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Abstract

We consider generative probabilistic mod-
els for unsupervised learning of morphol-
ogy. When training such a model, one has
to decide what to include in the training
data; e.g., should the frequencies of words
affect the likelihood, and should words oc-
curring only once be discarded. We show
that for a certain type of models, the like-
lihood can be parameterized on a function
of the word frequencies. Thorough ex-
periments are carried out with Morfessor
Baseline, evaluating the resulting quality
of the morpheme analysis on English and
Finnish test sets. Our results show that
training on word types or with a logarith-
mic function of the word frequencies give
similar scores, while a linear function, i.e.,
training on word tokens, is significantly
worse.

1 Introduction

Unsupervised morphology learning is concerned
with the task of learning models of word-internal
structure. By definition, a probabilistic genera-
tive model describes the joint distribution of mor-
phological analyses and word forms. An essen-
tial question is whether the morphological model
representstypes, that is, disregarding word fre-
quencies in corpora, ortokens, i.e. fully appre-
ciating the word frequencies. It has been ob-
served that for the well-known Morfessor Baseline
method (Creutz and Lagus, 2002; Creutz and La-
gus, 2007), training on types leads to a large im-
provement in performance over tokens, when eval-
uating against a linguistic gold standard segmenta-
tion (Creutz and Lagus, 2004; Creutz and Lagus,
2005). A similar effect for a more recent method
is reported by Poon et al. (2009). However, intu-
itively the corpus frequencies of words should be

useful information for learning the morphology. In
support of this intuition, behavioral studies regard-
ing storage and processing of multi-morphemic
word forms imply that the frequency of a word
form plays a role in how it is stored in the brain:
as a whole or as composed of its parts (Alegre and
Gordon, 1999; Taft, 2004). In addition, the op-
timal morphological analysis may depend on the
task to which the analysis is applied. In Morpho
Challenge evaluations (Kurimo et al., 2010b), the
winners of the different tasks are often different al-
gorithms. For example, in machine translation, the
reason might be that the frequent inflected word
forms do not benefit from being split. However,
it is not trivial to utilize token counts in generative
models, since word tokens follow a power-law dis-
tribution (Zipf, 1932), and thus naive approaches
will over-emphasize frequent word forms.

In this article, we consider whether the fre-
quency information is inherently useful or not in
unsupervised learning of morphology. We show
that for a certain class of generative models, in-
cluding those of the Morfessor methods, the word
frequency acts as a weight in the likelihood func-
tion. We explicitly modify the distribution of
words that the model approximates, also allowing
choicesbetween types and tokens.

Related to our approach, Goldwater et al. (2006)
define a Bayesian two-level model where the first
level generates word forms according to a multi-
nomial distribution and the second level skews the
distribution towards the observed power law distri-
bution. For extreme parameter values of the sec-
ond level process, the multinomial is trained with
either types or tokens. For intermediate values,
frequent words are emphasized, but not as much
as when using token counts directly. They find ex-
perimentally that in morphological segmentation
the best results are achieved when the parameter
value is close to using only types, but emphasizes
frequent words slightly. Their approach is elegant



but computationally demanding. In contrast, our
method is based on transforming the observed fre-
quencies with a deterministic function, and there-
fore can be performed as a quick preprocessing
step for existing algorithms.

Another intermediate option between types and
tokens is given by Snyder and Barzilay (2008).
Their morphological model generates bilingual
phrases instead of words, and consequently, it is
trained on aligned phrases that consist up to 4–6
words. The phrase frequencies are applied to dis-
card phrases that occur less than five times, as they
are likely to cause problems because of the noisy
alignment. However, training is based on phrase
types. Considering the frequencies of the words
in this type of data, the common words will have
more weight, but not as much as if direct corpus
frequency was used.

We study the effect of the frequency informa-
tion on the task of finding segmentations close
to a linguistic gold standard. We use Morfes-
sor Baseline, which is convenient due to its fast
training algorithm. However, it has a property
that causes it to arrive at fewer morphemes per
words on average when the size of the training
data grows (Creutz and Lagus, 2007). This phe-
nomenon, which we refer to as undersegmenta-
tion, happens also when the model is trained on
token counts rather than types, but it is not inher-
ently related to the word frequency weighting in
the class of models studied. Recently, Kohonen
et al. (2010) showed how the amount of segmen-
tation can be controlled by weighting the likeli-
hood. In their semi-supervised setting, optimizing
the weight improved the results considerably. This
results in state of the art performance in Morpho
Challenge 2010 (Kurimo et al., 2010a). In order
to evaluate the effect of the frequency information
without the problem of undersegmentation, we ap-
ply a similar likelihood weighting.

Another potential use for frequencies is noise
reduction. Corpora often contain misspelled word
forms and foreign names, but they are likely to oc-
cur very infrequently and are therefore removed
if one discards rare word forms. It has been ob-
served that pruning words that occur fewer times
than a given threshold sometimes improves results
in linguistic evaluations (Virpioja et al., 2010). We
examine to what extent this improvement is ex-
plained by noise reduction, and to what extent it
is explained by improving on undersegmentation.

2 Methods

In this section, we first consider generative prob-
abilistic models in the task of learning morphol-
ogy. We show that by making some simple as-
sumptions, the data likelihood function can be pa-
rameterized on a function of the word frequencies.
Then we describe the Morfessor Baseline model
in this general framework.

2.1 Generative models of morphology

A generative model of morphology specifies the
joint distributionP (A = a, W = w |θ) of words
W and their morphological analysesA for given
parametersθ.1 W is an observed andA a hid-
den variable of the model. Here we assume that
an analysis is a list of morpheme labels:a =
(m1, . . . , mn). The probability of an analysis for
a given word can be obtained by

P (A = a |W = w, θ)

=
P (A = a, W = w |θ)

∑

ā P (A = ā, W = w |θ)
. (1)

Generative models can be trained with unla-
beled dataD. For model classes with a large num-
ber of parameters, estimating the posterior proba-
bility of the parameters of a model,P (θ |D) ∝
P (θ)P (D |θ), may be difficult. An alternative is
to use a point estimate of the model parameters,
θ
∗, and apply that in Eq. 1. Instead of the simplest

point estimate,maximum likelihood (ML), it is of-
ten better to applymaximum a posteriori (MAP),
where a prior distribution is used to encode possi-
ble prior information about the model parameters:

θ
MAP = arg max

θ

{

P (θ) × P (D |θ)
}

. (2)

Let DW be a set of training data containing word
forms. Assuming that the probabilities of the
words are independent, the likelihood of the data
can be calculated as

P (DW |θ) =

|DW |
∏

j=1

P (W = wj |θ)

=

|DW |
∏

j=1

∑

a

P (A = a, W = wj |θ).

(3)

1We denote random variables with uppercase letters and
their instances with lowercase letters.



Using the chain rule,

P (A = a, W = w |θ)

= P (A = a |θ)P (W = w |A = a,θ)

= P (A = a |θ) I(w(a,θ) = w), (4)

wherew(a,θ) indicates the word form produced
by the analysisa, andI(X) = 1 if X is true and
zero otherwise. Thus, the choice forP (A = a |θ)
andw(a,θ) defines the model class.

If we assume that the training data has|DW |
word typeswj with their respective countscj , the
logarithm of the corpus likelihood is

|DW |
∑

j=1

cj ln
∑

a

P (A = a, W = wj |θ). (5)

Using types or tokens for training the model can
be seen as modifying the countscj with a function
f(), wheref(cj) = 1 corresponds to training on
types andf(cj) = cj on tokens. Generally, this
results in theweighted log-likelihood

|DW |
∑

j=1

f(cj) ln
∑

a

P (A = a, W = wj |θ), (6)

wheref() maps the counts into non-negative val-
ues. In other words, if we assume that each
instance of a word form is generated indepen-
dently, the modified frequencyf(cj) of that form
becomes a proportional weight in the likelihood
function. Thus, when training on tokens, the
model aims to give higher probabilities to frequent
word types compared to rare word types.

2.2 Morfessor Baseline

Morfessor Baseline (Creutz and Lagus, 2002;
Creutz and Lagus, 2005; Creutz and Lagus, 2007)
is a method for morphological segmentation: The
analysis of a word is a list of its non-overlapping
segments, morphs. The method is inspired by the
Minimum Description Length (MDL) principle
by Rissanen (1978) and tries to encode the words
in the training data with a lexicon of morphs. It ap-
plies the two-part coding variant of MDL, which
is equivalent to MAP estimation using a particu-
lar type of prior. The MDL derived priors prevent
overfitting by assigning a low prior probability to
models with a large number of parameters.

Following the notation by Kohonen et al.
(2010), the model parametersθ are:

• Morph type count, or the size of the morph
lexicon,µ ∈ Z+

• Morph token count, or the number of morphs
tokens in the observed data,ν ∈ Z+

• Morph stringsσ1, . . . , σµ, σi ∈ Σ∗

• Morph counts(τ1, . . . , τµ), τi ∈ Z+,
∑

i τi = ν.

With non-informative priors,µ andν can be ne-
glected when optimizing. The morph string prior
is based on the morph length distributionP (L)
and distributionP (C) of characters over a charac-
ter setΣ using the assumption that the characters
are independent. For morph counts, the implicit
non-informative priorP (τ1, . . . , τµ) = 1/

(

ν−1

µ−1

)

can be applied whenµ andν are known.
Each morphmi in the lexicon has a probability

of occurring in a word,P (M = mi |θ), estimated
from the countτi. A word is a sequence of morphs
and the morph probabilities are assumed to be in-
dependent, sow(a,θ) = m1m2 . . .m|a| and the
probability of the analysisa is

P (A = a |θ) =

|a|
∏

i=1

P (M = mi |θ), (7)

wheremi:s are the morphs in the analysisa.
The training algorithms of Morfessor apply the

likelihood function only conditioned on the analy-
ses of the observed wordsA, P (DW |A, θ). As
before, an instance ofA for thej:th word is a se-
quence of morphs:aj = (mj1, . . . , mj|aj |). Fur-
thermore, each word is assumed to have only a
single analysis. For a knowna, the weighted log-
likelihood (Eq. 6) is thus

lnP (DW |A = a, θ)

=

|DW |
∑

j=1

f(cj)

|aj |
∑

i=1

lnP (M = mji |θ), (8)

wheremij is thei:th morph in wordwj . The num-
ber of morphs in the analysis,|aj |, has a large ef-
fect on the probability of the word. Therefore the
model prefers using a small number of morphs for
words with a largef(cj).

The training algorithm of Morfessor Baseline
minimizes the cost functionL(θ, a, DW ) =
− lnP (θ) − lnP (DW |a, θ) by testing local
changes toa. The training algorithm is described,



e.g., by Creutz and Lagus (2005). In the semi-
supervised weighting scheme by Kohonen et al.
(2010), the log-likelihood is weighted by a posi-
tive constantα, which is optimized for the chosen
evaluation measure using a development set. After
training, a Viterbi-like algorithm can be applied to
find the optimal analysis for each word given the
model parameters; a description of the procedure
is provided, e.g., by Virpioja et al. (2010).

3 Experiments

The goal of our experiments is to find an opti-
mal functionf() for the weighted log-likelihood
in Eq. 6. We consider the following set of func-
tions for the countscj :

f(x) =

{

0 if x < T
αg(x) otherwise

(9)

If α = 1 andg(x) = 1 we train on word types
(lexicon); if α = 1 and g(x) = x, we train on
tokens (corpus). In addition, we test a logarith-
mic functiong(x) = ln(1 + x). The frequency
thresholdT can be used for pruning rare words
from the training data. The global weightα mod-
ifies the balance between the likelihood and the
model prior as in Kohonen et al. (2010). BothT ,
α and the function typeg(x) can be optimized for
a given data set and a target measure. To ensure
that we do not overlearn the data set for which we
optimize the function parameters, we use a sepa-
rate test set for the final evaluations.

We use Morfessor Baseline in the experiments,
as it is fast enough for training a large number of
models even with large training corpora. Our im-
plementation was based on the Morfessor 1.0 soft-
ware (Creutz and Lagus, 2005). The format of the
input data is a list of words and their counts, so
the functionf() is, in principle, trivial to apply
as preprocessing. However, because the Morfes-
sor prior assumes integer counts, the parameterα
was implemented as a global weight for the like-
lihood. Otherwise, we modified the training data
according to the respective function before train-
ing. The result of the logarithmic function was
rounded to the nearest integer. We used the stan-
dard training algorithm and implicit morph length
and frequency priors. For words not present in the
training data, we applied the Viterbi algorithm to
find the best segmentation, allowing new morphs
with the approximate cost of adding them into the
morph lexicon.

3.1 Data and evaluation

We used the English and Finnish data sets from
Competition 1 of Morpho Challenge 2009 (Ku-
rimo et al., 2010b). These languages were cho-
sen because of their different morphological char-
acteristics. Both sets were extracted from a three
million sentence corpora. For English, there were
62, 185, 728 word tokens and384, 903 word types.
For Finnish, there were36, 207, 308 tokens and
2, 206, 719 types. The complexity of Finnish mor-
phology is indicated by almost ten times larger
number of word types than for English, while the
numbers of word tokens are much closer.

We applied also the evaluation method of the
Morpho Challenge competition.2 The results of
the morphological segmentation were compared
to a linguistic gold standard analysis for a set of
word types. Precision measures whether the word
types that share morphemes in the proposed analy-
sis have common morphemes also in the gold stan-
dard. Recall is calculated analogously by swap-
ping the roles proposed and gold standard analy-
ses. The final score is the F-measure, the harmonic
mean of precision and recall.

Finnish gold standard was based on the morpho-
logical analyzer FINTWOL from Lingsoft, Inc.,
that applies the two-level model by Koskenniemi
(1983). English gold standard was from the
CELEX database. We applied the same final test
sets as in Morpho Challenge, based on10, 000
English word forms and200, 000 Finnish word
forms. For tuning the parameters of the weight
function, we sampled a development set that did
not contain any of the words in the final test set.
The development set included2, 000 word forms
for English and8, 000 word forms for Finnish.

3.2 Results

We trained Morfessor Baseline with the word fre-
quencies set according to the three different func-
tion types. For each type, we optimized the cutoff
parameterT and the weight parameterα by choos-
ing values that gave the optimal F-measure on the
development set. Whenα = 1.0 andT = 1, the
results correspond to those of the standard Mor-
fessor Baseline. First, we varied only one param-
eter while the other one was fixed at one. Fig-
ure 1 shows the results for English and Figure 2

2Both the training data and evaluation scripts are available
from the Morpho Challenge 2009 web page:http://www.
cis.hut.fi/morphochallenge2009/



for Finnish using precision-recall curves. The best
results are in the top-right corner. In solid lines,
α = 1 andT varied; in dashed lines,T = 1 and
α varied. When precision is high and recall is low,
the algorithm undersegments. With the constant
function, either reducingα or increasingT im-
proved recall at the expense of precision. In other
words, pruning improves the results mostly by
preventing undersegmentation, not by removing
noise. With logarithmic or linear counts, increas-
ing the frequency threshold did not improve recall,
but there was no such problem with decreasingα.
Especially for English, the linear counts did not
provide as good results as the others.

Next, we optimized the F-measure for each
function type by varying bothT and α. Every
parameter combination was not computed, but we
concentrated on the areas where the locally opti-
mal results were found. The results for English are
presented in Tables 1–3 and the results for Finnish
in Tables 4–6. If frequency information is useful
for the model, we should see an improvement in
results for the linear and logarithmic function over
the constant one when the weightα and the thresh-
old T are optimal. While the linear function per-
formed worse than the others even with the opti-
mal weighting, the logarithmic function provided
small improvements over the constant function for
both languages.

The optimalα was the largest for the constant
function, smaller (English) or the same (Finnish)
for the logarithmic function, and the smallest for
the linear function. Smallerα means that the
algorithm would undersegment more without the
weight. The weights for Finnish were smaller than
for English, which is explained by a larger number
of word types in the training set. A possible rea-
son for the sameα = 0.01 for Finnish when us-
ing constant and logarithmic functions is that the
most of the likelihood cost is anyway due to the
word forms observed only once, and the logarith-
mic function does not affect that.

Regarding the cutoff parameterT for English,
the optimal frequency threshold was around 10–
20 for constant and logarithmic functions, but only
one for the linear function. A possible explanation
is that rare words do not contain new morpholog-
ical information, as they typically are uncommon
nouns with no or only a single suffix. With the lin-
ear function, they get a very low weight in any case
and cause no problems, but with the other func-

tions, they are best to be excluded. For the Finnish
data, the optimal frequency threshold was one for
all three function types, so also the word forms oc-
curring only once were useful for the algorithm. In
an agglutinative language, such as Finnish, many
valid inflected forms are very rare and therefore
pruning does not remove only noise. While our
results imply that it is better to use a smallerα
than to prune, pruning infrequent words may still
be useful in reducing computation time without
sacrificing much accuracy.

Table 7 shows the results on the final test set.
Again, using the word frequencies without opti-
mizedα andT clearly increase the problem of un-
dersegmentation. In optimized cases, the results
are more even. Note that unbalanced precision and
recall imply that the tuning of the parameters did
not completely succeed. For English, logarithmic
counts gave higher F-measure also for the test set,
but the difference to constant was not statistically
significant according to the Wilcoxon signed-rank
test. Linear counts gave clearly the worst results
both for precision and recall. For Finnish, loga-
rithmic counts did not give the improvement that
the development set results promised: constant
was slightly but significantly better. However, the
slight undersegmentation indicates that it could be
improved by fine tuningα. With linear counts, the
F-measure was close, but still significantly lower.

Function Opt Pre Rec F-m
English

constant no 76.13 48.9759.60
logarithmic no 87.76 31.77 46.65
linear no 84.93 12.00 21.03
constant yes 62.04 62.27 62.16
logarithmic yes 57.85 67.62 62.35
linear yes 53.96 56.42 55.16

Finnish
constant no 89.50 15.7026.72
logarithmic no 91.24 11.95 21.13
linear no 91.82 6.75 12.57
constant yes 53.77 45.1649.09
logarithmic yes 57.87 42.06 48.72
linear yes 48.86 47.37 48.10

Table 7: Precision (pre), recall (rec) and F-
measure (F-m) on the final test set with the differ-
ent function types for word frequencies. In opti-
mized cases (opt),T andα are selected according
to the best F-measure for the development set.



Figure 1: Precision-recall curves for English with constant (const), logarithmic (log), and linear fre-
quency function types and varying function parametersα or T .

T \ α 2 1.5 1.2 1.1 1 0.9 0.8 0.7 0.6
1 51.88 - - 60.64 60.73 62.42 62.9563.46 62.65
2 - - - 64.14 64.97 64.30 - - -
3 - - - 64.27 64.60 63.81 - - -
4 - - - 64.26 64.30 64.30 - - -
5 - - - 64.53 64.55 63.85 - - -
10 - 63.88 64.68 65.30 64.58 - - - -
20 62.58 64.53 65.29 64.38 63.42 - - - -
50 61.65 63.13 62.68 62.31 60.70 - - - -

Table 1: Optimization results for English withg(x) = 1. Local optimum for each row (T ) is written in
boldface. The overall best results is underlined.

T \ α 1 0.5 0.4 0.3 0.2 0.1
1 47.50 57.85 60.81 62.76 63.88 61.10
2 47.66 58.47 - 63.56 63.80 60.79
3 47.91 60.79 - 63.66 64.12 59.66
4 47.68 60.81 - 63.18 64.53 59.52
5 47.32 - - 63.44 64.47 59.10
10 47.58 - 62.65 64.87 64.75 57.61
20 43.64 - - 64.70 65.57 56.86
50 36.05 - - 62.40 63.93 54.03

Table 2: Optimization results for English withg(x) = ln(1 + x).

T \ α 1 0.1 0.05 0.02 0.01 0.005 0.001
1 21.75 44.73 51.10 56.69 57.92 57.19 47.45
2 21.24 - - 56.31 57.75 57.07 -
5 21.67 - - 55.98 57.82 57.03 -
10 27.48 - - 56.11 57.69 56.40 -
20 33.01 - - 55.67 57.50 - -
50 39.09 - - - 57.10 - -
100 40.64 - - - - - -
200 42.19 - - - - - -
500 40.60 - - - - - -

Table 3: Optimization results for English withg(x) = x.



Figure 2: Precision-recall curves for Finnish with constant (const), logarithmic (log), and linear fre-
quency function types and varying function parametersα or T .

T \ α 1.2 1.1 1.0 0.5 0.2 0.1 0.05 0.02 0.01 0.005
1 - - 25.83 30.74 - 40.64 44.35 46.9147.27 46.40
2 - - 31.96 36.86 - 45.07 46.96 46.80 45.35 -
5 - - 37.75 41.89 46.15 47.23 46.83 - 39.10 -
10 - - 40.92 44.37 46.93 46.61 - - 33.85 -
20 - - 43.49 46.15 47.04 45.88 - - - -
50 - - 45.75 46.82 45.70 42.17 - - - -
100 - 46.29 46.65 46.50 - - - - - -
200 46.19 46.45 46.43 - - - - - - -
500 44.69 44.82 44.54 - - - - - - -
1000 42.63 43.17 42.92 - - - - - - -

Table 4: Optimization results for Finnish withg(x) = 1. Local optimum for each row (T ) is written in
boldface. The overall best results is underlined.

T \ α 1.0 0.5 0.2 0.05 0.02 0.01 0.005
1 20.20 - - - 45.81 47.60 47.02
2 21.62 29.81 36.74 44.43 46.9647.26 46.28
5 24.66 - - 46.03 46.97 46.28 -
10 26.11 - - - 46.70 - -
20 27.80 - - - - - -
50 24.03 - - - - - -

Table 5: Optimization results for Finnish withg(x) = ln(1 + x).

T \ α 1.0 0.1 0.01 0.005 0.001 0.0005
1 12.21 - 41.44 44.12 46.30 44.73
2 11.94 28.80 41.78 43.97 45.94 44.36
5 14.10 - 41.91 44.13 45.50 -
10 18.59 - 42.06 44.01 - -
20 22.73 - 42.08 - - -
50 25.55 - - - - -
100 25.97 - - - - -
200 24.73 - - - - -
500 21.21 - - - - -

Table 6: Optimization results for Finnish withg(x) = x.



4 Conclusions

We showed that for probabilistic models, where
word forms are generated independently, the word
frequency acts as a relative weight in the likeli-
hood function, changing how important the prob-
abilities of the forms are to the likelihood. In the
case of Morfessor Baseline, words with a large rel-
ative weight are segmented less, and vice versa.
In the experiments, we trained Morfessor Baseline
using three types of functions—constant, logarith-
mic, and linear—for the corpus frequencies of the
words. Constant corresponds to learning on word
types and linear on tokens, whereas logarithmic is
between them. To overcome the model’s tendency
to undersegment, we used a likelihood weight op-
timized to give the best F-measure on a develop-
ment set. While earlier results implied that learn-
ing on word types is the best option for this model
when evaluated against linguistic gold standards,
we showed that results of the same quality can also
be obtained with logarithmic counts. In contrast,
using corpus frequencies in a linear manner does
not work as well. We also optimized a pruning
threshold for the infrequent words. Pruning is sim-
ple and fast, but appears to work well only with the
constant function type.
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