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ABSTRACT: There is an ongoing change in the industry in which old ana-
logue instrumentation and control (I&C) systems are replaced with new dig-
ital ones. New digital systems enable more complex control tasks and es-
pecially their application to safety instrumented systems (SIS) has created a
need for new verification methods such as model checking.

Our goal is to study the applicability of model checking methods to a real
safety instrumented system used in industry and to evaluate whether such a
system can be modelled on a level which, on one hand, enables verification
of relevant safety properties and, on the other hand, keeps the size of the
model feasible. A central objective is also to create a general methodology
for applying model checking to analysing safety instrumented systems.

As a case study we modelled an application of UTU Falcon arc protec-
tion system along with it’s environment with NuSMV modelling language.
Moreover, we used NuSMV to verify this model against the most relevant
safety properties for the system.

Our results indicate that model checking seems to be a promising method
for verification of safety instrumented systems.

KEYWORDS: Model checking, safety instrumented systems
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1 INTRODUCTION

1

Instrumentation and control (I&C) systems are an important part in the op-
eration of nuclear power plants and many other industrial facilities. They are
divided into basic process control systems (BPCS) and safety instrumented
systems (SIS). The basic process control systems are related to the main func-
tions of plants, e.g., to tasks related to energy production [14]. The safety
instrumented systems are used to implement safety related functions such as
emergency shutdown systems [14]. The nuclear power plants that are cur-
rently in active use in Finland have been built at the time when [&C systems
were implemented by using analogue hardwired circuits and electromechan-
ical relays. In many other countries the situation is the same. As these power
plants are starting to be at the end of their life cycle, there is an ongoing
process in which the plants are being renewed and modernised in order to
extend their lifetime. An important part of this renewal is the replacement
of the old analogue instrumentation and control (I&C) systems by new digi-
talised ones.

Traditionally, the verification of I&C systems (both analogue and digital
ones) has been based on manual testing or simulation [32]. In manual testing
an actual system is tested against human- or machine-generated test cases. In
simulation a system is tested by simulating the behaviour of a model of the
system with a simulator. However, as the implementation of I&C systems
with digital programmable logic controllers (PLC) has enabled more and
more complex control logic designs the traditional verification methods are
becoming insufficient [32]. Especially, as new digital PLC based systems
are used to replace old analogue safety instrumented system in highly safety
critical domains such as nuclear power plants, new verification methods are
needed.

Alternatives for new verification methods for I&C systems include formal
verification methods [13]. Formal verification refers to the act of proving or
disproving mathematically the correctness of design of a system. The ben-
efit of this approach is that formal methods are at best fully automated and
exhaustive, i.e., they analyse a given system with respect to its all possible
behaviours. A promising formal method for the verification of I&C systems
is model checking [9]. In model checking, the basic idea is to verify whether
a model of a system fulfils the specification of the system. This is done by
analysing all possible behaviours of the model. In practice, model check-
ing is carried out by first modelling a given system by the input language
of a model checker. Next the properties that the system is supposed to ful-
fil are specified by using a suitable specification language such as temporal
logic. Finally, a model checker is used to verify that the model of the system
fulfils the specified properties. The key difference compared to simulation
method is that the verification is done against all possible executions of the
system. Moreover, if a specified property is violated, model checker returns a
counterexample of the violation, i.e., an execution of the model that violates
the property. One of the key challenges for the model checking method is
so-called state explosion problem [9] which, informally speaking, refers to
the exponential growth of number of possible states of a system to the size
of the system description. Thus, currently model checking is not a feasible
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verification method for arbitrary sized systems.

There has already been a notable number of studies on applying model
checking to PL.C based I&C systems [18] and this work is a continuation to
that research area. Our goal is to study the applicability of model checking
to safety instrumented systems by considering a real world case study. More-
over, we introduce a general methodology for applying model checking to
similar systems as the case study that we have chosen. For the subject of
research we have chosen UTU Falcon arc protection system. It can be con-
sidered as a typical industrial safety instrumented system implementing an
emergency shutdown function. The purpose of the system is to cut down
power feed from an electricity distribution system when an electric arc is de-
tected.

[&C systems are a challenging target domain for model checking. This is
because they typically form a closed control loop between their environment,
i.e., the controller of an I&C system receives inputs through a feedback loop
from its environment. Consequently, in order to verify properties of the sys-
tem design one has to model also the physical environment to the appropriate
extent. This can be difficult because the physical environment typically in-
cludes different kinds of continuous quantities and time delays. Especially
in the case of safety instrumented systems, the most relevant properties to
be verified are often dependent on different kinds of time delays. An option
for dealing with these kinds of systems would be to use a real-time model
checker which are specifically developed to handle continuous variables [4].
However, in case of safety instrumented systems, where the modelling of en-
vironment is often inevitable, the size of the model grows easily too large
and model checking becomes infeasible. Therefore, our purpose is to study
whether it is possible to model a SIS by using non-real-time model checker
NuSMV so that the most relevant properties can be verified. An essential
issue in this approach is to find a suitable level of abstraction for handling
delays and timing issues.

1.1 Outline of the Report

2 1

This work is organised as follows. In Chapter 2 we discuss the existing re-
search made in the field of applying model checking to automation sys-
tems. In Chapter 3 we give a concise overview on safety instrumented sys-
tems. Moreover, we present an abstract model for safety instrumented sys-
tems which captures the overall structure of the systems into which the mod-
elling approach applied with the Falcon system is suitable. In Chapter 4
we describe the NuSMV model checker to the extent that is needed for the
reader to be able to follow the rest of the work. Chapter 5 describes how the
general parts of the abstract model of Chapter 3 can be modelled by using
NuSMV. In Chapter 6 the actual case study is presented, and finally, Chap-

ter 7 draws conclusions on the work.
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2 MODELS AND ANALYSIS OF CONTROL SYSTEMS

2.1 Formal Methods for Digital Automation Systems

2

In this section we review existing work on applying formal methods to the
analysis of digital automation systems. However, as the subject area is very
wide, we had to make clear restrictions on the covered topics. Therefore we
discuss only studies concerning automation systems based on programmable
logic controllers (hereafter PLCs). Consequently, we have mostly excluded
systems which are based, e.g., on softPL.Cs (PLCs based on standard PCs)
and distributed control systems (DCSs). This restriction seems reasonable,
since the conclusions made on PL.Cs can be extended to cover also softPLCs.
On the other hand, covering also the subject of DCS would have required a
survey of a much larger scale. However, the PLC domain can be seen as a
logical stepping stone towards analysing of DCS based automation systems.
On the method side we are focusing mainly on applying model checking
methods to PLC applications.

The analysis of PLC based systems with formal methods can be done on
different levels. In the most comprehensive approach the PLC program is
verified against the specification of the entire system which consists of the
combined specification of the controller and its environment. Another op-
tion is to restrict only to verifying the correctness of the controller. In this case
the specification of the system as a whole is divided into the specifications of
the environment and the controller part, and the program of the controller is
analysed with respect to the specification of the controller.

Another classification of approaches on applying formal methods to PLC
applications can be made based on the initial objective of the process. That
is, the goal might be to analyse an existing application or to design a com-
pletely new one. In the first approach an existing PL.C program is first trans-
formed into some formal modelling language and then, based on the model,
the validation of properties is carried out with a model checker. This ap-
proach is often referred to as modelling or formalising existing PLC pro-
grams [23]. The related studies are often — but not always — restricted to
only validating the controller against its specification. In the second approach
a system is designed from the beginning by using a formal modelling method.
After the model (which in this case often consists of both, the model of the
controller and the environment) is finished, it can be used, alongside of val-
idating properties, to derive a PLC program automatically. This approach is
usually referred to as program synthesis [13].

In this study we review studies on both approaches, the modelling of ex-
isting PLC programs and the program synthesis. We start by listing some
carlier surveys made on the subject. From these we found especially the pa-
pers [23, 18] as a good starting point for our own review. After listing already
existing surveys we proceed to present references to most relevant studies
made on the field up to date. However, before going to the actual survey
we give first an overview on PLCs in Section 2.2 and then describe some
classification criteria for models of PLC programs in Section 2.3. We use the
terminology of the classification framework while describing the references
that we list in this work, though not all the referred studies are by no means
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classified according to all these criteria.
A different version of the survey presented in this work can be found from
a technical report prepared for the MODSAFE project [37].

2.2 Overview on PLCs

4 2

Programmable Logic Controllers (PLCs) are self-contained microcomputers
optimised for industrial control [32]. They were introduced in the 1970s as
a replacement for control systems based on hardwired circuitry of electrome-
chanical relays. A typical PLC hardware consists of a single microprocessor
based CPU, a memory, and input/output-ports through which PLC is con-
nected to sensors and actuators. Typical sources of input data might be e.g.,
light, current, or heat sensors where as actuators might be e.g., motors or
valves. The key characteristic distinguishing PLCs from general micropro-
cessor based systems is their cyclic operation mode. That is, PLC programs
are always executed in a permanent loop. A single iteration of the loop is
often referred to as a scan cycle and it consists of the following three phases:
first the input values are read from the sensors, then the program computes
a new internal state and output values, and finally the updated output values
are passed to the actuators.

Initially, PLCs provided only very restricted functionality comparable to
those tasks that could be achieved by using relays. However, since their first
appearance to the market the functionality of PL.Cs has evolved to include
many sophisticated features such as multi-tasking, interrupts, watchdogs, etc.
Therefore, with respect to the hardware capabilities the difference between
PLCs and ordinary PCs is diminishing all the time, and the most fundamen-
tal differences to general purpose programming systems lay in the operation
mode and the areas of usage of PLCs.

However, with respect to the programming languages, there are huge dif-
ferences between PLC based systems and general purpose programming sys-
tems. The following statements are characteristic to the variety of different

PLC languages:

e PLC programming languages tend to be very low-level (this applies
especially to languages most applied in the industry), and

e PLC languages have traditionally been vendor specific without con-
forming to any common standard.

Reasons for this situation are of historical nature. Initially as PL.Cs were intro-
duced to the market their programming languages were designed to closely
resemble the design of hardwired relay circuits. This was done to make the
transition to PL.C based systems as easy as possible for the control engineers in
order to speed up the introduction of the new technique. On the other hand,
because PLC based systems are typically designed for a specific industrial tar-
get domain, and moreover, the software has initially been only a small part of
the whole PLC based system (especially of total design expenses), there has
not been as strong demand for fast and constant development of the program-
ming languages and tools as it has been in the case of the general purpose
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programmable systems [27]. Moreover, even though more evolved program-
ming languages have appeared, the control engineering industry seems to
have a tendency of sticking to the most traditional tools.

However, as systems keep getting larger and more complex, and the need
for interconnecting industrial systems is increasing, IEC has come up with
a common standard [EC 61131-3 for PL.C languages. The standard intro-
duces five different languages and it is intended that PLC manufacturers will
gradually transform their programming languages to conform to one of lan-
guages of the standard. The IEC 61131-3 standard will be discussed more in
Section 2.3.

2.3 Classification Criteria for PLC Models

Here we describe the three orthogonal criteria for classifying PLC models
originally presented by Mader in [23]. The discussion is intentionally kept
brief and an interested reader is advised to turn to [23] for more in-depth
coverage on the issue.

Modelling of the Cyclic Operation Mode

The most fundamental characteristic of PL.Cs is their cyclic operation mode.
Therefore the first logical choice in classifying PLLC models can be made on
the basis of how the scan cycle of the PLC is modelled. There are three pos-
sible choices: the scan cycle can be modelled either explicitly or implicitly,
or then one can abstract entirely from the scan cycle.

In the explicit modelling of the scan cycle the exact duration of the cycle
in actual time units is modelled. Instead, in the implicit modelling the ex-
istence of the cycle in itself is modelled, but the actual duration of it is not
measured in time units, and moreover, it is considered to be constant. The
third option is to abstract from the scan cycle entirely so that the time model
of the PLC is considered to be continuous instead of discrete.

Modelling of Timers

The use of timers is a fundamental characteristic of PLC programs. How-
ever, not all of the PL.C applications need timers and in many cases the use
of them can be avoided, either by modelling techniques or by altering the
system design. Therefore, it is justifiable that there are studies concerned
with modelling of timers as well as those which abstract from them.

The Language Fragment Considered

By the language fragment criterion a choice is made on which parts of the
PLC programming language are considered in the modelling process. The
first obvious question is which of the five languages defined in the [EC 61131-
3 standard is considered. The languages are: Instruction List (IL), Structured
Text (ST), Ladder Diagrams (LDs), Function Block Diagrams (FBDs), and
Sequential Function Charts (SFCs).

Moreover, usually only a restricted part of the features of the chosen tar-
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get language is considered. This is because the IEC 61131-3 standard lacks
the definitions of the formal semantics on the languages in standard. There-
fore, from the viewpoint of academic research, it simply is not reasonable to
consider all possible semantic interpretations of all parts of the languages.

Finally, the language fragment considered can also be restricted on the
possible data types, i.e., which of the data types of booleans, integers and real
numbers are allowed.

2.4 Survey of Studies on Model Checking PLCs

In this section a survey of studies on applying model checking to PLCs is
presented. We start by presenting already existing surveys on the subject
in Section 2.4.1 after which we go through studies on modelling of PLC
programs in Section 2.4.2. Finally in Section 2.4.3 studies on PLC program
synthesis are reviewed.

2.4.1 Previous Surveys

The paper [23] by Angelika Mader presents a classification of different PLC
models. It first classifies an orthogonal set of criteria on which PLC models
can be classified with. The paper also introduces an extensive list of publica-
tions which are classified against the presented criteria. The Doctoral Thesis
of Ralf Huuck [18] presents a quite similar survey which includes also more
recent studies and a bit extended list of the classification criteria.

The paper [24] also by Mader discusses on a general level applying formal
methods to PLC applications. It presents a schema on the structure of a gen-
eral PLC application and based on this framework analyses the possibilities
for applying different formal methods on PLCs.

The paper [43] by Frey introduces four criteria on which studies con-
sidering formalisation of existing PLC programs can be categorised. It also
presents references to studies falling in each of these categories. The study is
by no means as thorough as the survey presented in the papers [23, 18] but
contains some additional references and shows another way to classify the
existing research.

The paper [13] by Frey presents a general framework on the different
phases of verification and validation and discusses what formal methods can
be used in these different phases. Therefore, it is not focused only on trans-
forming existing PL.C programs to models and it also discusses other formal
methods than just model checking.

2.4.2 Modelling PLC Applications

In the following we present studies considering the modelling of PLC ap-
plications. The references are organised according to the different PL.C pro-
gramming languages.

Research on modelling SFC programs The Doctoral Thesis of Ralf Hu-
uck [18] shows how Sequential Function Charts (SFC) programs can be
given formal semantics, including a translation of the untimed semantics of
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PLCs to the Cadence SMV model checker input language. In the paper [3]
this research is extended by giving formal semantics also for timed SFCs and
in the paper [2] it is shown how timed SFCs can be translated into timed
automata. The latter study illustrates in both, timed and untimed cases, the

complete verification procedure from model transformation to identifying
errors with model checking tools UPPAAL and Cadence SMV.

Research on modelling IL programs The widely referred paper [26] by
Mader and Wupper shows how a fragment of Instruction List (IL) programs
can be translated into timed automata. Based on this study a tool is pre-
sented in the paper [39] by Willems which translates L programs automat-
ically into the timed automata format accepted by UPPAAL model check-
ing tool. This toolchain allows model checking of real time properties with
explicit modelling of the scan cycle. The Willems'’s tool also allows IL pro-
grams to contain bounded integer variables. Moreover, UPPAAL tool can
be used to model the environment of the PLC as well. In an unpublished
paper [22] Mader presents two examples on modelling IL programs and per-
forming their verification with the UPPAAL tool.

In the paper [16] it is shown how IL programs can be transformed into
Petri nets. The method allows usage of data structures up to length of 8-bits
and it takes into account all standard instructions excluding commands from
libraries. However, the real-time aspects are not modelled.

In the paper [15] it is shown how IL programs can be transformed into
Timed Net Condition/Event systems. The scan cycle is modelled explicitly
and timers are taken into account at some level. However, the possible data
structures are restricted to boolean values and only load, store, and, and or
instructions are considered.

The paper [6] deals with the same fragment of IL programs as the pa-
per [15] described above. In addition, the loop operations are considered.
However, [6] is concerned with translating IL programs directly to the in-
put language of the SMV model checker. As SMV cannot directly handle
real-time issues, these aspects of the IL program are not analysed.

The paper [21] uses BDD and BMC based symbolic model checkers to
model check two small PLC based automation systems written in IL.

Research on modelling LD programs  In paper [28] Ladder Diagrams (LD)
programs are modelled with the SMV model checker without taking timing
aspects into account. Based on this study there exists a research paper [34]
presenting two comprehensive case studies on existing chemical processing
systems. In these case studies also the model of the environment is presented.
The verification process revealed numerous faults and the results could be
used to improve the designs.

In the paper [31] a large fragment of LD programs are modelled with the
SMV model checker. The scan cycle is modelled implicitly and it is shown
how a particular type of timers can be modelled in non-real time manner so
that certain liveness and safety properties can still be verified.

Research on modelling ST programs The paper [19] by Jiménez-Fraustro
and Rutten considers of modelling a fragment of the Structured Text (ST)
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language with the synchronous language SIGNAL. The fragment includes
at least assignments, conditionals and bounded loops. Scan cycles are mod-
elled implicitly and real-time behaviour is not considered. The follow up
study [20] considers also the FBD language. Unfortunately, there does not

seem to exist any related studies on actual model checking based on the SIG-
NAL model.

2.4.3 Methods for Synthesising PLC Programs from Models

In the following we present studies considering the PLC program synthesis.

In the paper [10] Henning Dierks presents a new modelling formalism
named PLC-automata especially designed for modelling PL.C applications.
PLC-automata allows explicit modelling of the scan cycle but it is possible
to model only particular type of timers in which an input signal is ignored
for a certain time. Dierks shows also how PLC-automata models can be
transformed automatically into language of Structured Text.

In the paper [11] it is shown how PLC-automata models can be trans-
formed into timed automata models which makes it possible to perform
model checking with a real-time model checker such as KRONOS or UP-
PAAL. Moreover, in the paper [33] a tool MOBY/PLC is presented which
can be used to modelling PLC-automata, validation, and code generation.

As a continuation for the research based on PLC-automata formalism
Olderog presents in paper [29] an approach for designing valid PL.C applica-
tions. His method is based on formulating design specifications with PLC-
automata and specifying requirements in Constraint Diagrams. Olderog also
presents a case study from industry for which he applies his approach. In the
paper [30] Dierks and Olderog present a tool Moby/RT which is based on
the design approach of [29].

A quite interesting research project is reported in the papers [25, 5] by
Mader, Brinksma et al. In [25] a systematic design and validation of a PL.C
control program for a batch plant by using formal methods is reported. This
plant was selected as a case study for the EC project on Verification of Hybrid
Systems (VHS). In follow up paper [5] it is reported how the SPIN model
checker was used for both the verification of a process control program and
the derivation of optimal control schedules.

In the paper [41] a Korean research group presents a PL.C-based safety
critical software development technique for NPP domain. In the method
a formal language NuSCR is used for writing software requirement speci-
fications. After a requirement specification is written in NuSCR it can be
transformed mechanically into a FBD program (the synthesis phase). The
benefit of the method is that NuSCR specifications can be automatically
analysed for completeness, consistency, and against the properties specified
in temporal logic. Moreover, NuSCR specification language was developed
during the research project together with NPP domain experts and it was de-
signed to especially suit the needs of nuclear engineering domain. NuSCR
specification language is explained more closely in the paper [42] and the
paper [40] describes more thoroughly the process of synthesising FBD pro-
grams from NuSCR specifications. The paper [8] presents NuEditor tool
which can be used for creating NuSCR specifications and performing con-
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sistency and completeness analysis on the specifications. NuEditor can also
be used to translate a NuSCR specification into SMV input so that model
checking of safety and liveness properties can be performed on the specifi-
cation. However, NuEditor cannot be used for synthesising FBD programs
from specifications and, apparently, for this task there does not yet seem to
exist any tool support. The paper [8] presents also a case study in which a
reactor protection system for Korean nuclear power plant was specified with
NuEditor and verified against safety and liveness properties with SMV model
checker.

2.5 Overall Status of the Research on Model Checking PLCs

2

On the study field of modelling PL.C programs most research papers seem
to be available on the language of Instruction List. On Ladder Diagram
programs there is also quite a lot research but, still, on this area there seems to
be many gaps to be filled, especially on covering timers and real time issues.
Instead, in the case of the SFC programs the situation is quite opposite: there
hasn’t been that many research projects but the existing ones are actually
quite covering.

Considering the last two languages of the IEC 61131-3 standard, i.c., on
Structured Text and Function Block Diagrams, there seems to exist only
very few studies. We presume that the reason for this in the case of the
ST language might be that the relevant problems on the modelling issues
are present also in the IL language which in its brevity suits better academic
research. Instead, in the case of the FBD language, the similar but more
evolved SFC language provides features not existing in FBD, and therefore,
might be more appealing target for the research.

For the synthesising approach there has also clearly been quite a lot of
research activity. The usefulness of this type of an approach has especially
been shown in the Korean research project which was described above. This
project has proven that the synthesis approach can be successfully applied in
producing real application programs in the NPP I&C domain. Moreover,
the project was also successful in producing a formal specification language
which was readily accepted by domain experts.
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3 SAFETY INSTRUMENTED SYSTEMS

3.1 Overview on Safety Instrumented Systems

Safety Instrumented System (SIS) is used to implement safety related func-
tions on industrial systems or processes [14]. They consist of sensors, logic
solvers, and final elements. Typical uses for a SIS are shutdown functions
and permissive functions. In shutdown functions a protected system or a pro-
cess is taken to a safe state if a hazardous event or condition is met. In case
of a permissive function the purpose is the opposite: a process is permitted to
move forward when specified conditions are met.

Regardless of the specific safety function implemented, a SIS operates
by monitoring process variables of the protected system and it only initiates
action if the variables reach specified threshold values. If the threshold values
are reached, SIS performs the specified safety function by operating final
clements such as switches, valves, or breakers of the protected system. It
should be noted here that the final elements of a SIS are typically physical
parts of the protected system, i.e., terminologically they belong to both of
them.

3.2 An Abstract Model of Safety Instrumented Systems

In this section we present an abstract model of safety instrumented systems
which characterises the systems which our model checking method can be
applied to. Further in Section 5 we present the general overview of our
model checking method with the aid of this model.

Our model is very general in a sense that it doesn’t make any restrictions
nor assumptions on the protected system or the specific safety function im-
plemented by SIS. However, as our model does not allow the logic solver to
be arbitrary, it cannot be seen as a generic model of all possible SISs.

The abstract model is shown in Figure 1 and described in the following.

Overall description of the model

10

The model describes a SIS with its environment and the closed control loop
between them. Model is divided into two parts, into Controller and System
environment. Controller models only the logic solver of a SIS. The model
assumes that the logic solver is based on a controller with cyclic operation
mode and constant length scan cycle (see Section 2.2 for description of scan
cycle). System environment is an abstraction of the sensors and the final
clements of a SIS as well as the protected system. It should include all the
parts of the physical environment which might affect the operation of the SIS.
The arrows from System environment to Controller and Controller to System
environment represent the signals from sensors to the logic solver of a SIS and
the signals from logic solver to the final elements of a SIS, respectively. The
values of the signals are binary, i.e., at any given moment the value of each
signal is either 0 or 1. The control loop is closed as Controller affects the
state of the protected system by controlling the final elements and the sensor
data received by Controller depends on the state of the protected system.
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Figure 1: An abstract model of a SIS
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The model abstracts physical devices with both discrete and continuous
behaviour. However, as the operation mode of the logic solver of the SIS is
assumed to be cyclic with constant scan cycle, it interacts with the environ-
ment only on discrete instants. Therefore, the transient states of the system,
that is, the states between starting and ending points of a scan cycle, are ir-
relevant with respect to the control logic of the logic solver. For this reason
the time model of the whole system can be considered discrete so that the
values of signals and state variables are updated only on discrete time steps.
The unit time step of the model represents a single scan cycle of the logic

solver of the SIS.

Description of Controller

Controller abstracts logic solver of a SIS into Logic. and Delays parts. Logic.
part represents the control logic of the modelled SIS, i.e., it specifies the
logical rules on how the SIS reacts to each combination of input signals.
In the model Logic. part is modelled as a logical function which calculates
outputs as a function of input values instantaneously without any time delay.

Delays of Controller represent a specific type of delays commonly used
with SISs. The delay gates of Delays part are associated with a delay length
parameter (number of time steps) and they operate in such a way that a delay
gate only gives an output signal 1 if it has received a non-stop input signal
for a time period specified with the parameter of that delay. Otherwise the
output signal is 0. These kinds of delays can be used with SISs to eliminate
too hasty reactions by ensuring that the alarm condition remains for a certain
time before an action is taken. In our model the scan cycle of the controller
of a SIS is also included into Delays. For this reason it takes always at least
one time step for a signal to go through Delays part.

We define the state of Controller as the set of the input signals of Con-
troller, the input signals of Delays (obtained as the results of Logic, acting
on input values), the internal state of the delay gates of Delays part, and the
outputs of Controller. The internal state of a single delay gate can be seen
as an integer number in the value range 0..delay where the delay stands for
the delay parameter of the gate. The purpose of the states of the delay gates
is to keep track of the number of consecutive 1-valued signals up to number
of scan cycles specified by the delay parameter.

Description of System environment

12

System environment abstracts the physical elements it represents into Logice,
Inputs, and Memory parts. Inputs represent events which affect the system
but whose cause or origin cannot be modelled. Most importantly this means
events which are caused by emergency situations and perceived by sensors.
Inputs can also be used to represent malfunctions in physical devices, for
instance. As it is with the input and output signals of Controller, Inputs are
expected to be binary valued.

Logic, part represents the operational model of the physical devices in-
cluded in System environment and the interaction between them. Basically
Logic. specifies how the control signals of Controller and Inputs of System
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environment affect the input signals of Controller. Part of the interactions
between physical devices can be seen as instantaneous. For instance, de-
pending on the situation an electricity feed might be considered to be cut
down instantaneously at the moment it is switched off. On the other hand,
some interactions might not be instantaneous but happen with a delay. For
instance, for a valve it might take a considerable amount of time to close a
pipe after it has received a launch signal. Moreover, effects of an interaction
(either delayed or instantaneous) might also depend on the current state of
System environment and/or they might change the state of System environ-
ment. For these reasons System environment contains Memory part whose
memory elements can be used to store such variables whose values in a given
time step are determined in the previous time step. We define the state of
System environment in a given time step as a set of values which includes
the predetermined variables stored in Memory, Inputs of System environ-
ment, the output signals from Controller, and the effects of instantaneous
interactions determined by Logic, part.

System environment works so that on each time step Logic, part counts
the effects of interactions as a logical function of the output signals of Con-
troller, Input of System environment, and the outputs from Memory part.
That is, the model is designed so that regardless of the type of the interac-
tion (instantaneous or delayed) the result is calculated immediately without
a time delay. Therefore, the effects of the instantaneous interactions hap-
pening in a certain time step can be seen at the same time step. However,
in case of the delayed interactions, the result is not shown immediately but
it is stored in the memory element, which shows the result only in the fol-
lowing time step. If an interaction happens with longer delay than one time
step, it can be modelled simply by iteratively storing the result into a memory
element until the corresponding time delay has elapsed.

3.3 Classification of the Abstract SIS Model

In Section 2.3 we presented a coarse framework with three orthogonal crite-
ria for classification of PLLC models. The first criterion specifies how the scan
cycle of a PLC is modelled. In our case the modelling is done implicitly,
i.e., the existence of scan cycle is modelled but its length is assumed to be
constant. Moreover, the time length of the scan cycle is not modelled but it
is taken to be the unit time step of the SIS model.

The second criterion simply divides PLC models to two classes based on
whether they model timers or do not. Thus, our model falls into the class in
which timers are modelled.

Finally, the third criterion makes distinction on the models on the basis
of which programming language of the IEC 61131-3 standard is used. With
this respect our model cannot be classified as it describes SIS on an abstract
level. On behalf of our model, any of the five languages of the IEC 61131-3
standard could be used to implement the control logic of the logic solver of
a SIS. However, the language used in the case study of Section 6 resembles
closest to a very limited subset of the Function Block Diagrams language.
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4 MODELLING AND ANALYSING SYSTEMS WITH NUSMV

In this section we describe the NuSMV model checker [1] which was used in
the Falcon case study. Section 4.1 gives a general overview of NuSMYV, Sec-
tion 4.2 describes how models are build with the input language of NuSMV,
and Section 4.3 describes how verified properties are specified with the in-
put language of NuSMV. The discussion on the syntax and semantics of the
input language of NuSMV covers only the parts of the language which are
used in this study. For further information we advise the reader to see the

NuSMYV user manual [7].

4.1 General Overview

NuSMV is a symbolic model checker developed by ITC-IRST. NuSMV
can be used to describe finite state systems that range from completely syn-
chronous to completely asynchronous. The main reason for choosing NuSMV
was that it is a state-of-the-art model checker which has proven to be capable
of handling industrial-sized systems. Moreover, NuSMV supports both BDD
(Binary Decision Diagram) and SAT! (propositional satisfiability) based model
checking which are currently the main approaches in implementing sym-
bolic model checking tools. Being distributed under an OpenSource licence,
NuSMYV also offers a promising platform for research purposes.

4.2 Modelling with NuSMV

4.2.1 General Structure of NuSMV Models

NuSMV models (also referred to as NuSMV programs) consist of one or
more module declarations. A module declaration is an encapsulated collec-
tion of declarations, constraints, and specifications. Intuitively, the idea of
the module concept is to encapsulate closely related state variables together
in order clarify the structure of the whole model. Modules are used in such
a way that a module declaration is used as a variable type to create mod-
ule instances. Therefore, multiple realisations of a module can be created
based on a single module declaration. A module declaration may contain
instances of other modules so that the modules form a hierarchical structure.
Fach NuSMV model is built on a declaration of a special module which has
to be named as main.

Next we describe the basic constructs needed for creating module decla-
rations. The description is based on the NuSMV model shown in Figure 2,
which has two module declarations. The model is complete and it introduces
all structures used in our actual case study.

4.2.2 Structure of a Module Declaration

A description of a NuSMV module consists of several different segments con-
taining different kinds of declarations, specifications, and constraints. In this

'Some of the SAT based model checking algorithms inside NuSMV have been devel-
oped at TKK/ICS [17].
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MODULE exampleModule(paraml,param2)

VAR
varl : boolean;
var2 : -1 .. 10;
var3d : -1 .. 2;
ASSIGN

-- An example of direct assignment.
varl := (var2 > 1);

-- An example of assignment with init/next-comnstruct.
init(var2) := 0;
next(var2) := paraml + param?2;

-- An example of assignment with init/next-construct
-- with a case expression.
init(var3) := -1;
next (var3) :=
case
(var3 < 2) : var3 + 1;
(var3 = 2) : {0,2};
esac;

MODULE main()
VAR

moduleIlnstance : exampleModule(definedConstant, 5);
DEFINE

definedConstant := 1;

-- Specification of properties

LTLSPEC G (modulelnstance.varl -> 0 (modulelnstance.var2 = 10))
LTLSPEC F (modulelnstance.var2 > moduleInstance.var3)

Figure 2: An example of a NuSMV model

case study, only the most central constructs were needed. These include the
parameters of modules, the declaration and assignment of state variables, and
define declarations. These are described in the following.

Parameters of a module. Parameters are defined as a list of identifiers
which can be used for passing data to a module from other modules. The
parameters of a module are specified with a parenthesised list of identifiers
following the name of a module (see paraml and param?2 in the example
above). The main module is not allowed to have parameters.

State variables of a module. The state variables of a module are listed in
a segment identified with the keyword VAR. A state variable declaration con-
sists of an identifier which can be used to refer to the variable and a type
specification which describes the data type and the range of possible values
of the variable. As data types one can use either built-in data types or module
declarations.

In our case study, only two built-in data types, boolean and integer, are
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used. The boolean data type comprises two integer values, 0 and 1 (or their
symbolic counterparts false and true respectively.) The value range of the
integer type consists of integer values from —23! to 23! — 1. The integer
type is specified by declaring a value range after the variable identifier (see
declaration of var2 in the exampleModule.)

If a module declaration is used as a data type in a variable declaration, the
variable is said to be an instance of the module, and the variable declaration
is said to be a module instantiation. The declaration is formed simply by
referring to the module name (followed by a list of parameters) in the place
of the variable type (see variable moduleInstance in the main module in

Figure 2.)

Assignment of state variables. State variables are assigned in a segment
identified with the keyword ASSIGN. A state variable can be assigned in two
distinct ways, either directly or with an init/next construct. The variable
varl in the exampleModule in Figure 2 shows an example of direct assign-
ment. In this case, the value of the current value of the var1 is set to the
value of the expression (var2 > 1) by using the current value of the var2 at
all time steps.

In the case of the variable var2 in the exampleModule, the assignment
is done using the init/next construct. In this case, the assignment is done
in two steps: first the initial value (i.e., the value of the state variable at the
first time step, or in the initial state) of var2 is set to zero. On the following
line, it is stated that the value of var2 in the next state will be the value of
paraml + param2.

The variable var3 in the exampleModule is also assigned with an init/
next construct but in its next-expression another two important constructs
related to assignments are shown: the case expression and the set expression.
The segment surrounded by keywords case and esac defines a case expres-
sion. It can be used to express how the value assigned to a state variable
depends on the condition of other state variables. Each line of the case seg-
ment has on its left-hand side a boolean valued condition statement and on
its right-hand side a value which is assigned to the state variable if the con-
dition holds. The lines are evaluated sequentially one-by-one starting from
the first line until the first line whose condition part is non-zero is reached.
NuSMV requires the conditions of a case expression to be exhaustive, that
is, there has to be always at least one line whose condition part evaluates to a
non-zero value.

In the case of var3, the case statement increases its value in the next state
by one if the current value is below the value 2 (which is the maximum value
it can have). If the current value of var3 is 2, its value in the next state
is chosen randomly from the set expression {0,2}. Set expression lists the
possible values one by one, so in this case the possible values are 0 and 2.
The purpose of the set expressions is discussed in Section 4.2.3.

DEFINE declarations. Define declarations are yet another basic construct
used to build modules. Define declarations are added in a module decla-
ration after the keyword DEFINE and they are used to associate a common
expression with a symbol. That is, the define declarations are used to define
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shorthands for complex expressions or numeric values in order to make mod-
ule descriptions more concise. The defineConstant of the main module in
Figure 2 shows an example of define declaration in which the numeric value
1 is associated with the identifier in question.

4.2.3 Semantics of NuSMV Models

When restricted to the features of NuSMYV that are used in this study, NuSMV
models represent a finite state machine (FSM), i.e., a structure with a finite
set of states, a total transition relation between the states, and a set of possi-
ble initial states. A state of a NuSMV model is an assignment of values to
the state variables of the model. Thereby, the number of different potentially
reachable states specified by a NuSMV model equals the number of the pos-
sible value assignments of the state variables of the model. The set of all
states of a NuSMV model is referred to as the state space of the model. The
updating of the values of the state variables of a NuSMV model according to
their assignment specifications is referred to as a transition from a state to an-
other. The possible transitions of the FSM can be specified by the transition
relation that relates a set of states to each state. By an initial state we mean
the first assignment of values to the state variables of the model when the
model checking process is started. NuSMV allows defining different possible
initial states by using the set expressions described in Section 4.2.2. If the
model allows more than one possible initial state, we say that the model has
a nondeterministic initial state or that the initial state of the model is chosen
nondeterministically.

A finite state machine can be represented graphically with a state transi-
tion diagram. In Figure 3, a state transition diagram of the example NuSMV
model of Figure 2 is shown. The boxes in the figure represent the possible
states and the arrows between boxes represent the possible transitions be-
tween states. If a state belongs to the set of initial states, it is depicted with a
double-stroke box.

For model checking, the possible executions of the finite state machine
specified by a NuSMV model are of central interest. By an execution we
mean an infinite path 7 = ¢ ... of states where the states of the path
belong to the state space of the NuSMV model, the initial state of the path
belongs to the set of possible initial states of the model, and the transitions
between consecutive states on the path are allowed by the transition relation
of the model.

A NuSMV model allows more than one kind of an execution if the initial
state of the model is nondeterministic or if the transition relation of the model
is nondeterministic. The transition relation is nondeterministic if it relates a
set of states with more than one state to at least one state of the model. In
other words, the transition relation of a model is nondeterministic if it allows
more than one transition from at least one of the states of the model. In
our example model, the transition relation is nondeterministic as it allows
transition from state S3 to S1 as well as a transition from the state S3 to the
state S3 itself.

A state of a NuSMV model is reachable if the state belongs to any of the
possible executions of the model. The state space of our example model
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consists of 96 states in total but from these only four are reachable. There
might also be legal transitions starting from an unreachable state and ending
to any of the states of the model but as long as an execution starts from one
of the initial states of the system, such transitions cannot ever be taken.

! Reachable states

. Unreachable states (92 states)

varl=0 S0

Initial var2 =0 Lo var
state var3 = -1 Lo var

vard = -1 varg = -1

| : ,,,J

va
varl =1 Co
var2 =6 O j l j

var3=0

=0 varl=1
=7 var2=8

El
SRR
Bl
SRR

288
DR R
o
o~
DR P
o
Swr

varl=1 S2

var2 =6
var3=1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

varl=1 S8

var2 =6
var3 =2

Figure 3: State diagram of the running example

4.3 Specifying Properties with NuSMV

18

The properties of this study are specified by using Linear Temporal Logic
extended with past operators (hereafter PLT'L). Also invariant specifications
are used, but they can be formulated in PLTL as well. In this section we
describe the syntax of PLTL in NuSMV.

In NuSMV, PLTL formulas are used to specify conditions or relations
between atomic propositions of a NuSMV model. Atomic propositions are
boolean valued expressions formed by connecting state variables with com-
parison operators { <, >, <, > =}. An atomic proposition consisting of a sin-
gle non-boolean variable is interpreted as a boolean variable so that the value
0 is interpreted as the boolean value false and all non zero values are inter-
preted as the boolean value true. PLTL formulas are formed by connecting
atomic propositions with boolean operators and special temporal operators
which can be used to specify time related statements. In this context, time is
interpreted as the indexing of states of an execution. That is, the Nth state of
an execution is considered as the state of the system in the time step N. Con-
sequently, temporal operators are used, strictly speaking, to specify properties
related to the executions of a NuSMV model.

The following list contains the logical operators used in this study? in the

*More extensive coverage of PLTL, with past operators can be found in the NuSMV user
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syntax of NuSMV and describes their semantics informally. In the following
section, it is shown how the semantics of these operators is defined formally.

Boolean operators in the NuSMV syntax:

Ix (logical not): !x is true if x is not true.

x & y (logical AND): x & y is true if x is true and y is true.

x | y (logical OR): x | y is true if x is true or y is true.

— (implication): x — y is true if y is true whenever x is true.

< (equivalence): x « y is true if the values of x and y are equal.

Temporal operators in the NuSMV syntax:
G (globally): G £ is true if £ is true at all time steps.

F (finally): F £ is true at this time step if £ will be true at some time step in
the future.

O (once): 0 f is true if £ is true at this time step or has been true at some
previous time step.

Y (previous state): Y f is true if £ was true at previous time step.

In the example model of Figure 2, two examples of PLTL property specifi-
cations are shown. The first property states that “in all time steps it holds that
if the value of var1 of moduleInstance is true, then there has to be a time
step in the past in which the value of var2 of moduleInstance was 10”. The
second property states that “there has to be some time step in which it holds
that the value of var2 of moduleInstance is bigger than the value of var3
of moduleInstance.”

4.3.1 Semantics of PLTL formulas

In the following, the formal semantics of PLT'L formulas is given. The se-
mantics is defined along the executions of a NuSMV model. Each state s;
of an execution ™ = 50 57 ... is associated with a set of atomic propositions
which evaluate to the value true in that state. This is expressed with a la-

belling function L(s) € 247 where AP is the set of all atomic propositions
of the NuSMV model and s is a state of the NuSMV model.

Definition 1 (PLTL semantics.). Let 7 be an execution of a NuSMV model
and h, f and g be PLTL formulas so that f and g are subformulas of h. More-
over, let () denote the state s; along a path 7. Then 7 [= h (h is valid along

manual [7] or in the paper [17] by Heljanko, Junttila, and Latvala.
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) iff 7% = h, where:

T Ep iff pe L(n(i)) forp € AP.
S T

T fVy iff ©' b= form = g.

T EfAg iff o E fand 1 = g.

T EGf iff ™ = fforall j > i.

' E=Ff iff ™ k= f for some j > i.

T EOf iff ™ k= f for some 0 < j < i.
T EYf iff i >0and 7! |= f.

The definition above describes the meaning of a PLTL formula with re-
spect to a single execution of a NuSMV model. In contrast, the following
definition describes the meaning of a PLT'L formula in the context of a whole

NuSMV model.

Definition 2 (Validity of a PLTL formula.). A PLTL formula f is valid in a
NuSMV model M (denoted as M |= f)iff 7 |= f for all executions 7 in M.

With these definitions, the model checking with NuSMV can be de-
scribed as the process of deciding whether given PLTL formulas are valid
in a given NuSMV model. Moreover, an essential function of the NuSMV
model checker is to return a counter example for each PLTL formula that
is not valid. A counter example for a PLTL formula is an execution of a
NuSMV model along which the formula is not valid.
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5 MODELLING SAFETY INSTRUMENTED SYSTEMS WITH NUSMV

In this chapter we give general guidelines on how a safety instrumented sys-
tem compatible with the abstract model of Section 3.2 can be modelled us-
ing the NuSMV modelling language. Section 5.1 covers the Controller and
Section 5.2 covers the System environment of the abstract model.

5.1 Modelling the Controller

In NuSMYV, Controller of the abstract model (see Figure 1) can be modelled
by defining two modules: one encodes Delays part and the other one encodes
the whole Controller by using instances of the Delay module as building
blocks. In the following we describe the overall structure of these modules.

5.1.1 Implementation of the Delay module

Figure 5 shows how the Delay module can be implemented. The module
has two parameters: boolean valued input signal (named as input_signal)
and a delay value (named as delay) whose type is a non-negative integer
(it should be noted here that NuSMV does not allow explicit type declara-
tions for module parameters but type checking is carried out implicitly). The
module has a boolean valued variable named as output which represents the
output signal of the abstract delay.

The operation logic of the module can be stated as follows. On a given
time step ¢, the value of the output variable is set to 1 if and only if the
value of the input_signal has been | on the previous consecutive time
Steps tyn—(detay+1)s - - - » tn—1 Where delay is the value of the delay parameter.
That is, the value of the input_signal parameter in time step t,, does not
affect the value of the output in the time step t,,. Moreover, if the value of
the delay parameter is 0, the value of the output variable depends only on
the variable of the input_signal parameter in the previous time step ¢,_1.
The operation logic of the Delay module is illustrated in Figure 4.

wasoa T LT L L
oo L L L

Figure 4: Input/output behaviour of the Delay module

The operation logic of the Delay module is implemented by using an
integer valued counter variable (named as count) whose values may vary
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between 0 and the value of the sum delay + 1. The value of the count
is set to 0 whenever the input_signal parameter is 0. If the value of the
input_signal parameter is 1, the value of the count is increased until it
reaches the value of the sum delay + 1 (here the sum delay + 1 is used
instead of delay because the total delay corresponds to the delay caused by
the delay gate plus the unit delay caused by the scan cycle of the Controller,
see Section 3.2.) After this the value of the count remains unchanged until
the input_signal value 0 is received.

The value assignment of the output variable is specified so that it will be
1 in a given time step if (and only if) the count has reached the value of the
delay parameter in that time step (this is achieved by referring to the value
next(count) instead of count in the assignment specification of the output
variable.) Otherwise the value of the output is set to the value 0.

MODULE Delay(input_signal, delay)

VAR
count : O..DELAY_RANGE_UPPER_LIMIT;
output : boolean;

DEFINE
-- Total delay consist of the delay + scan cycle
total_delay := delay + 1;

ASSIGN
init(count) :
next (count) :

case
input_signal = 0 : 03
count >= total_delay : count;
1 : count + 1;
esac;

0;

init(output) := 0;
next (output) :
case
-- At the step when count = delay, output has to be 1.
next (count) >= total_delay : 1
1 : 03
esac;

Figure 5: Implementation of the Delay module

Implementation of the Controller module

Figure 6 shows an outline for the implementation of the Controller mod-
ule which corresponds to the Controller part of the abstract model (referred
to as the abstract Controller from here on). The Controller module has a
boolean valued parameter for each input signal ¢ of the abstract Controller
(named as input_i). For each output signal j of the abstract Controller the
Controller module has two define declarations named as logic_output_j
and controller_output_j, and an instance of the Delay module named
as delay_gate_j. Each define declaration logic_output_j is defined as
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a function of the parameters of the Controller module. Thus, these func-
tions encode the Logic, part of the abstract model. Fach define declara-
tion logic_output_j is passed as an input signal parameter to the De-
lay module instance delay_gate_j (see parameter input_signal in the
implementation of the Delay module). Finally, each define declaration
controller_output_j isset to the value of the output variable of the Delay
module instance delay_gate_j. Consequently, the declaration controller
_output_j corresponds to the output value j of the Controller.

The delay parameter values of the Delay module instances (see e.g., delay
_param_1 in Figure 6) are set to values [D/t] where D is the delay in mil-
liseconds of the corresponding delay gate in the modelled system and ¢ is the
length (also measured in milliseconds) of the scan cycle of the controller of
the modelled system.

MODULE Controller(input_1, ... , input_i, ...)
VAR
delay_gate_1 : Delay(logic_output_1, delay_param_1);

delay_gate_j : Delay(logic_output_j, delay_param_j);

DEFINE
-- Logic of the Controller is encoded in these define declaratiomns:
logic_output_1 := input_1 & input_2;

logic_output_j := input_1 | input_i;

-- Outputs of the Controller module.
controller_output_1 := delay_gate_1.output;

controller_output_j := delay_gate_j.output;

Figure 6: An outline for the implementation of the Controller module

5.2 Modelling the Environment

As it was described in Section 3.2, the purpose of the System environment
of the abstract model (see Figure 1) is to capture all the relevant parts of the
physical environment of a SIS and the interactions between them. In the ab-
stract model the logical rules of the interactions are represented with Logic,
part. In NuSMV, Logic, is implemented by specifying logical functions on
the variables of the NuSMV model. As specified by the abstract model, the
results of the instantaneous interactions are shown immediately at the same
time step that they are calculated. This can be implemented in NuSMV by
assigning the results of the corresponding functions to define declarations.
For an example sce the define declaration electricity_feed_off in Fig-
ure 7.

On the other hand, the abstract model specifies that in the case of the
delayed interactions the results of the interactions are stored in the Mem-
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ory and they are shown only after one scan cycle. In NuSMV this can be
implemented by assigning the results of the corresponding functions to state
variables by using the init/next-construct. For an example see the variable
circuit_breakerl_cuts in Figure 7.

VAR
water_boiler_is_empty : boolean;
-- Timer for water_boiler_empty variable
-- (using delay of 5 time steps.):
timer : Timer (valvel_closed & valve2_closed, 5);
circuit_breakerl_cuts : boolean;

DEFINE
electricity_feed_off :=
circuit_breakerl_cuts | circuit_breaker2_cuts;

ASSIGN
init(circuit_breakerl_cuts) := 0
next(circuit_breakerl_cuts) :=
case
(circuit_breakerl_launched = 1) : 1;
(circuit_breakerl_launched = 0) : 0;
esac;

water_boiler_empty := timer.output;

Figure 7: Implementation of Logic, and Memory parts of the abstract SIS
model

Often the delay of an interaction might be longer than one scan cycle.
Longer delays can be handled by implementing a certain type of a timer
module which, informally, holds a given value for the number of scan cycles
specified with a parameter value. In practice, instead of assigning the result
of a function implementing the logic of an interaction to a state variable, the
result is passed to an instance of a timer module which, informally, holds
the value for the specified time before making it available. This is demon-
strated with the variable water_boiler_empty in Figure 7. In the end of
this section we show how to implement this kind of a timer module.

The inputs of the system can be fully independent of the system or they
can depend either on the current state of the system (e.g., a short-circuit can-
not occur if the electricity feed is down) or the previous state of the system
(e.g., a device cannot break down if it is already broken.) Either way, in
NuSMV an unconstrained input can be implemented by assigning a set ex-
pression {0, 1} to a boolean state variable. The value 0 of the set expression
at a time step implies that the event corresponding to an input does not occur
at that time step and the value 1 implies that the event does occur at the time
step.

Figure 8§ shows an example on how inputs can be implemented in NuSMV.
If an input is fully independent of the system the assignment can be done di-
rectly (see the it_is_raining outside variable.) If an input depends on
the current state of the system it can be done by using a direct assignment
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with a case expression (see the short_circuit variable.) Finally, if an in-
put depends on the state of the system in the previous time step then the
assignment is done by using an init/next construct and the case expression
(see the device_is_broken variable.)

With respect to implementing the inputs, one might want to use define
declarations in the place of the variables and direct assigment. However, this
is not possible because NuSMV does not allow to use set expressions in the
define declarations.

VAR
it_is_raining_outside : boolean;
short_circuit : boolean;
device_is_broken : boolean;

ASSIGN
it_is_raining outside := {0,1};

short_circuit :=
case
(electricity_feed_on = 0) : 0;
(electricity_feed_on = 1) : {0,1};
esac;

{0,1};

init(device_is_broken) :
next(device_is_broken) :
case
(device_is_broken = 1) : 1;
(device_is_broken = 0) : {0,1};
esac;

Figure 8: Implementation of the Inputs of the abstract SIS model

Implementation of the Timer module

Figure 10 shows an implementation of the Timer module. The module has
the same parameters as the Delay module described above: a boolean valued
input signal and a delay value whose type is a non-negative integer. These are
named as input_signal and delay, respectively. It also defines the output
signal (named as output) as a boolean valued variable. The operation logic
of the Timer module is described as follows. In the basic state the module is
waiting for an input signal, i.e., it is waiting for that value 1 is passed through
the input_signal parameter. When this happens the module will be in the
waiting state for the number of time steps specified by the delay parameter.
After this the module transfers automatically into the launch state in which
it will stay only for one time step. In the launch state the value of the output
variable is set to 1 (in the other states it is 0). After staying in the launch state
for one time step, the module automatically transfers back into the waiting
state. The value of the input_signal parameter is ignored whenever the
module is not in the basic state. The operation logic of the Timer module is
illustrated in Figure 9.

As in the case of the Delay module, the implementation of the Timer
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Figure 9: Input/output behaviour of the Timer module

module is also based on an integer valued counter (named as counter)
which counts the number of time steps passed. Initially, the counter variable
is set to the value of the delay parameter and it continues to hold that value
until the input_signal parameter is 1. After this, regardless of the value of
the input_signal, the counter is decreased by the value 1 until it reaches
the value 0, after which it is set back to the value of the delay parameter.
The value of the output variable is set to 1 only at the time when the value
of the counter is 0.

MODULE Timer (input_signal,delay)

VAR
-- TIMER_RANGE_UPPER_LIMIT is replaced with the
-- value of the delay parameter.
counter : O..TIMER_RANGE_UPPER_LIMIT;

DEFINE
output :=
case
(delay = 0) : input_signal;
(counter = 0) : 1;
1: 0;
esac;

ASSIGN
init(counter) :
next (counter) :

case
(delay = 0) : 0;
(counter = 0) : delay;
(counter < delay) : counter - 1;
(counter = delay) & (input_signal = 1) : counter - 1;
1 : counter;
esac;

delay;

Figure 10: Implementation of the Timer module
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5.2.2

Implementation of the OneShotTimer module

Figure 11 shows a modified version of the Timer module specified above.
We have named this module as the "OneShotTimer” as it corresponds to the
Timer module in all the other respects apart from the fact that it, informally
speaking, can be used only once. That is, after being once in the waiting state
the module will transfer into the launch state but in this case it will stay in
the launch state forever instead of transfering back into the basic state.

The OneShotTimer module can be used to model the delays of interac-
tions that occur only once (e.g., a final element of a SIS could be assumed
to function only once so that after it is launched and become activated it will
stay activated forever.) Such interactions could be modelled also by using
the Timer module presented above but this would enlarge the state space of
the overall model unnecessarily. Thus, the OneShotTimer can be seen as an
optimization technique.

The implementation of the OneShotTimer module differs from the im-
plementation of the Timer module only in a single place. In this case, in the
assignment specification of the counter variable, the value of the counter
is kept unchanged after it has reached the value 0.

MODULE OneShotTimer (input_signal,delay)

VAR
-- TIMER_RANGE_UPPER_LIMIT is replaced with the
-- value of the delay parameter.
counter : O..TIMER_RANGE_UPPER_LIMIT;

DEFINE
output :=
case
(delay = 0) : input_signal;
(counter = 0) : 1;
1: 0;
esac;

ASSIGN
init(counter) :
next (counter) :

case
(delay = 0) : 0;
(counter = 0) : 0; -- When counter is zeroed it stays in zero.
(counter < delay) : counter - 1;
(counter = delay) & (input_signal = 1) : counter - 1;
1 : counter;
esac;

delay;

Figure 11: Implementation of the OneShotTimer module
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6 CASE STUDY: ELECTRIC ARC PROTECTION SYSTEM

6.1 Overview of the Falcon System

Falcon protection system by Engineering Office Urho Tuominen (UTU) can
be used to protect switchgear and electrical instrumentation from electric

arcs. The system consists of a master unit, overcurrent sensor units, and light

sensor units. Sensors are installed into the protected system and connected
to the master unit via optical cables. The master unit collects the alarm
signals from sensors, and when necessary, launches circuit breakers which

close the power feed from the protected device leading to the termination of

the electric arc. This basic setting is illustrated in Figure 12 [36].
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Figure 12: The Falcon Protection System

The master unit is based on a Programmable Logic Controller (PLC) so
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that one can freely design and program the tripping logic according to the
protected system and the protection required for it. This provides the possi-
bility for selective tripping: the protected system can be divided into several
protection zones with different tripping conditions. The Falcon system also
provides a possibility for controlling backup breakers which can be launched
in the case of a malfunction in a primary breaker.

Figure 13 [35] shows an example of a tripping logic of the Falcon system.
The figure also shows the input and output ports of the master unit. For
attaching sensor units there are four regular input ports. In addition, there
is also a so-called “extra light board” with additional 16 inputs which are
meant for light sensors. However, the signals from these ports are combined
optically before they are transmitted to the controller, so from the perspective
of tripping logic these input ports correspond to a single input port.

FALCON MASTER

CH1 p=] L] = ¥&| Triac 1
CH2 b= = —L ¥&| Triac 2
CH3 p=] i & 1 ' ¥&| Triac 3
CH& p=L] 2 — ¥&| Triac 4
—mis--ﬂ Relay 1
1 E"Jl| Relay 2
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‘ — _ _ : m 'Z*':?I Relay 6
}2—7 Remote

Figure 13: A tripping logic of the Falcon system

The number of output ports of the master unit is 10. Four of these are
based on fast TRIAC semiconductors and are meant for launching the pri-
mary circuit breakers. The other six outputs are based on ordinary relays and
are used for launching backup relays and alarm signals for operators.
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The basic programming of a tripping logic is done simply by connecting
signals with logical AND and OR gates. If backup breakers are used, delay
gates of a certain type are also needed. This is because backup breakers
might typically cover more than one protection zone and therefore they are
supposed to be launched only after it is evident that the primary breakers
covered by it have been broken. This is done by transmitting the launch
signal of a backup breaker through such a delay gate which passes an output
signal only once it has received an input signal continuously for a certain
time period. Now, the delay of a delay gate corresponding to a certain backup
breaker has to be longer than the physical activation time of the primary
breakers protected by the backup breaker. In this way it is guaranteed that a
backup breaker is not launched before the primary breakers protected by it
have had enough time to have closed the power feed of the protection zone
(and terminated the cause of the alarm, i.e., the electric arc) if they are not
broken.

6.2 \Verifying the Implementation of Control Logic

6.2.1 Overview on the Verification Task

Here we present an example of the task of verifying whether an implemen-
tation of control logic conforms to its specification. In this context, by a
specification we mean a description of the input/output behaviour of the
control logic. That is, a specification describes what output signals the con-
troller should return for each possible input combination. The verification
task introduced is to verify that an implementation built on a specification
actually behaves precisely according to the specification. With respect to the
abstract model presented in Section 3.2, only the Logic part of the Controller
in Figure 1 is considered.

The verification was carried out on a set of real system descriptions pro-
vided by UTU. Figure 14 shows the implementation of the control logic
which is based on the specification document shown in Figure 15.

6.2.2 Description of the NuSMV Model

30

The NuSMV model consist simply of two modules named TruthTable and
Falcon which encode the specification and the implementation (respec-
tively) of the control logic. The structure of both of the modules is very
similar. Both have the inputs of the Falcon master unit as parameters and
both include boolean state variables for the four output signals used in the
control logic. In the case of the Falcon module, the logic is encoded con-
veniently by introducing a define declaration for each of the logical gates of
the tripping logic and by using these declarations with the assignments of the
state variables.

In the case of the TruthTable module, the state variable assignments
were done by encoding the rows of the specification document directly into
case expressions.
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Figure 14: Tripping logic diagram of the example system
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6.2.3
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Figure 15: Truth table representation of the specification of the tripping logic
of the example system

Specification of Properties with NuSMV

With this verification task only one property needed to be specified. It is
an invariant specification which states that with all possible combinations of
inputs, the outputs have to be the same. This property is specified in the
input language of NuSMV in the following way:

LTLSPEC G ((falcon.triacl <-> truth_table.triacl) &
(falcon.triac2 <-> truth_table.triac2) &
(falcon.triac3 <-> truth_table.triac3) &
(falcon.relay6 <-> truth_table.relay6))

6.3 \Verifying the Correctness of System Design

32

In Section 6.2 we showed how it can be verified that the control logic of
the Falcon system conforms to its specification. In contrast, here we show
how the correctness in the design of a whole system can be verified. That
is, we want to verify that a protection system based on a certain control logic
operates as intended with respect to the system it protects.

This section is organised as follows: Section 6.3.1 describes the properties
which the system is required to fulfil in order that the design is considered
to be correct. Section 6.3.2 describes the types of information required from
the system that the model checking can carry out. Section 6.3.3 describes the
specific application of the Falcon system which was used in the case study.
Section 6.3.4 describes what kinds of assumptions one needs to make on the
system so that it can be modelled. Section 6.3.5 gives an overview of the
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NuSMV model of the case study and Section 6.3.6 explains how the veri-
fied properties are specified in the input language of NuSMV. Section 6.3.7
presents some experimental results of the running times of the model check-
ing of the case study with different parameter values. Finally, in Appendix B,
the full source code of the NuSMV model with the property specifications is
presented.

An earlier version of the model presented in this section is reported in [38§].

6.3.1 Verified Properties

In the case of the Falcon system, the most important property to be verified
is that the system does not make unnecessary tripping decisions. This is be-
cause the system is often used to protect, for example, large manufacturing
plants for which an unnecessary shutdown caused by an unnecessary tripping
decision might cause very high expenses.

In order to avoid any false trips, the following properties have to hold:

pl: The couplings and the tripping logic have to conform to the specified
tripping conditions.

p2: The backup breakers should not be tripped unless necessary.

The requirement of the absence of unnecessary tripping decisions falls into
the category of safety properties as it states that the system should not do any-
thing unwanted. Another type of properties called liveness properties infor-
mally state that the system should always perform the task that it is designed
for. In the case of the Falcon system, this would be stated as the following
requirement:

p3: Existence of an electric arc on the protected system leads eventually to
shutting down the power feed for the protected system.

These properties are the most relevant requirements for the Falcon sys-
tem. In the following section we list the types of information and documents
needed in order to be able to verify these properties with the aid of model

checking.
6.3.2 Information Required for Verification

Here we describe what sorts of information one needs in order to model
check the properties of the Falcon system:

1. Description of the specific application:

In case of verifying the correctness of the system design of a safety
instrumented system, the question is of verifying whether the control
logic of a controller is designed correctly with respect to the environ-
ment in which the controller is installed. Therefore, in this case it is
not sufficient to model only the control logic of the controller, but one
also has to build a model of the environment of the controller. For this
reason, besides the control logic, we need now also a switch diagram
and a system description with the following information:
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e What is the structure of the protected system (structure of the
power-distribution network, location of the power feeds, trans-
formers, circuit breakers)?

e How are the sensor units installed into the protected system?

e Into what kinds of protection zones is the protected system di-
vided into?

e What are the tripping conditions of the protection zones?

e Which circuit breakers need to be launched in order to disable
the power feed from the protection zones?

e Are there any backup circuit breakers, and if so, what are their
tripping conditions?

2. Assumptions about the whole system:

The information listed in the previous item describes the architectural
structure of the protected system and the installation and intended op-
eration model of the protection system. However, for the modelling
of the whole system, one also needs to clarify all relevant physical and
functional properties on both the protection system and the protected
system. A few examples of the things to be clarified in the case of the
Falcon system are:

e What kinds of delays are there with the devices of the system?
e In which parts of the protected system can short circuits occur?

o What are the failure modes of the associated devices?

Because all aspects of the physical world cannot be modelled, one has
to make assumptions on the physical system so that the physical model
can be stated to conform to the model in case the assumptions hold.

These kinds of detailed descriptions of the system might not be avail-
able in the existing documentation neither in the case of the protected
or the protection system. Therefore, with critical applications, the
modelling of the system should always be carried out in cooperation
with domain specialists.

3. List of unambiguously defined requirements to be verified:

In the previous section the verified properties of the Falcon system were
listed on a general level. However, in order to perform model check-
ing, the properties have to be described more precisely so that there are
no questions about how the properties should be interpreted. In this
case, for example, one needs to state precisely when a tripping decision
is unnecessary. In Section 6.3.6, it is shown how the verified properties
are refined so that they can be stated in the terms of the formal model
of the system.

Unfortunately a complete set of all this information concerning a single

specific application of the Falcon system was not available. Therefore we
designed our own application on the basis of the documents we received from
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UTU and which related to several different applications. Our model was
reviewed by UTU representatives and it was considered to be fully realistic
in all aspects.

6.3.3 Description of the Application

Architecture of the System

Our example application of the Falcon system is shown in Figure 16. The
system consists of the protected system and the Falcon system. The protected
system consists of the following things:

e main power feeds pfl and pf2,

transformers trl, tr2, tr3, and tr4,

e primary circuit breakers A, B, C, and D,

backup circuit breakers E, F, H, and G, and

protection zones 1, 2, and 3.

The Falcon system introduces the following elements into the whole sys-
tem:

e the Falcon master unit,

e overcurrent sensors Crl, Cr2, Cr3a, and Cr3b, and

e light sensors L1, 1.2, and L3.

Operation of the System

The main power feeds pfl and pf2 distribute electricity to the protected sys-
tem. They are connected to each other by a switch operated by the circuit
breaker C, and therefore, they act as each others backup systems. That is,
both pfl and pf2 can deliver power to the whole protected system alone if a
malfunction occurs in one of them.

The protected system is divided into three distinct protection zones. For
all of these there is a zone-specific tripping condition which causes tripping
of circuit breakers that leads to the isolation of the protection zone from the
power feed. The protection system is designed to operate with each protec-
tion zone so that there are two “levels” of backup breakers. That is, if the
primary breakers are broken, the protection system first tries to cut down the
power feed only from the main power feed which is closest to the alarming
zone (the “first level”). If the alarm is still on (which might result, e.g., if the
connecting breaker C was broken), then the power feed will be cut also from
the other main power feed which will lead to the power feed from the whole
system (presumed that the backup breakers are working correctly) being cut
off.

The tripping conditions and related actions are listed in the Table 1 and
in Figure 17 a tripping logic which is created based on this table is presented.
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Figure 16: Switch diagram of the example system
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The delays D1 and D3 are related to the backup breakers of the “first level”
and delays D2 and D4 are related to the “second level”. Therefore, it should
be that D1 < D2 and D3 < D4.

Table 1: Actions caused by alarms on different protection zones

Alarm First action Second action Third action
Crl AND L1 Breakers A and C launched | Breaker E launched | Breaker F launched
(alarm on zone 1) (after delay D1) (after delay D2)
Cr2 AND 1.2 Breakers B and C launched | Breaker E launched | Breaker I launched

(alarm on zone 2)

(after delay D1)

(after delay D2)

(Cr3a OR Cr3b) AND 1.3
(alarm on zone 3)

Breakers C and D launched

Breaker G launched
(after delay D3)

Breaker H launched
(after delay D4)

Triac 1
Crl AND L1 -> Breaker A
Triac 2
Cr2 AND L2 -> Breaker B
I Triac 3
OR
Cr3a ﬂ |:| | -> Breaker C
|_ Triac 4
AND ¢
Cr3b -> Breaker D
L3
oR | b1 | Relay 1
| | -> Breaker E
Relay 2
-> Breaker F
| 3 | Relay 3
| | -> Breaker G
| oa | Relay 4
| | -> Breaker H

Figure 17: Tripping logic of the example system

6.3.4 Assumptions of the System

In the previous section the structure and operation of the example system
was described. However, in order to be able to carry out the modelling pro-
cess, we also need to make some assumptions about the functional and be-
havioural properties of the system. Here is the list of assumptions made on
the example system.

General assumptions:

e The duration of one operation cycle of the controller of the Falcon
master unit, i.e., time during which the Falcon system detects an alarm
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signal through a sensor and passes a launch signal to a circuit breaker
is 1 millisecond. This time period will correspond to a single time step
in the model of the system.

Failures of the physical devices other than the primary circuit breakers
are not considered.

Overcurrent alarms:

Overcurrent peaks detected by the overcurrent sensors are caused by
short circuits.

Short circuits can arise only in the parts of the protected system which
are defined as protection zones.

Overcurrent peaks cannot move through the transformers, i.e., an over-
current peak observed in a point A is not observed in a point B if there
is a transformer between the points A and B.

An overcurrent sensor can raise an alarm signal nondeterministically
anytime as long as it is connected to the protection zone it is overseeing
and the protection zone is still connected to a power feed. If these
conditions are not met, the overcurrent sensor cannot raise an alarm.

Light alarms:

A light sensor can raise an alarm signal nondeterministically at any
given time instant, i.e., light alarms are independent of the rest of the
system.

Circuit breakers:

Once a circuit breaker has been activated, it opens the electric circuit
and prevents the flowing of the current.

An activated circuit breaker will remain activated forever.

There is an activation delay associated with each circuit breaker, which
is the time period between the moment when a breaker is launched
and the moment when it has opened the circuit preventing the electric
current flowing. (The model checking was carried out with different

parameter values for the size of the activation delay, see Section 6.3.7.)

A non-activated primary circuit breaker can break down at any given
time.

A broken circuit breaker cannot open a circuit.

A broken circuit breaker will stay broken forever.
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6.3.5 Description of the NuSMV Model

Controller

In this section we give an overall description on how the Falcon system and
it's environment was modelled with NuSMV. The text is organised according
to the abstract SIS model covered in Section 3.2. We describe for each part of
the abstract model which parts of the Falcon system correspond to it. More-
over, we give an overall description on how these parts of the Falcon system
were modelled with NuSMV. In the following text we will refer to the parts
of the abstract model with the “abstract”-prefix to emphasise the distinction
between corresponding parts of the Falcon system or the NuSMV model.

We begin the discussion from the Controller part of the abstract model
and then proceed to the System environment. The NuSMV modules de-
scribed in the following are also illustrated in Figure 18 which depicts the
data flow between the modules.

Controller

Controller module

Delay modules

Current flow model Breaker modules

Timer modules

M Inputs (malfunction)

Inputs (overcurrent alarm)

Overcurrent sensor
modules

Light sensor modules

Inputs (light alarm)

| System environment

Figure 18: Data flow between NuSMV modules

In the case of the Falcon system, the master unit corresponds to the Con-
troller part of the abstract SIS model. The Falcon counterpart for the logic
part of the abstract Controller is the logical circuit of the tripping logic ex-
cluding the delay gates. The delay gates correspond to the delays of the con-
troller in the abstract model. The delay gates are implemented exactly as it
was described in Section 5.1 so their implementation is not repeated here. In
Section 5.1 we showed also a general outline for NuSMV implementation of
the abstract Controller. In the following we show how this implementation
is done in the case of the Falcon system.
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Implementation of the Controller module The Controller module im-
plementing the controller of the Falcon system is shown in Figure 19. In the
case of the Falcon system, the Controller module has five parameters named
as chl — ch4 and ch_light (in the actual system the 16 inputs of the light
board are combined into a single signal with an optical OR and this signal
is represented by the parameter ch_light). The number of outputs is eight
of which half are TRIAC outputs and other half are relay outputs. For each
output there is an instance of the Delay module (named as triacX_delay
and relayX_delay) and two constant definitions. The constants named
logic_output_trX (for TRIAC outputs) and logic_output_relayX (for
relay outputs) correspond to the constant definitions logic_output_i of
the generic Controller implementation in Section 5.1. Similarly, the con-
stant declarations triacX_output and relayX_output correspond to the
constant definitions controller_output_i of the generic Controller im-
plementation in Section 5.1.

The delay parameter values of the Delay module instances are set to val-
ues [D/t] where D is the delay in milliseconds of the corresponding delay
gate in the Falcon tripping logic and ¢ is the length (also in milliseconds) of
the operation cycle of the controller of the Falcon master unit. In practice,
the parameter value is the physical delay in milliseconds since the operation
cycle of the Falcon master unit is 1ms as stated in Section 6.3.4. In the case
of the TRIAC outputs the delay parameters are set to the value 0 because
in the tripping logic of the Falcon system there are no delay gates corre-
sponding to the TRIAC outputs. With all the outputs, the parameter can
be assigned by setting a numeric value directly to the parameter of the delay
module instance or by specifying a define declaration for each parameter as
we have chosen to do (see TRIAC_DELAY and RELAYX_DELAY declarations in
Figure 19).

System environment

40

In section 5.2 we presented general instructions on implementing the Sys-
tem environment of the abstract model in terms of different kinds of inter-
actions and inputs that can be captured by the System environment. In the
following we describe first what kinds of things comprise the System environ-
ment in the case of the Falcon system. Then we describe into what kinds of
modules the system environment is encoded and finally we describe the im-
plementation of these modules one by one by using the methods described
in Section 5.2.

In the case of the Falcon system, the system environment of the abstract
model breaks down to the protected system (divided into one or more protec-
tion zones), primary and backup circuit breakers, and the sensor units of the
Falcon system.

The logic of the system environment consists of the following things:

e operational and failure models of the breakers,
e operational model of the sensors, and

e reasoning of whether each protection zone is connected to a power

feed.
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MODULE Controller(chl,ch2,ch3,ch4,ch_light)

VAR
triacl_delay : Delay(logic_output_trl,TRIAC_DELAY);
triac2_delay : Delay(logic_output_tr2,TRIAC_DELAY);
triac3_delay : Delay(logic_output_tr3,TRIAC_DELAY);
triac4_delay : Delay(logic_output_tr4,TRIAC_DELAY);

relayl_delay : Delay(logic_output_relayl,RELAY1_DELAY);
relay2_delay : Delay(logic_output_relay2,RELAY2_DELAY);
relay3_delay : Delay(logic_output_relay3,RELAY3_DELAY);
relay4_delay : Delay(logic_output_relay4,RELAY4_DELAY);

DEFINE
-- Delay values of the delay gates. These values should be set to
-- the delay values (in milliseconds) of the corresponding delay
-- gates D1-D4 in the modelled tripping logic.

TRIAC_DELAY := 0;

RELAY1_DELAY := Di1;
RELAY2_DELAY := D2;
RELAY3_DELAY := D3;
RELAY4_DELAY := D4;

-- Logic of the circuits.

OR1 := (ch3 | ch4);

AND1 := (OR1 & ch_light);

OR2 := (chl | ch2 | AND1);
OR3 := (chl | ch2);

-- Inputs to delay gates.
logic_output_trl := chl;
logic_output_tr2 := ch2;
logic_output_tr3 := 0R2;
logic_output_tr4 := AND1;

logic_output_relayl := OR3;

logic_output_relay2 := OR3;
logic_output_relay3 := AND1;
logic_output_relay4 := AND1;

-- Outputs of the controller module.

triacl_output := triacl_delay.output;

triac2_output := triac2_delay.output;
triac3_output := triac3_delay.output;
triac4_output := triac4_delay.output;
relayl_output := relayl_delay.output;
relay2_output := relay2_delay.output;
relay3_output := relay3_delay.output;
relay4_output := relay4_delay.output;

Figure 19: Controller module

The memory elements of the abstract system environment are used for hold-
ing the state of the system environment in the previous time step. In the case
of the Falcon system, these states are related to the circuit breakers. That is,
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for each circuit breaker we need to know whether the following things held
in the previous time step:

e is the breaker broken,
e has the breaker been launched, and

e is the breaker activated.
In the case of the Falcon system, the inputs of the system environment are:

e overcurrent and light signals, and

e the information of whether the primary breakers are broken.

The NuSMV model of the system environment consists of two distinct mod-
ules for light and overcurrent sensors (UTU_ARC and UTU_CR modules,
respectively), a module for circuit breakers (the same module is used for both
primary and backup breakers), a module for encoding a counter representing
the activation delay of the breakers, and constant definitions for the current
flow model. In the following we give an overview on how these entities were
implemented.

Implementation of the Breaker module The implementation of the Break-
er module is shown in Figure 20. The Breaker module models the physical
circuit breakers of the protected system that are controlled by the Falcon
master unit. In practice, the Breaker module models the delayed interaction
in which a launch signal received from the Falcon master unit leads to the
activation of a circuit breaker. The activation of the breaker is represented
with the boolean valued variable cuts and the launch signal is represented
with the boolean valued parameter launch_signal. The delay of the inter-
action, i.e., the activation time of the physical circuit breaker is represented
with the parameter setting up_time. This parameter should be set to the
value [D/t] where D is the physical activation delay (in milliseconds) of the
corresponding real circuit breaker and ¢ is the length (in milliseconds) of
the operation cycle of the controller of the Falcon master unit. In practice,
the parameter value is the physical delay in milliseconds since the operation
cycle of the Falcon master unit is 1 ms as stated in Section 6.3.4.

The breaker module also introduces an input signal for the environment
model which corresponds to a malfunction in a physical breaker. This input
is represented with the boolean valued variable is_broken and it depends on
the previous state of the system as the failure model of the breakers assumes
that a broken breaker stays broken forever. Consequently, if a breaker has
been broken in the previous time step, it has to be broken also in the current
time step. However, as the malfunctions are only related to primary break-
ers the Breaker module has a boolean valued parameter can_break which
specifies whether the breaker can get broken or not.

If the value of the can_break parameter is set to 0, the breaker is not
able to break down and the value of the is_broken variable is set to 0 in
every time step. In this case the operation logic of the Breaker module is
identical to the OneShotTimer module with the identifiers launch_signal,
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setting up_time, and cuts of the Breaker module corresponding to the
identifiers signal, delay, and output of the OneShotTimer, respectively.
Thus, the states basic state, waiting state, and launch states are defined in
the same way for the Breaker module as they were defined for the Timer and
OneShotTimer modules in Section 5.2.

On the other hand, if the value of the can_break parameter is set to I,
the Breaker is able to break down on any given time step. In terms of the
variables, the operation logic of the Breaker module can be stated as follows.
In the initial state, the is_broken variable is set to 0. After the initial state
the value can be either 0 or 1 as long as the value of the variable is set to 1
for the first time. Once the value of the is_broken is set to 1 it will be 1 on
all the succeeding time steps. If the value of the is_broken variable stays
as 0 until the cuts variable has been set to 1 (i.e. the Breaker module is in
the launch state) it has no effect on the operation of the Breaker module.
However, if the is_broken is set to 1 while the Breaker module is in initial
state or in the waiting state the state of the module will stay unchanged and
the value of the cuts variable will continue to be 0 in all the succeeding time
steps.

As the input is_break depends on its state in the previous time step it is
implemented with direct assignment by using case and set expressions sim-
ilarly as the variable device_is_broken in the example of Figure 8. The
delayed interaction implemented by the Breaker module is implemented by
using a case expression and the OneShotTimer (see Fig. 11) with the assign-
ment of the cuts variable. OneShotTimer is used in similar manner as the
Timer, for an example see the definition of the variable water_boiler_empty
in Figure 7 and the related discussion in Section 5.2.

Implementation of the UTU_ARC module The UTU_ARC module mod-
els the light sensors of the Falcon system. The implementation of the module
is shown in Figure 21. In practice, the UTU_ARC has only the function of
implementing the light alarm inputs of the System environment. As the light
alarms are fully independent of the state of the system, the module only con-
tains a single boolean valued variable named as 1ight. If the value of 1ight
is 1 in a given time step the sensor is observing a light alarm and if the value
is 0 the sensor does not observe light alarm.

The light input is implemented simply by using a direct assignment and a
set expression.

Implementation of the UTU_CR module The UTU_CR module mod-
els the overcurrent sensors of the Falcon system. The implementation of
the module is shown in Figure 22. In practice, the UTU_CR has only the
function of implementing the overcurrent alarm inputs of the System en-
vironment. These inputs are dependent on the current state of the system
as it is assumed that overcurrent alarms can only occur while the sensor is
connected to the protection zone it is overseeing and the protection zone is
connected to the power feed (see Section 6.3.4). The boolean valued param-
cter has_voltage is used to pass the information whether the corresponding
protection zone is still connected to the power feed. The parameter breaker
is used to pass the Breaker module instance that is located between the pro-
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MODULE Breaker(launch_signal, setting_up_time, can_break)
VAR

is_broken : boolean;

cuts : boolean;

timer : OneShotTimer (launch_signal,setting_up_time);

DEFINE
launched := launch_signal;
ASSIGN
init(is_broken) := 0;
next(is_broken) :=
case

can_break = 0 : 0;

is_broken = 0 : {0,1};

is_broken =1 : 1;

1 1
esac;

init(cuts)
next(cuts)
case
(cuts = 1) : 1;
(is_broken = 1) : cuts;
(next (timer.output) = 1) : 1;
(next (timer.output) = 0) : 0;
esac;

timer.output;

Figure 20: Breaker module

MODULE UTU_ARC()
VAR
light : boolean;

ASSIGN
light := {0,1};

Figure 21: UTU_ARC module

tection zone and the overcurrent sensor. It is assumed that the overcurrent
sensor is always connected to the protection zone it is overseeing through
a single route and therefore the state of the breaker in midway of the sen-
sor and the zone is enough for reasoning whether the sensor and the zone
are connected or not. The overcurrent alarm input is represented in the
UTU_CR module with the boolean valued variable overcurrent. If the
value of overcurrent is | in a given time step the sensor is observing an over-
current alarm and if the value is 0 the sensor does not observe overcurrent
alarm. The overcurrent input is implemented by using a direct assignment
with case and set expressions.

Implementation of the Current flow model The purpose of the current
flow model is to encode the logic of the interactions in which the activation
of given circuit breakers leads to ending of the current flow in certain parts
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MODULE UTU_CR(has_voltage,breaker)
VAR
overcurrent : boolean;

ASSIGN
overcurrent :=
case
'has_voltage | breaker.cuts : 0;
1 : {0,1};
esac;

Figure 22: UTU_CR module

of the power-distribution network. As it was described in Section 6.3.4; it
is assumed that an activation of a circuit breaker ends the electric current
through the breaker immediately so these interactions are instantaneous and
can be implemented by using define declarations.

In practice The current flow model is implemented in such a way that
there is a define declaration corresponding to each of the three protection
zones which tell whether the zone is connected to a power feed or not. The
declarations are named as zoneX_hasvoltage and their definition is shown
in Figure 23. 'The value of the define constant corresponding to a certain
protection zone is set to 1 if there is at least one closed circuit line connect-
ing the protection zone to a power feed. Therefore, the zone constants are
functions of the output values of the circuit breakers which tell whether the
circuit breaker is active or not.

We also included one additional define declaration for each protection
zone which tells whether the tripping condition of a zone is true at each
time step (see the “alarm model“ in Figure 23). These constants are not
indispensable but with them the specification of properties becomes more
convenient.

-- The alarm model

zonel_alarm := Cr_l.overcurrent & L_1.light;
zone2_alarm := Cr_2.overcurrent & L_2.light;
zone3_alarm := (Cr_3a.overcurrent | Cr_3b.overcurrent) & L_3.light;

-- The current flow model
zonel_hasvoltage :=
! (breaker_A.cuts |
((breaker_E.cuts | breaker_H.cuts) &
(breaker_C.cuts | breaker_D.cuts | breaker_F.cuts | breaker_G.cuts)));

zone2_hasvoltage :=
! (breaker_B.cuts |
((breaker_E.cuts | breaker_H.cuts) &
(breaker_C.cuts | breaker_D.cuts | breaker_F.cuts | breaker_G.cuts)));

zone3_hasvoltage :=

! ((breaker_C.cuts | breaker_E.cuts | breaker_H.cuts) &
(breaker_D.cuts | breaker_F.cuts | breaker_G.cuts));

Figure 23: Implementation of the Current flow model
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6.3.6 Specification of Properties with NuSMV

In this section it is shown how the properties described in Section 6.3.1 are
specified with the input language of the NuSMV model checker. However,
first we refine and specify each property in as specific form as is needed for
the formal specification to be possible.

Safety properties

The first safety property pl of Section 6.3.1 states that the couplings of the
system and tripping logic are done correctly. In the case of the primary break-
ers, this property is formulated specifically in the following way:

If a primary circuit breaker is launched at a certain time step, then the
tripping condition of this breaker was realised in the previous time step.

With NuSMYV this is specified as:

LTLSPEC G (LTLSPEC G (breaker_A.launched -> Y zonel_alarm))

In the case of the backup breakers, the property can be formulated more con-
veniently as follows:

If a backup breaker is launched at a given time step, then at the same time
step one of the primary breakers covered by the backup breaker is receiving
a launch signal.

With NuSMV this is specified like this:

LTLSPEC G (breaker_E.launched -> (breaker_A.launched | breaker_B.launched))

The second safety property p2 of Section 6.3.1 states that the backup break-
ers should not be launched unless necessary. This requirement is formulated
more precisely in this way:

If a backup breaker receives a launch signal, then at least one of the pri-
mary breakers covered by it has broken down.

With NuSMYV this is specified as follows:
LTLSPEC G (breaker_E.launched -> (breaker_A.is_broken | breaker_B.is_broken))

Liveness properties

The liveness property p3 of Section 6.3.1 is formulated more specifically like
this:

If the protection system receives an alarm from a protection zone in a
given instant of time, there will be a instant of time in the future, when the
alarm has either disappeared from the protection zone or the protection zone
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is disconnected from the power feed.

With NuSMV this is specified like this:

LTLSPEC G (zonel_alarm -> F (!zonel_alarm | !'zonel_hasvoltage))

6.3.7 Experimental Results

In the following we present some measurements on the running times of the
model checking of our example system.

Test Equipment

The model checking was carried out with a PC with 1.8GHz Intel Core 2
Duo E63xx DualCore processor. Available virtual memory was limited to
1.5 GiB. The operating system used was Debian GNU/Linux and the model
checking was carried out with NuSMV version 2.4.2 by using BDD-based
LTL model checking with default options.

Measurements

The model checking was carried out on the model shown in Appendix B.
The parameters altered were the delay parameters D1, D2, D3, and D4 of
the tripping logic of the example system (see Figure 17 and Table 1) and
the activation time A of the circuit breakers (with each distinct model check-
ing process the same activation time was used with all the breakers). As ex-
plained in Section 6.3.5 (see the descriptions of the Controller and Breaker
modules), these parameter values correspond to milliseconds in real-time.

For each value of A, valid values for the parameters D1-D4 have to be de-
termined from the system design. For a given parameter A it is of interest to
find as small values of parameters D1-D4 as possible for which the verified
properties are still valid. Table 2 shows running times for the model check-
ing process with different parameter values for which the properties pl-p3
described in Section 6.3.1 are satisfied.

For a complex system design, finding of smallest possible delay parameters
corresponding to a given activation time A is a difficult and error-prone task.
This is reflected by the fact that with the parameter values of Table 2, the
state space of the system model of this case study varies between 3,0 x 10%!
and 2,4 * 10% states (size of the state space can be calculated as the product
of the value ranges of all the state variables of the model). Consequently, the
benefit of the automatic verification with model checking increases with the
complexity of the verified system.

If the delay parameters for a certain activation delay A are chosen to be
too small, all the properties are not valid anymore. In this case, the NuSMV
model checker returns a counter example for each property that is violated.
For example, if the value of the parameter D1 on the row A=3 in Table 2 is
decreased from value § to value 7, a property of type p2 no longer holds and
NuSMV returns a counter example, that is, an execution of the system along
which the property is violated. Table 3 shows running times for parameters
which are othervise same as in Table 2 but the parameter D1 on each row
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is decreased by 1 leading to unsatishability of one or more of the verified
properties.

Analysis of results

The results of Table 2 show quite clearly the exponential behaviour of the
running time with respect to the size of the parameters. As the opening
times of real circuit breakers might be anything from 20 milliseconds to 50-
100 milliseconds or even more, the applicability of the chosen modelling
technique is, generally speaking, questionable. However, the system design
studied here is advisedly made quite complex and for slightly smaller models
the counter modelling technique might be quite practical.

A clear benefit of the model checking method with respect to this case
study is that the optimal delay parameter values can be found reliably.

Table 2: Running times of the model checking process with different param-
cter values

A (Activation time | D1 | D2 | D3 | D4 | Running Time
of breakers)
2 6 | 9 3 6 1 min
3 § 12| 4 | 8 4 min
4 10 15] 5 | 10 21 min
5 121 18] 6 | 12 39 min
6 14|21 7 |14 1h 48min
7 16 | 24| § | 16 3h 33min
8 181271 9 | 18 26min
9 20 | 30 | 10 | 20 10h 59min

Table 3: Running times of the model checking process with insuthcient pa-
rameter values

Activation delay | D1 | D2 | D3 | D4 | Running Time
of breakers

2 51091 316 1 min

3 701214 |8 12 min

4 9 1151 5 |10 25 min

5 11118 ] 6 | 12 1h 19min

6 13121 7 | 14 1h 48min

7 15124 | 8 | 16 5h 4min

8 171271 9 |18 27 min

9 191 30 | 10 | 20 11h 38min
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7 CONCLUSIONS

In this work, we have studied the applicability of the non-real-time model
checker NuSMV to verification of safety and liveness properties of the UTU
Falcon arc protection system. The central study objective was to find out
whether the studied system could be modelled on the appropriate level of ab-
straction which is needed to guarantee reliable verification results and which,
on the other hand, keeps the size of the model feasible.

The biggest challenge in the modelling of the arc protection system was
the modelling of the time delays associated with both the protection system
and its environment. In our approach the continuous time was discretised
by using the scan cycle of the controller of the arc protection system as the
basic unit of time. This way, the time delays could be modelled by using
certain type of discrete counters. The main benefit of this technique is that
it is very straightforward to implement. However, the scalability of the tech-
nique is a clear problem and, therefore, models based on counters have to be
strongly restricted either in the number of counters or in the value ranges of
the counters. The arc protection case study was shown to be at the limits for
the applicability of the counter technique. The determining time delay, in
this case, is the physical opening delay of the circuit breakers. We were able
to carry out model checking with a basic desktop PC while using parameter
values corresponding to the opening times of the circuit breakers of approxi-
mately up to 10ms. This result is promising but the question of the scalability
of the modelling technique to parameter values closer to the average opening
time of standard circuit breakers of high voltage power distribution networks
was left open.

Generally speaking, the case study presented in this work shows that model
checking can be both an applicable and a valuable tool in the verification of
safety instrumented systems. As it was stated in Section 6.3.7, the size of the
state space of the model built in the case of verifying the correctness of a
system design varies between 3,0 % 10*' and 2,4 x 10%. This clearly shows
the need for automatic verification. Moreover, model checking makes an
exhaustive analysis over the system model which is not guaranteed by any
other verification method, like simulation for example. The case study of
this work also showed us, that besides using model checking for verifying an
existing system design, it can be a valuable aid in the design phase of a new
system. This was found out as we designed our own experimental environ-
ment model for studying the modelling of a system design. Finally, while
model checking is used to verify a system consisting of a physical environ-
ment alongside a controller, the process of building a model of the whole sys-
tem compels one to think very thoroughly of assumptions on the behaviour
and features of the whole system. This issue can be quite crucial especially
in situations where verification of a system is done by an external evaluator
who lacks specific domain knowledge.

This work has presented also a general methodology for model checking
safety instrumented systems. We have presented an abstract model which
captures the structure of the systems into which our methodology can be ap-
plied to. With the aid of this model, we have specified what kinds of issues
have to be considered while modelling a SIS. Most importantly, we have
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shown how the generic parts of the abstract model can be modelled by us-
ing NuSMV. We have also given general guidelines for modelling the parts
which are application specific and cannot be abstracted to any single model.
Our methodology was created by generalising the modelling techniques
that were used with the arc protection case study. Although the methodology
is based only on a single case study, we believe that it can be a helpful starting
point for model checking other safety instrumented systems since the basic
structure of most safety instrumented systems seems to be quite similar.

7.1 Future Work

The work done in this report can be extended to many directions. First of
all, the practical value of the model checking methodology presented in this
work should be evaluated against other case studies. Especially the applicabil-
ity of the counter technique that was used with the arc protection case should
be tested with other safety instrumented systems. If the technique shows to
be infeasible with large portion of real-world systems, different techniques for
abstracting time delays are needed.

A further study related to modelling an UPS system is already planned.
Through this new case study, the purpose is to study, among other things, a
far more complicated control logic that the one encountered with the Falcon
arc protection system.

Finally, with different industrial case studies being modelled, also com-
parative studies with real-time model checkers [4], such as UPPAAL, are
welcomed for evaluating the differences in performance and applicability
between the different modelling approaches.
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A FULL SOURCE CODE OF THE NUSMV MODEL — CASE 1

MODULE Falcon(chl,ch2,ch3,ch4,lights)
VAR

triacl : boolean;

triac2 : boolean;

triac3 : boolean;

relay6 : boolean;

DEFINE
or_gate0 := chl | ch3;

and_gate0 := or_gate0 & ch2;
and_gatel := or_gate0 & ch4;
and_gate2 := or_gate0 & lights;

or_gatel := and_gate0 | and_gatel | and_gate2;

|

or_gate2 := and_gatel | and_gate2;

or_gate3 := and_gate0 | and_gatel;

or_gate4 := and_gate0 | and_gatel | and_gate2;
ASSIGN

init(triacl) := 0;

init(triac2) := 0;

init(triac3) := 0;

init(relay6) := 0;

next(triacl) := or_gatel;

next(triac2) := or_gate2;

next(triac3) := or_gate3;

next(relay6) := or_gate4;

MODULE TruthTable(chl,ch2,ch3,ch4,lights)
VAR

triacl : boolean;

triac2 : boolean;

triac3 : boolean;

relay6 : boolean;

ASSIGN
init(triacl) :=
init(triac2) :=
init(triac3) :=
init(relay6) :=

o O O O

next(triacl) :=
case

-- Truth table rows with output value 0.

'chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 1

'chl & !ch2 & !ch3 & !ch4 & lights : 0; -- row 2

'chl & !ch2 & !ch3 & ch4 & !lights : 0; -- row 3

'chl & !ch2 & !ch3 & ch4 & lights : 0; -- row 4

'chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 5

'chl & ch2 & !ch3 & !ch4 & !lights : 0; -- row 9

'chl & ch2 & !ch3 & !ch4 & lights : 0; -- row 10
'chl & ch2 & !ch3 & ch4 & !lights : 0; -- row 11
'chl & ch2 & !ch3 & ch4 & lights : 0; -- row 12
chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 17
chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 21
-- Truth table rows with output value 1.

1 R

esac;

next(triac2) :=
case
-- Truth table rows with output value 0.
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'chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 1
'chl & !ch2 & !ch3 & !ch4 & lights : 0; -- row 2
'chl & !ch2 & !ch3 & ch4 & !lights : 0; -- row 3
'chl & !ch2 & !ch3 & ch4 & lights : 0; -- row 4
'chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 5
'chl & ch2 & !ch3 & !ch4 & !lights : 0; -- row 9
'chl & ch2 & !ch3 & !ch4 & lights : 0; -- row 10
'chl & ch2 & !ch3 & ch4 & !lights : 0; -- row 11
'chl & ch2 & !ch3 & ch4 & lights : 0; -- row 12
'chl & ch2 & ch3 & !ch4 & !lights : 0; -- row 13
chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 17
chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 21
chl & ch2 & !ch3 & !ch4 & !lights : 0; -- row 25
chl & ch2 & ch3 & !ch4 & !lights : 0; -- row 29
-- Truth table rows with output value 1.
1 1

esac;

next(triac3) :=

case
-- Truth table rows with output value 0.
'chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 1
'chl & !ch2 & !ch3 & !ch4 & lights : 0; -- row 2
'chl & !ch2 & !ch3 & ch4 & !lights : 0; -- row 3
'chl & !ch2 & !ch3 & ch4 & lights : 0; -- row 4
'chl & !ch2 & ch3 & !ch4 & !lights : 0; --row 5
'chl & !ch2 & ch3 & !ch4 & lights : 0; -- row 6
'chl & ch2 & !ch3 & !ch4 & !lights : 0; -- row 9
'chl & ch2 & !ch3 & !ch4 & lights : 0; -- row 10
'chl & ch2 & !ch3 & ch4 & !lights : 0; -- row 11
'chl & ch2 & !ch3 & ch4 & lights : 0; -- row 12
chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 17
chl & !ch2 & !ch3 & !ch4 & lights : 0; -- row 18
chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 21
chl & !ch2 & ch3 & !ch4 & lights : 0; -- row 22
-- Truth table rows with output value 1.
1 0 1;

esac;

next(relay6) :=

case
-- Truth table rows with output value 0
'chl & !ch2 & !ch3 & !ch4 & !lights 0; -- row 1
'chl & !ch2 & !ch3 & !ch4 & lights : 0; -- row 2
'chl & !ch2 & !ch3 & ch4 & !lights : 0; -- row 3
'chl & !ch2 & !ch3 & ch4 & lights 0; -- row 4
'chl & !ch2 & ch3 & !ch4 & !lights 0; --row 5
'chl & ch2 & !ch3 & !ch4 & !lights : 0; -- row 9
'chl & ch2 & !ch3 & !ch4 & lights : 0; -- row 10
'chl & ch2 & !ch3 & ch4 & !lights : 0; -- row 11
'chl & ch2 & !ch3 & ch4 & lights : 0; -- row 12
chl & !ch2 & !ch3 & !ch4 & !lights : 0; -- row 17
chl & !ch2 & ch3 & !ch4 & !lights : 0; -- row 21
-- Truth table rows with output value 1.
1 : 1

esac;

MODULE main

VAR
chl : boolean;
ch2 : boolean;
ch3 : boolean;
ch4 : boolean;
lights : boolean;
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falcon : Falcon(chil,ch2,ch3,ch4,lights);
truth_table : TruthTable(chl,ch2,ch3,ch4,lights);

ASSIGN
init(chl) := {0,1};
init(ch2) := {0,1};
init(ch3) := {0,1};

init(ch4) := {0,1};
init(lights) := {0,1};

next(chl) := {0,1};

next(ch2) := {0,1};
next(ch3) := {0,1};
next(ch4) := {0,1};
next(lights) := {0,1};

-- Specification of properties

-- The outputs of the modules have to be equal with all inputs.

LTLSPEC G ((falcon.triacl <-> truth_table.triacl) &
(falcon.triac2 <-> truth_table.triac2) &
(falcon.triac3 <-> truth_table.triac3) &
(falcon.relay6 <-> truth_table.relay6))
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FULL SOURCE CODE OF THE NUSMV MODEL — CASE 2

-- M4 preprocessor macros:

define(‘AD’,¢67)
define(‘D1’,¢14’)
define(‘D2’,¢217)
define(‘D3?,¢7?)
define(‘D4’,¢147)

define(‘max’, ‘ifelse(eval($1l > $2),¢17,¢$17,¢$27)?)
define (‘DELAY_RANGE_UPPER_LIMIT’, ‘eval(max(max(max(D1,D2),D3),D4)+1)?)
define (‘TIMER_RANGE_UPPER_LIMIT’, ‘AD’)

-- Delay module is used to model the delay gates of the tripping logic
-- of the Falcon master unit.

-- With delay=0 the relay acts in one cycle. The delay

-- parameter specifies how many additional scan cycles the input has
-- to be TRUE before an output signal TRUE is given.

MODULE Delay(input_signal, delay)
VAR
count : O..DELAY_RANGE_UPPER_LIMIT;
output : boolean;

DEFINE
-- Total delay consist of the delay + scan cycle
total_delay := delay + 1;

ASSIGN
init(count)
next (count)

case
input_signal = 0 : 03
count >= total_delay : count;
1 : count + 1;
esac;

0;

init(output) 0;
next (output)

case
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-- At the step when count = delay, output has to be 1.

next(count) >= total_delay
1

1;
: 03

esac;

-- OneShotTimer module is used by the Breaker module to model the physical
-- activation delay of a breaker. The module implements such timer which
-- can only run once through its value range. This restriction is made to
-- keep the state space of the model as small as possible. This behaviour
--- also corresponds to the operational model of breaker.

MODULE OneShotTimer(signal,delay)
VAR
counter : 0..TIMER_RANGE_UPPER_LIMIT;

DEFINE
output :=
case
(delay = 0) : signal;
(counter = 0) : 1;
1 : 0;
esac;

ASSIGN
init(counter)
next (counter)

case

delay;
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(delay = 0) : 0;
(counter = 0) : 0;
(counter < delay) : counter - 1;
(counter = delay) & (signal = 1) : counter - 1;
1 : counter;
esac;

-- Breaker module is used to model the physical circuit breakers
-- controlled by the Falcon master unit.

MODULE Breaker(launch_signal, setting_up_time, can_break)
VAR

is_broken : boolean;

cuts : boolean;

timer : OneShotTimer(launch_signal,setting_up_time);

DEFINE
launched := launch_signal;
ASSIGN
init(is_broken) := 0;
next(is_broken) :=
case
can_break = 0 : 0;
is_broken = 0 : {0,1};
is_broken =1 : 1;
1 : 1
esac;
init(cuts) := timer.output;
next(cuts) :=
case
(cuts = 1) : 1;
(is_broken = 1) : cuts;
(next(timer.output) = 1) : 1;
(next(timer.output) = 0) : 0;
esac;

-- UTU_CR module is used to model the overcurrent sensors of the Falcon
-- system.

MODULE UTU_CR(has_voltage,breaker)
VAR
overcurrent : boolean;

ASSIGN
overcurrent :=
case
'has_voltage | breaker.cuts : 0;
1 : {0,1};
esac;

-- UTU_ARC module is used to model the light sensors of the Falcon
-- system.

MODULE UTU_ARC()

VAR
light : boolean;

ASSIGN
light := {0,1};
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-- Controller module models the Falcon master unit.

MODULE Controller(chl,ch2,ch3,ch4,ch_light)

VAR
triacl_delay : Delay(logic_output_trl,TRIAC_DELAY);
triac2_delay : Delay(logic_output_tr2,TRIAC_DELAY);
triac3_delay : Delay(logic_output_tr3,TRIAC_DELAY);
triac4_delay : Delay(logic_output_tr4,TRIAC_DELAY);

relayl_delay : Delay(logic_output_relayl,RELAY1_DELAY);
relay2_delay : Delay(logic_output_relay2,RELAY2_DELAY);
relay3_delay : Delay(logic_output_relay3,RELAY3_DELAY);
relay4_delay : Delay(logic_output_relay4,RELAY4_DELAY);

DEFINE
-- Delay values of the delay gates. These values should be set to
-- the delay values (in milliseconds) of the corresponding delay
-- gates in the modelled tripping logic.

TRIAC_DELAY := 0;

RELAY1_DELAY := D1; --Values D1-D4 set with M4 preprocessor macro.
RELAY2_DELAY D2;

RELAY3_DELAY := D3;

RELAY4_DELAY := D4;

-- Logic of the circuits.

OR1 := (ch3 | ch4);

AND1 := (OR1 & ch_light);

OR2 := (chl | ch2 | AND1);
OR3 := (chl | ch2);

-- Inputs to delay gates.
logic_output_trl := chil;
logic_output_tr2 ch2;
logic_output_tr3 := OR2;
logic_output_tr4 := AND1;

logic_output_relayl := OR3;
logic_output_relay2 := OR3;
logic_output_relay3 AND1;
logic_output_relay4 AND1;

-- Outputs of the controller module.

triacl_output
triac2_output
triac3_output
triac4_output

relayl_output
relay2_output
relay3_output
relay4_output

= triacl_delay.output;

1= triac2_delay.output;
1= triac3_delay.output;
1= triac4_delay.output;

:= relayl_delay.output;
:= relay2_delay.output;
:= relay3_delay.output;
:= relay4_delay.output;

-- main module is the main program of the whole model and it encompasses
-- both, the model of the controller and its environment.

MODULE main
VAR
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-- The controller of Falcon master unit
ctrl : Controller(zonel_alarm, zone2_alarm, Cr_3a.overcurrent,

Cr_3b.overcurrent, L_3.light);

-- Overcurrent sensors

Cr_1 : UTU_CR(zonel_hasvoltage,breaker_A);
Cr_2 : UTU_CR(zone2_hasvoltage,breaker_B);
Cr_3a : UTU_CR(zone3_hasvoltage,breaker_C);
Cr_3b : UTU_CR(zone3_hasvoltage,breaker_D);
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-- Light sensors
L_1 : UTU_ARCQ);
L_2 : UTU_ARCQ);
L_3 : UTU_ARCQ);

-- Primary breakers

breaker_A : Breaker(ctrl.triacl_output, BREAKER_OPENING_TIME, CAN_BREAK_DOWN);
breaker_B : Breaker(ctrl.triac2_output, BREAKER_OPENING_TIME, CAN_BREAK_DOWN);
breaker_C : Breaker(ctrl.triac3_output, BREAKER_OPENING_TIME, CAN_BREAK_DOWN);
breaker_D : Breaker(ctrl.triac4_output, BREAKER_OPENING_TIME, CAN_BREAK_DOWN);

-- Backup breakers

breaker E : Breaker(ctrl.relayl_output, BREAKER_OPENING_TIME, CAN_NOT_BREAK_DOWN);
breaker_F : Breaker(ctrl.relay2_output, BREAKER_OPENING_TIME, CAN_NOT_BREAK_DOWN);
breaker_G : Breaker(ctrl.relay3_output, BREAKER_OPENING_TIME, CAN_NOT_BREAK_DOWN);
breaker_H : Breaker(ctrl.relay4_output, BREAKER_OPENING_TIME, CAN_NOT_BREAK_DOWN);

DEFINE
-- The activation delay of the breakers
-- (=the time passed from receiving a launch
-- signal to cutting off the power.) With each breaker, the
-- value should be set to the value of the activation delay in
-- milliseconds of the corresponding real circuit breaker.
BREAKER_OPENING_TIME := AD; --Value set with M4 preprocessor macro.

-- Define constants for specifying whether
-- a breaker can be malfunctioned.
CAN_BREAK_DOWN := 1;

CAN_NOT_BREAK_DOWN := 0;

-- The alarm model

zonel_alarm := Cr_1.overcurrent & L_1.light;
zone2_alarm := Cr_2.overcurrent & L_2.light;
zone3_alarm := (Cr_3a.overcurrent | Cr_3b.overcurrent) & L_3.light;

-- The current flow model
zonel_hasvoltage :=
! (breaker_A.cuts |
((breaker_E.cuts | breaker_H.cuts) &
(breaker_C.cuts | breaker_D.cuts | breaker_F.cuts | breaker_G.cuts)));

zone2_hasvoltage :=
! (breaker_B.cuts |
((breaker_E.cuts | breaker_H.cuts) &
(breaker_C.cuts | breaker_D.cuts | breaker_F.cuts | breaker_G.cuts)));

zone3_hasvoltage :=
! ((breaker_C.cuts | breaker_E.cuts | breaker_H.cuts) &
(breaker_D.cuts | breaker_F.cuts | breaker_G.cuts));

-- Specification of properties:

-- 1. Connections of the primary breakers have to be correct.

LTLSPEC G (breaker_A.launched -> Y zonel_alarm)

LTLSPEC G (breaker_B.launched -> Y zone2_alarm)

LTLSPEC G (breaker_C.launched -> Y (zonel_alarm | zone2_alarm | zone3_alarm))
LTLSPEC G (breaker_D.launched -> Y zone3_alarm)

-- 2. Connections of the backup breakers have to be correct.

LTLSPEC G (breaker_E.launched -> (breaker_A.launched | breaker_B.launched))
LTLSPEC G (breaker_F.launched -> (breaker_E.launched & breaker_C.launched))
LTLSPEC G (breaker_G.launched -> (breaker_D.launched))

LTLSPEC G (breaker_H.launched -> (breaker_G.launched))

-- 3. Backup breakers must not be launched too easily.
LTLSPEC G (breaker_E.launched -> (breaker_A.is_broken | breaker_B.is_broken))
LTLSPEC G (breaker_F.launched -> (breaker_A.is_broken | breaker_B.is_broken))
LTLSPEC G (breaker_F.launched -> (breaker_C.is_broken))
LTLSPEC G (breaker_G.launched -> (breaker_C.is_broken | breaker_D.is_broken))
LTLSPEC G (breaker_H.launched -> (breaker_C.is_broken))
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-- 4. The system has to terminate a continuous electric arc.

LTLSPEC G (zonel_alarm -> F (!zonel_alarm | !zonel_hasvoltage))
LTLSPEC G (zone2_alarm -> F (!zone2_alarm | !zone2_hasvoltage))
LTLSPEC G (zone3_alarm -> F (!zone3_alarm | !zone3_hasvoltage))
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