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This lecture is dedicated to the memory of
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and a great European Woman in Mathematics,

who passed away in May 2009 at the age of 64

in Trier, Germany.
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Boolean Functions
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Binary vector space

Zn
2 the space of n-dimensional binary vectors� sum modulo 2

Given two vectors

a = (a1; : : : ;an); b = (b1; : : : ;bn) 2 Zn
2

the inner product (dot product) is defined as

a �b = a1b1��� ��anbn:

Then a is called the linear mask of b.
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Boolean function

f : Zn
2 7! Z2 Boolean function.

Linear Boolean function is of the form f (x) = u � x for some

fixed linear mask u 2 Zn
2.

f : Zn
2 7! Zm

2 with f = ( f1; : : : ; fm); where fi are Boolean

functions, is called a vector Boolean function of dimension m.

A linear vector Boolean function from Zn
2 to Zm

2 is represented

by an m�n binary matrix U . The m rows of U are denoted by

u1; : : : ;um, where each ui is a linear mask.
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Correlation

The correlation between two Boolean functions f : Zn
2 7! Z2

and g : Zn
2 7! Z2 is defined as

c( f ;g)=2�n (#fx 2 Zn
2 j f (x) = g(x)g�#fx 2 Zn

2 j f (x) 6= g(x)g)

Correlation c( f ;0) is called the correlation (sometimes aka

bias) of f .

Linear cryptanalysis makes use of large correlations of Boolean

functions in cipher constructions.
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Random variable related to Boolean function

X discrete random variable taking on values in Zn
2

If p = (pη)η2Zn
2

is the probability distribution (p.d.) of X ,

where pη = Pr(X = η), we denote X � p.

Let θ denote the uniform distribution on Zn
2.

Let f : Zn
2 7! Zm

2 be a Boolean function and X � θ: Then the

p.d. of f (X) is called the p.d. of f .
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Walsh-Hadamard Transform

Walsh-Hadamard transform is a type of discrete Fourier-transform.

Let φ : Zn
2 ! R be a real-valued function. The Walsh-Hadamard

transform bφ of φ is defined asbφ(u) = ∑
x2Zn

2

φ(x)(�1)x�u; u 2 Zn
2:

Then

φ(x) = 2�nbbφ(x); x 2 Zn
2;

using the inverse of Walsh-Hadamard transform.
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Convolution

The convolution of two functions φ : Zn
2 ! R and ψ : Zn

2 ! R is

defined as (φ�ψ)(y) = ∑
x2Zn

2

φ(x)ψ(x+ y); y 2 Zn
2:

Then \(φ�ψ)(u) = bφ(u)bψ(u); u 2 Zn
2:

Methods for Symmetric Key Cryptography and Cryptanalysis –10/32



Correlation and probability distribution

The correlations of masked Boolean function can be computed as

Walsh-Hadamard transform of the distribution of the function:

c(a � f ) = 2�n ∑
x2Zn

2

(�1)a� f (x) = ∑
η2Zm

2

(�1)a�η pη = bp(a):

Theorem 1 Let f : Zn
2 7! Zm

2 be a Boolean function with p.d. p and

one-dimensional correlations c(a � f ); a 2 Zm
2 . Then

pη = 2�m ∑
a2Zm

2

(�1)a�ηc(a � f )

for all η 2 Zm
2 .

Methods for Symmetric Key Cryptography and Cryptanalysis –11/32



Cryptographic Encryption Primitives
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Symmetric-key encryption

K 2 K the key

x 2 P the plaintext

y 2 C the ciphertext

Encryption method is a family fEKg of transformations EK : P ! C ,

parametrised using the key K such that for each encryption transfor-

mation EK there is a decryption transformation DK : C ! P , such that

DK(EK(x))) = x, for all x 2 P .
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Block cipher

The data to be encrypted is split into blocks xi, i = 1; : : : ;N of fixed

length n. A typical value of n is 128.

P = C = Zn
2, K = Z`2

Block cipher seen as a vector Boolean function

f : Zn
2�Z`2 ! Zn

2�Zn
2�Z`2

f (x;K) = (x;EK(x);K)
Linear approximation of a block cipher

u � x�w �EK(x)� v �K
where x � θ and K is fixed.
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Stream cipher

Data to be encrypted is split into blocks

xi; i = 1; : : : ;N
of fixed length n. Now typical values of n are n = 1;8; or 32.

K = Z`2
The key K 2 K determines the initial state of a keystream generator

which produces a new fresh key Ki, i = 1; : : : ;N, for each data block.

P = C = (Zn
2)N

where N can be any positive integer less than the period of the

keystream generator.

EK(x1; : : : ;xN) = K1� x1; : : : ;KN � xN
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Linear approximation of stream cipher

Key stream generator seen as Boolean functions

fi : Z`2 ! Z`2�Zn
2; fi(K) = (K;Ki)

Linear approximations of key stream generator

ui �K�w �Ki
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Cryptanalysis
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Attack scenarios

Assumptions about data available to attacker

Ciphertext only (Shannon’s model)

Known plaintext-ciphertext pairs

Chosen (by attacker) plaintext and corresponding ciphertext
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Breaks

This classification is hierarchial. An attack is successful if its

complexity is less than the complexity of exhaustive key search.

Total break: attacker gets the key

Instance deduction: attacker gets a clone of DK

Key information deduction: attacker gets partial information

about the key

Distinguishing: attacker can distinguish the cipher from a purely

random function

Distinguishing leads sometimes to information deduction.
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Linear cryptanalysis

Linear cryptanalysis is a known plaintext-ciphertext attack

Linear cryptanalysis makes use of linear approximations of the

cipher.

Linear cryptanalysis can be used in distinguishing attacks or in

key information deduction.
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Key information recovery on block cipher

Linear approximation of a block cipher

u � x�w �EK(x)� v �K
where x � θ and K is fixed.

The correlation c of this Boolean function is assumed to be known or

a sufficiently accurate estimate is available.

Observe a number N of known plaintext-ciphertext pairs (x;EK(x))

and calculate the observed correlation c̃ of u � x�w �EK(x).
Determine v �K = 0, if cc̃ > 0, and v �K = 1, otherwise.
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The probability of success

Consider the case c > 0 and v �K = 0. Other cases are similar.

Let N0 be the observed number of plaintexts x such that u � x�w �EK(x) = 0.

Then N0 is binomially distributed with expected value N p and variance N p(1� p),
where p = c+1

2 . Then

Z = N0�N pp

N p(1� p) �N (0;1)
where N (0;1) is the standard normal distribution. Then the bit v �K is correctly

determined if the observed correlation c̃ is positive, which happens if and only if

N0 > N=2, or equivalently, Z >�c

p
N. Hence the probability of success can be

estimated as

1�Φ(�c

p
N)

where Φ is the cumulative density function of N (0;1). The probability is 0.921 for

N = 1=c2. This gives an estimate of the number N of plaintext-ciphertext pairs for

successful cryptanalysis.
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Linear attacks on stream cipher

Let fi : K 7! Ki be of the form gÆ f i, where f is a (linear) state

transition function and g is a nonlinear state output function, aka filter

function.

Assume that we have a strong linear approximation of g, that is

u � x�w �g(x)
with correlation c.

Now two types of linear attacks can be launched:

distinguishing attacks

initial state information deduction attacks.
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Additive synchronous stream cipher
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Distinguishing attack on stream cipher

From the linear approximation we get

u � si�w �g(si) = u � si�w �Ki

with correlation c, where si = f i(K) is the state at time i, i = 1; : : : ;N.

Typically, f is a state transition function of a linear feedback shift register. Then

there exist a small number of integers a1; : : :ad such that

f i� f i+a1� : : :� f i+ad = 0:
Then we use the linear approximation d+1 times to make the internal states

cancel and to get a linear relation on the keystream

w � (Ki�Ki+a1� : : :�Ki+ad )

which has correlation cd+1.
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Snow 2.0 stream cipher
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Linear approximations over Snow 2.0
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Initial state recovery on stream cipher

Assume linear approximations u � si�w �g(si) = u � si�w �Ki with

correlation c, where si = f i(K) is the state at time i.

Typically, f is a state transition function of a linear feedback shift

register. Let A be the transpose of f . Then we have

Aiu �K�w �Ki

with correlation c, for all i = 1;2; :::;N. Denote bi = w �Ki. Then the

problem is to solve K from a large system of highly erroneous (but

not completely random) equations

Aiu �K = 0

with correlations (�1)bic, for all i = 1;2; : : : ;N.
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A decoding problem

Given such a system

Aiu �K = 0;
with correlations (�1)bi c, for i = 1;2; : : : ;N, we can proceed as follows.

Assume c > 0. We select K = η such that η maximizes

pη = N

∑
i=1

(�1)bi�Aiu�η
These values can be computed simultaneously for all η 2 Z`

2 using the fast Fourier

(Walsh-Hadamard) transform. The computational complexity is `2`. Indeed, no sav-

ings have been gained compared to exhaustive search of the initial state. Some sav-

ings can be achieved using a trade off between exhaustive search and the Fourier

transform method.
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Multidimensional linear cryptanalysis

Makes use of a number of linear approximations simultaneously

Ux�WEK(x)�VK

Particulary useful in key information deduction attack on block

ciphers: now all key information bits VK can be deduced

simultaneously with (about) the same amount of data

Can also be applied to stream cipher attacks

The binomial statistics of one-dimensional analysis has multiple

generalizations to the multidimensional case: χ2, Log-likelihood

ratio, etc.
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Conclusions

Linear cryptanalysis is one of the most powerful cryptanalytic

methods.

The best known attacks on many contemporary good ciphers

are linear attacks.

Resistance against linear cryptanalysis is one of the main

design criteria for symmetric key ciphers.

Extensions to multidimensional linear approximations have

been found to bring significant enhancements.

Decoding algorithms and techniques may be helpful in

improving the efficiency of key information deduction attacks.
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