart-
ment of Information and Computer Science, P.O. Box 5400, Helsinki, Fin-
land.

E-mail address: antti.ukkonen@tkk.fi (A. Ukkonen).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.12.003
that is a good approximation of C in terms of the L1 norm.
More formally, we consider the following problem:

Problem OPTIMAL-BUCKET-ORDER. Given a pair order ma-
trix C , find the bucket matrix B that minimizes the cost
c(B, C) = ∑

u,v |B(u, v) − C(u, v)|.

The problem is closely related to the feedback-arc-set
problem (GT8 in [3]) that has been studied recently from
the point of view of approximation [1,2,5]. The optimal-

bucket-order problem has applications, e.g., in ranking
and in seriation for paleontological data. It is NP-hard, as
it can be shown to include the feedback arc set problem
as a special case [4]. In this paper we consider a simple
quicksort-like algorithm for the problem, and show that it
has an expected constant factor approximation guarantee.1

2. A simple algorithm and its analysis

The Bucket Pivot Algorithm (Algorithm 1) receives as
input a set of items M , the pair order matrix C , and a pa-

1 The algorithm was originally given by us in [4], where no proof of the
approximation ratio was given. The current paper is based on the PhD
thesis of the first author [6].

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:antti.ukkonen@tkk.fi
http://dx.doi.org/10.1016/j.ipl.2008.12.003


A. Ukkonen et al. / Information Processing Letters 109 (2009) 356–359 357
1: BP(M, C, β)

{Input: M , set of items; C , pair order matrix; β � 0, parameter.
Output: Bucket order.}

2: if M = ∅ then
3: RETURN ∅
4: end if
5: Pick a pivot p ∈ M uniformly at random.
6: L ← ∅, S ← {p}, R ← ∅
7: for all items u ∈ M \ {p} do
8: if C(p, u) < 1

2 − β then
9: Add u to L.

10: else if 1
2 − β � C(p, u) � 1

2 + β then
11: Add u to S .
12: else if 1

2 + β < C(p, u) then
13: Add u to R .
14: end if
15: end for
16: RETURN order 〈BP(L, C, β), S,BP(R, C, β))〉

Algorithm 1. The Bucket Pivot Algorithm. By default, we use β = 1
4 .

rameter β ∈ [0, 1
2 ). It selects a random element p ∈ M as a

pivot, and then places the remaining items in M to the sets
L, S , or R , depending how they are related to p according
to C . If the probability that an item precedes (follows) p
is large enough, it is put to the set L (R), otherwise it is
put to the set S . For details, please see lines 8–14 of Algo-
rithm 1. Finally the algorithm is applied recursively to the
sets L and R . This algorithm is a generalization of a similar
algorithm presented in [1], and with β = 0 it is equivalent
to the one in [1].

We show that Algorithm 1 is an expected constant fac-
tor approximation algorithm when β = 1

4 . The proof fol-
lows the technique used in [1] with some modifications.
Let B A be the bucket matrix found by Algorithm 1, and de-
note by B∗ the optimal solution to optimal-bucket-order.
Since Algorithm 1 is randomized, B A is a random variable.
We show that the expected cost E[c(B A, C)] is at most
αc(B∗, C), where α is a constant. (Either 9 or 5, depending
on our assumptions about the pair order matrix.)

For the proof it is useful to think that C contains
weights of the edges of a complete, directed graph with
the items in M as vertices. By linearity of expectation the
expected cost E[c(B A, C)] can be written as the sum of
the costs of individual edges (u, v), that is, we can write
E[c(B A, C)] = ∑

u,v E[c(B A, (u, v))], where c(B A, (u, v)) =
|B A(u, v) − C(u, v)|. In the following we denote by e any
pair (u, v). The key of the approximation result is to find
a proper expression for the expected cost E[c(B A, e)] of an
edge e. To do this we consider the possible cases that can
happen to e during the execution of the algorithm. Crucial
here is how e is related to the pivot vertex p.

First of all, when p is one of the endpoints of e, the cost
c(B A, e) will always be optimal. For example, let e = (p, u)

and suppose that C(p, u) ∈ [0, 1
4 ). The algorithm will put u

in the set L, and hence u will appear before p in the final
output. We will thus have B A(p, u) = 0, which is optimal
given the value of C(p, u). It is easy to see that this holds
also for other cases where C(p, u) belongs either to [ 1

4 , 3
4 ]

or ( 3
4 ,1].

Therefore, c(B A, e) can be nonoptimal only when the
pair e is assigned a cost without the pivot p being a part
of e. This can only happen when e is opposite to the pivot
in a triangle of three vertices. See the figure below for an
example:

u v

p

The arrows indicate which direction has a large weight
in C , i.e., when the arrow points from u to p, we have
C(u, p) > 3

4 . In this case if p is chosen as the pivot and
e = (u, v), the cost c(B A, e) will be nonoptimal. The vertex
u will be put to L and v will be put to R . Hence u will
precede v in the final output, and we will have B A(u, v) =
1, although C(u, v) < 1

4 , and the optimal placement of u
and v could place v before u.

The weights in C can be used to define other kinds of
triangles as well. In addition to the directed cycle shown
above, we have also six other classes of triangles. These

are: , , , , , and . We define them as
follows: two vertices u and v are connected by an ar-
row whenever C(u, v) is either larger than 3

4 or less than
1
4 . The arrow is directed from u to v if C(u, v) > 3

4 . If
C(u, v) < 1

4 , the arrow is directed from v to u. If C(u, v) is
in the range [ 1

4 , 3
4 ] we do not draw an arrow between the

points.
We already argued that the cost c(B A, e) will be small-

est when either endpoint of e is chosen as the pivot, and
claimed that the cost of an edge e can only be nonopti-
mal when it is opposite to the pivot vertex. This is only a
necessary condition, however. Consider the triangle classes

, , and . It is easy to see that in every case,
no matter what vertex is chosen as the pivot, the edge op-
posite to it will always either a) have the smallest possible
cost, i.e., it’s orientation in the final output will be concor-
dant with C , or b) both of its endpoints will be put to the
set L (or R), and hence it’s cost will be defined in a later
step of the algorithm.

For example, in case of , if we choose the vertex
with two outgoing (or incoming) edges as the pivot, the
opposite edge will be put to the set R (or L) and it’s cost
is not yet defined. If we choose the vertex with one incom-
ing and one outgoing edge as the pivot, the edge opposite
to it will be oriented in the correct way according to C .

This leaves us with only the classes , and .

In the example above we considered . Since it is com-
pletely symmetric, it is obvious that no matter what vertex
is chosen as the pivot, the edge opposite to it will always

incur a nonoptimal cost. The remaining cases are and

. In case of , if we choose the vertex that is adjacent
to the undirected edges, both endpoints of the directed
edge (u, v) will be put to the set S and hence we will
have B A(u, v) = 1

2 even though C(u, v) ∈ ( 3
4 ,1]. If either of

the vertices adjacent to the directed edge is chosen as the
pivot, one of the vertices of the undirected edge (u, v) that
is opposite to it will be put to the set S , while the other
one is put to the set R (or L). This means B A(u, v) = 1 or
B A(u, v) = 0, even though C(u, v) ∈ [ 1 , 3 ].
4 4



358 A. Ukkonen et al. / Information Processing Letters 109 (2009) 356–359
In case of the following occurs: If the vertex with
one incoming and one outgoing edge is chosen as the
pivot, the edge on the opposite side will be assigned a di-
rection even though both of its endpoints should belong to
the same bucket. If the vertex with one outgoing (or in-
coming) edge is chosen as the pivot, the other vertex of
the opposite edge will be put to the set R (or L) while the
other one is put to the set S . In both cases the arrow will
end up pointing the wrong way.

Consider an edge e, and the randomly chosen pivot
p /∈ e. Denote the triangle formed by these with t p

e . Let

Ω = { , , } be the set of those triangle classes that
may lead to suboptimal behavior as argued above. I.e., if t p

e
belongs to a triangle class T ∈ Ω , the cost c(B A, e) will be
nonoptimal. Denote by cT (e) the cost that e incurs given a
fixed class T ∈ Ω . Note that cT (e) is the same for all tri-
angles that belong to T ∈ Ω . Denote the probability that
t p

e belongs to a fixed T ∈ Ω with pT (e). Furthermore, let
copt(e) denote the cost incurred to e when it either is
adjacent to the pivot or appears opposite to the pivot in
one of the triangle classes not belonging to Ω . We have
copt(e) = minx∈{0,0.5,1} |x − C(u, v)|, where e = (u, v). Fi-
nally, let c∗(e) denote the cost of the edge e in the globally
optimal solution B∗ . Obviously we have copt(e) � c∗(e). For
instance, in case of the directed cycle (triangles belonging

to class ) one of the edges always has to pay a nonopti-
mal cost.

Using the above, we can write the expected cost of e as
follows:

E
[
c(B A, e)

] =
∑
T ∈Ω

pT (e)cT (e)

+
(

1 −
∑
T ∈Ω

pT (e)

)
copt(e). (1)

Either e pays the nonoptimal cost cT (e) when it ends up
opposite to the pivot in a triangle t p

e belonging to T ∈ Ω ,
or it pays copt(e) in the remaining cases. By summing
Eq. (1) over all possible e = (u, v) pairs, we get

E
[
c(B A, C)

] =
∑

e

∑
T ∈Ω

pT (e)cT (e)

︸ ︷︷ ︸
H A

+
∑

e

(
1 −

∑
T ∈Ω

pT (e)

)
copt(e)

︸ ︷︷ ︸
L A

, (2)

where H A is the part with the nonoptimal (“high”) costs,
and L A the part with the locally optimal (“low”) costs.

Next we derive pT (e). Define the events XT (t, e) and
B(e). The event XT (t, e) means that all vertices of a tri-
angle t ∈ T , one side of which is e, appear in a recursive
call of the algorithm, and one of t ’s vertices is chosen as
the pivot. The event B(e) happens when the pivot chosen
is the vertex opposite to edge e. Given that XT (t, e) hap-
pens, the probability of B(e) is just 1

3 as each of the three
vertices has equal probability of becoming the pivot. If pt

is the probability of XT (t, e), we can write
Fig. 1. A triangle belonging to one of the classes in Ω . To each edge is
associated its possible value in C . For the cases where the weight is 1−εi ,
we have εi ∈ [0, 1

4 ]. When the weight is 0.5 + εi , we have εi ∈ [− 1
4 , 1

4 ].

Pr
(

XT (t, e) ∧ B(e)
)

= Pr
(

B(e)|XT (t, e)
)
Pr

(
XT (t, e)

) = 1

3
pt .

This is the probability of one t ∈ T causing e to pay a
nonoptimal cost. For the entire class T we have pT (e) =∑

t: e∈t∈T
1
3 pt .

This must be a probability (�1) because the events
XT (t, e) ∧ B(e) and XT (t′, e) ∧ B(e) are disjoint for all
t, t′ ∈ T , since e is charged to triangle t , it cannot be
charged to triangle t′ . In fact, the same holds for all tri-
angles in the input graph. Any edge e can only cause a
nonoptimal cost with one triangle, no matter what class
this triangle belongs to. This means that for all e we have∑

T ∈Ω

∑
t: e∈t∈T

1
3 pt � 1.

When pT (e) is substituted into H A we obtain H A =∑
T ∈Ω

∑
t∈T

1
3 ptcT (t), where cT (t) = ∑

e∈t cT (e). To pro-
ceed we present the following lemma:

Lemma 2.1. Let α > 1 be a constant. We have E[c(B A, C)] �
αc(B∗, C), if for all triangle classes T ∈ Ω it holds that cT (t) �
αc∗(t), where c∗(t) = ∑

e∈t c∗(e).

Proof. We decompose the optimal cost as follows: Let
c(B∗, C) = H∗ + L∗ , where H∗ = ∑

T ∈Ω

∑
t∈T

1
3 ptc∗(t) and

L∗ = ∑
e∈A(1 − ∑

T ∈Ω pT (e))c∗(e). If we assume there ex-
ists an α so that cT (t) � αc∗(t) for all T ∈ Ω , then we
obtain that H A � αH∗ , which implies the claim of the
lemma, as it must be the case that L A � L∗ , since copt(e) �
c∗(e) for all e. �

The exact value(s) of α are determined by case analysis,
where we consider all triangle classes in Ω separately. As

an example we look at the class T = . We tabulate the
costs of each edge for different choices of the pivot (see
also Fig. 1):

Pivot {v, w} {u, w} {u, v}
u 1 − ε2 ε1 ε3

v ε2 1 − ε1 ε3

w ε2 ε1
1
2 + ε3

This gives us cT (t) = 5
2 − ε1 − ε2 + ε3, and c∗(t) =

1
2 + ε1 + ε2 + ε3, where ε1, ε2 ∈ [0, 1

4 ] and ε3 ∈ [− 1
4 , 1

4 ].
For the worst case we set ε1 = ε2 = 0. If ε3 � 0, we have
cT (t)/c∗(t) � 5, and when ε3 = − 1

4 , we have cT (t) = 9
4 and

c∗(t) = 1 which gives α � 9.
4



A. Ukkonen et al. / Information Processing Letters 109 (2009) 356–359 359
Using the same technique we obtain α � 5 for and

α � 11
3 for . Thus, Lemma 2.1 holds for α = 9 and we

obtain the following theorem.

Theorem 2.2. Algorithm 1 is a randomized 9-approximation al-
gorithm.

If we require that the probabilities in the pair order
matrix C satisfy the triangle inequality, we note that for
instance the assignment of values to εi used above to ob-

tain α � 9 is not valid. Also, triangles from the class
do not occur at all. By repeating the same case analysis so
that the triangle inequality is satisfied, we obtain α � 5 for

and α � 4 for .

Theorem 2.3. Algorithm 1 is a randomized 5-approximation al-
gorithm if the input C satisfies the triangle inequality.
It is not known whether the bounds 9 and 5 are tight.

References

[1] N. Ailon, M. Charikar, and A. Newman, Aggregating inconsistent in-
formation: ranking and clustering, in: Proceedings of the 37th ACM
Symposium on Theory of Computing, 2005, pp. 684–693.

[2] D. Coppersmith, L. Fleischer, A. Rudra, Ordering by weighted number
of wins gives a good ranking for weighted tournaments, in: Proceed-
ings of the Seventeenth Annual ACM–SIAM Symposium on Discrete
Algorithms, 2006, pp. 776–782.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, 1979.

[4] A. Gionis, H. Mannila, K. Puolamäki, A. Ukkonen, Algorithms for dis-
covering bucket orders from data, in: Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006, pp. 561–566.

[5] C. Kenyon-Mathieu and W. Schudy, How to rank with few errors, in:
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, 2007, pp. 95–103.

[6] A. Ukkonen, Algorithms for finding orders and analyzing sets of
chains, PhD thesis, Helsinki University of Technology, 2008.


	A randomized approximation algorithm for computing bucket orders
	Introduction and problem definition
	A simple algorithm and its analysis
	References


