
Improved Related-Key Impossible Differential
Attacks on 8-Round AES-256

Hadi Soleimany, Alireza Sharifi, Mohammadreza Aref

Information Systems and Security Lab (ISSL)

EE Department, Sharif University of Technology, Tehran, Iran

E-mail: hadi.soleimany@gmail.com, asharifi@alum.sharif.edu, aref@sharif.edu

Abstract—In this paper, we propose two new related-key
impossible differential attacks on 8-round AES-256, following the
work of Zhang, et al. First, we propose a carefully chosen relation
between the related keys, which can be extended to 8-round
subkey differences. Then, we construct a 5.5-round related-key
impossible differential. Using the differential, we present two new
attacks on the 8-round AES-256 with 32 and 64 bit structures.
Our 8-round AES-256 attacks leads to the best known attack
on AES-256 with 2 related keys. The time complexity of the
proposed related-key impossible differential attacks on 8-round
AES-256 is 2102.5 and its data complexity is 2103.5 .

keywords: AES-256, related-key differentials cryptanalysis,
impossible differential

I. INTRODUCTION

Rijndael [1] is an iterated block cipher with variable key

and block lengths of 128 to 256 bits in steps of 32 bits.

Rijndael versions with a block length of 128 bits, and key

lengths of 128,192 and 256 bits have been adopted as the Ad-

vanced Encryption Standard (AES). Differential cryptanalysis

[2] analyzes the evolvement of the difference between a pair of

plaintexts in the following round outputs (differentials) in an

iterated block cipher. The basic idea of impossible differential

attack is to look for differentials that hold with probability

0 (or impossible differentials) to eliminate wrong keys and

keep the right key. Related-key attacks [3], concentrate on

the information which can be obtained from two encryptions

using related (but unknown) keys. Related-key impossible dif-

ferential attack [4] combines related-key attack and impossible

differential cryptanalysis to make the attack more efficient.

The first impossible differential attack against AES was

applied to 5 rounds of the AES-128 by Biham and Keller

[5]. In [4], the first related-key impossible differential attack

on 192-bit variants was proposed. Zhang, et. al applied three

new related-key impossible differential attacks on 8-round

AES-192 [6] and AES-256 [7] and concluded AES-256 has

better resistance than AES-192 using the same cryptanalytic

approach [7]. In this paper, we show that 8 round AES-256 can

be attacked more efficient than 8 round AES-192 from overall

complexity. We present 2 related-key impossible differential

attacks on 8-round AES-256 with 2 related keys. Our 8-round

AES-256 attacks leads to the best known attack on 8-round

AES-256 with 2 related keys.

0This work was partially supported by Iran Telecommunications Research
Center and the cryptography chair of the Iranian NSF.

The paper is organized as follows: In Section II we briefly

describe the AES algorithm. A new related-key impossible

differential property of the AES-256 is introduced in Section

III. In Section IV, using 64-bit structures, we propose a related-

key impossible differential attack on the 8-round AES-256. In

Section V we compare the performance of our attacks with

the previous ones.

II. A BRIEF DESCRIPTION OF AES

In AES [1] a 128-bit plaintext is represented by a 4 × 4
matrix of bytes, where each byte represents a value in GF (28).
An AES round is composed of four operations: SubBytes (SB),

ShiftRows (SR), MixColumns (MC) and AddRoundKey (AK).

The MixColumns operation is omitted in the last round and

an initial key addition is performed before the first round for

whitening. We also assume that the MixColumns operation is

omitted in the last round of the reduced-round variants. The

number of rounds is variable depending on the key length, 10

rounds for 128-bit key, 12 for 192-bit key and 14 for 256-bit

key.

A. Notations

In this paper we use the following notations: XI
i denotes

the input block of round i, while XS
i ,XR

i ,XM
i and XO

i de-

notes intermediate values after applying SubBytes, ShiftRows,

MixColumns and AddRoundKey operations of round i, respec-

tively. Obviously, XO
i−1 = XI

i holds for i ≥ 2. We denote the

subkey of the i-th round by ki and the initial whitening subkey

by k0. In some cases, we are interested in interchanging the

order of the MixColumns operation and the Subkey Addition.

As these operations are linear, they can be interchanged, first

XORing the data with an equivalent key and then applying

the MixColumns operation. We denote equivalent subkey for

the modified version by wi, i.e. wi = MC−1(ki), and XW
i

denotes the intermediate value after applying AddRoundKey

with equivalent subkey. Let Xi,col(j) denotes the j-th column

of xi where j ∈ {0, 1, 2, 3}. We also denote the byte in the

m-th row and n-th column of Xi by Xi,m,n where m,n ∈
{0, 1, 2, 3}. Another notation for bytes of xi is an enumeration

{0, 1, 2, ..., 15} where the byte Xi,m,n corresponds to byte

4n+m of Xi.
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III. 5.5-ROUND RELATED-KEY IMPOSSIBLE

DIFFERENTIAL PROPERTY OF AES-256

In this paper, using a property of MixColumns operation, we

propose a new 5.5-round related-key impossible differential

property which our attack is based on. First of all we use

the following definitions: A byte which has different values

(nonzero difference) in a pair is called an active byte while

passive byte is a byte with zero difference in a pair. Now we

state and prove the MixColumns property:

Theorem 3.1: A pair of columns at the input of Mix-

Columns operation which contains two passive bytes cannot

lead to two passive bytes and one or two active bytes within

the output column.

Proof: Suppose that ΔX = (ΔX1,ΔX2,ΔX3,ΔX4) is

the difference of input column and ΔY = (ΔY1,ΔY2,ΔY3,
ΔY4) is the corresponding output difference. Using Mix-

Columns operation we have:

ΔY1 = 02 •ΔX1 ⊕ 03 •ΔX2 ⊕ 01 •ΔX3 ⊕ 01 •ΔX4

ΔY2 = 01 •ΔX1 ⊕ 02 •ΔX2 ⊕ 03 •ΔX3 ⊕ 01 •ΔX4

ΔY3 = 01 •ΔX1 ⊕ 01 •ΔX2 ⊕ 02 •ΔX3 ⊕ 03 •ΔX4

ΔY4 = 03 •ΔX1 ⊕ 01 •ΔX2 ⊕ 01 •ΔX3 ⊕ 02 •ΔX4

where ”•” is modular multiplication of Rijndael [1]. Without

loss of generality, suppose X1 and X2 are two passive bytes,

i.e. ΔX1 = ΔX2 = 0, we would have:

ΔY1 = 01 •ΔX3 ⊕ 01 •ΔX4

ΔY2 = 03 •ΔX3 ⊕ 01 •ΔX4

ΔY3 = 02 •ΔX3 ⊕ 03 •ΔX4

ΔY4 = 01 •ΔX3 ⊕ 02 •ΔX4

So if two bytes of output column, for example Y1 and Y2
have zero difference, i.e. ΔY1 = ΔY2 = 0, we will have the

following system of equations:

01 •ΔX3 ⊕ 01 •ΔX4 = 0

03 •ΔX3 ⊕ 01 •ΔX4 = 0

It is obvious that the only solution of the above system is

ΔX3 = ΔX4 = 0 and consequently ΔY3 = ΔY4 = 0, i.e. the

output column cannot have one or two active bytes.

Consider the difference between two related keys as follows:

ΔK = K1 ⊕K2 = [(a, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)
, (a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)].

Such a difference results in the round subkey differences as

shown in Table I.

Using the above subkey differences and Theorem 3.1, we

build a 5.5-round related-key impossible differential with

probability equal to 1. The 5.5-round related-key impossible

differential is:

ΔXM
1 = ((0, ?, 0, ?), (?, 0, ?, 0), (0, ?, 0, ?), (?, 0, ?, 0)) �

ΔXO
6 = ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))

where ’a’ is a known nonzero value and ’?’ denotes any value.

Let ΔXM
1 = ((0, ?, 0, ?), (?, 0, ?, 0), (0, ?, 0, ?), (?, 0, ?, 0)).

From Table 1, Δk1 is zero and it results in

Table I
SUBKEY DIFFERENCES REQUIRED FOR THE 5.5-ROUND IMPOSSIBLE

DIFFERENTIAL

Round (i) Δki,col(0) Δki,col(1) Δki,col(2) Δki,col(3)
0 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
1 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
2 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
3 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
5 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
6 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
7 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
8 (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)

ΔXI
2 = ΔXO

1 = ΔXM
1 ⊕Δk1 = ((0, ?, 0, ?), (?, 0, ?, 0),

(0, ?, 0, ?), (?, 0, ?, 0)) which leads to ΔXR
2 = ((0, 0, 0, 0),

(?, ?, ?, ?), (0, 0, 0, 0), (?, ?, ?, ?)) and as a result ΔXM
2 =

((0, 0, 0, 0), (?, ?, ?, ?), (0, 0, 0, 0), (?, ?, ?, ?)). After adding

the Δk2 we have ΔXI
3 = ΔXO

2 = ((a, 0, 0, 0), (?, ?, ?, ?),
(a, 0, 0, 0), (?, ?, ?, ?)) and after SubBytes and ShiftRows, we

get ΔXR
3 = ((N, ?, 0, ?), (?, 0, ?, 0), (N, ?, 0, ?), (?, 0, ?, 0))

where ’N’ denotes nonzero difference (possibly distinct).

The second 3.5-round differential in the reverse

direction is built as follows: The output difference

ΔXO
6 = ((a, 0, 0, 0), (0, 0, 0, 0),

(0, 0, 0, 0), (0, 0, 0, 0)) is canceled by the subkey difference

of the sixth round, i.e. ΔXM
6 = Δk6 ⊕ΔXO

6 = 0. The zero

difference ΔXO
6 is preserved through all the operations until

the AddRoundKey operation of the fourth round, because the

subkey difference of the fifth round is zero. Thus we have

ΔXM
4 = Δk4 ⊕ΔXO

4 = ((a, 0, 0, 0), (a, 0, 0, 0), (0, 0, 0, 0),
(0, 0, 0, 0)) and consequently from Theorem 3.1 ΔXR

4 =
((N,N,N,N), (N,N,N,N), (0, 0, 0, 0), (0, 0, 0, 0)). When

rolling back the ΔXR
4 through the ShiftRows and SubBytes

operations in the fourth round, we get the ΔXO
3 = ΔXI

4 =
((N, 0, 0, N), (N,N, 0, 0), (0, N,N, 0), (0, 0, N,N)). Finally

after applying the AddRoundKey operation of the third

round which has a zero difference, we can get ΔXM
3 =

((N, 0, 0, N), (N,N, 0, 0), (0, N,N, 0), (0, 0, N,N)). It is

obvious that ΔXM
4 = MC(ΔXR

4 ), but according to the

Theorem 3.1, this is impossible, because ΔXR
4 has two

passive bytes ΔXM
4 has two active bytes and two passive

bytes.

IV. RELATED-KEY IMPOSSIBLE DIFFERENTIAL ATTACK

ON 8-ROUND AES-256 USING 64-BIT STRUCTURES

Using the above related-key impossible differential, we can

attack an 8-round variant of AES-256.

A. The Attack Procedure

In order to make the attack faster, we first perform a

precomputation. For all possible pairs of values of xM
1,col(0)

and xM
1,col(3) which have the difference ΔxM

1,col(0) =

(a, ?, ?, 0) and ΔxM
1,col(3) = (?, ?, 0, 0), compute the values of

(0,1,5,6,10,11,12,15) for xI
1. Store the pairs of 8-byte values

in a hash table Hp indexed by the XOR difference in these
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Figure 1. 8-round Impossible Differential Attack

bytes. There are 264 possible values for the XOR difference

in 8 bytes and (216)4 × (28)4 = 296 possible pairs of values

of xM
1,col(0) and xM

1,col(3) with above condition. So Hp have

264 bins and on average there are 296

264 = 232 pairs in each bin.

The algorithm is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such

that for each plaintext pair P1 ∈ S1 and P2 ∈ S2, P1 ⊕
P2 = ((?, ?, 0, 0), (a, ?, ?, 0), (a, 0, ?, ?), (?, 0, 0, ?)), where ’?’

denotes any byte value. Here we define a structure as a set of

2× 264 plaintexts which are selected from S1 and S2. Such a

structure proposes 264 × 264 = 2128 pairs of plaintexts.

2. Ask for the encryption of the pool S1 under K1, and of

the pool S2 under K2. Denote the ciphertexts of the pool S1
by T1, and the encrypted ciphertexts of the pool S2 by T2.Such

a structure proposes 264 × 264 = 2128 pairs of plaintexts.

3. For all ciphertexts C2 ∈ T2, compute C∗
2 = C2 ⊕

((0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)).

4. Insert all the ciphertexts C1 ∈ T1 and the values

{C∗
2 |C2 ∈ T2} into a hash table indexed by bytes 1, 2, 3, 4,

5, 6, 8, 9, 11, 12, 14 and 15.

5. For each bin of the hash table with more than one

ciphertext, select every pair (C1, C2). Note that every pair

(C1, C
∗
2 ) in each bin of this hash table have zero difference

in bytes 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14 and 15, so the pairs

(C1, C2) have zero difference in bytes 1, 2, 3, 5, 6, 9, 11, 14

and 15, and difference ’a’ in bytes 4,8 and 12. After these steps

we expect to have 2n×2128×(2−8)12 = 2n+32 plaintext pairs,

where 2n is the number of structures, whose corresponding

ciphertext pairs are equal in bytes 1, 2, 3, 5, 6, 9, 11, 14 and

15, and difference ’a’ in bytes 4,8 and 12.

6. Guess the 32-bit value at bytes 0, 7, 10 and 13 for

the k8. Decrypt partially these bytes in the last round,

i.e. compute xO
7,Col(0) = SB−1 ◦ SR−1(xO

8 (0, 7, 10, 13) ⊕
k8(0, 7, 10, 13)). Choose pairs whose difference ΔxW

7,col(0) =

MC−1(ΔxO
7,col(0)) are nonzero at byte W

7,0,0 and zero at

other three bytes. The probability of such a difference is

(2−8)3 = 2−24.

7. Guess the value of subkey byte w7,0,0 and compute

xO
6,0,0 = SB−1 ◦ SR−1(xW

7,0,0 ⊕ w7,0,0) for all remaining

pairs and choose pairs whose difference ΔxO
6,0,0 are ’a’. The

probability of such a difference is 2−8. Thus, at the end of

this step, we can get 2n×2128× (2−8)−12×2−24×2−8 = 2n

pairs which have zero difference in all bytes except the first

byte which have the difference ’a’.

8. In this step, we eliminate wrong 64-bit values at

(0,1,5,6,10,11,12,15) for the k0 by showing that the impossible

differential property holds, if these keys were used. We use the

hash table Hp which has made in the precomputation stage.

The algorithm of this step is as follows:

• Initialize a list A of the 264 possible values at

(0,1,5,6,10,11,12,15) of k0.
• For each remaining pairs (P1, P2), compute P

′
= P1⊕P2

in the eight bytes (0,1,5,6,10,11,12,15).

• Access the bin P
′

in Hp, and for each pair (x,y) in that

bin, P1 ⊕ x remove from the list A the value, where P1
is restricted to eight bytes.

• If A is not empty, output the values in A.

Note that there are 232 pairs in each bin of Hp on average,

so in the third part of this step, we eliminate about 232 wrong

keys for each plaintext pair (P1, P2). The probability of a

wrong 64-bit value at bytes (0,1,5,6,10,11,12,15) for k0 is

(1 − 2−64), so after analyzing all 2n pairs, we expect only

264 × (1 − 2−64)2
n+32

wrong values of the eight bytes of

k0 remain. For n = 38.5, the expected number is about

264 × (1 − 2−64)2
64×26.5 ≈ 264 × (e−1)2

6.5 ≈ 2−67 and

we can expect that only the right subkey remains. Unless the

initial guess of the 32-bit value of the last round key k8 or

the 8-bit value of the key w7 is correct, it is expected that

we can eliminate the whole 64-bit value of k0 in this step,

i.e. the list A will be empty at the end of this step. Since the

wrong values for k8, w7, k0 occur with the small probability

of (28)4×28×2−67 = 2−27. Hence if the list A is not empty,

we can assume that the guessed 32-bit value for k8 and 8-bit

value for w7 are correct.
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B. The Attack Complexity

The data complexity of the attack is 2×2n+64 = 2103.5 cho-

sen plaintexts. The time complexity of the attack is consisted

of three parts:

Step 6 requires 2 × 232 × 2n+32 × 4
16 = 2n+63 one round

encryptions, because we must guess 232 keys in this step,

compute XW
7,Col(0) for each 2n+32 remained pairs from last

steps.

Step 7 requires 2×28×232×2n+8× 1
16 = 2n+45 one round

encryptions, because for all of guessed 232 keys, we must

guess 28 for k8 and compute XO
6,0,0) for each 2n+8 remained

pairs from last steps.

In step 8, 2n−64 pairs are analyzed. For each pair we

need 232 memory accesses to Hp and 232 memory accesses

to list A on average. This step is repeated 240 times (for

the guess of w7 and k8). Therefore the time complexity is

240 × 2n × (232 + 232) = 2n+73 memory accesses, which are

equivalent to about 2n+67 one round encryption (according

to the implementations of NESSIE primitives [11]). Conse-

quently for n = 38.5 the overall time complexity of the attack

on 8-round AES-256 is about 2
101.5+283.5+2105.5

8 ≈ 2102.5. The

precomputation stage requires about 2×2
96

8 = 294 encryptions

and the required memory is about 2100 bytes. Meanwhile,
264+8+32

23 = 2101 bytes of memory are needed to store the

list of deleted key values k8, w7, k0 for the attack.

To achieving an attack with lower time complexity which

is decreased by the factor 220, at the cost of increasing data

complexity by the factor 215.5 , we can use 32-bit structures

instead of 64-bit structures. Like using 64-bit structures, we

first perform a precomputation. For all possible pairs of values

of xM
1,col(0) which has the difference ΔxM

1,col(0) = (a, ?, ?, 0),

compute the values of (0,5,10,15) for xI
1. Store the pairs of 4-

byte values in a hash table Hp indexed by the XOR difference

in these bytes. There are 232 possible values for the XOR

difference in 4 bytes and (216)2 × (28)2 = 248 possible pairs

of values of xM
1,col(0) with above condition. So Hp have 232

bins and on average there are 248

232 = 216 pairs in each bin.

The rest of the attack procedure is similar to 64-bit structure

attack which we explain in this section.

V. RESULTS AND DISCUSSION

In this paper, we proposed two new related-key impossible

differential attacks on 8-round AES-256. Results in this paper

are summarized in Table 2 and are compared with the previous

attacks on 8-round AES-256. Attack on 8-round AES-256

with 64 bit structure leads to the best known attack on

AES-256 with 2 related keys and both attacks are better

than the previous one from overall complexity. Best related-

key impossible differential attack on 8-round AES-192 in

[6] has time complexity 2136. So we can see that AES-256

does not have better resistance than AES-192 using the same

cryptanalytic approach.

Table II
SUMMARY OF THE ATTACKS TO 8 ROUNDS OF AES-256

Type Data Workload Keys Reference
RK Imp. Diff. 253 2215 2 [7]
RK Imp. Diff. 264 2191 2 [7]
RK Imp. Diff. 288 2167 2 [7]
RK Imp. Diff. 2112 2143 2 [7]
Partial Sums 2128 − 2119 2240 1 [8]

Imp. Diff. 2111.1 2227.8 1 [9]
Imp. Diff. 289.1 2229.7 1 [9]

Meet in the middle 232 2209 1 [10]
RK Imp. Diff. 2103.5 2102.5 2 This paper
RK Imp. Diff. 2119 285 2 This paper

VI. CONCLUSION

In this paper, we have proposed two new related-key impos-

sible differential attacks against 8-round AES-256 using 64-

bit and 32-bit structures. The dominant complexity of these

attacks are lower than the previous related-key impossible

differential attacks. Another important factor which made our

attack more efficient is careful selection of two related keys

difference, such that there is no unknown bytes in the subkey

differences, which results in lower computational complexity.
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