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The problem of biclustering consists of the simultaneous clustering of rows and columns of
a matrix such that each of the submatrices induced by a pair of row and column clusters is
as uniform as possible. In this paper we approximate the optimal biclustering by applying
one-way clustering algorithms independently on the rows and on the columns of the input
matrix. We show that such a solution yields a worst-case approximation ratio of 1 + √

2
under L1-norm for 0–1 valued matrices, and of 2 under L2-norm for real valued matrices.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The standard clustering problem [8] consists of parti-
tioning a set of input vectors, such that the vectors in
each partition (cluster) are close to one another accord-
ing to some predefined distance function. This formulation
is the objective of the popular K -means algorithm (see,
for example, [9]), where K denotes the final number of
clusters and the distance function is defined by the L2-
norm. Another similar example of this formulation is the
K -median algorithm (see, for example, [3]), where the dis-
tance function is given by the L1-norm. Clustering a set of
input vectors is a well-known NP-hard problem even for
K = 2 clusters [4]. Several approximation guarantees have
been shown for this formulation of the standard clustering
problem (see [3,9,2] and references therein).

Intensive recent research has focused on the discovery
of homogeneous substructures in large matrices. This is
also one of the goals in the problem of biclustering. Given
a set of N rows in M columns from a matrix X , a bi-
clustering algorithm identifies subsets of rows exhibiting
similar behavior across a subset of columns, or vice versa.
Note that the optimal solution for this problem necessarily

* Corresponding author.
E-mail addresses: Kai.Puolamaki@tkk.fi (K. Puolamäki),

Sami.Hanhijarvi@tkk.fi (S. Hanhijärvi), Gemma.Garriga@tkk.fi
(G.C. Garriga).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.03.013
requires to cluster the N vectors and the M dimensions si-
multaneously, thus the name biclustering. Each submatrix
of X , induced by a pair of row and column clusters, is typ-
ically referred to as a bicluster. See Fig. 1 for a simple toy
example. The main challenge of a biclustering algorithm
lies in the dependency between the row and column par-
titions, which makes it difficult to identify the optimal bi-
clusters. A change in a row clustering affects the cost of the
induced submatrices (biclusters), and as a consequence,
the column clustering may also need to be changed to im-
prove the solution.

Finding an optimal solution for the biclustering prob-
lem is NP-hard. This observation follows directly from the
reduction of the standard clustering problem (known to be
NP-hard) to the biclustering problem by fixing the number
of clusters in columns to M . To the best of our knowledge,
no algorithm exists that can efficiently approximate biclus-
tering with a proven approximation ratio. The goal of this
paper is to propose such an approximation guarantee by
means of a very simple scheme.

Our approach will consist of relieving the requirement
for simultaneous clustering of rows and columns and in-
stead perform them independently. In other words, our
final biclusters will correspond to the submatrices of X
induced by pairs of row and columns clusters, found inde-
pendently with a standard clustering algorithm. We some-
times refer to this standard clustering algorithm as one-
way clustering. The simplicity of the solution alleviates us
from the inconvenient dependency of rows and columns.
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Fig. 1. (a) An example binary data matrix X of dimensions 4 × 6, with
rows and columns labeled with numbers and characters. (b) The op-
timal biclustering of X consists of {R∗

1, R∗
2} = {{1}, {2,3,4}} row clus-

ters and {C∗
1 , C∗

2 , C∗
3} = {{b, f }, {a,d, e}, {c}} column clusters when us-

ing L1-norm. (c) Biclusters of the data matrix returned by our scheme,
that is, using twice an optimal one-way clustering algorithm, once
on the 4-row vectors and another on the 6-column vectors, with
L1-norm. Resulting clusterings are {R1, R2} = {{1,3,4}, {2}} for rows and
{C1, C2, C3} = {{b, f }, {a, e}, {d, e}} for columns. For visual clarity, the rows
and columns of the original matrix in (a) have been permuted in (b) and
(c) by making the rows (and columns) of a single cluster adjacent.

More importantly, the solution obtained with this ap-
proach, despite not being optimal, allows for the study of
approximation guarantees on the obtained biclusters. Here
we prove that our solution achieves a worst-case approx-
imation ratio of 1 + √

2 under L1-norm for 0–1 valued
matrices, and of 2 under L2-norm for real valued matri-
ces.

Finally, note that our final solution is constructed on
top of a standard clustering algorithm (applied twice, once
in row vectors and the other in column vectors) and there-
fore, it is necessary to multiply our ratio with the approx-
imation ratio achieved by the used standard clustering al-
gorithm (such as [3,9]). For clarity, we will lift this restric-
tion in the following proofs by assuming that the applied
one-way clustering algorithm provides directly an optimal
solution to the standard clustering problem.

1.1. Related work

This basic algorithmic problem and several variations
were initially presented in [6] with the name of direct
clustering. The same problem and its variations have also
been referred to as two-way clustering, co-clustering or
subspace clustering. In practice, finding highly homoge-
neous biclusters has important applications in biological
data analysis (see [10] for review and references), where
a bicluster may, for example, correspond to an activation
pattern common to a group of genes only under specific
experimental conditions.

An alternative definition of the basic biclustering prob-
lem described in the introduction consists on finding the
maximal bicluster in a given matrix. A well-known con-
nection of this alternative formulation is its reduction to
the problem of finding a biclique in a bipartite graph [7].
Algorithms for detecting bicliques enumerate them in the
graph by using the monotonicity property that a subset of
a biclique is also a biclique [1,5]. These algorithms usually
have a high order of complexity.

2. Definitions

We assume given a matrix X of size N × M , and in-
tegers Kr and Kc , which define the number of clusters
partitioning rows and columns, respectively. The goal is
to approximate the optimal biclustering of X by means of
a one-way row clustering into Kr clusters and a one-way
column clustering into Kc clusters.

For any T ∈ N we denote [T ] = {1, . . . , T }. We use
X(R, C), where R ⊆ [N] and C ⊆ [M], to denote the subma-
trix of X induced by the subset of rows R and the subset
of columns C . Let Y denote an induced submatrix of X ,
that is Y = X(R, C) for some R ⊆ [N] and C ⊆ [M]. When
required by the context, we will also refer to Y = X(R, C)

as a bicluster of X and denote the size of Y with n × m,
where n � N and m � N . We use median(Y ) and mean(Y )

to denote the median and mean of all elements of Y , re-
spectively.

The scheme for approximating the optimal biclustering
is defined as follows.

Input: matrix X , number of row clusters Kr , number of
column clusters Kc

R= kcluster(X, Kr),

C = kcluster
(

X T , Kc
)

Output: a set of biclusters X(R, C), for each R ∈R, C ∈ C

The function kcluster(X, Kr) denotes here an optimal
one-way clustering algorithm that partitions the row vec-
tors of matrix X into Kr clusters. We have used X T to
denote the transpose of matrix X .

Instead of fixing a specific norm for the formulas, we
use the dissimilarity measure V() to absorb the norm-
dependent part. For L1-norm, V() would be defined as
V(Y ) = ∑

y∈Y |y-median(Y )|, and for L2-norm as V(Y ) =∑
y∈Y (y-mean(Y ))2. Given Y of size n ×m, we further use

a special row norm, VR(Y ) = ∑m
j=1 V(Y ([n], j)), and a spe-

cial column norm, VC (Y ) = ∑n
i=1 V(Y (i, [m])).

We define the one-way row clustering, given by k-
cluster above, as a partition of rows [N] into Kr clusters
R= {R1, . . . , R Kr } such that the cost function

LR =
∑ M∑

V
(

X(R, j)
)

(1)

R∈R j=1
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is minimized. Analogously, the one-way clustering of
columns [M] into Kc clusters C = {C1, . . . , C Kc } is defined
such that the cost function

LC =
N∑

i=1

∑
C∈C

V
(

X(i, C)
)

(2)

is minimized.
The cost of biclustering, induced by the two one-way

clusterings above, is

L =
∑
R∈R

∑
C∈C

V
(

X(R, C)
)
. (3)

Notice that we are assuming that the one-way clus-
terings above, denoted R on rows and C on columns,
correspond to optimal one-way partitionings on rows and
columns, respectively.

Finally, the optimal biclustering on X is given by simul-
taneous row and column partitions R∗ = {R∗

1, . . . , R∗
Kr

} and
C∗ = {C∗

1, . . . , C∗
Kc

}, that minimize the cost

L∗ =
∑

R∗∈R∗

∑
C∗∈C∗

V
(

X(R∗, C∗)
)
. (4)

3. Approximation ratio

Given the definitions above, our main result reads as
follows.

Theorem 1. There exists an approximation ratio of α such
that L � αL∗ , where α = 1 + √

2 ≈ 2.41 for L1-norm and
X ∈ {0,1}N×M , and α = 2 for L2-norm and X ∈ R

N×M .

We use the following intermediate result to prove the the-
orem.

Lemma 2. There exists an approximation ratio of at most α, that
is, L � αL∗ , if for any X and for any partitionings R and C of X ,
all biclusters Y = X(R, C), with R ∈R and C ∈ C , satisfy

V(Y ) � 1

2
α

(
VR(Y ) + VC (Y )

)
. (5)

Proof. First we note that the cost of the optimal bicluster-
ing L∗ cannot increase when we increase the number of
row (or column) clusters. For example, consider the spe-
cial case where Kr = N (or Kc = M). In such case, each
row (or column) is assigned to its own cluster and the cost
of the optimal biclustering equals the cost of the optimal
one-way clustering on columns LC (or rows LR ). Hence, the
optimal biclustering solution is bounded from below by

L∗ � max (LR , LC ) � 1

2
(LR + LC ). (6)

Summing both sides of Eq. (5),

∑
R∈R

∑
C∈C

V(Y )|Y =X(R,C)

� 1

2
α

∑ ∑(
VR(Y ) + VC (Y )

)∣∣
Y =X(R,C)

,

R∈R C∈C
(a)

(b)

Fig. 2. Examples of swaps performed within bicluster Y for the technical
part of the proof in Section 3.1. For clarity, the rows and columns of the
bicluster Y have been ordered such that the blocks A, B , C and D are
continuous.

and using Eqs. (1), (2) and (3), gives L � 1
2 α(LR + LC ),

which together with Eq. (6) implies the approximation ra-
tio of L � αL∗ . �

Theorem 1 is proven separately in Sections 3.1 and 3.2
using Lemma 2. Section 3.1 deals with the case of having a
0–1 valued matrix X and L1-norm distance function, while
Section 3.2 deals with real valued matrix X and L2-norm.

3.1. L1-norm and 0–1 valued matrix

Consider a 0–1 valued matrix X and L1-norm. To prove
Theorem 1 it suffices to show that Eq. (5) holds for each of
the biclusters Y = X(R, C) of X , where R ∈ R and C ∈ C .
Therefore, in the following we concentrate on one single
bicluster Y ∈ {0,1}n×m .

Without loss of generality, we consider only the case
where the bicluster Y has at least as many 0’s as 1’s. In
such case, the median of Y can be safely taken to be zero
and the cost V(Y ) � 1

2 nm is then fixed to the number of
1’s in the matrix. To get the worst case scenario towards
the tightest upper bound on α in Eq. (5), we should find
first a configuration of 1’s such that, given V(Y ), the sum
VR(Y ) + VC (Y ) is minimized.

Denote by O R and O C the sets of rows and columns
in Y which have more 1’s than 0’s, respectively. Denote
A = Y (O R , O C ), B = Y (O R , [m] \ O C ), C = Y ([n] \ O R , O C ),
D = Y ([n] \ O R , [m] \ O C ), n′ = |O R | and m′ = |O C |. Note
that A, B , C and D are simply blocks of bicluster Y , which
we need to make explicit in our notation for the proof.

Changing a 0 to 1 in A or a 1 to 0 in D decreases
VR(Y ) + VC (Y ) by two, while changing a 0 to 1 or 1 to
0 in B or C changes VR(Y ) + VC (Y ) by at most one. It
follows that swapping a 1 in B or C with a 0 in A (see
Fig. 2(a)), or swapping a 1 in D with a 0 in A, B or C (see
Fig. 2(b)) decreases VR(Y ) + VC (Y ) while V(Y ) remains
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unchanged. In other words, in a solution that minimizes
VR(Y ) + VC (Y ) no such swaps can be made. In the re-
mainder of this subsection, we assume that the bicluster
Y satisfies this mentioned property.

It follows that

(i) A, B and C are blocks of 1’s,
(ii) A is a block of 1’s and D is a block of 0’s, or

(iii) B , C and D are blocks of 0’s.

Denote by o() the number of 1’s in a given block. It
follows that

V(Y ) = o(A) + o(B) + o(C) + o(D) � 1

2
nm,

VR(Y ) = nm′ − o(A) + o(B) − o(C) + o(D) and

VC (Y ) = n′m − o(A) − o(B) + o(C) + o(D).

We denote x = n′/n, y = m′/m, a = o(A)/(nm), b = o(B)/

(nm), c = o(C)/(nm) and d = o(D)/(nm) and rewrite Eq. (5)
as

α = sup

(
2V(Y )

VR(Y ) + VC (Y )

)

= 2 sup

(
a + b + c + d

x + y − 2a + 2d

)
,

with constraints a + b + c + d ∈ [0, 1
2 ], x ∈ [0,1] y ∈ [0,1],

as well as

(i) a = xy, b = x(1− y), c = (1−x)y and d ∈ [0, (1−x)(1−
y)];

(ii) a = xy, b ∈ [0, x(1 − y)], c ∈ [0, (1 − x)y] and d = 0; or
(iii) a ∈ [0, xy] and b = c = d = 0.

The optimization problem has two solutions, (i) x = y =
1 −

√
1
2 , a = xy, b = x(1 − y), c = (1 − x)y and d = 0, and

(ii) x = y =
√

1
2 , a = xy and b = c = d = 0, both solutions

yielding α = 1+√
2 when exactly half of the entries in the

bicluster Y are 1’s. This proves Theorem 1 for 0–1 valued
matrices and L1-norm.

Notice that the above proof relies on the fact that the
input matrix X has only two types of values. Therefore, the
proof does not generalize to real valued matrices.

An example of a matrix with approximation ratio of 2
is given by a 4 × (4q − 1) matrix

X =
⎛
⎜⎝

0 . . . 0 1 . . . 1 0 . . . . . . 0
0 . . . 0 1 . . . 1 1 . . . . . . 1
1 . . . 1 0 . . . 0 0 . . . . . . 0
1 . . . 1 0 . . . 0 1 . . . . . . 1

⎞
⎟⎠

with q columns in the first column group, q columns in the
second column group and 2q − 1 columns in the third col-
umn group, clustered to two row clusters, Kr = 2, and one
column cluster, Kc = 1, at the limit of large q. The optimal
one-way clustering of rows is given by R = {{1,2}, {3,4}},
L = 8q − 2, and the optimal biclustering of rows by R∗ =
{{1,3}, {2,4}}, L∗ = 4q.

3.2. L2-norm and real valued matrix

Consider now a real valued matrix X and L2-norm. We
want to prove Theorem 1 for the real valued biclusters Y
of X . To find the approximation ratio, it suffices to show
that Eq. (5) holds for each bicluster Y ∈ R

n×m , which are
determined by Y = X(R, C), where R ∈R and C ∈ C .

Using the definitions of V(Y ), VR(Y ) and VC (Y ), we can
write

V(Y ) = VR(Y ) + VC (Y ) −
n∑

i=1

m∑
j=1

(
Y (i, j) − Y (i, j)

)2

� VR(Y ) + VC (Y ),

where

Y (i, j) = mean
(
Y ([n], j)

) + mean
(
Y (i, [m])) − mean(Y ).

Hence, Eq. (5) is satisfied for L2-norm and real valued ma-
trices when α = 2.

4. Conclusions

We have shown that approximating the optimal bi-
clustering with independent row- and column-wise stan-
dard clusterings achieves a good approximation guarantee.
However in practice, standard one-way clustering algo-
rithms (such as K -means or K -median) are also approx-
imate, and therefore, it is necessary to multiply our ratio
with the approximation ratio achieved by the standard
clustering algorithm (such as presented in [3,9]) to ob-
tain the true approximation ratio of our scheme. Still, our
contribution shows that in many practical applications of
biclustering, it may be sufficient to use a more straightfor-
ward standard clustering of rows and columns instead of
applying heuristic algorithms without performance guaran-
tees.
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