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Abstract. A large body of current linguistic research on sign language
is based on analyzing large corpora of video recordings. This requires
either manual or automatic annotation of the videos. In this paper we
introduce methods for automatically detecting and classifying hand-head
occlusions in sign language videos. Linguistically, hand-head occlusions
are an important and interesting subject of study as the head is a struc-
tural place of articulation in many signs. Our method combines easily
calculable local video properties with more global hand tracking. The
experiments carried out with videos of the Suvi on-line dictionary of
Finnish Sign Language show that the sensitivity of the proposed local
method in detecting occlusion events is 92.6%. When global hand track-
ing is combined in the method, the specificity can reach the level of 93.7%
while still maintaining the detection sensitivity above 90%.

1 Introduction

Statistical corpus-based approaches are common in current natural language
research. In the case of sign languages, the corpora consist of videos which are
typically annotated at least for signs on the basis of information concerning the
locations, shapes, and movements of the hands producing them [1, 7]. Depending
on the timetable, available resources and precision requirements, this annotation
can be done either manually or with automatic computer-vision-based methods.
With ready-made annotations, sign language researchers may exploit the corpora
to postulate and empirically verify theories concerning the structure, conventions
and frequencies of diverge phenomena in the sign languages.

The head of the signer is an important place of sign articulation — for exam-
ple, in Finnish Sign Language over 25 percent of lexical signs are produced at or
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near the area of the head. Consequently, knowing the exact or at least the ap-
proximate position of the active hand over the head will inevitably give valuable
information for the automated annotation and analysis of sign language videos.
Hand tracking is an essential part of any operational sign language recognition or
analysis system. However, typical approaches based on skin color segmentation
have difficulties when the skin blobs are merged because of the hands touching
or otherwise occluding each other or the head region. Therefore, attempts at
detecting the exact occlusion locations have been rare.

In our CoBaSiL project the aim is to develop new computer vision techniques
for automated analysis, annotation and indexing of sign language videos. Our
earlier works have concerned, for example, the extraction of hand motion in-
formation [5, 8, 9]. In this paper, we present a method for detecting hand-head
occlusions. The method is based on local tracking of skin-colored points in the
neighborhoods of the head. We also combine the local approach with global
tracking of the hand movements to reduce the number of false positive detec-
tions. In the experiments, the efficiency of the method is evaluated with videos
of the on-line dictionary of Finnish Sign Language, Suvi3, by measuring the
sensitivity and specificity of the detections on five linguistically motivated head
areas: forehead, cheeks, nose, mouth and neck.

The rest of this paper is organized as follows: Section 2 specifies the problem
setting and reviews earlier related works. Section 3 introduces a set of video
processing techniques and prepares the reader for Section 4 where we describe
the approach we propose for hand-head occlusion detection. Section 5 shows the
experiments carried out with Suvi videos. Conclusions are drawn in Section 6.

2 Head Occlusions in Signing

From the linguistic point of view, the hand-head occlusion events are very impor-
tant: in the production of an isolated sign, for example, such occlusions typically
signify that one of the main structural parameters of the sign — the place of
articulation — is the head. On the area of the head, several sets of linguistically
significant sub-locations may be further identified. Suvi, the on-line dictionary
of Finnish Sign Language, distinguishes five such basic locations: forehead (and
the top of the head), the area of cheeks (including ears and eyes), nose, the area
of mouth and chin, and neck. These are shown as drawings in Figure 1a and they
represent the places of articulation e.g. in signs BLACK, BEG, FAULT, GOOD,
and DESIRE, respectively.

Not all visible occlusions are structurally meaningful, or even intentional.
Such occlusions occur for two main reasons. First, the signer may raise his or
her hand on the level where it occludes the face even though the relatively large
distance between the hand and the face would indicate that the head really is not
the intended place of articulation for any sign; this type of occlusions may serve
some communicative function, e.g. to maximize the perception of signs for the
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addressee who typically looks at the signers face, or be completely unintentional.
Second, the signer may aim e.g. at touching the nose (as in the sign FAULT)
but, at the same time, the hand occludes also the mouth and neck areas. This is
because it is practically impossible to cover only the nose (or forehead) without
simultaneous or preceding coverage of other lower-level head areas.

In real-life signing, it is also typical that places of articulation are not real-
ized in the way they appear in idealized models. This is caused by co-articulation
and, from the perspective of articulation places on the head, often corresponds
to cases where the signer does not raise the active hand high enough, or bring it
close enough from the side of the head, to actually cover any part of the head.
The result is that intended places of articulation on the head are not always
visible as hand-head occlusions. For a human observer this is not a problem,
but for an automatic recognition system it certainly is. However, regardless of
such limitations, the automated detection of hand–head occlusions will never-
theless provide sign language linguists valuable phonetic information concerning
the actual production of signs, to be integrated into linguistic theories of sign
structure.

In many state-of-the-art works on sign language recognition and analysis, the
locations of the articulating hands are described with a single (x, y)-coordinate
pair each, typically aimed at indicating the positions of the palms [2]. This
level of presentation has also been used for annotating publicly available sign
language video databases and benchmarks [3]. For much of the work geared to-
wards recognition of sign language (e.g. [11]), the coarse palm-coordinate-based
presentation can be quite sufficient. Obtaining even such co-ordinates is chal-
lenging in practice, though, when hands occlude each other or the head of the
signer. For example, [4] resorts to tracking only the location of the merged skin
blob in such cases. Some works regard the palm coordinate estimation unreliable
and support multiple hypotheses of hand locations, e.g. [12].

In contrast to the recognition-oriented research, we take a more detailed ap-
proach to the analysis of signing and try to delve more exactly into the phonetic
constituents of sign language, thereby targeting our work towards the linguistic
researchers. Along these lines, in this paper we aim at a detailed analysis on the
exact areas where the articulating hand touches or otherwise occludes the head.

3 Video Processing Techniques for SL Analysis

3.1 Video Pre-processing

As pre-processing, we apply three generic sign-language video analysis tech-
niques to our material. The first processing step is the Viola-Jones cascade face
detector, as implemented in the OpenCV4 library. In the second stage, the face
detections are fed into the facial landmark detector [10] algorithm that outputs
the estimated coordinates of the center of the face, along with the approximate
coordinates of seven facial landmarks: the canthi of the eyes, the tip of the
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nose, and the left and right corners of the mouth. Figure 1b shows the detected
landmarks as white circles in an example video frame. Thirdly, the skin-colored
regions of each frame are located with an Extreme Learning Machine (ELM)
based classifier on a per-pixel basis. In this paper, we use the word blob to de-
note a connected component in the detected binary skin mask. The performance
of these three pre-processing steps is very satisfactory for the video material used
in our experiments.

3.2 Tracking of Local Image Neighborhoods

The proposed occlusion detection method builds on tracking local image neigh-
borhoods, in particular, small rectangular patches. We have chosen this elemen-
tary matching method because preliminary experiments with the video material
at our disposal have indicated that some more advanced descriptors such as
SIFT do not remain stable enough between the frames to make it practicable to
base the tracking on them. Probably such descriptors suffer too severely from
compression artifacts and motion blur in our material. In order to make the
tracking more reliable, we tie together a collection of multiple nearby points and
track them collectively.

Let us track the set of M points from a reference frame r to a target frame
t. Let the coordinates of these tracked points be {ri}Mi=1 in the reference frame.
We impose a topology {N(i)}Mi=1 upon the points. Here the set N(i) specifies
the indices of points that are neighbors of the ith point. There is no necessity of
the topology to reflect any specific geometric notion of adjacency in the original
image plane. Subsequently, we use the word gridlet to denote such a set of points
together with the topology defined upon the set. In our formulation, the goal of
the tracking is to find the coordinates {ti}Mi=1 in the target frame so that the
tracking cost function C is minimized:

min
{ti}M

i=1

C =

M∑
i=1

A(Ir(ri), It(ti)
)

+ α
∑

j∈N(i)

B
(
|‖ti − tj‖ − ‖ri − rj‖|

) . (1)

Here Ir(ri) and It(ti) are the image neighborhoods of the points ri and ti in
the reference and target frames, respectively, and A(·, ·) is the template matching
distance. α is a weight parameter of the method and B(·) is a scalar weighting
function of distance differences. The cost function thus balances the sum of
template matching costs of individual points with a measure how much the
inter-point distances in the target frame differ from the corresponding distances
in the reference frame. In this paper, the following algorithm has been used for
the approximate minimization of the cost function:

1. Initialize tracking, i.e. select initial values for {ti}Mi=1 e.g. on the basis of the
estimated motion field.

2. Denote the set of indices of the target points requiring update with R. Ini-
tialize R by inserting all the indices 1, . . . ,M into it.



3. Repeat until R is empty or some external stopping criterion is met (e.g.
number of iterations reaches a set maximum)
(a) Randomly select an index j from R.
(b) Set told = tj and remove j from R.
(c) Search a new location for the point tj that minimizes C of Eq. (1).
(d) If tj 6= told, add indices in N(j) into R.

This tracking algorithm will be used as an ingredient in methods of Sec-
tions 3.4, 3.5, 3.6 and 4.1 with different choices of the gridlets to track.

3.3 Selection of Points to Track

Given an image area, the OpenCV GoodFeaturesToTrack detector is applied to
this area to select a list of salient points. The list is augmented with points sam-
pled from the boundary of the area. Furthermore, additional points are selected
from a regular grid from areas that are too far away from all the previously
selected points.

3.4 Forming of Facial Prohibition Masks

In the material we target at, motion blur and abrupt shape changes are typically
much more prevalent in hands than in the area of the face and therefore the
tracking of image features in hands is much less reliable than within the face.
Because of this, when tracking hand areas over the face, we first track the stable
facial areas. Then we constrain hand tracking so that we prohibit the tracker
from selecting such locations for the hand area points that would overlap with
the previously tracked face. For this, we employ facial prohibition masks.

The prohibition masks are binary and formed as follows. A reference frame
f0 is selected so that the face is completely visible in the frame, as well as in
p− 1 preceding frames. From the reference frame, a set of potential points to be
tracked is selected using the method of Section 3.3. A set of gridlets is formed out
of the points by enumerating all the sets of M nearby points. For the experiments
we have used M = 4.

We determine an individual tracking cost threshold T (g) for each gridlet g
based on tracking the gridlet frame by frame over the p frames until the frame f0
using the algorithm of Section 3.2. Having determined the thresholds, we form
the sets U(f) of unoccluded face points for each frame f as follows:

Set the reference frame F (g) of each gridlet g to be f0.
for each frame f from f0 + 1 onwards do

for each gridlet g do
Track the gridlet g from frame F (g) to frame f .
if tracking cost C < T (g) then

Set F (g) = f .
Add all the points {ti} of the gridlet g to U(f).

end

end

end



The facial prohibition maskX(f) is formed from U(f) by using morphological
operations for selecting areas where the density of unoccluded face pixels exceeds
a threshold.

3.5 Tracking of Hand Blobs

In Section 4.2 we will refine our local image property based occlusion detection
method with information about the overall body configuration of a signer. This
we obtain by tracking skin blobs that are separate from the head at some mo-
ment of time. In practice such blobs are hands in our material. The following
procedure collects lists G(f) of gridlets tracked to each frame f :

Initialize the list G of tracked gridlets as empty.
for each frame f of the video do

Track each gridlet in G from frame f − 1 to frame f using the facial
prohibition mask X(f) of Section 3.4.

Go through all skin blobs in f . If a blob separate from the head is
found with no gridlets tracked to it, form a new gridlet g from the
blob (see below). If two of the existing gridlets in G have been tracked
to the same blob, replace with g the gridlet that would have been
more likely to move to the location of g on basis of earlier movement
history. Otherwise, add g to G.

Go through all gridlets in G. If the blob where a gridlet has been
tracked to is separate from head and contains only one gridlet, the
gridlet is re-selected from the points in that blob.

Set G(f) = G.
end

As a post-processing step, such gridlets are removed from the head blob that
never leave the head again. In the above algorithm, a new gridlet is formed from
the points of a blob as follows. 3M points are randomly selected from within the
blob. M of these points are selected that are farthest from the blob boundaries.
A gridlet is defined with all the M points and a topology where each point
has J neighbors randomly selected from the remaining M − 1 points. In the
experiments of this paper M = 250 and J = 4.

3.6 Motion Discontinuity Detection

Discontinuities in the local motion patterns are used as one source of information
in the occlusion detection methods we propose in Section 4. The binary motion
discontinuity mask D(f) of the face area indicates the spatial discontinuities of
the motion between frames f − 1 and f . Its calculation begins by estimating
the facial area motion field between the frames on the basis of tracking gridlets
consisting of M = 4 points with the method of Section 3.2. In the mask, those
pixels are set to non-zero where a discontinuity measure of the motion field
multiplied by the final tracking cost function in the area exceeds a threshold.



Fig. 1. (a) The five main head locations of Suvi (from left to right): forehead and top
of the head; eye, ear, and cheek; nose; mouth and chin; and neck (images from Suvi).
(b) Corresponding partitioning of the head area based on detected facial landmarks
(white circles).

3.7 Head Area Partitioning

We discretize the occlusions of the head into five distinct classes. The classes
are derived from the place of articulation labels that have been selected by
sign language experts for indexing the Suvi dictionary. Figure 1a shows the
classes. Our classification method assigns head part labels to the pixels of the
head using simple geometric rules that are based on the locations of the facial
landmarks detected in Section 3.1. An example of the head partitioning is shown
in Figure 1b.

4 Methods for Occlusion Detection

In this section we describe the methods we propose for the detection of facial
occlusions. Section 4.1 outlines the basic method that is based on local video
properties. The method is then further refined in Section 4.2 by taking informa-
tion from global hand tracking into account.

4.1 Local-only Method

As preparation, the facial prohibition mask X(f) and set U(f) of unoccluded
face points are determined for every frame f of the video as described in Sec-
tion 3.4. In this section, we use the same reference frame f0 as in Section 3.4. The
sets O(f) of points originating from outside the face region are created as follows:

The list G of tracked gridlets is initialized as empty.
for each frame f from f0 + 1 onwards do

Select list L of outside face skin points with the method of Section 3.3.
Add all fully-connected gridlets of M = 4 nearby points in L to list G.
for each gridlet g in G do

Track the gridlet g from frame f to frame f + 1 (Section 3.2) using
the facial prohibition mask X(f + 1) of Section 3.4.
Append all the points {ti} of g to the set O(f + 1).
Remove g from G if none of its points is in the face area.

end

end



{N} {M,N} {M,N} {C,M,N} {C,M,N}

Fig. 2. Example of a detected occlusion. The occlusion pixels are shown in light blue,
below the frames are the labels of the occluded head regions (C=cheeks, M=mouth,
N=neck).

The algorithm tentatively detects those image regions as occluded that are
closer to some point inO(f) than to any point in U(f). These tentative occlusions
are filtered based on motion discontinuity masks D(f) of Section 3.6. The final
output of the occlusion detection method is the vector of five pixel counts for
each frame of the video, indicating the numbers of detected occlusion pixels in
each of the five face regions according to the head area partitioning of Section 3.7.

4.2 Globally Refined Method

In the refined version of the method the results of the basic algorithm of Sec-
tion 3.2 are constrained on basis of hand blob tracking described in Section 3.5, so
that some of the false positive detections can be ruled out. Firstly, we constrain
the step of the algorithm where the list L is formed. In the refined version, such
points are not added to the list whose spatial distance from the tracked hands
exceeds a threshold (in our experiments 30 pixels). When forming the list L, the
area within the tracked hands is counted as area outside the face even if the
hands were tracked to the head blob.

Another way of constraining the results is based on spotting the moments
when none of the hands has been tracked to the head blob. In such a case, all the
detected occlusions are flagged as erroneous. Also the list G of tracked gridlets
maintained by the algorithm of Section 3.2 is emptied on such occasions.

5 Experiments

5.1 Data

The proposed occlusion detection methods were applied to footage from the Suvi
on-line dictionary of Finnish Sign Language. For these experiments, we chose to
use the videos that have been tagged in the dictionary meta data to have the
articulation place in the head region as these are very likely to exhibit hand-head
occlusions. There are 324 such videos in the dictionary consisting of the total of
27800 frames shot in 25 fps. Figure 2 demonstrates the output of the occlusion
detection method in one of these videos.



In order to assess the quality of the results the automatic methods produce,
this subset of videos was manually annotated by indicating which of the five
Suvi head areas shown in Figure 1a appear to be occluded in each frame. The
annotations are somewhat subjective, due to the modest image quality and the
Suvi head regions being open to subjective interpretations. The videos and an-
notations are available upon request.

5.2 Performance Evaluation

The performance of the automatic methods was evaluated by comparing the
counts of detected occlusion events to the manual ground truth annotations. We
define an occlusion event to be a temporally contiguous period during which a
certain head region is occluded by a signing hand. To make the evaluation robust
against short transitory moments of either occlusion or non-occlusion, both the
ground truth and the automatic detections are filtered before determining the
events. Here we have used majority filtering with the window length of five
frames.

We calculate two performance metrics for each facial region by comparing the
sets of events in the filtered detections and ground truth. Sensitivity counts how
large a fraction of the real occlusion events of the ground truth are detected by
the automatic method. Here we have interpreted an event as being detected if an
occlusion is reported for at least a half of the duration of the event. Specificity
is calculated symmetrically, only that the roles of the ground truth and the
automatic detections are interchanged. That is, the specificity counts how large
a fraction of automatically detected events also appear in the ground truth.

5.3 Results

First we look at the proposed methods’ capability of detecting hand-head occlu-
sions on the whole. The bottom row in Table 1 shows the performance in the
task where we ask the question whether the head is occluded at all, not taking
into account the exact part. The performance of both versions of the method
can be said to be on a rather satisfactory level in detecting facial occlusions
even though not 100% of the occlusion events are detected. In some of the oc-
clusions only tiny parts of the hand momentarily move over the face area and
not detecting such occlusions is not too serious for the usefulness of the method.
The basic method being a bit more sensitive but less specific than the refined
method is quite understandable as the refinement essentially just attempts to
block erroneous detections out.

The top rows of Table 1 show more closely how our methods manage to
identify the head region that is occluded. We notice that also here the basic
method usually is a bit more sensitive, but noticeably less specific than the
refined method. Generally the sensitivity of the methods is quite satisfactory
compared to the specificity. For some head regions, mostly for the forehead, but
also for the cheeks to some degree, the specificity is reasonable as well. However,
problematic areas can also be identified. Especially poor is the specificity for the



Table 1. The performance in detection of occluded head areas in the whole material.
The GT and nd columns display the number of actual and detected occlusion events.

GT Local-only method Globally refined method
events nd sensitivity specificity nd sensitivity specificity

forehead 97 123 85.6% 69.9% 114 82.5% 84.2%
cheeks 237 331 90.7% 52.6% 318 86.5% 68.9%
nose 81 173 74.1% 32.4% 153 74.1% 35.3%
mouth 427 426 85.9% 45.5% 410 83.9% 55.4%
neck 455 455 92.0% 50.3% 451 90.2% 61.2%

overall 337 424 92.6% 84.7% 427 90.2% 93.7%

nose. This can be partially attributed to the difficulty of precise determination of
the Suvi head regions on the basis of the facial landmarks, which mostly affects
the nose and mouth regions. The neck area is problematic since our methods
are actually targeted at detecting occlusions of the face as opposed to the whole
head area, and the neck area only partially coincides with face. Visual inspection
of the detection results shows that typically the detections tend to spread both
spatially and temporally into neighboring head regions. Although occlusion is
mostly reported roughly in the right area, accurately separating occlusions of
nearby mouth, nose and cheek regions represents a challenge to our current
method.

In the final experiment shown in Table 2, the evaluation was limited to
those linguistically distinctive places of articulation that are used in the expert-
prepared indexing of the Suvi dictionary for on-line searches. In general, we
notice that both methods work much better for this restricted subset of occlu-
sion events than for the totality of the occlusions in the video material. The neck
area still forms an exception: signs indexed with the neck as articulation place
are often such that the hand hardly enters the visual face area, but stays below
it.

The occlusions of the areas used for the dictionary indexing apparently are
so much more pronounced and visually more distinctive than other sporadic
occlusions that their detection with our methods is more accurate. Based on these
findings, one might argue that the proposed methods are actually reasonably
good in detecting linguistically significant occlusion events that often correspond
to structural places of articulation. It is the unintentional occlusions of more
coincidental nature where the methods fail the most.

6 Conclusions and Discussion

In this paper, we have presented a method for detecting hand-head occlusions
in sign language videos. The accuracy in detecting occlusion events overall is
quite good, sensitivity and specificity both exceeding 90%. More detailed clas-
sification of the occlusion events according to the covered head regions is more
problematic, although some good results are achieved also here, especially in



Table 2. The performance in detection of occlusions of indexing head areas. The GT
and nd columns display the number of actual and detected occlusion events.

GT Local-only method Globally refined method
events nd sensitivity specificity nd sensitivity specificity

forehead 77 91 88.3% 76.9% 91 85.7% 92.3%
cheeks 88 114 88.6% 57.9% 113 79.5% 79.6%
nose 29 27 62.0% 81.4% 25 55.2% 80.0%
mouth 105 133 82.9% 85.0% 130 80.0% 93.1%
neck 14 8 35.7% 25.0% 8 35.7% 75.0%

the detection of the linguistically most significant occlusions (i.e. the structural
places of articulation). The specificity in separating the head regions is greatly
increased when semi-global information from hand tracking is combined with
the purely local occlusion detection method.

Our methods have been targeted at the readily existing video material that
is of modest technical quality. This explains many performance problems, as well
as the need to use primitive and robust video analysis methods. It may very well
be asked whether one would be better off with collecting higher quality material
that would be more suitable to automatic analysis. This approach has been
taken in some recent work, employing much better resolution and frame rates
than in Suvi. Much of the new work on gesture analysis is even based on Kinect
recordings that include depth information, facilitating much easier analysis.

However, collecting good quality material is both very tedious and expensive
as there is a large gap between the quality that is perceptually sufficient for a
natural viewing experience and the quality that would be well suited for auto-
matic analysis. Readily existing collections of perceptual quality videos contain
huge amounts of linguistically valuable material. This material has to be ana-
lyzed somehow as collecting it again with better technology would be out of the
question, both because it would be infeasibly laborious, and perhaps more im-
portantly, because of the impossibility of re-constructing the unique recording
situations of the videos while the language and the environment continuously
keeps evolving.

We have already used our method for the analysis of longer videos [6]. In the
future we will continue along these lines and apply our method to linguistically
more interesting larger video collections and longer videos such as the sign usage
example videos in the Suvi dictionary. We will develop further our way of com-
bining local and global information, possibly looking at model-based approaches
of tracking the body parts. One future possibility of research is provided by the
question whether we can distinguish touching from other occlusion events.
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tomated visualization and analysis of signed language motion: Method
and linguistic issues. In Proceedings of 5th International Conference on
Speech Prosody, Chicago, Ill. (USA), May 2010. Available online at
http://speechprosody2010.illinois.edu/papers/100006.pdf.

6. T. Jantunen, V. Viitaniemi, M. Karppa, and J. Laaksonen. The head as a place
of articulation: From automated detection to linguistic analysis. July 2013. Poster
accepted for presentation at 11th Theoretical Issues in Sign Language Research
conference, University College London, July 10-13, 2013.

7. T. Johnston. Guidelines for annotation of the video data in the Auslan corpus. On-
line publication http://media.auslan.org.au/media/upload/attachments/ Annota-
tion Guidelines Auslan CorpusT5.pdf, 2009. Dept. of Linguistics, Macquarie Uni-
versity, Sydney, Australia.

8. M. Karppa, T. Jantunen, M. Koskela, J. Laaksonen, and V. Viitaniemi.
Method for visualisation and analysis of hand and head movements in sign
language video. In C. Kirchhof, Z. Malisz, and P. Wagner, editors, Pro-
ceedings of the 2nd Gesture and Speech in Interaction conference (GESPIN
2011), Bielefeld, Germany, 2011. Available online as http://coral2.spectrum.uni-
bielefeld.de/gespin2011/final/Jantunen.pdf.

9. M. Karppa, T. Jantunen, V. Viitaniemi, J. Laaksonen, B. Burger, and D. De
Weerdt. Comparing computer vision analysis of signed language video with mo-
tion capture recordings. In Proceedings of 8th Language Resources and Evaluation
Conference (LREC 2012), pages 2421–2425, Istanbul, Turkey, May 2012. Available
online at http://www.lrec-conf.org/proceedings/lrec2012/pdf/321 Paper.pdf.

10. M. Uřičář, V. Franc, and V. Hlaváč. Detector of facial landmarks learned by
the structured output SVM. In G. Csurka and J. Braz, editors, VISAPP ’12:
Proceedings of the 7th International Conference on Computer Vision Theory and
Applications, volume 1, pages 547–556, Portugal, February 2012. SciTePress —
Science and Technology Publications.

11. H.-D. Yang, S. Sclaroff, and S.-W. Lee. Sign language spotting with a threshold
model based on conditional random fields. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(7):1264–1277, 2009.

12. R. Yang, S. Sarkar, and B. Loeding. Handling movement epenthesis and hand
segmentation ambiguities in continuous sign language recognition using nested dy-
namic programming. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 32(3):462–477, 2010.


