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Abstract— A specific class of differential cryptanalytic approach, 
known as Related Key Boomerang Attack, has been successfully 
applied to several symmetric cryptographic primitives in 
particular encryption schemes such as Advanced Encryption 
Standard (AES). In this paper, we propose a new related-key 
boomerang attack on 8-round AES-256, a couple of ones on 9-
round following the work of Gorski et al. In the first one, we 
attacked 8-round AES-256 with the time complexity of 792  and 
the data complexity of 592 . The extended 8-round attack on 9-
round AES-256 is more efficient than previous attacks from both 
time and data complexity perspectives. 

Keywords- Related-Key Boomerang Attack, Advanced 
Encryption Standard 

I. INTRODUCTION 

Rijndael is an iterated block cipher with variable key 
and block lengths of 128 to 256 bits in steps of 32 bits. 
Rijndael versions with a block length of 128 bits, and key 
lengths of 128,192 and 256 bits have been adopted as the 
Advanced Encryption Standard (AES) [3]. Because of the 
worldwide use of AES, it is essential to reevaluate the security 
of AES under various cryptanalytic techniques. In this paper, 
we study the security of 256-bit key version of AES against 
the related-key boomerang attack. Differential cryptanalysis 
[4] analyzes the evolvement of the difference between a pair 
of plaintexts in the following round outputs (differentials) in 
an iterated block cipher. After Differential Cryptanalysis was 
introduced, various variants of this attack have been proposed 
such as the truncated differential attack [5], the higher order 
differential attack [5], the differential-linear attack [6], the 
boomerang attack [7], the rectangle attack [8] and the 
impossible differential attack [9].  

 The boomerang attack [7] is a strong extension of 
differential cryptanalysis to break more rounds than 
differential attacks can do, since the cipher is treated as a 
cascade of two sub-ciphers, using short differentials in each 
sub-cipher. These differentials are combined in an adaptive 
chosen plaintext and ciphertext attack to exploit properties of 
the cipher that have a high probability.  

 Related-key attacks [10, 11], concentrate on the 
information which can be obtained from two encryptions 
using related (but unknown) keys. These kind of attacks use 
the key schedule algorithm and the encryption algorithm 
weaknesses to find the values of the keys. Several 
cryptanalytic results of this attack were reported in [12-14].  

 Biryukov [15] propose a boomerang attack on the 
AES-128 which can break up to 5 and 6 out of 10 rounds. The 
related-key boomerang attack was published first in [16], but 
was not used to attack the AES. Gorski and Lucks present the 
first related-key boomerang attack on 7 rounds of AES-192 
using 4 related keys and 9 rounds of AES-192 using 64 related 
keys [1]. After that Fleischmann et al. [2] use related key 
boomerang cryptanalysis to attack on 9 round AES-256. 
Following these works, we present three attacks on 8 and 9 
round AES-256 with lower complexity and related keys. Table 
1 summarizes existing attacks on AES-256 and our new 
attacks. 

TABLE I. A SUMMARY OF THE PREVIOUS ATTACKS ON REDUCED AES-
256 AND OUR NEW ATTACKS

Keys Rounds Data Workload Type Reference 

8 1 
119128 22 − 2042 Partial Sum [17] 

8 1 322 2092 Meet In The 
Middle [22] 

8 1 111.12 227.82 Imp. Diff. [18] 

8 1 89.12 229.72 Imp. Diff. [18] 

8 1 116.52 247.52 Imp. Diff. [21] 

8 2 532 2152 RK Diff. [20] 

8 2 1122 1432 RK Diff. [20] 

8 2 642 1912 RK Diff. [20] 

8 2 882 1672 RK Diff. [20] 

8 2 1192 852 RK Diff. [23] 

8 2 103.52 102.52 RK Diff. [23] 

8 72 592 792 RK 
Bommerang Section4 

9 256 852 52224 × Partial Sum [17] 

9 4 992 1202 RK 
Rectangle [19] 

9 15.52 672 142.32 RK 
Bommerang [2] 

9 72 592 1192 RK 
Bommerang Section5.1 

9 72 672 135.32 RK 
Bommerang Section5.2 

 The paper is organized as follows: In Section 2 we 
briefly describe the AES algorithm and in Section 4 we 
propose our attack on 8-round AES-256. Two new related-key 
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boomerang attacks on 9 round AES-256 are introduced in 
Sections 5. Section 6 summarize and concludes the paper. 

II. A BRIEF DESCRIPTION OF AES 
The Advanced Encryption Standard (AES) [3] is a 

symmetric key block cipher that supports key sizes of 128, 
192 and 256 bits. The 128-bit plaintexts are represented by a 

44×  matrix of bytes, where each byte represents a value in 
)(28GF . An AES round is composed of four operations:   

    • SubBytes (SB): a bytewise transformation that 
applies on each of the current block an 8-bit to 8-bit nonlinear 
S-box.  

    • ShiftRows (SR): a linear operation that rotates on 
the left all the rows of the current matrix (0 for the first row, 1 
for the second, 2 for the third and 3 for the fourth).  

    • MixColumns (MC): another linear operation 
represented by a 44×  matrix M, where M is  

Each column of the input matrix is multiplied by M 
in the )(28GF . The inverse of M in )(28GF  is 

    • AddRoundKey (AK): a simple XOR operation 
between the input matrix and the subkey of the current round.  

 The MixColumns operation is omitted in the last 
round and an initial key addition is performed before the first 
round for whitening. We also assume that the MixColumns 
operation is omitted in the last round of the reduced-round 
variants. The number of rounds ( rN ) is variable depending 

on the key length ( kN×32 ), 10 rounds for 128-bit key, 12 
for 192-bit key and 14 for 256-bit key. 

A. Notations  

In this paper we use the following notations: I
ix

denotes the input block of the round i, while S
ix , R

ix , M
ix  and 

O
ix  denotes the intermediate values after applying SubBytes, 

ShiftRows, MixColumns and AddRoundKey operations of 
round i, respectively. Obviously, I

i
O
i xx =1−  holds for 2≥i .

We denote the subkey of the i-th round by ik  and the initial 

whitening subkey by 0k . In some cases, we are interested in 
interchanging the order of the MixColumns operation and the 
subkey addition. As these operations are linear, they can be 
interchanged, by first XORing the data with an equivalent key 
and then applying the MixColumns operation. We denote the 
equivalent subkey for the modified version by iw , i.e. 

)(= 1
ii kMCw − , and W

ix  denotes the intermediate value 
after applying AddRoundKey with equivalent subkey. Let 

)(, jcolix  denotes the j-th column of ix  where { }0,1,2,3∈j .
We also denote the byte in the m-th row and n-th column of 

ix  by nmix ,,  where { }0,1,2,3, ∈nm . Another notation for 

bytes of ix  is an enumeration { }150,1,2,...,  where the byte 

nmix ,,  corresponds to byte mn +4  of ix , i.e. ix  is exhibited 

as an array of 44×  bytes with byte indexed as shown in 
Figure 1. 

 Figure  1: Byte coordinate of 128-bit data block 

We use the notation ),(),(),((= (2),(1),(0), colicolicolii xxxx
))( (3),colix  to show ix  column-wise. The column j of ix  is 

represented as ,,( ,1,,0, jiji xx ), ,3,,2, jiji xx .

III. RELATED KEY BOOMERANG ATTACK

Boomerang attack is a kind of statistical-structural attack. 
The scenario of these attacks involves two main steps. The first 
one is distinguishing the cryptosystem output sequence from a 
random sequence with a complexity lower than the exhaustive 
search. The second step is the key recovery step in which we 
find the key bits of cryptosystem using the distinguishing 
characteristic. 

A. Distinguisher step 
During the distinguisher step we treat the cipher 

)(PE  as a cascade of two sub-ciphers 

))((=)( 01 PEoEPE . Consider two pairs of ( ba PP , ) and 

( dc PP , ) have the related key differential of ( βα → ) for 

0E  and two pairs of ( ca PP , ) and ( db PP , ) have the related 

key differential of ( γδ → ) for 1
1
−E . We call the 

( dcba PPPP ,,, ) a correct related-key boomerang quartet. We 
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can show that the pairs of ( dc PP , ) has the related key 

differential of ( αβ → ) for 1
0
−E  (see Figure 2):   

)()( 00 dc PEPE ⊕
)()()(= 000 aba PEPEPE ⊕⊕
)()()( 000 dbc PEPEPE ⊕⊕⊕
)()()(= 1

100 aba CEPEPE −⊕⊕
)()()( 1

1
1

1
1

1 dbc CECECE −−− ⊕⊕⊕
γγβ ⊕⊕=

β=

 Figure  2: Related Key Boomerang Distinguisher 

To achieve aC  and bC  and to generate the correct 

related-key boomerang quartets, we encrypt the aP  and 

α⊕ab PP = . Now, we decrypt δ⊕ac CC =  and 

δ⊕bd CC =  to achieve cP  and dP .
For obtaining the boomerang distinguishing 

characteristic, we use the related key differential of 
( βα → ), ( αββ → ) and ( γδ → ). So the probability of 
having a correct related-key boomerang quartet which must be 
greater than the probability of a random quartets occurring is: 

1282=2>)()()( −−→⋅→⋅→ nPrPrPr γδαβββα  (1) 

B. Key recovery step 
In this step we just work on the set stored by the related-

key boomerang distinguisher. Consider the pairs of plaintexts 
( ba PP , )with differences α  and corresponding ciphertexts 

( ba CC , ). Decrypt δ⊕ac CC =  and δ⊕bd CC =  to 

achieve cP  and dP . Now consider the quartets 

( dcba PPPP ,,, ) as a correct related-key boomerang quartet 

when α=dc PP ⊕ . For every correct related-key boomerang 

quartet, guess a whitening key and encrypt the pairs ),( ba PP
and ),( dc PP . For the assumed key compute the output 
difference of the first round and check the differential 
characteristic. If the characteristic is hold, increase the 
corresponding counter of the assumed key. Finally the subkey 
which has a counter with a larger number is the correct key. 

IV. RELATED-KEY BOOMERANG ATTACK ON 8-ROUND 
AES-256 

We attack a 8-round 256-bit key AES. In this attack 0E  is 

rounds 1-5 of AES-256 and 1E  is rounds 6-8. The basic 
differential characteristic ( βα → ) used in rounds 1-5 is also 
the best known 5-round differential characteristic of AES-256. 
This characteristic and the basic differential characteristic used 
in rounds 6-8 are presented in Figures 5 and 6, respectively. 

A. The structure of the related keys
In the related key boomerang attack we use two pairs 

of the related keys as follows:  

dcba KKKKK ⊕⊕Δ ==

dbca
' KKKKK ⊕⊕Δ ==

KΔ  is used for the first related key differential 0E  and 'KΔ
is used for the second related key differential 1E . The attacker 
just knows these related keys and wants to find the cipher key. 
The related key differences and the round subkey differences 
are shown in Figures 3 and 4, while the key differences 

''' KKK 1010 , ΔΔΔ  occur with the probability of 72− . An a
difference will be transformed into a certain f  by the S-box 

once. The difference f  can be one of 127 −  values. 

Figure  3: Sub-key differences derived from KΔ
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Figure  4: Sub-key differences derived from 'KΔ

In the rest of this section we present a method of breaking 
8-round AES-256 using a boomerang distinguisher. 

B. The attack procedure 
The eight round attack will be as follows:  

1. Prepare a pool of plaintexts iaP , , 1,20,= 57 −i  which 
have all possible values in eight bytes (0,3,4,5,9,10,14,15) and 
arbitrary constant in the other bytes. Encrypt the pool under 

aK  and obtain a pool of 572  ciphertexts iaC , .

2. Repeat the previous step for iaib PP ,, =  and 

KKK ab Δ⊕=  to obtain a pool of 642  ciphertexts ibC , .

3. Repeat the following steps for every f :
3.1. Construct a pool of modified ciphertexts: 

δ⊕iaic CC ,, = , where δ  is a 128-bit value, of which, byte 
0 is non-zero and other bytes are zeros. Decrypt the pool 

icC , under '
ac KKK Δ⊕=  to obtain the plaintexts 

)(=.,., ,
1

,, iccKicic CEPeiP − .

3.2. Repeat the previous step for δ⊕ib
id CC ,

, =

and '
cd KKK Δ⊕=  to obtain a pool of 572  plaintexts 

)(= ,
1,

iddK
id CEP − .

3.3. Pick only those quartets ( jdicjbia PPPP ,,,, ,,, )

where jdic PP ,, ,  have zero difference in 8 bytes 
(1,2,6,7,8,11,12,13).  

3.4. For each of the quartets that passes the previous 
step, guess a 8-bit sub-key ,8ak  of aK  that enters the one S-
box corresponding to a non-constant byte and consequently 

compute bk , ck  and dk . Using the guessed key value 
partially decrypt one round and check that 

(0,0,0,0)=(0)7,
MC

ColxΔ , for both pairs ( ca CC , ) and 

( db CC , ).  
3.5. For each of the quartets that pass previous step, 

guess a 32-bit sub-key ,0ak  of aK  in the position of 

(0,5,10,15) and consequently compute bk , ck  and dk . Using 
the guessed key value partially encrypt one round and check 
that ,0,0,0)(=(0)1, axM

ColΔ , for both pairs ( ba PP , ) and 

( dc PP , ).  

3.6. Guess a 32-bit subkey ,0ak  of aK  in the 

positions of bytes 3, 4, 9, 14 and compute bk , ck  and dk .

Partially encrypt each quartet ( jdicjbia PPPP ,,,, ,,, ) left from 

the previous step. Check if ,0,0,0)(=(0)1, axMC
ColΔ .

C. The related key differential trail 
1) )( outβα →

The used α  has a non-zero difference in bytes 
(0,3,4,5,9,10,14,15). It is easy to conclude that SR

Colx (0)1,  and 
SR

Colx (1)1,  are non-zero bytes and the two others are zero bytes 

and the first two columns of Mx  are ,0,0,0)(a  with the 

probability of 642− . We call outβ , the difference obtained 

after passing the related-key differential 0E . The trail Mx1  to 
Ox6  holds with probability 1. So the probability of the 

differential 0E , i.e., the transformation of an α  difference 

into a outβ  difference, is 642=)( −→ outPr βα  (see Figure 
5). 

Figure  5: The related key differential βα →

2) )( γδ →
 From the bottom up direction of the related-key 

boomerang distinguisher, the related-key differential 1
1
−E , is 

used with the round-key differences of 'KΔ . The input 
difference δ  consists of one non-zero difference in byte 0. 
The suitable trail generates (0,0,0,0)  in M

Colx (0)7,  with the 
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probability of 82− . It is easily concluded that 
82=)( −→ γδPr . Also the )=( 21 δδPr  is one in this 

paper. So the probability of the differential 1E , i.e., the 
transformation of an δ  difference into a γ  difference and 

)=( 21 δδPr  is 82−  (see Figure 6). 

Figure  6: The related key differential γδ →  (8-round AES-256) 

3) )( αβ →in
Using the results of the previous step which states 

1=)=( 21 γγPr , we easily conclude that inout ββ = . This 

means that inβ  and outβ  are not only equal in the same 

positions of non-zero differences but also in each byte. 5kΔ
has no unfixed bytes and Mx5Δ  can go back with probability 
one. This means we know that four non-zero byte differences 
occur in the bytes 0,7,10 and 13 of Rx5Δ , while the other bytes 

are zero. With the probability of 242− , Mx4  has a non-zero 
difference in byte 0, while the remaining bytes are zero. 

O
Colx (0)3,Δ  is ,0,0,0)(a  after the next S-box operation with 

the probability of 82− .The further steps operate such that the 
output difference of 1

0
−E  is α . The differential 1

0
−E  has the 

probability 322=)( −→ αβinPr  (see Figure 5). 

D. Complexity of the 8-round attack  
A correct related-key boomerang quartet occurs with 

probability  

112322864
21

2

2=21)(22=

)()=()()(=
−−−− ⋅⋅⋅

→⋅⋅→⋅→ αβγγγδβα inoutc PrPrPrPrPr

 Two pools of 572  plaintexts can be combined to 

approximately 113
257

2=
2

)(2
 quartets. So the data 

complexity of this attack is 59572 2=22 ⋅ .
 The time complexity of the attack consists of four parts:  

    • Steps 1 and 2 require 572  8-round AES-256 
encryption.  

    • Since Step 3 runs at most 72  times, the time 
complexity of Steps 3.1 and 3.2 is 65577 2=222 ⋅⋅

    • The probability of the existence of mentioned 
quartets in Step 3.3 is 642− . So we have 4964113 2=22 −⋅

quartets to decrypt in Step 3.4 and the time complexity is 
5949287 2=2222

16
1

8
1 ⋅⋅⋅⋅⋅  8-round AES-256 encryption.  

    • After the previous step, 352749 2=)(22 −⋅  quartets 

remain. Step 3.5 requires 793528327 2=22222
16
4

8
1 ⋅⋅⋅⋅⋅⋅

8-round AES-256 encryption, because for each of 82  guessed 
keys in previous step, we should guess 322  values in bytes 0, 
5, 10 and 15 for ,0ak  and for all of these keys, we should 

check four bytes for each of the 352  remained quartets. Since 
296435 2=22 −−⋅  quartets remain from the previous step, 

Step 3.6 requires 47292832327 2=222222
16
4

8
1 −⋅⋅⋅⋅⋅⋅⋅

8-round AES-256 encryption. At last 936429 2=22 −−− ⋅
quartets will remain. 

V. RELATED-KEY BOOMERANG ATTACK ON 9-ROUND 
AES-256 

In this section we explain two attacks on 9-round 
AES-256.  

A. Extended 8-Round AES-256 Attack 
The first one is the extension of the related-key 

boomerang attack in the previous section to a 9-round attack, 
by guessing 32 bits of ,9ak  at the bytes 0, 7, 10 and 13. 

Moreover, we change the order of 8MC  and 8AK , which 
allows us to mount the 8-round attack inside the 9-round 
attack. The attack works as follows:  

    • Guess 32 bits of ,9ak  at the bytes 0, 7, 10 and 13. 
Therefore we have to guess 8 bits for the unknown values of 
e  in KΔ  and compute subkeys ,9bk , ,9ck , ,9dk .

    • Ask for encryption of aP  under aK  to obtain 

aC .

    • Compute the intermediate value O
ax ,8  at bytes 0, 

7, 10 and 13 by decrypting aC  under ,9ak .

    • Compute the intermediate value δ⊕O
a

O
c xx ,8,8 =

at bytes 0, 7, 10 and 13. Compute cC  by encrypting O
cx ,8

under ,9ck . Ask for decryption of cC  under cK  to obtain cP .

    • Ask for encryption of α⊕ab PP =  under bK
to obtain bC .

    • Compute the intermediate value O
bx ,8  at bytes 0, 

7, 10 and 13 by decrypting bC  under ,9bk .
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    • Compute the intermediate value δ⊕O
b

O
d xx ,8,8 =

at bytes 0, 7, 10 and 13. Compute dC  by encrypting O
dx ,8

under ,9dk . Ask for decryption of dC  under dK  to obtain 

dP .

    • Check if α=dc PP ⊕ .

Figure 7: The related key differential γδ →  (9-round AES-
256) 

  The data complexity of this 9-round attack on AES-256 
remains 592  chosen plaintexts and ciphertexts. The time 
complexity increases to 11979832 2=2(8/9)22 ⋅⋅⋅  9-round 
AES-256 encryptions.  

Figure 8: Sub-key differences derived from 'KΔ

B. 9-Round AES-256 Attack 
The second attack is very similar to the 8-round 

attack which was explained in the previous section. In this 
attack 0E  is rounds 1-5 of AES-256 and 1E  is rounds 6-9. 

The )( outβα →  and αβ →in  trails are the same as the 8-
round attack. The basic differential characteristic used in 
rounds 6-9 ( γδ → ) is presented in Figure 7 respectively. 

The input difference δ  consists of one non-zero difference in 
byte 0. The suitable trail generates (0,0,0,0)  in M

Colx (0)8,

with the probability of 82− . It is easily concluded that 
82=)( −→ γδPr . Also the )=( 21 δδPr  is 562−  in this 

paper. So the probability of the differential 1E , i.e., the 
transformation of an δ  difference into a γ  difference and 

)=( 21 δδPr  is 725628 2=2)(2 −−− ⋅  (see Figure 7). 
Also this attack uses the previous KΔ  and the new 

'KΔ  which is used for the second related key differential 1E .

The related key difference 'KΔ  and the round subkey 
differences are shown in Figure 8, while the key differences 

''' KKK 1010 , ΔΔΔ  occur with the probability of 72− . An a
difference will be transformed into a certain f  by the S-box 

once. The difference f  can be one of 127 −  values. 

1) The Attack Procedure 
The procedure of the 9-round AES-256 attack is very 

similar to the attack on 8-round AES-256, while we have 
42.52  structures of 642  plaintexts iaP ,  and ibP , , instead of 

one structure of 572  plaintexts in the 8-round attack. 

2) Complexity of 9-Round AES-256 Attack 

Two pools of 642  plaintexts can be combined to 127
264

2=
2

)(2

quartets. Due to analyzing the structures separately, the data 
complexity of the attack is 66642 2=22 ⋅  chosen plaintexts, 
while the time complexity is about 135.3392.8342.5 2=22 ⋅  nine 
round encryptions and 792−  quartets remain after the attack 
procedure. Using 42.52  structures, we obtain 

169.512742.5 2=22 ⋅  quartets in total. Therefore, about 
36.57942.5 2=22 −−⋅  false related key boomerang quartets 

remain. 

VI. SUMMARY AND CONCLUSION

We presented four attacks on AES. The first attack, 
applicable to 8-round AES-256, has a data complexity of 
about 592  chosen plaintexts ciphertexts and a time complexity 
of 792  8-round AES-256 encryptions. The second attack 
requires 592  chosen plaintexts ciphertexts and a time 
complexity of 1192  encryptions for 9-round AES-256. As 
shown in Table 1, the time complexity of the best previous 
attack on 9-round AES-256 is decreased by the factor 12  in 
this paper, and meanwhile the data complexity is improved by 
the factor 402 .
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