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The problem of biclustering consists of the simultaneous clustering of rows and columns of
a matrix such that each of the submatrices induced by a pair of row and column clusters is
as uniform as possible. In this paper we approximate the optimal biclustering by applying
one-way clustering algorithms independently on the rows and on the columns of the input
matrix. We show that such a solution yields a worst-case approximation ratio of 1+ /2
under Li-norm for 0-1 valued matrices, and of 2 under L,-norm for real valued matrices.
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1. Introduction

The standard clustering problem [8] consists of parti-
tioning a set of input vectors, such that the vectors in
each partition (cluster) are close to one another accord-
ing to some predefined distance function. This formulation
is the objective of the popular K-means algorithm (see,
for example, [9]), where K denotes the final number of
clusters and the distance function is defined by the Lj-
norm. Another similar example of this formulation is the
K-median algorithm (see, for example, [3]), where the dis-
tance function is given by the L{-norm. Clustering a set of
input vectors is a well-known NP-hard problem even for
K =2 clusters [4]. Several approximation guarantees have
been shown for this formulation of the standard clustering
problem (see [3,9,2] and references therein).

Intensive recent research has focused on the discovery
of homogeneous substructures in large matrices. This is
also one of the goals in the problem of biclustering. Given
a set of N rows in M columns from a matrix X, a bi-
clustering algorithm identifies subsets of rows exhibiting
similar behavior across a subset of columns, or vice versa.
Note that the optimal solution for this problem necessarily
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requires to cluster the N vectors and the M dimensions si-
multaneously, thus the name biclustering. Each submatrix
of X, induced by a pair of row and column clusters, is typ-
ically referred to as a bicluster. See Fig. 1 for a simple toy
example. The main challenge of a biclustering algorithm
lies in the dependency between the row and column par-
titions, which makes it difficult to identify the optimal bi-
clusters. A change in a row clustering affects the cost of the
induced submatrices (biclusters), and as a consequence,
the column clustering may also need to be changed to im-
prove the solution.

Finding an optimal solution for the biclustering prob-
lem is NP-hard. This observation follows directly from the
reduction of the standard clustering problem (known to be
NP-hard) to the biclustering problem by fixing the number
of clusters in columns to M. To the best of our knowledge,
no algorithm exists that can efficiently approximate biclus-
tering with a proven approximation ratio. The goal of this
paper is to propose such an approximation guarantee by
means of a very simple scheme.

Our approach will consist of relieving the requirement
for simultaneous clustering of rows and columns and in-
stead perform them independently. In other words, our
final biclusters will correspond to the submatrices of X
induced by pairs of row and columns clusters, found inde-
pendently with a standard clustering algorithm. We some-
times refer to this standard clustering algorithm as one-
way clustering. The simplicity of the solution alleviates us
from the inconvenient dependency of rows and columns.
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Fig. 1. (a) An example binary data matrix X of dimensions 4 x 6, with
rows and columns labeled with numbers and characters. (b) The op-
timal biclustering of X consists of {R}, R3} = {{1},{2,3,4}} row clus-
ters and {Cj,C3,C3} = {{b, f},{a.d, e}, {c}} column clusters when us-
ing Li-norm. (c) Biclusters of the data matrix returned by our scheme,
that is, using twice an optimal one-way clustering algorithm, once
on the 4-row vectors and another on the 6-column vectors, with
Li-norm. Resulting clusterings are {R1, R2} = {{1, 3, 4}, {2}} for rows and
{C1,C2,C3} = {{b, f},{a, e}, {d, e}} for columns. For visual clarity, the rows
and columns of the original matrix in (a) have been permuted in (b) and
(c) by making the rows (and columns) of a single cluster adjacent.

More importantly, the solution obtained with this ap-
proach, despite not being optimal, allows for the study of
approximation guarantees on the obtained biclusters. Here
we prove that our solution achieves a worst-case approx-
imation ratio of 1 + +/2 under L;-norm for 0-1 valued
matrices, and of 2 under L,-norm for real valued matri-
ces.

Finally, note that our final solution is constructed on
top of a standard clustering algorithm (applied twice, once
in row vectors and the other in column vectors) and there-
fore, it is necessary to multiply our ratio with the approx-
imation ratio achieved by the used standard clustering al-
gorithm (such as [3,9]). For clarity, we will lift this restric-
tion in the following proofs by assuming that the applied
one-way clustering algorithm provides directly an optimal
solution to the standard clustering problem.

1.1. Related work

This basic algorithmic problem and several variations
were initially presented in [6] with the name of direct
clustering. The same problem and its variations have also
been referred to as two-way clustering, co-clustering or
subspace clustering. In practice, finding highly homoge-

neous biclusters has important applications in biological
data analysis (see [10] for review and references), where
a bicluster may, for example, correspond to an activation
pattern common to a group of genes only under specific
experimental conditions.

An alternative definition of the basic biclustering prob-
lem described in the introduction consists on finding the
maximal bicluster in a given matrix. A well-known con-
nection of this alternative formulation is its reduction to
the problem of finding a biclique in a bipartite graph [7].
Algorithms for detecting bicliques enumerate them in the
graph by using the monotonicity property that a subset of
a biclique is also a biclique [1,5]. These algorithms usually
have a high order of complexity.

2. Definitions

We assume given a matrix X of size N x M, and in-
tegers K, and K., which define the number of clusters
partitioning rows and columns, respectively. The goal is
to approximate the optimal biclustering of X by means of
a one-way row clustering into K, clusters and a one-way
column clustering into K. clusters.

For any T € N we denote [T] = {1,...,T}. We use
X(R, C), where R C [N] and C C [M], to denote the subma-
trix of X induced by the subset of rows R and the subset
of columns C. Let Y denote an induced submatrix of X,
that is Y = X(R, C) for some R C [N] and C C [M]. When
required by the context, we will also refer to Y = X(R, C)
as a bicluster of X and denote the size of Y with n x m,
where n < N and m < N. We use median(Y) and mean(Y)
to denote the median and mean of all elements of Y, re-
spectively.

The scheme for approximating the optimal biclustering
is defined as follows.

Input: matrix X, number of row clusters K, number of
column clusters K.

R = kcluster(X, K;),
C= kcluster(XT, Kc)
Output: a set of biclusters X(R, C), for each Re R, CeC

The function kcluster(X, K;) denotes here an optimal
one-way clustering algorithm that partitions the row vec-
tors of matrix X into K, clusters. We have used X' to
denote the transpose of matrix X.

Instead of fixing a specific norm for the formulas, we
use the dissimilarity measure V() to absorb the norm-
dependent part. For Li-norm, V() would be defined as
VY) = Zer |y-median(Y)|, and for Ly-norm as V(Y) =
Zyey (y-mean(Y))2. Given Y of size n x m, we further use
a special row norm, Vr(Y) = Z;L V(Y ([nl, j)), and a spe-
cial column norm, Ve (Y) =1, V(Y (@, [m])).

We define the one-way row clustering, given by k-
cluster above, as a partition of rows [N] into K; clusters
R ={R1,..., Rk} such that the cost function

M
Lg= ) > V(X(R,)) (1)

ReR j=1
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is minimized. Analogously, the one-way clustering of
columns [M] into K. clusters C = {Cy,...,Cg_} is defined
such that the cost function

N
Le=Y_Y V(X(,0) (2)
i=1cCeC
is minimized.
The cost of biclustering, induced by the two one-way
clusterings above, is

L= V(XR,0). (3)

ReR CeC

Notice that we are assuming that the one-way clus-
terings above, denoted R on rows and C on columns,
correspond to optimal one-way partitionings on rows and
columns, respectively.

Finally, the optimal biclustering on X is given by simul-
taneous row and column partitions R* = {R%, ..., RTG} and
C*={C%,..., C,*Q}, that minimize the cost

L= > > V(XR*CY). (4)

R*eR* C*eC*
3. Approximation ratio

Given the definitions above, our main result reads as
follows.

Theorem 1. There exists an approximation ratio of o such
that L < oL*, where o = 1 + +/2 ~ 2.41 for Li-norm and
X € {0, 3N*M and o = 2 for Ly-norm and X € RN*M,

We use the following intermediate result to prove the the-
orem.

Lemma 2. There exists an approximation ratio of at most o, that
is, L < «aL*, if for any X and for any partitionings R and C of X,
all biclusters Y = X(R, C), with R € R and C € C, satisfy

1
V(Y) < Ea(VR(Y) +Ve(Y)). (5)

Proof. First we note that the cost of the optimal bicluster-
ing L* cannot increase when we increase the number of
row (or column) clusters. For example, consider the spe-
cial case where K, = N (or K. = M). In such case, each
row (or column) is assigned to its own cluster and the cost
of the optimal biclustering equals the cost of the optimal
one-way clustering on columns L¢ (or rows Lg). Hence, the
optimal biclustering solution is bounded from below by

1
L* > max (Lg, L¢c) > E(LR +Le). (6)

Summing both sides of Eq. (5),

DY VWly=xwo

ReR CeC

1
<5 DO (k) +VeW)|y_xr.0)-
ReR CeC
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Fig. 2. Examples of swaps performed within bicluster Y for the technical
part of the proof in Section 3.1. For clarity, the rows and columns of the
bicluster Y have been ordered such that the blocks A, B, C and D are
continuous.

and using Eqgs. (1), (2) and (3), gives L < %a(LR + L¢),
which together with Eq. (6) implies the approximation ra-
tioof L<al*. O

Theorem 1 is proven separately in Sections 3.1 and 3.2
using Lemma 2. Section 3.1 deals with the case of having a
0-1 valued matrix X and L;-norm distance function, while
Section 3.2 deals with real valued matrix X and L,-norm.

3.1. L1-norm and 0-1 valued matrix

Consider a 0-1 valued matrix X and Li-norm. To prove
Theorem 1 it suffices to show that Eq. (5) holds for each of
the biclusters Y = X(R, C) of X, where Re R and C €C.
Therefore, in the following we concentrate on one single
bicluster Y € {0, 1}™™,

Without loss of generality, we consider only the case
where the bicluster Y has at least as many 0’s as 1's. In
such case, the median of Y can be safely taken to be zero
and the cost V(Y) < %nm is then fixed to the number of
1’s in the matrix. To get the worst case scenario towards
the tightest upper bound on « in Eq. (5), we should find
first a configuration of 1's such that, given V(Y), the sum
Vr(Y) + Ve (Y) is minimized.

Denote by Or and O¢ the sets of rows and columns
in Y which have more 1's than 0’s, respectively. Denote
A=Y(Og,0¢), B=Y(Og,[m]\ Oc), C=Y([n]\ O, Oc),
D =Y([n]\ Og,[m]\ Oc), " =|0g| and m’ =|0O¢|. Note
that A, B, C and D are simply blocks of bicluster Y, which
we need to make explicit in our notation for the proof.

Changing a 0 to 1 in A or a 1 to O in D decreases
Vr(Y) + Vc(Y) by two, while changing a 0 to 1 or 1 to
0 in B or C changes Vr(Y) + Vc(Y) by at most one. It
follows that swapping a 1 in B or C with a 0 in A (see
Fig. 2(a)), or swapping a 1 in D with a 0 in A, B or C (see
Fig. 2(b)) decreases Vr(Y) 4+ Vc(Y) while V(Y) remains
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unchanged. In other words, in a solution that minimizes
Vr(Y) + Vc(Y) no such swaps can be made. In the re-
mainder of this subsection, we assume that the bicluster
Y satisfies this mentioned property.

It follows that

(i) A, B and C are blocks of 1’s,
(ii) A is a block of 1's and D is a block of O’s, or
(iii) B, C and D are blocks of 0’s.

Denote by o() the number of 1's in a given block. It
follows that

V(Y)=0(A)+0(B) +0(C)+o0(D) < %nm,
Vr(Y)=nm’' —o0(A) +0(B) —o(C) +o(D) and
Ve(Y)=n'm—o0(A) —o(B) +0(C) +o(D).

We denote x =n'/n, y =m’/m, a =0(A)/(nm), b =0(B)/
(nm), c =0(C)/(nm) and d = o(D)/(nm) and rewrite Eq. (5)
as

=P\ e

a+b+c+d
=2sup| ———— |,
Xx+y—2a+2d

with constraints a +b+c+d € [0, 3], x€[0,1] y € [0, 1],
as well as

(iYa=xy,b=x(1—y),c=(1—x)yandd [0, (1—x)(1—
nlh
(ii) a=xy, be[0,x(1 —y)], ce[0,(1 —x)y] and d =0; or
(iii) a e [0,xy] and b=c=d =0.

The optimization problem has two solutions, (i) x =y =
1 —\/g, a=xy,b=x(1—-y),c=(1—-x)y and d =0, and
(iiyx=y= % a=xy and b =c=d =0, both solutions

yielding & = 1+ +/2 when exactly half of the entries in the
bicluster Y are 1’s. This proves Theorem 1 for 0-1 valued
matrices and Lq-norm.

Notice that the above proof relies on the fact that the
input matrix X has only two types of values. Therefore, the
proof does not generalize to real valued matrices.

An example of a matrix with approximation ratio of 2
is given by a 4 x (4q — 1) matrix

0...0 1...1 O...... 0
0...0 1...1 1...... 1
X= 1...1 0...0 O...... 0
1...1 0...0 1...... 1

with g columns in the first column group, q columns in the
second column group and 2q — 1 columns in the third col-
umn group, clustered to two row clusters, K, =2, and one
column cluster, K. =1, at the limit of large q. The optimal
one-way clustering of rows is given by R = {{1, 2}, {3, 4}},

L =8q — 2, and the optimal biclustering of rows by R* =
{{1,3},{2,4}}, L* = 4q.

3.2. Ly-norm and real valued matrix

Consider now a real valued matrix X and L-norm. We
want to prove Theorem 1 for the real valued biclusters Y
of X. To find the approximation ratio, it suffices to show
that Eq. (5) holds for each bicluster Y € R"™™, which are
determined by Y = X(R, C), where R € R and C €C.

Using the definitions of V(Y), Vr(Y) and V¢ (Y), we can
write

n m
V) = Ve(V) +Ve(V) = Y D (Y. j) - Vdi. )
i=1 j=1
< VR(Y) +Ve(Y),

where
Y (i, j) = mean(Y ([n], j)) + mean(Y (i, [m])) — mean(Y).

Hence, Eq. (5) is satisfied for L,-norm and real valued ma-
trices when o = 2.

4. Conclusions

We have shown that approximating the optimal bi-
clustering with independent row- and column-wise stan-
dard clusterings achieves a good approximation guarantee.
However in practice, standard one-way clustering algo-
rithms (such as K-means or K-median) are also approx-
imate, and therefore, it is necessary to multiply our ratio
with the approximation ratio achieved by the standard
clustering algorithm (such as presented in [3,9]) to ob-
tain the true approximation ratio of our scheme. Still, our
contribution shows that in many practical applications of
biclustering, it may be sufficient to use a more straightfor-
ward standard clustering of rows and columns instead of
applying heuristic algorithms without performance guaran-
tees.
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