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a b s t r a c t

In this paper, we consider an extension of independent component analysis (ICA) and blind source

separation (BSS) techniques to several related data sets. The goal is to separate mutually dependent and

independent components or source signals from these data sets. This problem is important in practice,

because such data sets are common in real-world applications. We propose a new method which first

independent and dependent components. For two data sets, this reduces to using standard CCA. Any

ICA or BSS method can then be used for final separation of these components. The proposed method

performs well for difficult synthetic data sets containing different types of source signals. It provides

interesting and meaningful results for real-world robot grasping data and functional magnetic

resonance imaging (fMRI) data. The method is straightforward to implement and computationally

not too demanding. The proposed method clearly improves the separation results of several well-

known ICA and BSS methods compared with the situation in which CCA or generalized CCA is not used.

Not only are the signal-to-noise ratios of the separated sources often clearly higher, but our method

also helps these ICA and BSS methods to separate sources that they alone cannot separate.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Independent component analysis (ICA) [1–4] is a well-known
technique for finding independent components or source signals
in a blind (unsupervised) manner from data. While basic ICA still
assumes a simple linear data model, its proper estimation
requires higher-order statistics either directly or via nonlineari-
ties. ICA provides for practical data sets often much more mean-
ingful results (components) than standard linear techniques
based on second-order statistics such as principal component
analysis (PCA). In addition to ICA there exist several other
techniques for blind source separation (BSS) which make some-
what different assumptions compared with ICA. These techniques
will be discussed briefly in the next subsection.

ICA and BSS techniques have already many applications in
different areas, and they have been extended into many directions
[1–4]. In this paper, we consider an extension of ICA and BSS
techniques to several related data sets. The goal is to separate
mutually dependent and independent components or source
signals from these data sets. This problem is important in
practice, because such data sets are common in real-world
ll rights reserved.

x: þ358 9 4702 3277.

en).
applications. We propose a new method which first uses a
generalization of standard canonical correlation analysis (CCA)
for detecting subspaces of independent and dependent compo-
nents. For two data sets, this reduces to using standard CCA. Any
ICA or BSS method can then be used for final separation of these
components. The proposed method performs well for difficult
synthetic data sets containing different types of source signals.
It provides interesting and meaningful results for real-world
robot grasping data and functional magnetic resonance imaging
(fMRI) data. The method is straightforward to implement and
computationally not too demanding. The proposed method clearly
improves the separation results of several well-known ICA and BSS
methods compared with the situation in which CCA or generalized
CCA is not used. Not only are the signal-to-noise ratios of the
separated sources often clearly higher, but our method also helps
these ICA and BSS methods to separate sources that they alone
cannot separate.
1.1. Various ICA and BSS techniques

In this subsection, we briefly discuss standard ICA and some
alternative blind source separation techniques. Methods belong-
ing to these categories are later on used in our experiments
for post-processing the intermediate results given CCA and its
generalization.
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The data model used in standard linear ICA is simply

xðnÞ ¼ AsðnÞ ¼
Xm
i ¼ 1

siðnÞai ð1Þ

Thus each data vector xðnÞ is expressed as a linear combination
of independent components or source signals si(n), i¼ 1,2, . . . ,m,
which multiply the respective constant basis vectors ai. The
source vector sðnÞ ¼ ½s1ðnÞ,s2ðnÞ, . . . ,smðnÞ�

T contains the m source
signals corresponding to the n:th data vector xðnÞ, and the mixing
matrix A¼ ½a1,a2, . . . ,am� the basis vectors ai. They are in general
linearly independent but non-orthogonal. They depend on the
available data set X¼ ½xð1Þ, . . . ,xðNxÞ� where Nx is the number of
data vectors and n¼ 1,2, . . . ,Nx, but once they have been esti-
mated, they are the same for all the data vectors in X. The index n

may denote discrete time, position (especially in digital images),
or just the number of the sample vector. For simplicity, we
assume here that both the data vector xðnÞ ¼ ½x1ðnÞ,x2ðnÞ,
. . . ,xmðnÞ�

T and the source vector sðnÞ are zero mean m-vectors,
and that the mixing matrix A is a full-rank constant m�m matrix.

In standard linear ICA, the index n of the data vectors and
source signals is not important, because the data vectors xðnÞ can
be processed in arbitrary order and the results of ICA still remain
the same. This is the situation if the data vectors are just samples
from some multivariate statistical distribution. However, the data
vectors xðnÞ are often subsequent equispaced samples from a
vector-valued time series which is temporally correlated (non-
white). Then the index n corresponds to discrete time instant tn.
In this case, the index n is important, because subsequent data
vectors . . . ,xðn�1Þ,xðnÞ,xðnþ1Þ, . . . contain additional temporal
information which should be utilized for getting optimal results.
Standard ICA can be applied to such time series, too, but it is
suboptimal because it does not utilize this additional information.
Alternative methods have been developed for extracting the
source signals or independent components in such cases. They
usually utilize either temporal autocorrelations directly, forming
another important group of BSS methods, or in the third major
group of methods smoothly changing nonstationarity of variance;
see for example [1–3,5].

The application domains and assumptions made in these three
major groups of BSS technique are different [1,5]. In standard ICA,
it is assumed that all the independent components except for
possibly one have non-Gaussian distributions and are mutually
statistically independent [1,6]. Then standard ICA methods are
able to separate their waveforms, leaving however the order, sign,
and scaling of the separated components ambiguous. The scaling
indeterminacy is usually fixed by normalizing the variances of the
separated independent components to unity. The most widely
used standard ICA method is currently FastICA [1,7] because of its
efficient implementation and fast convergence. Therefore, it can
be applied to higher dimensional ICA problems, too. We have
used in our experiments the freely downloadable FastICA Matlab
software package [8]. Another popular ICA method is the adaptive
neural natural gradient method [1,2], which however converges
slowly and requires knowledge or estimation of the type of the
source signals or independent components. Super-Gaussian and
sub-Gaussian sources require different nonlinearities in this
method.

On the other hand, methods based on temporal autocorrela-
tions of the source signals require that different sources have
at least some different non-zero autocorrelations which they use.
Contrary to standard ICA, they can then separate even Gaussian
sources, but on the other hand, they fail if such temporal
correlations do not exist, while standard ICA can even in this
case separate non-Gaussian sources. Examples of methods based
on temporal autocorrelations are the SOBI method [9] and the
TDSEP method [10]. A recent review of such methods containing
many more references is [11].

In the third group of BSS methods, it is assumed that the
source signals have nonstationary smoothly changing variances.
Such methods have been introduced in [12,13]. If the assumptions
made in them are valid, they can separate even Gaussian
temporally uncorrelated (white) sources that ICA and temporal
autocorrelation methods are not able to handle appropriately.
A fourth class of BSS methods employs time–frequency represen-
tations (see in [3, Chapter 11]), but we shall not discuss them in
this paper.

Some attempts have been made to combine different types of
BSS methods so that they would be able to separate wider classes
of source signals. In particular, methods taking into account both
non-Gaussianity used in ICA and temporal correlations have been
considered by several authors. Such methods are the JADETD

method introduced in [14], the complexity pursuit method [15],
as well as the joint cumulant and correlation-based separation
method in [16], and thinICA [17]. Recently, Tichavsky et al. [18]
introduced a new technique of this type which they claim to
outperform other such methods at least in their simulations.

In [19], Hyvärinen developed an approximate method which
tries to utilize both higher-order statistics, temporal autocorrela-
tions, and nonstationarity of variances. This method seems to be
able to separate different types of sources, but it is limited by the
facts that it is approximative and uses only the autocorrelation
coefficient corresponding to a single time lag equal to 1, as
pointed out in [18]. We have used this method, called UniBSS in
its Matlab code [20], in addition to FastICA in our experiments.

1.2. An outline of our method

In this paper, we consider a generalization in which one tries
to find out mutually dependent and independent components
from different but related data sets. Considering first two such
data sets, data vectors yðnÞ of dimension my belonging to the
related data set Y¼ ½yð1Þ, . . . ,yðNyÞ� are assumed to obey a similar
basic linear ICA data model

yðnÞ ¼ BrðnÞ ¼
Xmy

i ¼ 1

riðnÞbi ð2Þ

as the data vectors xðnÞ in Eq. (1). The assumptions that we make
on the my-dimensional basis vectors bi and source signals ri(n) are
exactly the same as those made on the basis vectors ai and source
signals si(n) in context with Eq. (1). More generally, we have M

such data sets X1,X2, . . . ,XM . The dimensionalities mi of the data
vectors belonging to these data sets can be different, but the
number of data vectors N in them must be the same for CCA and
its generalizations. If this is not the case, obviously we select N

equal to the minimum number of data vectors in these data sets.
The respective data vectors in each data set should also corre-
spond to each other, for example being taken at the same time
instant.

CCA, explained mathematically in the next Section 2, is an old
technique [21] which uses second-order statistics for measuring
the linear relationships (correlations) between two data sets.
However, it has been recently applied by several authors to
different real-world data analysis and signal processing problems.
This is because CCA often performs quite well in practice, and
using higher-order statistics and nonlinear techniques do not
necessarily improve the results markedly.

In our method, we first apply a generalization of CCA to find
subspaces of dependent and independent sources in the data sets
X1,X2, . . . ,XM . The data sets are then projected onto these sub-
spaces. After this, any suitable ICA or BSS method can be used
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for final separation. Our method is described in more detail in
Section 3.

1.3. Related work

The extension of ICA and BSS for separating dependent and
independent source signals from two related data sets has not been
studied as much as many other extensions of ICA and BSS men-
tioned above, but some research on this topic has been carried out.

The first author of this paper tried to generalize cross-
correlation analysis based on singular value decomposition in
ICA style to take into account higher-order statistics in [22].
In this paper, we modify that method so that its performance
is clearly improved, and a theoretical weakness of this earlier
method vanishes.

In [23], Ylipaavalniemi et al. have carried out their analysis of
biomedical fMRI sources in reverse order compared with our
method. They first apply standard ICA to the two related data sets
separately. Then they connect dependent sources (independent
components) in these data sets using CCA. The method performs
pretty well but it has a theoretical weakness: ICA assumes that
the sources are non-Gaussian but CCA can be derived from a
probabilistic latent variable model where all the involved random
variables (vectors) are Gaussian [24]. The authors of the paper
[23] have themselves noticed this theoretical weakness and
improved their method in two later papers. In [25], they apply
to the results first provided by ICA a nonparametric CCA type
model where Gaussian distributions are not assumed, getting
improved results. In another more theoretical paper [26] the
authors show on a general level how to apply a probabilistic CCA
type model without assuming Gaussian distributions, using
instead of them any noise model belonging to the exponential
family of probability distributions.

In [27], the authors use standard CCA and its extension to
multiple data sets for the analysis of medical imaging data,
discussing the advantages of such approaches and comparing
their performances to standard ICA that has been successfully
applied to this type of problems. This tutorial review is largely
based on the research papers [28,29].

Koetsier et al. have presented in [30] an unsupervised neural
algorithm called exploratory correlation analysis for the extrac-
tion of common features in multiple data sources. This method is
closely related with canonical correlation analysis. In an earlier
paper [31] Lai and Fyfe extended their neural implementation of
CCA to nonlinear and kernel CCA with application to blind source
separation.

Gutmann and Hyvärinen [32] have recently introduced a
method based on nonstationary variances for finding dependent
sources from related data sets. Their method as well as most other
methods assume that in each of these data sets there is one
source signal that is dependent on one source signal in the other
data sets, while these sources are independent of all other
sources.

Akaho et al. [33] have considered an ICA style generalization of
canonical correlation analysis which they call multimodal inde-
pendent component analysis. In their method, standard linear ICA
is first applied to both data sets x and y separately. Then the
corresponding dependent components of the two ICA expansions
are identified using a natural gradient type learning rule.
2. Canonical correlation analysis (CCA)

CCA [34,35] measures the linear relationships between two
multidimensional data sets X and Y using their second-order
statistics, that is, autocovariances and cross-covariances. It finds
two bases, one for both X and Y, that are optimal with respect to
correlations and it also finds the corresponding correlations. In
other words, CCA finds the two bases in which the cross-
correlation matrix between the data sets X and Y becomes
diagonal and the correlations of the diagonal are maximized. In
CCA we need not assume that the data vectors xAX and yAY
obey the linear models (1) and (2), respectively (even though they
can always be represented by using such linear expansions). The
dimensions mx and my of the respective vectors x and y can be
different, but they are assumed to have zero means. Furthermore,
the data sets X and Y must have equal number of vectors.
An important property of canonical correlations is that they are
invariant to affine transformations of the variables, which does
not hold for ordinary correlation analysis [35].

Consider first the case where only one pair of basis vectors is
sought, namely the ones corresponding to the largest canonical
correlation. For this, consider the linear combinations x¼ xT wx

and y¼ yT wy of the random vectors xAX and yAY. The function
to be maximized in CCA is the normalized correlation coefficient
r between these two projections

r¼ Efxygffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efx2gEfy2g

p ¼
wT

xCxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

xCxxwxwT
yCyywy

q ð3Þ

where Cxy ¼ EfxyT g is the cross-covariance matrix of x and y, and
Cxx ¼ EfxxT g as well as Cyy ¼ EfyyT g are their autocovariance
matrices. The maximum of r with respect to the weight vectors
wx and wy defines the maximum canonical correlation.

The i:th canonical correlation is defined for x by the weight
vector wxi : xi ¼ xT wxi, and for y by wyi : yi ¼ yT wyi. Different
canonical correlations are uncorrelated: Efxixjg ¼ Efyiyjg ¼

Efxiyjg ¼ 0. It turns out that these canonical correlations can be
computed by solving the eigenvector [34,35]

C�1
xx CxyC�1

yy Cyxwx ¼ r2wx

C�1
yy CyxC�1

xx Cxywy ¼ r2wy ð4Þ

where Cyx ¼ EfyxTg. The eigenvalues r2 are squared canonical
correlations and the eigenvectors wx and wy are normalized
canonical correlation basis vectors. Only non-zero solutions to
these equations are usually of interest, and their number is equal
to at most the smaller one of the dimensions of the vectors x
and y.

Eq. (4) becomes simpler if the data vectors x and y are first
whitened [1], which is the usual practice in many ICA algorithms,
for example in FastICA. After prewhitening, both Cxx and Cyy

become unit matrices, and noting that Cyx ¼ CT
xy Eq. (4) reduces to

CxyCT
xywx ¼ r2wx

CyxCT
yxwy ¼ r2wy ð5Þ

But these are just the defining equations for the singular value
decomposition (SVD) [36] of the cross-covariance matrix Cxy

Cxy ¼URVT
¼
XL

i ¼ 1

riuiv
T
i ð6Þ

There U and V are orthogonal square matrices (UT U¼ I, VT V¼ I)
containing the singular vectors ui and vi. In our case, these
singular vectors are the basis vectors providing canonical correla-
tions. In general, the dimensions of the matrices U and V are
respectively mx �mx and my �my. Consequently, the dimensions
mx and my of the singular vectors ui and vi are also generally
different, and the same as the dimensions of the data vectors x
and y, respectively. The pseudodiagonal mx �my matrix
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R¼
D 0

0 0

� �
ð7Þ

consists of a diagonal matrix D containing the non-zero singular
values appended with zero matrices so that the matrix R is
compatible with the different dimensions of x and y. These non-
zero singular values are just the non-zero canonical correlations.
If the cross-covariance matrix Cxy has full rank, their number L is
the smaller one of the dimensions mx and my of the data vectors x
and y.
3. Our method for two related data sets

We first preprocess the data vectors xAX and yAY following
the models (1) and (2) by subtracting their mean vectors from
them if they are non-zero. After this, these data vectors are
whitened separately

vx ¼Vxx, vy ¼ Vyy ð8Þ

The whitening matrices Vx and Vy should not be confused with
the singular vector matrix V in (6). Whitening can be carried out
in many ways [1,2], typically standard principal component
analysis (PCA) is used to that end. That is, whitening is based on
the eigendecompositions of the autocovariance matrices Cxx and
Cyy . The whitening matrix for x is then

Vx ¼K�1=2E ð9Þ

where the columns of the matrix E contain the eigenvectors of
Cxx, and the diagonal matrix K contains the respective eigenva-
lues in the same order. The whitening matrix Vy for y is computed
quite similarly using the eigendecomposition of Cyy. After whiten-
ing, the cross-covariances (cross-correlations) of different compo-
nents of the whitened data vectors vx and vy are zero, while their
variances equal to 1. Thus whitening normalizes the data with
respect to its second-order statistics. When PCA in Eq. (9) is used
for whitening, it is also possible to compress the dimensionality of
the data and possibly filter out some noise by retaining in K only
the largest PCA eigenvalues and in E the corresponding principal
eigenvectors, but we have not used this option.

After whitening, we estimate the cross-covariance matrix Cvxvy

of the whitened data vectors vx and vy in standard manner

bCvxvy ¼
1

N

XN

t ¼ 1

vxðtÞv
T
yðtÞ ð10Þ

There N is the smaller of the numbers Nx and Ny of the data
vectors in the two data sets X and Y, respectively.

We then perform singular value decomposition of the esti-
mated cross-covariance matrix bCvxvy quite similarly as for Cxy in
Eq. (6). Inspecting the magnitudes of the singular values r̂ i in the
pseudodiagonal matrix R, we then divide the matrices U and V of
singular vectors into two submatrices

U¼ ½U1 U2�, V¼ ½V1 V2� ð11Þ

There U1 and V1 correspond to dependent components for which
the respective singular values are larger than the chosen thresh-
old value k, and U2 and V2 to the independent components for
which the respective singular values are smaller than k. Due to
the whitening, all the singular values r̂ i of the matrix (10) lie
between 0 and 1. In most of our experiments the threshold value
k¼ 0:5 was found to be suitable. The data are then projected
using these submatrices into subspaces corresponding to the
dependent and independent components by computing

UT
1X, UT

2X, VT
1Y, VT

2Y ð12Þ

where X¼ ½xð1Þ, . . . ,xðNxÞ� and Y¼ ½yð1Þ, . . . ,yðNyÞ�.
Finally, we apply any suitable ICA or BSS method separately to
each of these 4 projected data sets for separating the source
signals contained in these subspaces. It should be noted that we
include in the submatrices U2 and V2 also the singular vectors
corresponding to small or even zero singular values for being able
to separate all the sources in X and Y.

In the following, we present several somewhat intuitive and
heuristic justifications to the proposed method which anyway in
our opinion should largely explain its good performance. First, let
us denote the separating matrices after the whitening step in (8) by
WT

x for vx and respectively by WT
y for vy . A basic result in the theory

of ICA and BSS is that after whitening the separating matrices Wx

and Wy become orthogonal: WT
xWx ¼ I, WT

yWy ¼ I [1]. Thus

bs ¼WT
xVxx¼WT

xVxAs¼ PsDss ð13Þ

The vector bs on the left hand side contains the estimated sources.
A basic ambiguity in the blind ICA and BSS methods is that they
can appear in different order and have different scales than the
original sources [1]. This has been taken into account in Eq. (13)
by multiplying the source vector s on the right-hand side by a
diagonal scaling matrix Ds and a permutation matrix Ps, which
changes the order of the elements in the column vector Dss [37].

Assuming that there are as many linearly independent mix-
tures x and Wy as sources s, so that the mixing matrix A is a full-
rank square matrix, we get from the two last equations of (13)

A¼ ðWT
xVxÞ

�1PsDs ¼ V�1
x WxPsDs ð14Þ

due to the orthogonality of the matrix Wx. Quite similarly, we get
for the another mixing matrix B in (2)

B¼ ðWT
yVyÞ

�1PrDr ¼V�1
y WyPrDr ð15Þ

where Dr is the diagonal scaling matrix and Pr the permutation
matrix associated to the estimate br of the source vector r.

Consider now the cross-covariance matrix after whitening. It is

Cvxvy ¼ VxEfxyTgVT
y ¼VxAQBT VT

y ð16Þ

Here the matrix Q ¼ EfsrT g is a diagonal matrix, if the sources
signals in the source vectors s and r are pairwise dependent but
otherwise independent of each other. Inserting A and B from Eqs.
(14) and (15) into (16) yields

Cvxvy ¼ ðWxPsÞðDsQDT
r ÞðWyPrÞ

T
ð17Þ

But this is exactly the same type of expansion as the singular value
decomposition (6) of the whitened cross-covariance matrix Cvxvy .
First, WxPs is a product of an orthogonal matrix Wx and permuta-
tion matrix Ps, which here changes the order of the columns in the
matrix Wx [37]. Thus WxPs is still an orthogonal matrix having the
same column vectors as Wx but generally in different order. The
matrix WxPs corresponds to the orthogonal matrix U in (6), and
quite similarly the orthogonal matrix WyPr corresponds to the
orthogonal matrix V in (6). Finally, the matrix DsQDT

r is a product
of three diagonal matrices and hence a diagonal matrix which
corresponds to the diagonal matrix R in (6).

Thus on the assumptions made above the SVD of the whitened
cross-covariance matrix provides a solution that has the same
structure as the separating solution. Even though we cannot from
this result directly deduce that the SVD of the whitened cross-
covariance matrix (that is, CCA) would provide a separating solution,
this seems to hold in simple cases at least as shown by our
experiments. At least CCA when applied to the data sets X and Y
using (12) provides already partial separation, helping several ICA or
BSS methods to achieve clearly better results in difficult cases.

Another justification is that CCA, or SVD of whitened data
vectors, uses second-order statistics (cross-covariances) only for
separation, while standard ICA algorithms such as FastICA use for
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separation higher-order statistics only after the data has been
normalized with respect to their second-order statistics by
whitening them. Combining both second-order statistics and
higher-order statistics by first performing CCA and then post-
processing the results using a suitable ICA or BSS method can be
expected to provide better results than using solely second-order
or higher-statistics only for separation.

Our third justification is that dividing the separation problem
into subproblems using the matrices in (12) probably helps.
Solving two lower dimensional subproblems is usually easier
than solving a higher dimensional separation problem. And if
the mixtures are difficult to separate, consisting of several types of
sources which could be super-Gaussian, sub-Gaussian, Gaussian,
temporally correlated, or nonstationary sources, the complexity of
the sources and mixtures in the subproblems to be solved after
CCA may be reduced.

We can modify the SVD based method introduced above to
include higher-order statistics via nonlinearities by using instead
of the plain cross-covariance matrix Cvxvy ¼ EfvxvT

yg a generalized
cross-covariance matrix of the type

Gvxvy ¼ EffðvxÞv
T
yþvxfðvT

y Þg ð18Þ

where fðzÞ is a suitably chosen nonlinearity applied component-
wise to its argument vector z; we have tried fðzÞ ¼ tanhðzÞ
(suitably scaled). However, this modification did not have any
noticeable effect on the results in our experiments. The reason is
probably that ICA methods such as FastICA already use higher-
order statistics and nonlinearities for final separation.

But including in a similar manner temporal correlations into
the computations by using the generalized cross-covariance
matrix

Gvxvy ¼
XK

i ¼ 1

EfvxðnÞv
T
yðn�diÞþvxðnÞv

T
y ðnþdiÞg ð19Þ

where di, i¼ 1, . . . ,K are the chosen time delays, can sometimes
improve the separation results quite a lot. Recall that here n

corresponds to the discrete time instant tn, and n�di to the
discrete time instant tn�di

which is di equispaced samples before
to the sample n. In fact, in this way we can apply our method even
to a single data set X. The other related data set Y which we
originally do not have at our disposal is created by time delaying
the data set X : YðnÞ ¼Xðn�diÞ where the time delay di can be
positive or negative. In our experiments it turned out that better
results can be obtained by using two different time delays d1 ¼ 1
and d2 ¼ 2 in (19). Thus the original data set was correlated with
four time delayed data sets Xðn�2Þ, Xðn�1Þ, Xðnþ1Þ, and Xðnþ2Þ.

This method for a single data set is related with the method
proposed by Friman et al. [38]. They have successfully applied
CCA to blind separation of sources in a single data set XðnÞ by
using in CCA XðnÞ and Xðn�1Þ, even though in their method there
is no division into subspaces of dependent and independent
sources as in our method. Their method has been analyzed
theoretically in [39] where it is proved that it separates source
signals successfully.
1 The scaling factor 1=N can be omitted here.
4. Extension to several data sets

In a pioneering paper [40], Kettenring introduced and dis-
cussed five different generalizations of standard CCA to three or
more data sets, albeit only two of them were completely new.
These generalizations are based on somewhat different optimiza-
tion criteria and orthogonality constraints, but seem in practical
experiments to yield pretty similar results. The most popular of
these criteria is so-called maximum variance generalization of
CCA [40,41]. It can be optimized and the respective canonical
vectors estimated using the procedure described in [40,41]. This
optimization method is, however, computationally somewhat
complicated. It first requires computation of the singular value
decompositions of all the M data sets Xk, k¼1,y,M. From them,
an L� L matrix is formed where

L¼
XM
k ¼ 1

mk ð20Þ

is the sum of the dimensionalities mk of the data vectors in the
sets Xk, k¼1,y,M. The desired generalized canonical vectors are
then computed from the eigenvectors of this L� L matrix.

We do not discuss this procedure in more detail because an
easier solution is available. Via, Santamaria, and Perez have
considered in [41] a generalization of CCA to several data sets
within a least-squares regression framework, and shown that it is
equivalent to the maximum variance generalization. Their com-
putational method does not require singular value decomposi-
tions of the data sets. In the following, we present and use this
method as a part of our method.

Assume that we have at our disposal M data sets Xk, k¼1,y,M
having the same number N of data vectors. The data vectors
appear as column vectors in these data sets, and their dimension-
alities mk are in general different for each set Xk. Denote the
successive (generalized) canonical vectors of the data set Xk by
hðiÞk and the respective canonical variables by zðiÞk ¼XT

k hðiÞk . The
estimated cross-correlation matrices1 are denoted by Ckl ¼XkXT

l .
The least-squares type generalization of CCA can then be

formulated as the problem of sequentially maximizing the gen-
eralized canonical correlation

rðiÞ ¼ 1

M

XM
k ¼ 1

rðiÞk ð21Þ

where

rðiÞk ¼
1

M�1

XM
l ¼ 1,lak

rðiÞkl ð22Þ

and rðiÞkl ¼ hðiÞTk Cklh
ðiÞ
l . In this case, the energy constraint which is

needed for avoiding trivial solution is [41]

1

M

XM
k ¼ 1

hðiÞTk CkkhðiÞk ¼ 1 ð23Þ

The orthogonality constraints are for ia j

zðiÞT zðjÞ ¼ 0 ð24Þ

zðiÞ ¼
1

M

XM
k ¼ 1

zðiÞk ð25Þ

This least-squares generalization of CCA can be rewritten as a
function of distances. For extracting the i:th eigenvector, the
generalized CCA problem consists of minimizing with respect to
the M canonical vectors hðiÞk the cost function

JðiÞ ¼
1

2MðM�1Þ

XM
k,l ¼ 1

JXkhðiÞk �Xlh
ðiÞ
l J2

¼
1

M

XM
k ¼ 1

JzðiÞk J2
�rðiÞ ð26Þ

subject to the constraints (23) and (24), which implies JðiÞ ¼ 1�rðiÞ.
The solution of this generalized CCA problem can be obtained

by using the method of Lagrange multipliers [41]. This leads to
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the generalized eigenvector problem

1

M�1
ðC�DÞhðiÞ ¼ rðiÞDhðiÞ ð27Þ

where

hðiÞ ¼ ½hðiÞT1 ,hðiÞT2 , . . . ,hðiÞTM �
T ð28Þ

is a ‘‘supervector’’ formed by stacking the i:th canonical vectors of
the M data sets Xk, k¼1,y,M. The respective block matrices are

C¼

C11 . . . C1M

^ & ^

CM1 . . . CMM

2
64

3
75 ð29Þ

D¼

C11 . . . 0

^ & ^

0 . . . CMM

2
64

3
75 ð30Þ

Thus D is an L� L block diagonal matrix whose diagonal blocks are
the autocorrelation matrices Cii, i¼1,y,M, of the M data sets. The
matrix C�D is an L� L block off-diagonal matrix which contains all
the cross-correlation matrices Ckl, ka l, of the M data sets but not
their autocorrelation matrices. The solutions for this least-squares
or maximum variance generalization of CCA are obtained as the
eigenvectors associated with the largest eigenvalues of (27). These
eigenvectors can be computed using standard numerical methods,
or alternatively using a deflation type neural recursive least-
squares algorithm introduced and discussed in [41].

A couple of notes are in order here. First, Eq. (4) defining
standard CCA for two data sets can be written in the form (27)
after some manipulation, see [35,41]. Then in (27) hðiÞ ¼
½wT

xi,w
T
yi�

T . If we denote the matrix on the left-hand side of (27)
by O (off-diagonal), (27) is equivalent to the non-symmetric
eigenproblem

D�1OhðiÞ ¼ rðiÞhðiÞ ð31Þ

which could in principle have complex-valued eigenvectors and -
values. However, Eq. (31) can be written as

O1=2D�1O1=2
ðO1=2hðiÞÞ ¼ rðiÞðO1=2hðiÞÞ ð32Þ

which is a symmetric eigenproblem for the eigenvector O1=2hðiÞ.
Hence the eigenvalues and -vectors of (27) are real-valued.2

Our method for M related data sets Xk, k¼1,y,M proceeds
now as follows. We first estimate all the cross-correlation
matrices Ckl, where k,l¼ 1, . . . ,M, similarly as in (10) and form
then estimates of the matrices C and D. We then compute the
d principal generalized eigenvectors hð1Þ, . . . ,hðdÞ, corresponding
to the d largest eigenvalues from (27) or (31). Here
drminðm1, . . . ,mMÞ. From these stacked eigenvectors we get the
vectors hð1Þk , . . . ,hðdÞk corresponding to each data set Xk. We then
orthonormalize these vectors, yielding vectors gðiÞk , i¼1,y,d, and
orthogonal projection operator

PD,k ¼ ½g
ð1Þ
k , . . . ,gðdÞk � ð33Þ

onto the subspace spanned by them, corresponding to the
dependent components in the data set Xk. The data sets are then
mapped to these basis vectors

PT
D,kXk, k¼ 1, . . . ,M ð34Þ

and the dependent components (sources) of each data set are
found by applying any suitable ICA or BSS method to the
projected data sets (34).
2 This presumes formally that the matrix O1=2 exists. In practice, these

eigenvalues and -vectors are always real-valued.
A question now arises how to estimate the independent
components (sources) in each data set. A first idea would be to
use the generalized eigenvectors corresponding to the smallest
eigenvalues in a similar manner as above. However, if we have for
example three data sets X1, X2, and X3 of data vectors having
respectively the dimensionalities m1 ¼ 5, m2 ¼ 4, and m3 ¼ 6,
L¼15 and Eq. (31) has 15 stacked eigenvectors hðiÞ, i¼ 1, . . . ,15.
From them we get 15 vectors hðiÞk for each data set Xk. These
vectors are clearly linearly dependent.

Therefore, a better solution is to construct a subspace which is
orthogonal to the subspace defined by the projection operator PD,k

in (33) for each data set Xk. An orthonormal basis for this
subspace can be computed for example by taking mk�d random
vectors of dimension mk and orthonormalizing them against the d

vectors gðiÞk in (33) and each other. The resulting vectors are used
to define a projection operator

PI,k ¼ ½g
ðdþ1Þ
k , . . . ,gðmkÞ

k � ð35Þ

corresponding to the independent components in Xk. The data are
then mapped onto these subspaces

PT
I,kXk, k¼ 1, . . . ,M ð36Þ

and the independent components are estimated by applying any
suitable ICA or BSS method to the projected data sets (36).

Mathematical analysis of our method in the case of three or
more data sets seems to be quite difficult, but the method is
justified by good experimental results.
5. Experimental results

5.1. Simulated data, two related data sets

We have made experiments with both synthetically generated
and real-world data sets. In experiments with synthetically
generated data, the true sources are known and their mixtures
are in our experiments usually created by mixing the sources
synthetically using random numbers as mixture coefficients.
Because the true source signals are known, it is possible to assess
the performance of the methods using a suitable separability
criterion. For real-world data, the true sources are usually
unknown, and the results can be assessed qualitatively only.

In the first series of experiments described here, we used
source signals which are difficult to separate. They have been
defined in the Matlab code UniBSS.m [20] and explained in the
respective paper [19]. There are a total of six source signals which
are all stochastic, containing at least some random component.
Such sources are more appropriate than deterministic sources, for
instance sinusoidal signals, which are often used to illustrate the
separation results of an ICA or BSS method, but visual inspection
of the quality of the separation results is more difficult for them.
The four first sources are generated using a first-order autore-
gressive model so that the two first of them are super-Gaussian
and the third and fourth source are Gaussian. Furthermore, the
first and third sources had identical temporal autocovariances,
and similarly the second and fourth sources. The fifth and sixth
sources have smoothly changing variances.

These six sources have been purposely designed so that
standard ICA methods such as FastICA or the natural gradient
method [2,1] based on non-Gaussianity and higher-order statis-
tics are able to separate the two first sources only. Methods based
on temporal statistics such as [9,10] are not able to separate any
of them because there is no source with a unique temporal
autocovariance sequence. Methods utilizing smoothly changing
variances such as [12,13] are able to separate only the fifth
and sixth sources. Methods combining temporal correlations
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and non-Gaussianity [15,14] would be able to separate the four
first sources. Only the approximative method introduced in [19]
could separate all these six sources.

We picked the first three sources and the fifth source from the
UniBSS.m code [20] to the first data set X. One statistical
realization of these sources is shown in Fig. 1. We took the
second and third sources to the second data set Y, added with the
fourth and sixth sources in [20]. These sources are shown
similarly in Fig. 2. Thus in the data sets X and Y there are two
completely dependent sources, while the remaining two sources
in them are statistically independent of all the other sources.

In this series of experiments, we used 5000 data vectors and
source signal values (t¼1,2,y,5000) for providing enough data to
the UniBSS method [19]. The other tested methods: CCA, FastICA,
TDSEP, and their combinations require much less samples, but
also their performance improves with more samples, except for
CCA which performs equally well with 500 samples only. Because
the results can vary a lot for single realizations of these sources
and their mixtures, we computed the averages of the signal-to-
noise ratios of the separated sources over 100 random realizations
of the sources and the data sets X and Y. In each realization, the
elements of the 4�4 mixing matrices were Gaussian random
numbers.

The signal-to-noise ratios (SNR’s) (or signal-to-interference
ratios) of the estimated source signals were computed for each
realization of the data sets and each source from the formula

SNRðiÞ ¼ 10 log10

1
N

PN
t ¼ 1 siðtÞ

2

1
N

PN
t ¼ 1½siðtÞ�ŝiðtÞ�

2
ð37Þ

where the numerator is the average power of the i:th source si(t)
over the N samples, and the denominator is the respective power
of the difference siðtÞ�ŝ iðtÞ between the source signal si(t) and its
estimate ŝiðtÞ. We computed the averages of these SNR’s over the
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Fig. 1. Two hundred samples of the original source signals in first data set X. The two fi

the last source has smoothly changing nonstationary variance.
100 realizations for each source and its estimate, and quite
similarly for the sources ri(t) of the other data set Y.

We not only tried our CCA based method and its combinations
applying either FastICA, TDSEP, or UniBSS for post-processing to
achieve better separation, but also compared it with two methods
introduced by other authors for the same problem. The first
compared method introduced in [32] assumes that the dependent
sources in the two data sets are active simultaneously. The second
compared method [28] uses multiset canonical correlation ana-
lysis. Theoretically its results should coincide with plain CCA for
two data sets but in practice this may not hold due to problems
such as deflationary nature of the algorithm mentioned in a later
paper [29].

The separation results for the four sources contained in the
first data set X are shown in Table 1, and for the four sources in
the other data set Y in Table 2. For clarity, we have numbered
these sources by 1–4 in the data set X and by 5–8 in Y. We set
(somewhat arbitrarily) the threshold of successful separation to
10 dB based on visual inspection. Tables 1 and 2 show that CCA
alone yields fairly similar separation results for all the eight
sources which already lie at our separation threshold. FastICA
can separate clearly the two first sources but fails for the three
last sources. The TDSEP method separates well four sources, the
other sources lie at the separation threshold. This method per-
forms better than expected in context with the definition of the
type of six sources. The reason is obviously that only four of the
six sources are used in the data sets X and Y, making the
separation problem easier. The UniBSS method separates well
all the sources. The results are qualitatively similar if the
dependent and independent sources are selected otherwise
among the six original sources.

Combining CCA with post-processing using the FastICA, TDSEP,
or UniBSS methods improves the results for all these methods, so
that also FastICA and TDSEP can now separate well all the sources
in this difficult separation problem. The methods introduced in
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rst sources are non-Gaussian, the third one is temporally correlated Gaussian, and



Table 1
Signal-to-noise ratios (dB) of different methods for the source signals 1–4 in the

first data set X.

Method Source 1 Source 2 Source 3 Source 4

CCA 10.3 9.9 10.1 10.3

FastICA 22.5 14.1 9.4 10.6

TDSEP 10.0 30.5 10.0 27.5

UniBSS 33.9 40.7 27.6 28.5

CCA þ FastICA 29.3 20.0 21.0 29.4

CCA þ TDSEP 30.7 37.9 34.8 30.2

CCA þ UniBSS 33.7 48.4 39.2 32.7

Method in [32] 25.7 9.8 9.4 23.1

Method in [28] 12.5 11.4 11.3 13.2

Table 2
Signal-to-noise ratios (dB) of different methods for the source signals 5–8 in the

second data set Y.

Method Source 5 Source 6 Source 7 Source 8

CCA 9.9 10.1 10.5 10.5

FastICA 9.5 4.6 4.2 5.2

TDSEP 9.7 26.4 9.8 28.8

UniBSS 37.1 27.0 28.6 29.0

CCA þ FastICA 21.1 21.9 13.1 13.2

CCA þ TDSEP 37.9 34.8 31.6 33.1

CCA þ UniBSS 49.4 39.2 31.0 33.0

Method in [32] 9.8 9.4 9.5 9.5

Method in [28] 11.4 11.3 3.6 3.9
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Fig. 2. Two hundred samples of the original source signals in second data set Y. The first one is non-Gaussian, the second and third sources are temporally correlated

Gaussians, and the last source has smoothly changing nonstationary variance. The two first sources in Y are the same as the second and third sources in the first data set X.
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[32,28] provide clearly lower signal-to-noise ratios, failing for
some sources. Using CCA combined with the FastICA or TDSEP
methods is in practice often preferable over using the UniBSS
method. The UniBSS method requires much more samples for
reliable results, and different types of nonlinearities for sub-
Gaussian and super-Gaussian sources. The FastICA and TDSEP
methods do not suffer from this limitation. In the data sets X and
Y there are only super-Gaussian and Gaussian sources, and
therefore the same nonlinearity can be used in the UniBSS
method for all of them.

To give an idea about the practical quality of separation
corresponding to different SNR’s, Fig. 3 shows one original source
signal and its estimates provided by different methods for a single
realization of the data sets. This source signal is a super-Gaussian
source which is the third source in the first set sðtÞ of sources
and the second dependent source in the second set rðtÞ of sources.
Only 200 first samples are shown to make the details of the
estimates better discernible. The signal-to-noise ratios of the
estimates provided by different methods are 1.92 dB for plain
FastICA, 15.5 dB for the combination of CCA and FastICA, 37.9 dB
for the combination of CCA and UniBSS, 33.5 dB for plain UniBSS,
and 3.5 dB for plain CCA.

Inspecting Fig. 3 visually shows that even though the SNR of
plain CCA is poor, 3.5 dB only, it is anyway able to approximate
some parts of the original source signal, for example the last
samples, but for the other parts it fails. The combination of CCA
and FastICA is clearly able to separate the source adequately with
the SNR of 15.5 dB. The much better SNR’s of the UniBSS method
and the method combining CCA with UniBSS do not show up in
the visual quality of separation results notably. Obviously finding
differences in the quality of these estimates would require
looking at finer details of the separation results.

We made experiments also with artificially generated mix-
tures of real-world speech sources taken from [42], and with
other methods such as JADE [43] and SOBI [9]. The results were
qualitatively similar though somewhat less convincing. In this
case, especially the UniBSS method benefits from CCA preproces-
sing, because it would require different nonlinearities for super-
Gaussian and sub-Gaussian, and we have used only one type of
nonlinearity. CCA preprocessing improves the separation quality



Table 3
Signal-to-noise ratios (dB) of different methods for the source signals S1–S5 in the

first data set X1.

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 10.2 10.2 4.5

FastICA 18.3 16.8 9.9 6.1 6.9

TDSEP 15.5 18.8 10.2 10.2 16.8

UniBSS 27.5 26.4 31.7 24.8 23.9

GCCAþFastICA 26.1 25.7 15.5 15.2 23.8

GCCAþTDSEP 16.4 22.1 10.3 10.5 17.6

GCCAþUniBSS 32.5 33.5 25.9 24.2 28.3

Method in [32] 25.0 27.1 6.9 6.7 24.7

Method in [28] 6.2 5.8 6.2 6.1 4.9

Table 4
Signal-to-noise ratios (dB) of different methods for the source signals S1–S5 in the

second data set X2.

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 9.9 9.8 4.5

FastICA 17.3 16.1 5.4 6.9 5.3

TDSEP 7.7 17.9 7.9 8.7 8.1

UniBSS 26.0 28.3 11.1 18.5 10.7

GCCAþFastICA 26.1 25.8 12.4 12.3 23.8

GCCAþTDSEP 16.4 22.1 19.1 19.3 17.6

GCCAþUniBSS 31.8 33.3 21.7 21.9 27.7

Method in [32] 25.1 28.6 17.5 21.2 24.9

Method in [28] 6.2 5.8 2.5 2.3 4.9

The original source signal

Separated signal using plain FastICA

Separated signal using CCA+FastICA

Separated signal using CCA+UniBSS

Separated signal using plain UniBSS

0 50 100 150 200

−5

0

5

−5

0

5

−5

0

5

−5

0

5

−5

0

5

−5

0

5
Separated Signal using plain CCA

Fig. 3. First 200 samples of the original super-Gaussian third source signal in the

data set X and its estimates given by different methods.

Table 5
Signal-to-noise ratios (dB) of different methods for the source signals S1–S5 in the

third data set X3.

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 10.2 10.1 4.5

FastICA 14.7 13.8 4.1 3.8 3.9

TDSEP 11.9 8.8 9.1 9.0 8.8

UniBSS 25.9 27.6 13.8 12.9 10.6

GCCAþFastICA 26.1 25.8 10.1 10.2 23.8

GCCAþTDSEP 16.4 22.1 25.1 24.5 17.6

GCCAþUniBSS 32.6 33.7 19.2 19.4 28.7

Method in [32] 24.6 28.6 9.9 10.2 24.5

Method in [28] 6.2 5.8 8.8 9.2 4.9

J. Karhunen et al. / Neurocomputing 113 (2013) 153–167 161
of the JADE method, but the overall results are not so good as for
FastICA and TDSEP and are therefore not shown in Tables 1 and 2.
The SOBI method fails completely, and CCA preprocessing does
not improve its performance.

5.2. Simulated data, three related data sets

We used the same six source signals defined in the Matlab
code UniBSS.m [20] as in the experiments with two related data
sets. Furthermore, we generated three more sources in a similar
manner, so that one of them was super-Gaussian, one temporally
correlated Gaussian, and one had a smoothly changing variance.
Due to the construction of these difficult source signals, almost all
ICA and BSS methods fail to separate all of them from their
mixtures. From these nine source signals we constructed three
sets X1, X2, and X3 of 5-dimensional data vectors using randomly
chosen mixing matrices. In each of these data sets there were
three same sources, namely sources 1 and 2 which were super-
Gaussian and source 5 which has a smoothly changing variance.
Sources 3 and 4 in each data set were different and independent
of all the other sources. We used 2000 data vectors and source
signal values (t¼1,2,y,2000) for providing enough data espe-
cially to the UniBSS and TDSEP methods.

The results for the data sets X1, X2, and X3 are presented in
Tables 3–5, respectively. On the first row of the tables are the
results of the generalized CCA (GCCA) without any postproces-
sing. It shows some progress towards separation, and the results
for the independent third and fourth sources are around the
separation border already. FastICA [1,7,8], based on non-Gaus-
sianity, is able to separate the non-Gaussian first and second
sources in all the data sets, but fails for other types of sources as
expected. The TDSEP method [10] based on temporal autocorrela-
tions is able to separate at least marginally all the five sources in
the first data set X1, but fails though not badly for most sources in
the other two data sets X2 and X3. The UniBSS method [19,20] is
able to separate all the sources, though some of them rather
marginally. It may benefit from the construction of the sources
using a first-order autoregressive model as its uses just this first
autocorrelation.

Preprocessing using generalized canonical correlation analysis
(GCCA) improves the separation results for most sources and all



Table 6
The average signal-to-ratios over 100 realizations for the seven sources S1–S7 for a

single biomedical data set.

Method S1 S2 S3 S4 S5 S6 S7

CCA 22.3 24.4 29.6 23.2 14.5 21.1 14.4

FastICA 11.4 14.6 13.4 29.9 11.8 18.4 33.0

UniBSS 2.8 4.7 15.0 18.0 3.0 5.3 4.0

TDSEP 4.4 24.1 27.4 21.7 14.4 26.8 3.1

CCA þ FastICA 11.3 11.9 12.2 25.0 13.4 18.8 33.7

CCA þ UniBSS 9.8 18.2 30.5 18.1 14.1 24.3 15.0

CCA þ TDSEP 4.4 24.1 27.4 21.7 14.4 26.8 3.1
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the tested methods, FastICA, TDSEP, and UniBSS. Not only are the
SNR’s of separated sources often much higher but GCCA prepro-
cessing helps FastICA and TDSEP to separate sources that they
alone are not able to separate. These results are qualitatively
similar as for two data sets in the previous subsection.

We also again compared our method with two methods
introduced by other authors for the same problem. The first
compared method [32] assumes that the dependent sources in
the data sets are active simultaneously. From Tables 3–5 one can
see that it performs quite well for the dependent first, second, and
fifth sources in all the three data set, but fails for the independent
third and fourth source in the first data set X1, and lies at
separation border for these sources in the third data set X3. The
second compared method [28] uses multiset canonical correlation
analysis. It makes some progress towards separation for most
sources, but fails at least marginally for all of them in this difficult
separation task.

We tested also the dependence of the methods on the number
of samples N in the data sets. Generalized CCA (GCCA) performs
in practice equally well using 500 samples (data vectors) only,
but the other methods FastICA, TDSEP, and UniBSS provide much
better results when the number of samples increases. Even the
UniBSS method fails to separate some of the sources when the
number of samples is 500 or 1000.

5.3. Single data set

Fig. 4 shows another data set of seven biomedical sources,
containing both sub-Gaussian and super-Gaussian sources which
have quite different characteristics. This is the data set ABio7.mat
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Fig. 4. First 1000 samples of the bio
of the signal processing benchmarks in the ICALAB Toolbox [42].
In Table 6, we present separation results provided by different
methods in the case of a single data set X which is a random
mixture of these sources with a square 7�7 mixing matrix A. For
the CCA method and preprocessing using it, the other related data
set Y was created using time delays d1 ¼ 1 and d2 ¼ 2 in (19). Thus
the original data set XðnÞ was correlated with four time delayed
data sets Xðn�2Þ, Xðn�1Þ, Xðnþ1Þ, and Xðnþ2Þ. This gave the best
results of the several related data sets that we tried. In general,
applying our method to a single data set requires creating
artificially a related reference data set which is usually highly
correlated with the original data set. It has turned out that
separating all the sources successfully is then often more difficult
than for two naturally existing data sets which are related.

The performance of various methods tested is this time
different from previous simulations. Now CCA containing time
delays performs the best of all the methods tested in the sense
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medical data set from ICALAB.



Fig. 5. Dependent signals in the robot data sets for the wrist data (two top

subfigures) and for the instantaneous acceleration data (two bottom subfigures).
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that it is able to separate all the sources with a clear margin.
FastICA separates all the sources, too, but its signal-to-noise ratios
are poorer for five of the seven sources, being much worse for the
three first sources. FastICA with CCA preprocessing provides
about the same quality of separation than FastICA alone. The
TDSEP method is not able to separate the first and last source.
Preprocessing with CCA does not help TDSEP, because the
separation results are the same as for TDSEP alone. This is
probably due to the fact that the TDSEP method already uses
time delays (temporal correlations), and therefore adding time-
delayed data sets do not help it. The most general UniBSS method
is able to separate only two of the seven sources. A major reason
for this is that we used the same nonlinearity for all the sources,
and in this data set there are both sub-Gaussian and super-
Gaussian sources which require different types of nonlinearities.
Changing this nonlinearity from gðuÞ ¼ �tanhðuÞ which is suitable
for super-Gaussian sources to gðuÞ ¼�uþtanhðuÞ which is recom-
mended in [19] for sub-Gaussian sources did not improve the
results of the UniBSS method. However, CCA preprocessing helps
it greatly, so that the combined CCA followed by UniBSS method
can clearly separate six of the seven sources, and fails with quite
narrow margin for the first source only.

5.4. Robot grasping data

This real-world robot data set consists of samples from a robot
arm that is used for picking off and sorting different types of
garbage from a conveyor belt. In this experimental setting there
are several sensors in different parts of the robot arm. The sensor
data used in our experiments consist of two data sets. First, there
is the wrist which guides the arm of the robot to turn so that
its grasping hand containing three fingers moves to a correct
position. This force sensitive wrist data set X consists of four
attributes: three of them are used to represent the status of
movement in Euclidean three dimensional space. The fourth
attribute is used to represent the status of the rotation in one
direction. The other related data set Y consists of 7-dimensional
position information about the wrist using Euclidean distance
measure and standard quaternion representation in computer
graphics and robotics. A mathematical model describing the
relationship between these two data sets is not known. Quite
probably the data model of this paper and its assumptions hold as
an approximation only.

We can argue that there should be some dependent changes in
the force sensitive wrist data set X as well as independent
changes with respect to the position information data set Y. For
instance, when the wrist is sent to grab a rather heavy object, the
wrist sensor data set not only expresses the position information,
but also provides some feedback on holding a heavy thing in the
robot arm. Furthermore, when the arm is moving into some
direction, the wrist sensor data should indicate the status of the
wrist along with the change in the position. Therefore, these robot
data sets should suit well for testing our methods. The goal is to
separate the wrist signals to the dependent parts, which have
strong relationships between the relative moments, and to the
independent parts, showing the impacts from the external world,
such as grabbing a heavy object.

We first preprocessed both the data sets by making their
means zero and by whitening them. Furthermore, the second
originally 7-dimensional position data set Y was transformed to
a 4-dimensional data set, too, by converting the 4-dimensional
quaternion representation to Euler angles in space. Furthermore,
we found in our experiments that better results are obtained by
using first-order and second-order differences of subsequent
values of each component for the latter data set Y. Because
the original components represent position information, these
first-order differences approximate their first derivative with
respect to time, which is local velocity. Second-order differences
approximate the second derivative of position with respect to
time, which is local acceleration in the direction of the respective
coordinate.

Using second-order differences can be justified by the classical
law of physics: The force F¼ma, where m is the mass of the object
and a is its acceleration. Here F is the external force applied to the
objects handled by the robot, and it is thus linearly proportional
to the acceleration.

Figs. 5 and 6 show the results for the experiment where we
used second-order differences for the position data set Y using
then CCA followed by the UniBSS method. The four singular
values in the diagonal matrix D in (6) were 0.580, 0.340, 0.132,
and 0.035. In this case, the first two singular values correspond to
mutually dependent components, and the last quite small one to
independent components in the two data sets X and Y. The third
singular value 0.132 is relatively small, and it was deemed to
correspond another pair of independent components. Inspecting
the first and second dependent components of the data sets
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depicted in Fig. 5 shows clearly their dependence. Here one must
recall the sign ambiguity in ICA and BSS methods: if the separated
source has different sign than the original one, peaks correspond
to bumps and vice versa. On the other hand, especially the second
components in Fig. 6 are quite clearly independent.
5.5. Real-world fMRI data

We tested the usefulness of our method with data from a
functional magnetic resonance imaging (fMRI) study [44], where
it is described in more detail. We used the measurements of two
healthy adults while they were listening to spoken safety instruc-
tions in 30 s intervals, interleaved with 30 s resting periods. In
these experiments we used slow feature analysis (SFA) described
in detail in [45] for post-processing the results given by CCA,
because it gave better results than FastICA. FastICA tended to
overfit the separated components in this application. Slow feature
analysis, which tries to learn invariant or slowly varying features
from its input vectors, did not suffer from this deficiency. All the
data were acquired at the Advanced Magnetic Imaging Centre of
Aalto University, using a 3.0 T MRI scanner (Signa EXCITE 3.0 T;
GE Healthcare, Chalfont St. Giles, UK).

Figs. 7 and 8 show the results of applying our method to the
two datasets and separating 11 components from the dependent
subspaces U1 and V1. The left hand sides of these figures show
the time courses of the separated sources, where the shaded areas
correspond to periods of spoken instructions and the white areas
resting periods. The right hand sides of these figures show the
corresponding spatial patterns. Our method provided most of
these components in correct order, but a few components were
ordered manually to match best each other. The method was
applied to the fMRI in a spatial manner, so that the spatial
patterns are the identified components and the corresponding
time courses are the projection vectors. The method was applied
to the whole head measurements without preselected regions of
interest, and the data matrices contained 80 time points with
263,361 samples, which were not compressed. The spatial
patterns are not thresholded, but the color intensities are based
on comparing the weight values to a standardized Gaussian
distribution, where the red colors correspond to the positive tail
of the pdf and the blue colors to the negative tail, respectively.
Positive spatial weight values mean that the time course in that
region corresponds to the time course shown on the left, whereas
negative values mean that the time course is the inverse.

The consistency of the components across the subjects is quite
good. The first component shows a global hemodynamic contrast,
where large areas inside the brain have negative values and the
surface of the brain is positive. The clear contrast could also be a
scanning related artifact or an effect produced by the standard
fMRI preprocessing of the datasets.

The activity in the second component is focused on the
primary auditory cortices. The time course of the activity also
closely follows the stimulation blocks. The third component
shows a weakly task-related activity, with positive regions
around the anterior and posterior cingulate gyrus. These areas
have been identified in many studies to be part of a bigger
network related with novelty of the stimulus, introspection and
default-state-network. The areas of activation in the fourth
component partly overlap with those in the third one. However,
in this case the activation is positive in the anterior part and
negative in the posterior. This clearly shows that the activity of
these areas is too complex to be described by a single component.

The rest of the components are not directly stimulus related,
but the activated areas have been consistently identified in the
earlier studies. Some of them appear to be well-known supple-
mentary audio and language processing areas in the brain.

These results are promising and in good agreement with the
ones reported in [44]. Generally, the activated areas identified
by our method are the same as or very close to the ones
previously reported. There are some differences when compared
to the earlier FastICA results, as the method seems to enhance
contrasts within the components. There are both strongly positive
and negative values in each component. Furthermore, the first
component has not been identified by using FastICA. Future
experiments are needed with multiple datasets for interpreting
the found components more thoroughly, and a more extensive
comparison with existing ICA and BSS methods using real-world
data should be carried out.
6. Discussion

Even though the UniBSS method [19] performed on an average
best in these experiments, it has some drawbacks. First, it
requires at least of the order of 1000 samples to work appro-
priately, while for example FastICA needs less samples for
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providing pretty good estimates of the sources if there are just a
few of them. Second, the UniBSS method requires many iterations
and it does not converge uniformly. It may already provide good
estimates but then still with more iterations deviate far away
from a good solution, giving then rather poor estimates of the
source signals. This can happen several times until the method
eventually permanently converges to a good solution. A third
drawback of the UniBSS method is that just like the well-known
natural gradient algorithm [1,2], it requires different types of
nonlinearities for super-Gaussian and sub-Gaussian source sig-
nals. Thus one should know or somehow be able to estimate how
many super-Gaussian and sub-Gaussian sources the data set
contains, otherwise the UniBSS methods fails to separate some
sources. In our experiments with synthetically generated data this
was not a problem because all the sources were either super-
Gaussian or Gaussian. However, FastICA and TDSEP methods do
not suffer from this limitation. In practice, using them together
with CCA or generalized CCA is often a preferable choice over
using the UniBSS method.

Canonical correlation analysis is based on second-order statis-
tics, that is, autocovariances and cross-covariances of the two
related data sets. Furthermore, like PCA it can be derived from a
probabilistic model in which all the involved random vectors are
Gaussian [24]. We are not aware of a probabilistic model for the
least-squares generalization of CCA that we have used, but it also
uses second-order statistics only, collected into the matrices
(29) and (30). In our method, this is not so great limitation as
one might expect, because all the information including higher-
order statistics and non-Gaussianity contained in the related data
sets are retained in mapping them to the subspaces correspond-
ing to their dependent and independent components in (34) and
(36), or (12) for two data sets.

The division into these subspaces is now based on inspection
of the magnitudes of singular values of the cross-covariance
matrix of whitened data sets. One could argue that also higher-
order statistics should be taken into account in determining these
subspaces. However, even this is often not critical because the
final goal is to separate all the sources in the related two data sets
irrespective of how dependent or independent they are from each
other and in which way they are divided into these subspaces.

We tested our method also in experiments in which the sources
were only partly dependent or the number of dependent and
independent sources were purposely incorrect. Our method per-
formed still pretty well in these cases. However, it does not work
well for underdetermined mixtures where there are more source
signals than mixtures. On the other hand, overdetermined mix-
tures having more mixtures than sources pose no problems, our
method clarified this situation excellently. Another remark from
our experiments is that if an ICA or a BSS method fails completely
in a separation task, then preprocessing with CCA does not help.

A final remark concerns our data model. Contrary to the
compared methods [32,28], it does not assume that in the two
data sets there are always pairs of sources that are mutually
dependent but independent of all the other sources. Thus our
method could be applied to the case of independent subspaces in
which there are subpaces of dependent sources in each data set.
However, the theoretical argument (17) does not hold then any
more because Q ¼ EfsrT g is no longer a diagonal matrix.
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7. Conclusions

In this paper, we have introduced a method based on canonical
correlation analysis (CCA) and its maximum variance general-
ization using least-squares formulation for blind source separa-
tion from related data sets. The goal is to separate mutually
dependent and independent components or source signals from
these data sets. We use CCA and this its generalization for first
detecting subspaces of independent and dependent components.
Any ICA or BSS method can after this be used for final separation
of these components. The proposed method performs quite well
for synthetic data sets for which the assumed data model holds
exactly. It provides interesting and meaningful results for real-
world robot grasping and functional magnetic resonance imaging
(fMRI) data. The method is straightforward to implement and
computationally not too demanding. The proposed method
improves clearly the separation results of several well-known
ICA and BSS methods compared with the situation in which
generalized CCA is not used.
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