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Abstract useful information for learning the morphology. In
support of this intuition, behavioral studies regard-
ing storage and processing of multi-morphemic
word forms imply that the frequency of a word
form plays a role in how it is stored in the brain:
as a whole or as composed of its parts (Alegre and
Gordon, 1999; Taft, 2004). In addition, the op-

timal morphological analysis may depend on the

We consider generative probabilistic mod-
els for unsupervised learning of morphol-
ogy. When training such a model, one has
to decide what to include in the training
data; e.g., should the frequencies of words
affect the likelihood, and should words oc-

curring only once be discarded. We show
that for a certain type of models, the like-

lihood can be parameterized on a function
of the word frequencies. Thorough ex-
periments are carried out with Morfessor
Baseline, evaluating the resulting quality
of the morpheme analysis on English and
Finnish test sets. Our results show that
training on word types or with a logarith-

task to which the analysis is applied. In Morpho
Challenge evaluations (Kurimo et al., 2010b), the
winners of the different tasks are often different al-
gorithms. For example, in machine translation, the
reason might be that the frequent inflected word
forms do not benefit from being split. However,

it is not trivial to utilize token counts in generative

models, since word tokens follow a power-law dis-
tribution (Zipf, 1932), and thus naive approaches

mic function of the word frequencies give
similar scores, while a linear function, i.e.,
training on word tokens, is significantly
worse.

will over-emphasize frequent word forms.

In this article, we consider whether the fre-
guency information is inherently useful or not in
unsupervised learning of morphology. We show
that for a certain class of generative models, in-
cluding those of the Morfessor methods, the word
Unsupervised morphology learning is concernedrequency acts as a weight in the likelihood func-
with the task of learning models of word-internal tion.  We explicitly modify the distribution of
structure. By definition, a probabilistic genera-words that the model approximates, also allowing
tive model describes the joint distribution of mor- choicesbetween types and tokens.
phological analyses and word forms. An essen- Relatedto our approach, Goldwater et al. (2006)
tial question is whether the morphological modeldefine a Bayesian two-level model where the first
representgypes, that is, disregarding word fre- level generates word forms according to a multi-
guencies in corpora, dokens, i.e. fully appre- nomial distribution and the second level skews the
ciating the word frequencies. It has been ob-distribution towards the observed power law distri-
served that for the well-known Morfessor Baselinebution. For extreme parameter values of the sec-
method (Creutz and Lagus, 2002; Creutz and Laend level process, the multinomial is trained with
gus, 2007), training on types leads to a large imeither types or tokens. For intermediate values,
provement in performance over tokens, when evalfrequent words are emphasized, but not as much
uating against a linguistic gold standard segmentaas when using token counts directly. They find ex-
tion (Creutz and Lagus, 2004; Creutz and Lagusperimentally that in morphological segmentation
2005). A similar effect for a more recent methodthe best results are achieved when the parameter
is reported by Poon et al. (2009). However, intu-value is close to using only types, but emphasizes
itively the corpus frequencies of words should befrequent words slightly. Their approach is elegant

1 Introduction



but computationally demanding. In contrast, our2 Methods
method is based on transforming the observed fre- hi _ G i ) b
guencies with a deterministic function, and there—In this section, we first consider generative prob-

fore can be performed as a quick preprocessin§biIiStiC moﬁels iE thg taskkqf learning morlphol—
step for existing algorithms. gy. We show that by making some simple as-

. . . sumptions, the data likelihood function can be pa-
Another intermediate option between types and,meterized on a function of the word frequencies.

tokens is given by Snyder and Barzilay (2008).-then we describe the Morfessor Baseline model
Their morphological model generates bilingual; g general framework.

phrases instead of words, and consequently, it is
trained on aligned phrases that consist up to 4-8.1 Generative models of morphology
words. The phrase frequencies are applied to disA generative model of morphology specifies the
card phrases that occur less than five times, as th Nint distribution P(A — a, W — w | 6) of words
are likely to cause problems because of the noisiv and their morphologic7a| analyses for given
alignment. However, training is based on phras arameter®.l W is an observed and a hid-
types. Considering the frequencies of the WorOI(i‘(;en variable of the model. Here we assume that
in this type of data, the common words will havean analysis is a list of morpheme labels: —

romoney wis wsed o e e (0 my,). The probability of an analysis for
frequency was used. TyeenyMy).

a given word can be obtained by
We study the effect of the frequency informa-

tion on the task of finding segmentations close P(A=a|W =w,0)
to a linguistic gold standard. We use Morfes- P(A=a, W =w|6)
sor Baseline, which is convenient due to its fast =S PA=aW=w0) (1)

training algorithm. However, it has a property
that causes it to arrive at fewer morphemes per Generative models can be trained with unla-
words on average when the size of the trainingheled dataD. For model classes with a large num-
data grows (Creutz and Lagus, 2007). This pheber of parameters, estimating the posterior proba-
nomenon, which we refer to as undersegmentapility of the parameters of a modeR (6 | D)
tion, happens also when the model is trained orP(9)P(D | §), may be difficult. An alternative is
token counts rather than types, but it is not inherto use a point estimate of the model parameters,
ently related to the word frequency weighting in g*, and apply that in Eq. 1. Instead of the simplest
the class of models studied. Recently, Kohonempoint estimatemaximum likelihood (ML), it is of-
et al. (2010) showed how the amount of segmenten better to applynaximum a posteriori (MAP),
tation can be controlled by weighting the likeli- where a prior distribution is used to encode possi-
hood. In their semi-supervised setting, optimizingble prior information about the model parameters:
the weight improved the results considerably. This
results in state of the art performance in Morpho ~ 8M*° = argmax {P(8) x P(D [0)}.  (2)
Challenge 2010 (Kurimo et al., 2010a). In order o
to evaluate the effect of the frequency information o Dy be a set of training data containing word
without the problem of undersegmentation, we apzqrms. Assuming that the probabilities of the
ply a similar likelihood weighting. words are independent, the likelihood of the data
Another potential use for frequencies is noisecan be calculated as
reduction. Corpora often contain misspelled word
forms and foreign names, but they are likely to oc-
cur very infrequently and are therefore removed P(Dw |6) = H P(W =w;|0)
if one discards rare word forms. It has been ob- 7=l

| Dy |

served that pruning words that occur fewer times

than a given threshold sometimes improves results - H Z P(A=a,W=uw;0)
in linguistic evaluations (Virpioja et al., 2010). We j=1 e

examine to what extent this improvement is ex- (3)

plalned.by n0|s_e reduc_:tlon, and to what EXte.nt It 1\we denote random variables with uppercase letters and
is explained by improving on undersegmentation.their instances with lowercase letters.



Using the chain rule, e Morph type count, or the size of the morph
lexicon,u € Z
P(A=a,W =w|0)
— P(A=a|@)P(W = w| A = a,0) e Morph token count, or the number of morphs
’ tokens in the observed datac Z .
=P(A=al8)(w(a,8) = w), 4)

o e Morph stringsoy,...,0u, 05 € X*
wherew(a, 8) indicates the word form produced

by the analysis, andI(X) = 1 if X is true and e Morph counts(7y, ..., 7,), 7 € Z4,
zero otherwise. Thus, the choice B(A = a | 0) Yo Ti = V.
andw(a, 8) defines the model class. _ _ _ '
If we assume that the training data a3y | With non-informative priors;, andv can be ne-

word typesw; with their respective counts;, the glected when optimizing. The morph string prior

logarithm of the corpus likelihood is is based on the morph length distributid?( L)
and distributionP(C) of characters over a charac-
[Dw | ter setX using the assumption that the characters
> ¢l P(A=a,W=uw;|0). (5 areindependent. For morph counts, the implicit
j=1 a non-informative priorP(ri,...,7,) = 1/(;7})

can be applied when andv are known.

Each morphn; in the lexicon has a probability
of occurring in awordP (M = m; | ), estimated
from the countr;. A word is a sequence of morphs
and the morph probabilities are assumed to be in-
dependent, se(a, ) = mims...my and the

Using types or tokens for training the model can
be seen as modifying the coumtswith a function
f(), wheref(cj) = 1 corresponds to training on
types andf(c;) = c¢; on tokens. Generally, this
results in thewveighted log-likelihood

Dy | probability of the analysis is

D fle)n) P(A=a,W =w;|0), (6) a

! ’ P(A=al0) =[] P(M =m;|6), (7)
where f() maps the counts into non-negative val- =1

ues. In other words, if we assume that each/vheremi:s are the morphs in the analysis
instance of a word form is generated indepen- The training algorithms of Morfessor apply the
dently, the modified frequency(c;) of that form  |ielinood function only conditioned on the analy-
becomes a proportional weight in the likelihood gag of the observed words P(Dyw | A, 8). As
function.  Thus, when training on tokens, thepefore, an instance oA for the j:th word is a se-
model aims to give higher probabilities to frequentqu(_:.nce of morphsu; = (mj1,. .., mj, ). Fur-
word types compared to rare word types. thermore, each word is assumed to have only a
22 Morfessor Basdine single analysis. For a know, the weighted log-

_ likelihood (Eq. 6) is thus
Morfessor Baseline (Creutz and Lagus, 2002;

Creutz and Lagus, 2005; Creutz and Lagus, 2007) 1n P(Dw | A =a,8)

is a method for morphological segmentation: The Dy | lay]

analysis of a word is a list of its non-overlapping _ ] o

segments, morphs. The method is inspired by the ; fe) ;lnP(M mjil6). (8

Minimum Description Length (MDL) principle

by Rissanen (1978) and tries to encode the word&herem;; is thei:th morph in wordw;. The num-

in the training data with a lexicon of morphs. It ap- ber of morphs in the analysif;|, has a large ef-

plies the two-part coding variant of MDL, which fect on the probability of the word. Therefore the

is equivalent to MAP estimation using a particu-model prefers using a small number of morphs for

lar type of prior. The MDL derived priors prevent words with a largef(c;).

overfitting by assigning a low prior probability to  The training algorithm of Morfessor Baseline

models with a large number of parameters. minimizes the cost functionL(0,a, Dy ) =
Following the notation by Kohonen et al. —In P(6) — In P(Dyw |a,0) by testing local

(2010), the model parametefsare: changes t@. The training algorithm is described,



e.g., by Creutz and Lagus (2005). In the semi3.1 Dataand evaluation
supervised weighting scheme by Kohonen et al

L ) ) We used the English and Finnish data sets from
(2010), the log-likelihood is weighted by a posi- Competition 1 of Morpho Challenge 2009 (Ku-

tive constanty, which is optimized for the chosen fimo et al., 2010b). These languages were cho-
evaluation measure using a development set. Aftegen because of their different morphological char-

]E_raénlr;]g, a \ﬁter:m-llk? al_gofnthm Cﬁm bedapplled tho acteristics. Both sets were extracted from a three
Ind the optimal analysis for each word given t €million sentence corpora. For English, there were

model _parameters; a_degt_:ription of the procedurgl 185, 728 word tokens an@s4, 903 word types.
is provided, e.g., by Virpioja et al. (2010). For Finnish, there wer&6, 207, 308 tokens and
2,206, 719 types. The complexity of Finnish mor-
phology is indicated by almost ten times larger
The goal of our experiments is to find an opti- number of word types than for English, while the
mal function f() for the weighted log-likelihood numbers of word tokens are much closer.
in Eq. 6. We consider the following set of func- e applied also the evaluation method of the
tions for the counts;: Morpho Challenge competitioh. The results of
the morphological segmentation were compared
(9) to alinguistic gold standard analysis for a set of
word types. Precision measures whether the word
types that share morphemes in the proposed analy-
sis have common morphemes also in the gold stan-
dard. Recall is calculated analogously by swap-
ping the roles proposed and gold standard analy-
ses. The final score is the F-measure, the harmonic

3 Experiments

0 if e <T
fla) = { ag(z) otherwise

If « = 1 andg(z) = 1 we train on word types
(lexicon); if « = 1 andg(z) = z, we train on
tokens (corpus). In addition, we test a logarith-
mic functiong(z) = In(1 + x). The frequency
threshold7” can be used for pruning rare words

from the training data. The global weightmod- mea_m qf precision and recall.
ifies the balance between the likelihood and the FiNnishgold standard was based on the morpho-

model prior as in Kohonen et al. (2010). Bdth logical ar_1a|yzer FINTWOL from Lingsoft, In.c., .
o and the function type(x) can be optimized for that applies the two-level model by Koskenniemi

a given data set and a target measure. To ensuf¢983)- English gold standard was from the

that we do not overlearn the data set for which we-ELEX database. We applied the same final test

optimize the function parameters, we use a sepactS &S in Morpho Challenge, based 1ih 000
rate test set for the final evaluations. English word forms anc00,000 Finnish word

We use Morfessor Baseline in the experimentsfo'Ms. For tuning the parameters of the weight

as it is fast enough for training a large number offunction, we sampled a development set that did

models even with large training corpora. Our im-not contain any of the_ words in the final test set.
plementation was based on the Morfessor 1.0 soft! € development set included000 word forms
ware (Creutz and Lagus, 2005). The format of thd®" ENglish and, 000 word forms for Finnish.
input data is a list of words and their counts, so,
. o L - 3.2 Results

the function f() is, in principle, trivial to apply
as preprocessing. However, because the MorfesVe trained Morfessor Baseline with the word fre-
sor prior assumes integer counts, the parameter quencies set according to the three different func-
was implemented as a global weight for the like-tion types. For each type, we optimized the cutoff
lihood. Otherwise, we modified the training dataparametef’ and the weight parametarby choos-
according to the respective function before training values that gave the optimal F-measure on the
ing. The result of the logarithmic function was development set. Whem = 1.0 and7' = 1, the
rounded to the nearest integer. We used the stafiesults correspond to those of the standard Mor-
dard training algorithm and implicit morph length fessor Baseline. First, we varied only one param-
and frequency priors. For words not present in theeter while the other one was fixed at one. Fig-
training data, we applied the Viterbi algorithm to ure 1 shows the results for English and Figure 2
find the best segmentation, allowing new morphs—; . ) , ,

ith the approximate cost of adding them into the Both the training data and evaluation scripts are available
wit Pp g from the Morpho Challenge 2009 web pagé:t p: / / www.
morph lexicon. ci s. hut.fi/norphochal | enge2009/



for Finnish using precision-recall curves. The bestions, they are best to be excluded. For the Finnish
results are in the top-right corner. In solid lines,data, the optimal frequency threshold was one for
« = 1 andT varied; in dashed lineg] = 1 and all three function types, so also the word forms oc-
« varied. When precision is high and recall is low, curring only once were useful for the algorithm. In
the algorithm undersegments. With the constanan agglutinative language, such as Finnish, many
function, either reducingv or increasing?l’ im-  valid inflected forms are very rare and therefore
proved recall at the expense of precision. In othepruning does not remove only noise. While our
words, pruning improves the results mostly byresults imply that it is better to use a smalter
preventing undersegmentation, not by removinghan to prune, pruning infrequent words may still
noise. With logarithmic or linear counts, increas-be useful in reducing computation time without
ing the frequency threshold did not improve recall,sacrificing much accuracy.
but there was no such problem with decreasging Table 7 shows the results on the final test set.
Especially for English, the linear counts did notAgain, using the word frequencies without opti-
provide as good results as the others. mizeda andT clearly increase the problem of un-
Next, we optimized the F-measure for eachdersegmentation. In optimized cases, the results
function type by varying bot’ anda. Every &ré moreeven. Note tha_tunbalanced precision gnd
parameter combination was not computed, but w&ecall imply that the tuning of the parameters did
concentrated on the areas where the locally opti?0t completely succeed. For English, logarithmic
mal results were found. The results for English aré0Unts gave higher F-measure also for the test set,
presented in Tables 1-3 and the results for FinnisHUt t_he dlfference.to constant was not _statlstlcally
in Tables 4-6. If frequency information is useful Significant according to the Wilcoxon signed-rank
for the model, we should see an improvement irfest. Linear counts gave clearly the worst results
results for the linear and logarithmic function overPOth for precision and recall. For Finnish, loga-
the constant one when the weighand the thresh- rithmic counts did not give the improvement that
old T are optimal. While the linear function per- the dévelopment set results promised: constant
formed worse than the others even with the opti\Vas slightly but significantly better. However, the
mal weighting, the logarithmic function provided Slight undersegmentation indicates that it could be
small improvements over the constant function fofMProved by fine tuningv. With linear counts, the

both languages. F-measure was close, but still significantly lower.
The optimala: was the largest for the constant  Function Opt Pre Rec EF-m

function, smaller (English) or the same (Finnish) English

for the logarithmic function, and the smallest for ~constant no 76.13 48.9759.60

the linear function. Smallerr means that the logarithmic no 87.76 31.77 46.65

algorithm would undersegment more without the  |inear no 8493 12.00 21.03

weight. The weights for Finnish were smallerthan  ¢gnstant yes 62.04 6227 62.16
for English, which is explained by a larger number  |ogarithmic yes 57.85 67.6262.35

of word types in the training set. A possible rea- |inear yes 53.96 56.42 55.16
son for the samer = 0.01 for Finnish when us- Finnish
ing constant and logarithmic functions is that the ~gnstant no 8950 15.7026.72
most of the likelihood cost is anyway due to the  |ogarithmic no  91.24 11.95 21.13
word forms observed only once, and the logarith-  |inear no 9182 6.75 1257
mic function does not affect that. constant yes 53.77 45.1649.09
Regarding the cutoff paramet&r for English, logarithmic yes 57.87 42.06 48.72
the optimal frequency threshold was around 10— linear yes 48.86 47.37 48.10

20 for constant and logarithmic functions, but only

one for the linear function. A possible explanationTable 7: Precision (pre), recall (rec) and F-
is that rare words do not contain new morphologsmeasure (F-m) on the final test set with the differ-
ical information, as they typically are uncommonent function types for word frequencies. In opti-
nouns with no or only a single suffix. With the lin- mized cases (opt); and«a are selected according
ear function, they get a very low weight in any caseto the best F-measure for the development set.
and cause no problems, but with the other func-
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Figure 1: Precision-recall curves for English with constant (consgarithmic (log), and linear fre-
guency function types and varying function parametecs 7.

T\« 2 15 1.2 11 1 0.9 0.8 0.7 0.6
1 51.88 - - 60.64 60.73 6242 62.9563.46 62.65
2 - - - 64.14 64.97 64.30 - - -
3 - - - 64.27 64.60 63.81 - - -
4 - - - 64.26 64.30 64.30 - - -
5 - - - 64.53 64.55 63.85 - - -
10 - 63.88 64.68 6530 64.58 - - - -
20 62.58 64.53 6529 64.38 63.42 - - - -
50 61.65 6313 62.68 62.31 60.70 - - - -

Table 1: Optimization results for English witf{z) = 1. Local optimum for each rowl() is written in
boldface. The overall best results is underlined.

T\« 1 0.5 0.4 0.3 0.2 0.1
1 4750 5785 60.81 62.7663.88 61.10
2 47.66 58.47 - 63.56 63.80 60.79
3 4791 60.79 - 63.66 64.12 59.66
4 47.68 60.81 - 63.18 64.53 59.52
5 47.32 - - 63.44 6447 59.10
10 47.58 - 62.65 6487 64.75 57.61
20 43.64 - - 64.70 6557 56.86
50 36.05 - - 62.40 63.93 54.03

Table 2: Optimization results for English witl{z) = In(1 + z).

T\« 1 0.1 0.05 0.02 0.01 0.005 0.001

1 21.75 4473 5110 56.6957.92 57.19 47.45
2 21.24 - - 56.31 57.75 57.07 -

5 21.67 - - 55.98 57.82 57.03 -

10 27.48 - - 56.11 57.69 56.40 -

20 33.01 - - 55.67 57.50 - -

50 39.09 - - - 57.10 - -

100 | 40.64 - - - - - -

200 | 42.19 - - - - - -

500 | 40.60 - - - - - -

Table 3: Optimization results for English witliz) = «.
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0

and linear fre-

guency function types and varying function parametecs 7.

T\« 1.2 11 1.0 0.5 0.2 0.1 0.05 0.02 0.01 0.005
1 - - 25.83 30.74 - 40.64 4435 46.9147.27 46.40
2 - - 31.96 36.86 - 45.07 46.96 46.80 45.35 -
5 - - 37.75 41.89 46.15 4723 46.83 - 39.10 -
10 - - 40.92 44.37 46.93 46.61 - - 33.85 -
20 - - 43.49 46.15 47.04 45.88 - - - -
50 - - 45.75 46.82 45.70 42.17 - - - -
100 - 46.29 46.65 46.50 - - - - - -
200 | 46.19 4645 46.43 - - - - - - -
500 | 44.69 4482 4454 - - - - - - -

1000 | 42.63 4317 42.92 - - - - - - -

Table 4: Optimization results for Finnish wig{z)

= 1. Local optimum for each rowl() is written in

boldface. The overall best results is underlined.

T\a | 1.0 0.5 0.2 0.05 0.02 0.01 0.005
1 20.20 - - - 4581 47.60 47.02
2 21.62 29.81 36.74 44.43 46.9647.26 46.28
5 24.66 - - 46.03 46.97 46.28 -
10 26.11 - - - 46.70 - -
20 27.80 - - - - - -
50 24.03 - - - - - -

Table 5: Optimization results for Finnish withfz) = In(1 + x).

T\« 1.0 0.1 0.01 0.005 0.001 0.0005

1 12.21 - 41.44 4412 46.30 44.73

2 11.94 28.80 41.78 43.974594 44.36

5 14.10 - 4191 44.13 45.50 -

10 18.59 - 42.06 44.01 - -

20 22.73 - 42.08 - - -

50 25.55 - - - - -

100 | 25.97 - - - - -

200 | 24.73 - - - - -

500 | 21.21 - - - - -

Table 6: Optimization results for Finnish witi{z) = z.



4 Conclusions Mathias Creutz and Krista Lagus. 2007. Unsuper-

o vised models for morpheme segmentation and mor-
We showed that for probabilistic models, where phology learning ACM Transactions on Speech and

word forms are generated independently, the word Language Processing, 4(1), January.

frequency _aCtS as a _relative Weight in the IikeIi'Sharon Goldwater, Tom Griffiths, and Mark Johnson.
hood function, changing how important the prob- 2006. Interpolating between types and tokens by es-
abilities of the forms are to the likelihood. In the timating power-law generators. Auvancesin Neu-
case of Morfessor Baseline, words with a large rel- '@ Information Processing Systems 18, pages 459
. . . 466. MIT Press, Cambridge, MA.
ative weight are segmented less, and vice versa.
In the experiments, we trained Morfessor Baseline@skar Kohonen, Sami Virpioja, and Krista Lagus.
using three types of functions—constant, logarith- 2010-h ISeml-ISl;Def;/ézed |e?rtl;lngl?g I\‘jl%';tc.ate'}at"’e
; : . : morphology. InProceedings of the ing o
mic, and linear—for the corpus frequer_lmes of the the ACL Special Interest Group on Computational
words. Cor_1$tant corresponds to learning on V\.IOI’.d Mor phology and Phonology, pages 7886, Uppsala,
types and linear on tokens, whereas logarithmic is Sweden, July.
between them. To overcome the model’s tendency. I
¢ d ¢ d a likelihood weiaht %mmo Koskenniemi. 1983Two-level morphology: A
an ersegmen » WE USEd a lixelihood weignt op- general computational model for word-form recog-
timized to give the best F-measure on a develop- nition and production. Ph.D. thesis, University of
ment set. While earlier results implied that learn-  Helsinki.

ing on word types is the best option for this mOdeIMikko Kurimo, Sami Virpioja, and Ville T. Turunen
when evaluated against linguistic gold standards, (gds). 2010a. Proceedings of the Morpho Chal-
we showed that results of the same quality can also lenge 2010 workshop. Technical Report TKK-ICS-
be obtained with logarithmic counts. In contrast, R37, Aalto University School of Science and Tech-
using corpus frequencies in a linear manner does g(c):lig%’eDEeSpSc:gmli?r:I:;dlnfSOerg;:%Obne?nd Computer
not work as well. We also optimized a pruning ’ ' ’ '

threshold for the infrequent words. Pruning is sim-Mikko Kurimo, Sami Virpioja, Ville T. Turunen,

le and fast. but appears to work well onlv with the Graeme W. Blackwood, and William Byrne. 2010b.
Eonstant fur;ction [t)}?pe y Overview and results of Morpho Challenge 2009.

In Multilingual Information Access Evaluation 1.
Text Retrieval Experiments, volume 6241 ofLec-
ture Notes in Computer Science, pages 578-597.
. Springer.
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