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Abstract
This paper introduces extended weighted linear prediction
(XLP) to noise robust short-time spectrum analysis in the fea-
ture extraction process of a speech recognition system. XLP is a
generalization of standard linear prediction (LP) and temporally
weighted linear prediction (WLP) which have already been ap-
plied to noise robust speech recognition with good results. With
XLP, higher controllability to the temporal weighting of differ-
ent parts of the noisy speech is gained by taking the lags of
the signal into account in prediction. Here, the performance of
XLP is put up against WLP and conventional spectrum analysis
methods FFT and LP on a large vocabulary continuous speech
recognition (LVCSR) scheme using real world noisy data con-
taining additive and convolutive noise. The results show im-
provements over the reference methods in several cases.
Index Terms: linear prediction, temporal weighting, noise ro-
bust, speech recognition

1. Introduction
Extraction of relevant features of speech signal is a key issue in
automatic speech recognition (ASR). Short-time spectrum anal-
ysis plays an important part in the feature extraction process as
frequency is a vital information source. Typically this analysis
is done by fast Fourier transform algorithm (FFT) of discrete
Fourier transform as a part of mel-frequency cepstral coeffi-
cient (MFCC) [1] feature extraction. MFCCs are powerful fea-
tures if there is no mismatch between the environmental noise in
the training material and the recognition conditions. However,
MFCCs are not particularly noise robust if a mismatch occurs
and therefore they are not well suited, as such, in changing noise
condition ASR.

Various feature extraction methods have been designed to
address poor recognition performance in mismatch conditions
with high noise levels. Such methods include, for example, per-
ceptual linear prediction (PLP) analysis [2], based on explicit
modeling of the main phenomena of peripheral auditory pro-
cessing and usually converted to a cepstral representation. A
recently developed feature extraction algorithm called power-
normalized cepstral coefficients (PNCC) is also based on au-
ditory processing in a different way from MFCC analysis [3].
However, apart from careful emulation of human auditory per-
ception, there is another approach to short-time feature robust-
ness. Underlying many feature extraction methods, including
MFCCs, is the problem of short-time spectrum analysis. So far,
relatively little research has been made to make the short-time
spectrum approximation robust.

It is possible to replace the spectrum analysis in MFCC
computation by linear predictive methods. Temporal weight-
ing in linear predictive analysis aims to emphasize the regions
of speech that are relatively less corrupted by noise. Weighted
linear prediction (WLP) [4] used in conjunction with short-
time-energy (STE) weighting in the MFCC feature extraction
has been shown to improve the noise robustness of continuous
speech recognition [5] compared to the standard MFCC based
on short-time FFT spectral approximation. WLP and its new
variants have also led to improved robustness in other recogni-
tion applications, including speaker verification [6] [7].

In this work, extended weighted linear prediction (XLP) [7]
is introduced to the MFCC feature extraction process to perform
the short-time spectral analysis in a large vocabulary continu-
ous speech recognition scheme. XLP is evaluated using speech
recorded in demanding authentic noisy conditions and its per-
formance is compared to those of FFT, standard linear predic-
tion and WLP.

2. Methods
In this section, three linear predictive methods are described:
standard linear prediction, a well-known temporally weighted
method WLP and a new temporally weighted method XLP.
Common to all of these is the number of prediction coefficients,
denoted by p below, and the use of the autocorrelation criterion
in error minimization. In addition, all linear predictive spectral
models are finally converted to MFCC feature vectors.

2.1. Linear prediction

Linear prediction (LP) [8] in speech signal processing is based
on assumption that speech samples x̂n can be predicted as a
linear combination of p previous samples x̂n =

Pp

k=1
akxn−k,

where xn are the samples of the speech signal in a given frame
and ak are the prediction coefficients. The number of prediction
coefficients p is the order of the LP model. In this work, p = 20
is used for all three linear prediction methods. The prediction
error is defined as en = xn− x̂n and in LP analysis, the energy
of the prediction error signal is minimized by setting the partial
derivatives of ELP =

P
n

e2

n =
P

n
(xn −

Pp

k=1
akxn−k)2

with respect to each coefficient ak to zero, resulting in normal
equations

pX

k=1

ak

X

n

xn−kxn−j =
X

n

xnxn−j , 1 ≤ j ≤ p. (1)
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The autocorrelation method [8], which guarantees the stability
of the LP synthesis model, is used in this work for solving the
normal equations.

Although LP has been shown in [5] and [9] to improve
the noise robustness of an ASR system when a mismatch oc-
curs between training and evaluation environments, the noise
robustness of LP-based MFCC feature extraction can be further
increased by temporal weighting.

2.2. Weighted linear prediction

Weighted linear prediction (WLP) [4] extends the standard LP
by adding temporal weighting to the squared residual in model
coefficient optimization. In WLP, the prediction coefficients bk

are solved by minimizing the energy of prediction error signal
using

EWLP =
X

n

e
2

nWn =
X

n

(xn −
pX

k=1

bkxn−k)2Wn, (2)

where Wn is the weighting function. In WLP analysis, the
model is computed by solving normal equations

pX

k=1

bk

X

n

Wnxn−kxn−i =
X

n

Wnxnxn−i, 1 ≤ i ≤ p. (3)

Standard LP can be seen as a special case of WLP by denoting
Wn = d for all n, where d �= 0. InWLP, the weighting function
Wn is typically chosen as the short-time energy (STE) of the
local signal

Wn =

MX

i=1

x
2

n−i, (4)

whereM has previously been chosen close or equal to the value
of p [9]. Even though WLP does not guarantee a stable synthe-
sis model even if the autocorrelation method is used, WLP has
been shown to outperform the stabilized version of WLP in a
LVCSR testing scheme [5].

2.3. Extended weighted linear prediction

Extended weighted linear prediction (XLP) [7] further gener-
alizes the LP and WLP analyses by enabling two-dimensional
temporal weighting. That is, each lagged sample at each time
instant is weighted separately. In XLP, the prediction error en-
ergy is expressed as follows

EXLP =
X

n

(xnZn,0 −
pX

k=1

ckxn−kZn,k)2. (5)

LP can be seen as a special case when Zn,j = d, with d �= 0,
for all n and j, and Eq. 5 is reduced to WLP prediction error
when Zn,j =

√
Wn.

Minimizing the error energy in Eq. 5 leads to solving the
following XLP normal equations

pX

k=1

ck

X

n

Zn,kxn−kZn,jxn−j =
X

n

Zn,0xnZn,jxn−j , (6)

1 ≤ j ≤ p.

The optimal ck values from Eq. 6 yield the inverse filter of the
XLP analysis as follows

C(z) = 1−
pX

k=1

ckz
−k

. (7)
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Figure 1: Spectra of transition from /t/ to /ä/ in noisy conditions.
Prediction order p = 20 is used.

In this work, the following recursive equation, referred to as
absolute value sum (AVS), is used to compute the weights

Zn,j =
m− 1

m
Zn−1,j +

1

m
(|xn|+ |xn−j |), (8)

where Zn,j = 0 for all j before the beginning of the frame and
m is a parameter controlling the effective length of the moving
average memory. Here,m = p (the number of prediction coef-
ficients) has been used. This weighting emphasizes the predic-
tions of high amplitude signal samples and within each predic-
tion, the lags for which the lagged signal samples has a large
amplitude are also emphasized. The assumption behind this
weighting is the same as in the STE weighting of WLP; high
amplitude samples are more likely to contain smaller relative
amounts of corruption than low amplitude samples. Similarly
to WLP, XLP is not guaranteed to produce a stable synthesis
filter.

3. Evaluation
3.1. Test setup

The basis of all systems used in this work is a large vocabu-
lary continuous speech recognizer [10] based on hiddenMarkov
models (HMM) with state likelihoods modeled by Gaussian
mixture models (GMM). The acoustic models are state-tied tri-
phones constructed with a decision-tree method. Each state is
modeled with a maximum of 100 Gaussians and the states are
associated with gamma probability functions to model the state
durations [11]. The speech signal is represented with a power
and 12 MFCC features concatenated with their first and second
order differentials. Cepstral mean subtraction is applied before
scaling and mapping with maximum likelihood linear transfor-
mation (MLLT) [12] optimized in training. Finally, the covari-
ance matrix of each Gaussian is diagonalized.

The system uses a morph-based variable length n-gram lan-
guage model trained on 150 million word corpus containing text
from books, magazines and newspaper data. The decoder, uti-
lizing a beam-pruned Viterbi token-pass system, combines the
language and acoustic models using scaling factor on the lan-
guage model log-probability. The scaling factor is optimized
independently for each microphone position and noise type of
each method with respect to the letter error rate (LER).
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Table 1: Public place noise evaluation set error rates
(LER/WER %).

Mic FFT LP WLP XLP

Close 3.3/13.9 4.6/17.7 4.6/16.8 4.5/17.4
Mid 23.9/46.7 19.6/43.8 19.9/44.5 18.8/40.7
Far 40.8/65.8 34.0/64.5 34.3/58.8 32.5/57.8

3.2. Data

Data used in this work was taken from SPEECON [13] Finnish
language corpus which contains both spontaneous and read
speech. Three speaker exclusive sets were constructed from the
database. A training set, comprising 293 speakers and contain-
ing approximately 19.5 hours of speech, was used to train all
the systems. The training set contained speech recorded in vir-
tually noiseless environments (estimated average SNR was 26
dB) and it was the only set containing spontaneous speech.

System parameters were optimized using development sets
containing noisy data from public and car environments. The
noisy car development set consisted of approximately 29 min-
utes of speech from 20 speakers, and the public place develop-
ment set consisted of 60 minutes of speech from 30 speakers.
The final system evaluations were executed using similar noisy
data as used in the development sets. The number of speak-
ers in evaluation sets were the same as in the development sets
but consisting of approximately 57 and 94 minutes of speech,
respectively.

The development and evaluation data sets contained record-
ings from three microphone distances. The closest microphone
(close) had an estimated average SNR of 13 dB in the car and
24 dB in public place recordings. The second closest micro-
phone (mid) had an estimated average SNR of 5 dB in the car
and 14 dB in public place recordings. The farthest microphone
(far) in the car recordings was located approximately one meter
away from the speaker and had an estimated average SNR of 8
dB. The farthest microphone in the public place recordings was
placed 0.5–1 meter away from the speaker and had an estimated
average SNR of 9 dB. The inconsistency between the SNRs of
the mid and far distance microphones in the car recordings is
mainly caused by the variant bandwidth characteristics of the
respective microphones.

3.3. Parameter optimizations

Although theWLP and XLP systems were trained and evaluated
using a fixed STE and AVS window widthsM = m = p = 20,
optimization of the M and m parameters would improve the
recognition performance of those systems since the short-time
spectral approximation is dependent on those parameters. Dif-
ferent noise conditions are likely to have individual optimumm

andM values. This has been investigated in [9] where theoret-
ical lower letter error rate bounds are computed for the similar
development sets as used in this work.

4. Results
The results of public place noise evaluation set are gathered in
Table 1 and the respective Z-scores indicating statistical signif-
icances between the letter error rates (LER) of the systems are
shown in Table 2. The scores are computed using Wilcoxon
signed rank test. An absolute Z-score value exceeding 1.96 is

Table 2: Z-scores of pairwise comparisons on public place
noise. Bold numbers indicate a statistically significant differ-
ence between the systems.

Pair Close Mid Far

LP-FFT -4.33 -2.70 -3.79
LP-WLP -0.55 -1.20 -0.44
LP-XLP -1.41 -2.75 -2.21
WLP-FFT -4.12 -2.54 -4.10
WLP-XLP 0.16 -3.59 -3.49
XLP-FFT -4.68 -3.34 -4.56

Table 3: Car noise evaluation set error rates (LER/WER %).

Mic FFT LP WLP XLP

Close 4.0/14.9 5.9/19.3 6.2/20.4 5.9/19.1
Mid 29.8/54.6 36.8/76.5 32.7/62.7 33.4/62.5
Far 66.6/92.9 60.0/95.6 60.1/92.3 62.7/93.7

considered significant with a 95 % confidence level. Word error
rates (WER) are also shown in Tables 1 and 3, but the actual sys-
tem ranking is based on letter error rates, which are more real-
istic peformance measures than word error rates due to the long
inflected words in Finnish language. The differences between
systems are statistically significant unless stated otherwise.

On public place noise, FFT performs best on close micro-
phone recordings achieving 3.3 % LER, but its performance de-
teriorates most on mid and far channels with respective LERs of
23.9 % and 40.8 %. On close microphone, the performance of
linear predictive systems are close to each other and the differ-
ences between systems are statistically insignificant: LP and
WLP achieve 4.6 %, and XLP 4.5 % LER. On mid and far
recordings, the lowest LERs are obtained by XLP with respec-
tive 18.8 % and 32.5 % LERs whereas LP achieves 19.6 % and
34.0 %, and WLP 19.9 % and 34.3 %, respectively. The dif-
ferences between LP and WLP on mid and far microphones are
not statistically significant.

The results of car noise evaluation set are gathered in Table
3 and the respective Z-scores are shown in Table 4. Similarly
to the public place noise, the lowest LER on close microphone
car noise is obtained by the FFT system (4.0 %) whereas the
performance of LP, WLP and XLP are close to each other with
respective LERs of 5.9%, 6.2 % and 5.9 %. There is no statis-
tical difference between the linear predictive systems on close
microphone data. On mid microphone recordings, LP has the
highest error rate of all the systems with LER of 36.8 %whereas
FFT has the lowest LER of 29.8 %. WLP and XLP are placed
between the two previous systems with respective LERs of 32.7
% and 33.4 %. However, the differences between LP, WLP and
XLP on mid microphone are not statistically significant. On far
microphone recordings, the lowest LER, 60.0 %, is achieved by
the LP system whereas the highest LER, 66.6 %, is obtained by
FFT. WLP and XLP are again placed between the two with re-
spective LERs of 60.1 % and 62.7 %. The differences between
FFT and XLP, and LP and WLP are not statistically significant
on far microphone data.
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Table 4: Z-scores of pairwise comparisons on car noise. Bold
numbers indicate a statistically significant difference between
the systems.

Pair Close Mid Far

LP-FFT -3.92 -2.35 -2.69
LP-WLP -0.78 -2.91 -0.93
LP-XLP -0.07 -3.85 -3.70
WLP-FFT -3.92 -1.42 -3.14
WLP-XLP 1.64 -1.05 -2.65
XLP-FFT -3.81 -1.61 -1.83

5. Conclusions
In this work, FFT and three linear predictive methods (standard
LP and temporally weighted methods WLP and XLP) are eval-
uated as the short-time spectrum analyzer in the MFCC fea-
ture extraction process. The linear predictive methods evaluated
here are well suited to alleviate the performance degradation
due to the mismatch between the training and recognition noise
environments, but if no mismatch occurs, the conventional FFT
based MFCCs have been shown in [9] to provide the highest
performance compared to linear predictive systems. Therefore,
only mismatched conditions are evaluated in this work.

The FFT based spectral analysis achieves the lowest letter
error rates on close microphone recordings on both the car and
public place noises whereas all the three linear prediction sys-
tems perform almost identically and slightly inferior to FFT.
The lowest error rates on mid and far recordings of public place
noise are obtained by the XLP system. On mid recorded car
noise, XLP shares the top ranking with FFT and WLP. No di-
rect conclusions can be made from the car noise data since the
set is much smaller than the public place set and the speaker
dependent error rates are more variant. On an absolute scale,
not one of the systems achieve good results on mid and far car
noise recordings, which has also been noted in previous studies
[9] [14]. The LP and WLP systems have been shown in [5] to
achieve as good results as FFT on close microphone recordings.
Here, the language model is more compact than in [5] and [9]
and thus the respective results are not directly comparable.

WLP and XLP offer two paths to further improve the per-
formance. Firstly, the values of the parameters M and m con-
trolling the STE and AVS window widths during training and
evaluation could be optimized in some manner according to the
changing noise conditions. Secondly, the STE and AVS weight-
ing schemes in WLP and XLP, respectively, can be replaced
with new, potentially more robust schemes, possibly with feed-
back from the current noise environment. In this respect, the
XLP method, by virtue of using two-dimensional weighting,
offers considerable freedom and prospects for further improve-
ment. Nevertheless, with a basic weighting scheme and despite
the lack of weighting window width optimization, XLP analysis
appears to be the most robust method on average.
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