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ABSTRACT: A Steiner triple system of order v (STS(v)) is a set of triples,
or blocks, constructed over a set of v points, such that every pair of distinct
points occurs in a unique block.

Previously, a complete classification of the STS(v) up to isomorphism
was known only for v ≤ 15. In this work, we classify by computer search
the next open case, v = 19. The classification proceeds in two stages. First,
we construct an initial set of 25-block seed configurations. Then, using an
algorithm for the exact cover problem, we determine all completions of the
seeds to STS(19). Isomorph rejection on the STS(19) is carried out using
the graph canonical labelling package nauty supplemented with a vertex in-
variant based on Pasch configurations.

We conclude that there are 11,084,874,829 nonisomorphic STS(19) and
study a number of their properties. In particular, the number of anti-Pasch
STS(19) is 2,591 and the number of STS(19) with a nontrivial automor-
phism group is 164,758.

We also develop an independent algorithm for classifying STS(19) with a
prescribed group of automorphisms. We then use this algorithm to classify
the STS(19) with a nontrivial automorphism group. The results obtained in
this partial classification match those obtained in the main search.

Finally, we show that the main classification algorithm can be used with
minor modifications to classify certain related combinatorial structures, such
as latin squares and one-factorizations of complete graphs. We estimate the
performance of the algorithm in classifying one-factorizations of the com-
plete graph on 12 vertices.

KEYWORDS: classification algorithm, isomorph rejection, one-factorization,
Pasch configuration, Steiner triple system
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1 INTRODUCTION

A Steiner triple system of order v (STS(v)) is a set of triples, or blocks, con-
structed over a set of v points, such that every pair of distinct points occurs
in a unique block. Two STS(v) are isomorphic if there exists a bijection
between the point sets that maps blocks onto blocks.

As early as in 1847, Kirkman [50]1 settled the existence problem for STS(v).
Namely, a Steiner triple system of order v exists if and only if v ≡ 1 (mod 6)
or v ≡ 3 (mod 6).

The task of classifying the nonisomorphic STS(v) is much harder. Indeed,
despite extensive research, a complete classification of the nonisomorphic
STS(v) is known only for a handful of the smallest admissible parameter val-
ues v. This is largely because N(v), the number of nonisomorphic STS(v),
grows very rapidly with increasing v. More specifically, Wilson [86] (see also
[25, 27]) has proved that N(v) ≥ (e−5v)v2/6.

For the two smallest nontrivial values, v = 7 and v = 9, the STS(v)
are unique up to isomorphism. For v = 13, the STS(v) partition into two
isomorphism classes. The existence of these classes was shown by Zulauf
[87]. De Pasquale [21] and Brunel [10] established that these two classes
form the complete classification. For v = 15, there are 80 isomorphism
classes, a result first obtained by Cole, Cummings, and White [20, 85] in
1917 after a very laborous manual calculation. Their result was verified in
a computer search conducted by Hall and Swift [40] in 1955. A complete
listing of the STS(v) for v ≤ 15 appears in, for example, [17, 59].

For v = 19 the exact number of nonisomorphic STS(v) has been un-
known until now due to their huge number. Lower bounds and estimates
for N(19) have been computed by a number of researchers. These include
Stinson and Ferch [78], who obtained N(19) ≥ 2,395,687 and estimated
N(19) ≈ 109. McKay [59] improved the lower bound to N(19) ≥ 1.1 · 109,
and, using a sophisticated estimation method, obtained a (correct) estimate
1.1 · 1010 ≤ N(19) ≤ 1.2 · 1010 [63].

While a complete classification of the STS(19) has been lacking, research
has focused on STS(19) with special properties. Such partial classifications
of STS(19) include at least the following. Bays [4] enumerated the four
STS(19) having a cyclic automorphism. Denniston [22] classified the 184
nonisomorphic STS(19) with a reversal, that is, an automorphism with nine
2-cycles and one fixed point. Phelps and Rosa [67] classified the 10 noniso-
morphic STS(19) having a 2-rotational automorphism, that is, an automor-
phism with two 9-cycles and one fixed point. Stinson and Seah [79] classified
the 284,457 STS(19) with a subsystem of order 9. Colbourn, Magliveras, and
Stinson [16] classified all the STS(19) that admit a nontrivial automorphism.
(Unfortunately, the results in [16] are partly in error as we shall demonstrate.)

In this report, we develop a search algorithm for classifying STS(v) and
use it to classify the STS(19) up to isomorphism by computer search. As a
result of the search, which required approximately two years of total CPU

1A comprehensive reference to Steiner triple systems with a historical introduction is
the book by Colbourn and Rosa [17]; the nineteenth century and early twentieth century
references in this report are quoted from Colbourn and Rosa. Ref. [20] is the only exception
to this rule.
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time, we conclude that

N(19) = 11,084,874,829

and that the number of distinct STS(19) over a fixed point set is

1,348,410,350,618,155,344,199,680,000.

This number can be computed from the search data in two different ways,
which supports the correctness of the classification. To gain further confi-
dence in the classification, we classify the STS(19) with a nontrivial full au-
tomorphism group using an independent algorithm. Chapter 6 describes the
classification in more detail. In particular, we correct the erroneous results
in [16] and study the number of Pasch configurations in STS(19).

There are a number of reasons that motivate a complete classification of
the STS(19). First, a complete classification enables in principle the study
of any property of the STS(19). (In practice, the large number of nonisomor-
phic STS(19) may still make the study of some properties computationally
infeasible.) Second, the study of a complete classification of a collection of
combinatorial objects often opens up lines of research concerning the struc-
ture of a larger class of objects, often in the form of a counterexample to
a conjecture. In this sense, the STS(19) are sufficiently “rich” in numbers
and structure compared with the systems of lesser order. For example, the
classification of the STS(19) enabled the recent discovery of nonisomorphic
STS(19) with equivalent point codes [47]. For v ≤ 15, no such STS(v) exist
[82]. We expect that this will not be the last such discovery.

The rest of this report is organized as follows. Chapter 2 contains a brief
review of the background material such as the terminology used and theoret-
ical results from the literature.

Chapter 3 covers the auxiliary algorithms required by the search algo-
rithms in the subsequent Chapters 4 and 5. The exact cover algorithm
we employ is Algorithm DLX due to Knuth [52]. The isomorph rejection
scheme requires computation of the automorphism group and canonical la-
belling of block graphs of STS(19). For this task we use the package nauty
due to McKay [61] supplemented with a vertex invariant based on the Pasch
configurations of the underlying STS(19).

Chapter 4 contains a detailed description of the classification algorithm
for STS(19) and the implementation of the computer search. Our approach
to classifying the STS(19) is to regard the construction of STS as an instance
of the exact cover problem, in which the task is to cover the

(

19
2

)

= 171

pairs of points in all possible ways using 57 triples from a set of
(

19
3

)

= 969
triples. We start the exact cover search from a restricted collection of 14,648
partial solutions with 25 triples, which we call seeds, and which are known to
occur (up to isomorphism) in every STS(19). By starting the search from the
seeds we obtain the necessary symmetry reduction in the search space that
enables the construction of a representative from every isomorphism class of
STS(19) in a manageable amount of time. (With no symmetry reduction
we would have to search through all the distinct STS(19), which is obviously
infeasible.) We filter isomorphic STS(19) from the output of the exact cover
algorithm using two tests, which are motivated by a general framework for
isomorph-free exhaustive generation [63].
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Chapter 5 describes an independent algorithm for classifying the STS(19)
with a nontrivial automorphism group. The approach taken is essentially that
of [16], but our method of constructing and performing isomorph rejection
on the STS(19) is different. Namely, we formulate the construction problem
again as an exact cover problem, in which we cover orbits of pairs with orbits
of triples, where the orbits are given by a prescribed group of automorphisms.
Careful design of the starting points of the search is again required to make
the search feasible. The use of an exact cover algorithm in constructing
STS(19) with a prescribed group of automorphisms can be seen as a special
case of the technique pioneered by Kramer and Mesner [55].

We conclude this report in Chapter 7 by demonstrating that the classifica-
tion approach derived for STS(19) can be used essentially without change to
classify other combinatorial structures such as latin squares, one-factorizations
of complete graphs, and generalized Steiner triple systems. Whether this ap-
proach will result in more efficient algorithms than the ones already in exis-
tence for these structures remains a subject of future work. Initial estimates
on the time required to classify the nonisomorphic one-factorizations of the
complete graph on 12 vertices suggest a factor 2.5 performance improvement
compared with the algorithm used by Dinitz, Garnick, and McKay [23].

2 BACKGROUND

This chapter summarizes the relevant background material used in the main
subject matter of this report. The chapter is organized into two parts.

The first part, Sections 2.1 and 2.2, contains the standard mathematical
definitions and theoretical results used in the main subject matter. We as-
sume familiarity with basic mathematical concepts and some knowledge of
group theory. Any definitions not given here can be found in the following
references. Textbooks in combinatorics include [12, 83]. A comprehensive
reference to Steiner triple systems is [17]. Standard design theory references
are [5, 14]. Textbooks on group theory include [42, 72]; permutation groups
are discussed in [13, 24].

The second part, Section 2.3, contains a brief discussion on algorithms for
isomorph-free exhaustive generation of combinatorial structures. Textbooks
on combinatorial algorithms include [56, 71].

2.1 Definitions and notation

This section briefly summarizes the standard mathematical definitions and
notation used in this report.

Basic notation

The cardinality of a finite set X is denoted by |X|. LetX, Y be sets. We write
X × Y for the Cartesian product of X and Y , that is, the set of all ordered
pairs (x, y) with x ∈ X and y ∈ Y . We write f : X → Y to indicate that f
is a function of X into Y . We write either f : x 7→ y or f(x) = y to indicate
that f maps x ∈ X to y ∈ Y . The restriction of a function f : X → Y into a
set Z ⊆ X is denoted by f |Z .
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Order and partitions

Lexicographic order. Let X be a nonempty set with a total order < and let
E, F ⊆ X . Then, the lexicographic order on the set of all nonempty subsets
of X is defined by E < F if and only if there exists an x ∈ X such that

(i) x ∈ F ; and

(ii) x /∈ E; and

(iii) for all y ∈ X such that y < x we have x ∈ E if and only if x ∈ F .

We write E ≤ F if and only if either E = F or E < F .
Partition, ordered partition. A partition of a nonempty set V is a set of
pairwise disjoint nonempty subsets of V whose union is V . An ordered par-
tition of V is a sequence (V1, . . . , Vn) of nonempty subsets of V such that
{V1, . . . , Vn} is a partition of V . We denote by Π(V ) the set of all ordered
partitions of V .

The elements of a partition are called its cells. The partition that consists
of only the cell V is called the unit partition. An ordered partition is discrete
if all of its cells are singleton sets.

Group theory

Group, subgroup. A finite group consists of a finite set G and a mapping
· : G×G→ G, called the group operation, that satisfies the following three
axioms:

(G1) (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G;

(G2) there exists an element I ∈ G such that g · I = I · g = g for all g ∈ G;

(G3) for all g ∈ G there exists an element g−1 ∈ G such that g · g−1 =
g−1 · g = I.

We omit the group operation in what follows and write simply g1g2 in place
of g1 · g2.

A subset H ⊆ G of a group G is a subgroup of G if H is a group under the
group operation of G restricted to H . We write H ≤ G to indicate that H is
a subgroup of G.
Permutation, permutation group. Let X be a finite nonempty set. A per-
mutation of X is a bijection of X onto itself. The degree of a permutation of
X is |X|. Let α, β be two permutations ofX . Their composition αβ, defined
for all x ∈ X by αβ(x) = α(β(x)), is a permutation of X .

The set of all permutations of X forms a group with the composition of
permutations as the group operation. This group is called the symmetric
group on X and we denote it by Sym(X). A permutation group on X is a
subgroup of Sym(X). The degree of a permutation group on X is |X|.

Let α ∈ Sym(X) and β ∈ Sym(Y ), X ∩ Y = ∅. The sum α + β is the
permutation of X ∪ Y defined by

(α+ β)(z) =

{

α(z) if z ∈ X ; and

β(z) if z ∈ Y .
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Similarly, if G ≤ Sym(X) and H ≤ Sym(Y ) are permutation groups, then
the sum G+H is the permutation group

G+H = {α + β : α ∈ G, β ∈ H} ≤ Sym(X ∪ Y ).

A permutation α ∈ Sym(X) fixes x ∈ X if α(x) = x; otherwise α moves
x. Two permutations α, β ∈ Sym(X) are disjoint if every point moved by
one fixed by the other.

A permutation α ∈ Sym(X) is a cycle if there exist a positive integer k
and distinct x1, . . . , xk ∈ X such that

α(x1) = x2, α(x2) = x3, · · · , α(xk−1) = xk, α(xk) = x1 (1)

and α(x) = x for all x ∈ X \ {x1, . . . , xk}. A cycle is trivial if k = 1. The
integer k is called the length of the cycle; a cycle of length k is a k-cycle.

We denote a k-cycle that satisfies (1) by (x1, x2, . . . , xk). The identity
permutation is denoted by I.

A permutation α ∈ Sym(X) factors uniquely (up to ordering of the fac-
tors) into a product of pairwise disjoint cycles such that there is exactly one
trivial cycle in the product for each x ∈ X fixed by α. The cycle type of α
is an1

1 a
n2

2 · · ·a
nm

m if
∑m

i=1 niai = |X| and the factorization of α into disjoint
cycles contains exactly ni cycles of length ai for all i ∈ {1, . . . , m}.
Generators. Let G be a group and let S ⊆ G. Then, the group generated by
S is the intersection of all subgroups H ≤ G such that S ⊆ H . If H ≤ G is
the group generated by S, then we say that S is a set of generators for H . We
denote by 〈S〉 the group generated by S.
Group action, orbit, stabilizer. Let G be a group and let X be a finite
nonempty set. An action of G on X is a mapping γ : G × X → X that
satisfies the following two axioms:

(A1) γ(I, x) = x for all x ∈ X ;

(A2) γ(g1g2, x) = γ(g1, γ(g2, x)) for all g1, g2 ∈ G and x ∈ X .

Whenever it is not necessary to explicitly specify the group action (or the
action is clear from the context), we will write either g(x) or simply gx in
place of γ(g, x) and say only that g ∈ G acts on x ∈ X . In the case of
a permutation group G ≤ Sym(X) the action is always assumed to be the
natural permutation action on X given by γ(α, x) = α(x) for all α ∈ G and
x ∈ X .

A group action onX induces an elementwise action on sets or tuples built
from the elements of X . For example, the action induced on the set of all
subsets X is given by g(E) = {g(x) : x ∈ E} for all g ∈ G and all E ⊆ X .

Let G act on X and let x ∈ X . The orbit of x under G is the set

Gx = {g(x) : g ∈ G}.

The subgroup
Gx = {g ∈ G : g(x) = x}

is called the stabilizer of x in G.
A group action of G is transitive on X if G has only one orbit on X . The

action is k-transitive on X if the action induced on the set of all k-tuples of
distinct elements of X is transitive.
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Graphs

Graph, subgraph. A graph is a pair (V,E) consisting of a set V of vertices
and a set E, disjoint from V , of 2-subsets of V called edges. We denote the
vertex set of a graph X by V (X) and the edge set by E(X). A graph with
vertex set V is called a graph on V .

A vertex v is incident with an edge e if v ∈ e. The two vertices incident
with an edge are its endvertices or ends, and an edge joins its ends. Two
vertices v, w joined by an edge are adjacent or neighbors.

The number of vertices of a graph is its order. The degree of a vertex v is
the number of neighbors of v. A graph X is regular of degree d if the degree
of every vertex is d.

A graph Y is a subgraph of a graph X if V (Y ) ⊆ V (X) and E(Y ) ⊆
E(X).
Isomorphism. Two graphs X, Y are isomorphic if there exists a bijection
ϕ : V (X)→ V (Y ) such that, for all u, v ∈ V (X),

{u, v} ∈ E(X) ⇔ {ϕ(u), ϕ(v)} ∈ E(Y ).

Such a map ϕ is an isomorphism of X onto Y ; if X = Y then ϕ is an
automorphism of X .

The set of all automorphisms of X forms a group with the composition
of permutations as the group operation. This group is called the (full) au-
tomorphism group of X . We denote the full automorphism group of X by
Aut(X).
One-factor, one-factorization. A one-factor of a graph X is a subset F ⊆
E(X) such that each vertex v ∈ V (X) is incident with exactly one edge
in F . Alternatively, a one-factor of X is a 1-regular subgraph Y such that
V (Y ) = V (X). A one-factorization of a graph X is a partition of E(X) into
one-factors.

Two sets of one-factors of a graph X , F and F ′, are isomorphic if there
exists a permutation ϕ of V (X) that maps the one-factors in F onto one-
factors in F ′. Such a permutation ϕ is an isomorphism of F onto F ′.
Complete graph, clique. A graph is complete if all of its vertices are pairwise
adjacent. We denote a complete graph on n vertices by Kn. A clique in a
graph X is a complete subgraph of X . A clique is maximal if it is not a
subgraph of a clique that has strictly larger order. A maximum clique is a
clique of maximum order, taken over all cliques in the graph.
Strongly regular graph. A strongly regular graph srg(n, d, λ, µ) is a graph of
order n that is regular of degree d and that has the following two properties:

(S1) For any two adjacent vertices x, y, there are exactly λ vertices adjacent
to both x and y.

(S2) For any two nonadjacent vertices x, y, there are exactly µ vertices adja-
cent to both x and y.

Incidence structures and designs

Incidence structure, induced substructure. An incidence structure is a
triple (P,B, I), where P is a nonempty set of points, B is a nonempty set
(disjoint from P) of blocks, and I ⊆ P ×B is the incidence relation; a point
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p is incident with a block B if (p, B) ∈ I. Two blocks intersect if they are
incident with a common point. Conversely, two blocks are disjoint if they are
not incident with a common point. For an incidence structure X we write
P(X ), B(X ), I(X ) for the point set, the block set, and the incidence relation
of X , respectively.

An incidence structure is simple if no two distinct blocks are incident with
the same set of points.

Example 2.1 An incidence structure that we shall encounter often in this
report is the Pasch configuration (alternatively, a fragment or quadrilateral ),
which is the following incidence structure with six points p1, p2, p3, p4, p5, p6

and four blocks B1, B2, B3, B4:

p1 p2 p3 p4 p5 p6

B1 • • •
B2 • • •
B3 • • •
B4 • • •

An alternative pictorial representation is given below.

p4

p1

p5p6p3

p2

A set of blocks D ⊆ B(X ) in an incidence structure X induces the inci-
dence structure X ′ defined by

P(X ′) = {p ∈ P(X ) : (p, B) ∈ I(X ) for some B ∈ D}, B(X ′) = D,

and
(p, B) ∈ I(X ′) ⇔ (p, B) ∈ I(X )

for all p ∈ P(X ′) and B ∈ B(X ′).
Isomorphism. Two incidence structures, X and Y , are isomorphic if there
exists a bijection ϕ : P(X ) ∪ B(X ) → P(Y) ∪ B(Y) such that ϕ(P(X )) =
P(Y), ϕ(B(X )) = B(Y), and for all p ∈ P(X ) and B ∈ B(X ) we have

(p, B) ∈ I(X ) ⇔ (ϕ(p), ϕ(B)) ∈ I(Y).

Such a bijection ϕ is an isomorphism of X onto Y ; if X = Y then ϕ is an
automorphism of X .

The (full) automorphism group of X , denoted by Aut(X ), is the group
formed by the set of all automorphisms of X with composition of permuta-
tions as the group operation. Clearly, Aut(X ) ≤ Sym(P(X ))+Sym(B(X )).
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A point automorphism of X is the restriction of an automorphism of X
to P(X ); the point automorphism group is the group formed by all point
automorphisms. Block automorphisms and the block automorphism group
are defined analogously.
Dual incidence structure. Let X be an incidence structure. The dual of
X is the incidence structure obtained by exchanging the roles of points and
blocks. More formally, the dual of X is the incidence structure X ′, where
P(X ′) = B(X ), B(X ′) = P(X ), and for all p ∈ P(X ) and B ∈ B(X ),

(B, p) ∈ I(X ′) ⇔ (p, B) ∈ I(X ).

Point graph, block graph, incidence graph. The point graph of an inci-
dence structure is the graph whose vertices are the points of the incidence
structure: any two points are joined by an edge if and only if the points are
incident with a common block.

The block graph of an incidence structure is the graph whose blocks are
the points of the incidence structure: any two blocks are joined by an edge
if and only if the blocks intersect. In other words, the block graph of an
incidence structure is the point graph of the dual incidence structure.

The incidence graph of an incidence structure X is the graph X with
V (X) = P(X ) ∪ B(X ) and edge set defined by

{p, B} ∈ E(X) ⇔ (p, B) ∈ I(X ) (2)

for all p ∈ P(X ) and B ∈ B(X ); these are the only edges in E(X), that is,
no two vertices from either P(X ) or B(X ) are adjacent in X .

Example 2.2 The incidence graph of the Pasch configuration (Example 2.1)
is displayed below.

B3

B2

B1

B4

p6

p5

p4

p3

p2

p1

P

B

Partial geometry. A partial geometry pg(k, r, t) is an incidence structure
with the following four properties:

(P1) Any two distinct points are incident with at most one common block.

(P2) Every block is incident with exactly k points.
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(P3) Every point is incident with exactly r blocks.

(P4) LetB be a block and p a point such that p is not incident withB. Then,
there exist exactly t blocks that are incident with p and that intersect
B.

Example 2.3 The Pasch configuration in Example 2.1 is a partial geometry
pg(3, 2, 1).

Example 2.4 An STS(v) is a partial geometry pg(3, (v − 1)/2, 3).

Designs. A t-(v, k, λ) design is an incidence structure with the following
three properties:

(T1) The point set consists of v points.

(T2) Every block is incident with exactly k points.

(T3) Every t-subset of points is incident with exactly λ blocks.

Example 2.5 An STS(v) is a 2-(v, 3, 1) design.

Group divisible designs. Let K be a finite nonempty set of positive integers
and let λ be a positive integer. A group divisible design of index λ and order v
(a (K, λ)-GDD) is an incidence structure with the following three properties:

(D1) The point set consists of v points.

(D2) For every block B ∈ B, |B| ∈ K, where |B| denotes the number of
points incident with B.

(D3) There exists a partition G, the cells of which are called groups, of the
point set such that every pair of distinct points occurs either in exactly λ
blocks, in which case the points belong to different groups, or no block
contains the point pair, in which case the points belong to the same
group.

If K = {k}, then we write (k, λ)-GDD in place of (K, λ)-GDD. Further-
more, if λ = 1, then we write either K-GDD or k-GDD.

The sizes of the groups in G form the (group) type of the GDD. More
specifically, if v =

∑m
i=1 niai and G contains ni groups of size ai, then the

group type of the GDD is an1

1 a
n2

2 · · ·a
nm

m . A GDD is uniform if all groups
have the same size. A transversal design TD(k, n) is a k-GDD of type nk.

Example 2.6 The Pasch configuration in Example 2.1 is a TD(3, 2). The
partition into groups is {{p1, p6}, {p2, p5}, {p3, p4}}.

2.2 Theoretical results

Basic results on Steiner triple systems

All results in this section are elementary and well-known. In the language of
incidence structures, a Steiner triple system of order v (STS(v)) is a 2-(v, 3, 1)
design.
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Theorem 2.7 Every point of an STS(v) is incident with exactly r blocks, and
the total number of blocks in an STS(v) is b, where

r = (v − 1)/2, b = v(v − 1)/6.

Proof. Let x be an arbitrary point. There are v−1 unordered pairs of distinct
points that contain x. Associated with each such pair is the unique block that
contains the pair. These blocks form a list in which each block of the form
{x, y, z} occurs twice, once for the pair {x, y} and once for the pair {x, z}.
Thus, x occurs in a total of r = (v − 1)/2 blocks. For the second equality
we obtain 3b = vr by counting the total occurences of points in the blocks
in two different ways. �

Since both r and b must be integers, we obtain the following necessary
existence conditions.

Corollary 2.8 An STS(v) exists only if v ≡ 1 (mod 6) or v ≡ 3 (mod 6).

These conditions are also sufficient; see [17] for numerous recursive and
direct constructions of STS(v). The smallest nontrivial values for which an
STS(v) exists are v ∈ {7, 9, 13, 15, 19, 21, 25, 27, . . .}.

We give examples of Steiner triple systems of small order.

Example 2.9 The STS(7) is perhaps most easily described by the following
figure.

p1

p4p7
p2

p6p3 p5

Example 2.10 The STS(9) can be constructed from a 3 × 3 matrix with
nine distinct entries by listing the rows, columns, forward diagonals, and back
diagonals of the matrix.

Example 2.11 There are two nonisomorphic STS(13). The first is perhaps
most easily described over the point set Z13 = {0, 1, . . . , 12}. The blocks are

Z13 + {1, 3, 9}, Z13 + {2, 5, 6},

where addition is performed elementwise modulo 13. The second STS(13)
is shown in the following table, where each column gives a block over Z13.

0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 5 6
1 3 5 7 9 11 3 4 6 9 10 3 4 6 7 8 6 7 8 6 8 10 7 8 9 7
2 4 6 8 10 12 5 7 8 11 12 9 5 10 12 11 11 10 12 12 9 11 11 10 12 9
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Example 2.21 describes one of the 80 nonisomorphic STS(15). For a
complete listing of all the STS(v) for v ≤ 15, see [17, 59].

Up to isomorphism we may regard a Steiner triple system either as a set of
subsets of the point set (in which case the blocks are unlabelled ) or as an in-
cidence structure (in which case the blocks are labelled ). We shall alternate
between these two representations and use whichever is more convenient for
the task at hand.

It is perhaps not immediate that a change of representation does not af-
fect the automorphism group. Namely, the automorphism group of a block
unlabelled STS is the point automorphism group of the block labelled STS.
These two are isomorphic as the following elementary theorem demonstrates.

Theorem 2.12 Let X be a simple incidence structure. Then,

(i) every point automorphism of X has a unique extension to an automor-
phism of X ; and

(ii) the point automorphism group of X and the automorphism group of
X are isomorphic.

Proof. A point automorphism has by definition an extension to an automor-
phism of X , so for (i) it suffices to prove that this extension is unique. Let ϕ
and ϕ′ be automorphisms of X such that ϕ|P(X ) = ϕ′|P(X ). Let B ∈ B(X )
be arbitrary. Since ϕ and ϕ′ are automorphisms, we have

(ϕ(p), ϕ(B)) ∈ I(X ) ⇔ (p, B) ∈ I(X ) ⇔ (ϕ′(p), ϕ′(B)) ∈ I(X )

for all p ∈ P(X ). Because no two distinct blocks of a simple incidence
structure are incident with the same set of points, we must have ϕ(B) =
ϕ′(B). Because B was arbitrary, ϕ = ϕ′.

To establish (ii) it suffices to check that the map that takes a point auto-
morphism to its unique extension is a group homomorphism. This is straight-
forward. �

Subsystems of Steiner triple systems

A subsystem of order w in an STS(v) is a subset of blocks that induces an
STS(w).

In Section 5.1 we shall require the following result on the possible orders
of a subsystem that an STS(v) can admit.

Theorem 2.13 [17, Lemma 6.1] If an STS(v) contains a subsystem of order
w, then either v ≥ 2w + 1 or v = w.

Proof. The claim is trivial when v = w, so suppose 0 < w < v. Let the points
of the subsystem be {s1, . . . , sw} and let the other points of the STS(v) be
{p1, . . . , pv−w}. Fix the point p1 and consider the blocks that are incident
with p1. Since no pair of the form {si, sj} occurs in these blocks, there exist
w blocks of the form {p1, si, pji

}. Since there are exactly v − w − 1 pairs of
the form {p1, pj}, we have v − w − 1 ≥ w. �
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Block graphs of Steiner triple systems

This section contains a number of results that relate the block graph of an
STS(v) to the underlying STS(v). These results will become relevant in
Section 4.4, where we use block graphs for performing isomorph rejection
on the STS(19) generated in the main search. All the results in this section
are well known in the sense that they are straightforward consequences of
more generic results and techniques due to Bose [7] and Bruck [9]. The
applicability of the results of Bose and Bruck to isomorphism testing of graphs
is noted already in [64]; see also [74] and the references therein.

It is well known that the block graph of an STS(v) has the structure of a
strongly regular graph. This can be either proven directly or as a consequence
of the following theorems of Bose [7].

Theorem 2.14 [7, Theorem 3.1] The dual of a partial geometry pg(k, r, t)
is a partial geometry pg(r, k, t).

Theorem 2.15 [7, Theorem 4.1] The point graph of a partial geometry
pg(k, r, t) is a strongly regular graph srg(n, d, λ, µ), where

n = k(1 + (r − 1)(k − 1)/t), d = r(k − 1),

λ = (k − 2) + (r − 1)(t− 1), µ = rt.
(3)

A strongly regular graph srg(n, d, λ, µ) that satisfies (3) for some positive
integers k, r, t is a pseudo-geometric graph (k, r, t).

Theorem 2.16 [7, Theorem 9.3] LetX be a pseudo-geometric graph (k, r, t)
and let

2k > r(r − 1) + t(r + 1)(r2 − 2r + 2).

Then, X is the point graph of a partial geometry pg(k, r, t).

It is straightforward to check that an STS(v) is equivalent to a partial ge-
ometry pg(3, r, 3), where r = (v − 1)/2. Thus, using the above theorems,
we obtain:

Theorem 2.17 The block graph of an STS(v) is a strongly regular graph
srg(v(v − 1)/6, 3(v − 3)/2, (v + 3)/2, 9). Conversely, a strongly regular
graph with these parameters is the block graph of an STS(v) for all admissible
v > 67.

The following lemma shows that cliques in the block graph of an STS(v)
have small order unless all the blocks in the clique share a common point.
Thus, the cliques of large order in the block graph can be identified with
the points of the underlying STS(v). This observation enables the proofs of
Theorems 2.19 and 2.20, which provide the required link between the block
graph and the underlying STS(v) for purposes of isomorph rejection.

Lemma 2.18 A family of pairwise intersecting blocks in an STS(v) such that
the blocks have no common point has size at most 7. If equality holds, the
blocks form a subsystem of order 7.
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Proof. Let S be a family of pairwise intersecting blocks in an STS(v) with
no common point. Let p be a point of the STS(v) incident with at least
one of the blocks in S. Suppose p is incident with exactly r blocks in S
and denote them by B1, . . . , Br. By the structure of an STS, the blocks
B1, . . . , Br with p removed are pairwise disjoint. Since S contains a block
which intersects B1, . . . , Br but is not incident with p, we must have r ≤ 3.
The number of blocks that intersect any fixed block B ∈ S is therefore at
most 3(3 − 1) = 6, so |S| ≤ 7. For |S| = 7 the blocks that intersect any
fixed block B ∈ S partition into three classes of two blocks each according
to the point of intersection. Since blocks from distinct classes must intersect
pairwise, a short case-by-case analysis shows that the only possibility is that
the blocks in S induce a sub-STS(7). �

Theorem 2.19 Let X be an STS(v), v ≥ 19, and let X be the block graph
of X . Then, Aut(X) is equal to the block automorphism group of X .

Proof. We show first that the block automorphism group of X is a subgroup
of Aut(X). Let ϕ ∈ Aut(X ) and denote the restriction of ϕ to B(X ) by ψ.
Let Bi, Bj ∈ V (X). By definition of a block graph, {Bi, Bj} ∈ E(X) if and
only if there exists a p ∈ P(X ) such that (p, Bi) ∈ I(X ) and (p, Bj) ∈ I(X ).
Since ϕ is an automorphism, the latter holds if and only if there exists a
q ∈ P(X ) such that (q, ϕ(Bi)) ∈ I(X ) and (q, ϕ(Bj)) ∈ I(X ), that is, if
and only if {ψ(Bi), ψ(Bj)} ∈ E(X). Thus, ψ ∈ Aut(X).

We must still show that an arbitrary ψ ∈ Aut(X) is a block automorphism
of X . Observe that with every edge {Bi, Bj} ∈ E(X) there is an associated
p ∈ P(X), namely the point with which both Bi and Bj are incident. Let
Y be a maximal clique in X . Either all edges of Y have the same point p
associated with them (in which case Y has order r = (v − 1)/2 ≥ 9) or at
least two distinct points are associated with edges of Y . In the latter case, Y
has order at most 7 by Lemma 2.18. Thus, the maximum cliques in X are
in a one-to-one correspondence with the points of X . Denote the maximum
clique of X associated with the point p by Yp. Since an automorphism ψ ∈
Aut(X) must permute the maximum cliques of X , we obtain a permutation
σ of P(X ) by requiring ψ(Yp) = Yσ(p) for all p ∈ P(X ).

Define a map ϕ of P(X ) ∪ B(X ) into itself by setting ϕ(p) = σ(p) for all
p ∈ P(X ) and ϕ(B) = ψ(B) for all B ∈ B(X ). Clearly, ϕ ∈ Sym(P(X )) +
Sym(B(X )). Now,

(p, B) ∈ I(X ) ⇔ B ∈ V (Yp) ⇔ ψ(B) ∈ V (Yσ(p)) ⇔ (ϕ(p), ϕ(B)) ∈ I(X )

for all p ∈ P(X ) and B ∈ B(X ), so ϕ ∈ Aut(X ). This shows that ψ is a
block automorphism of X . �

Theorem 2.20 Let X and Y be STS(v), v ≥ 19. Then, X and Y are iso-
morphic if and only if their block graphs are isomorphic. Moreover, X is
reconstructible up to isomorphism from its block graph.

Proof. Isomorphic STS(v) have isomorphic block graphs because an isomor-
phism of the STS(v) gives an isomorphism of the block graphs by restriction
to the block set. Let ψ be an isomorphism from the block graph of X onto
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the block graph of Y . For every p ∈ P(X ), denote by Yp the maximum
clique that corresponds to p in the block graph of X . Similarly, for every
p′ ∈ P(Y), denote by Y ′

p′ the corresponding maximum clique. Since ψ
must map maximum cliques onto maximum cliques, we obtain a bijection
ϕ : P(X ) → P(Y) by requiring Y ′

ϕ(p) = ψ(Yp) for all p ∈ P(X ). Now, ϕ
can be extended to an isomorphism from X onto Y by setting ϕ(B) = ψ(B)
for all B ∈ B(X ). The following chain of equivalences shows that ϕ is an
isomorphism:

(p, B) ∈ I(X ) ⇔ B ∈ V (Yp) ⇔ ψ(B) ∈ V (Y ′
ϕ(p)) ⇔ (ϕ(p), ϕ(B)) ∈ I(Y).

Reconstructibility is clear: label the maximum cliques in X with v points,
and set each block to be incident with the labels of the three maximum
cliques to which the block belongs. �

Theorem 2.19 is tight in the sense that the claim does not hold for v = 15
as the following example demonstrates.

Example 2.21 Let the point set of an STS(15) consist of the 15 edges in the
complete graph K6. Take as blocks all the sets of three edges that form either
a one-factor or a triangle [83, Problem 19A (i)].

The full automorphism group of the resulting STS(15) has order 20160;
the full automorphism group of the corresponding block graph has order
40320. (Both groups are straightforward to construct using, for example,
nauty [61] and techniques from Section 3.2.)

For v ≤ 15 it can be checked that Theorem 2.20 holds in the restricted
sense that two STS(v) are isomorphic if and only if their block graphs are
isomorphic. Reconstructing the STS from its block graph using maximum
cliques is not possible for small v; for example, the block graph of the STS(7)
is the complete graph K7.

Pasch configurations in Steiner triple systems

A configuration in an STS(v) is an incidence structure induced by a set of
blocks. One such example is the Pasch configuration from Example 2.1.

An STS(v) is anti-Pasch if it contains no Pasch configurations.

Theorem 2.22 [38] Anti-Pasch STS(v) exist for all v ≡ 1, 3 (mod 6) except
when v = 7 or v = 13.

Pasch configurations will play an important role in the isomorph rejection
scheme described in Section 4.4. This is because Pasch configurations are
the only configurations with four pairwise intersecting blocks whose number
may vary in an STS(v) in the following sense:

Theorem 2.23 Each block of an STS(v) occurs in exactly (v−3)(v2−12v+
99)/16 configurations of four pairwise intersecting blocks that are not Pasch
configurations.

Proof. Consider any set of four pairwise intersecting blocks in an STS(v). A
short case-by-case analysis shows that, unless the blocks form a Pasch config-
uration, there exists a unique point, x, that is incident with at least three of
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the blocks. Fix any block B of an STS(v). We count the sets of four blocks
of the above type in which B occurs by splitting the count into subcases as
follows.

Case A. The point x is incident with three blocks, including B. First,
there are three possibilities to choose an x incident with B. Second, there
are r−1 choices for a block B1 that contains x. Third, there are four choices
for a block B2 that is not incident with x and that intersects both B and B1.
The block B3 that is incident with x and that intersects B2 is unique. Since
the choices for B1 and B3 can be interchanged, the total number of sets of
four blocks that contain B in this subcase is 6(r − 1).

Case B. The point x is incident with three blocks, not including B. There
are v − 3 choices for x. The three other blocks are uniquely determined as
the blocks incident with both x and one of the three points incident with B.

Case C. The point x is incident with all four blocks. There are 3
(

r−1
3

)

sets of four blocks that contain B in which x is incident with all four blocks.
Namely, there are three ways to choose x and

(

r−1
3

)

ways to choose the other
3 blocks after x has been fixed.

Since evidently the subcases do not overlap, we have that B occurs in
exactly

6(r − 1) + (v − 3) + 3

(

r − 1

3

)

=
(v − 3)(v2 − 12v + 99)

16

sets of four blocks that intersect pairwise but do not form a Pasch configura-
tion. �

We remark that the above theorem can be obtained as a simple corollary
of the results in [37]. Configurations in STS(v) are surveyed in [17, Ch. 13].

2.3 Isomorph-free exhaustive generation

A substantial literature exists on the generation of combinatorial objects us-
ing computer search. Computational methods in design theory are surveyed
in [33, 73]. Algorithmic aspects of combinatorial designs are surveyed in
[18].

The exhaustive construction of certain combinatorial objects such as
STS(v), t-(v, k, λ) designs, and error-correcting codes seems to be a hard
problem in the sense that no efficient exhaustive construction algorithms
are known in the general case, although numerous direct and recursive con-
structions exist; see [17] for constructions of STS(v). For example, even the
existence of a 2-(22, 8, 4) design has not yet been settled, although the prob-
lem is in principle solvable by exhaustive search. A theoretical discussion
of notions of efficiency and algorithms for efficient exhaustive generation of
various combinatorial structures, such as graphs of fixed order, appears in
[34, 35].

While more efficient exhaustive generation methods are lacking, the prin-
cipal tool in algorithmic exhaustive generation is usually backtrack search
[36] in one form or another. In this report, we use a clever backtrack search
algorithm due to Knuth [52] in solving the exact cover problems associated
with the construction of STS(19).
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To make an exhaustive backtrack search practical, the consideration of
isomorphic partial solutions in the search must be avoided as much as possi-
ble. This is because the number of isomorphic partial solutions is typically
exponential in the size of the objects being generated. For example, asymp-
totically almost all isomorphism classes of STS(v) contain v! distinct STS(v)
[2].

The procedure of performing elimination of isomorphic solutions was
named isomorph rejection by Swift [81]. In its simplest form, isomorph
rejection involves testing the generated complete objects for isomorphism.
This alone is often a nontrivial issue when there are too many nonisomor-
phic objects to fit in the main memory of the computer used. To make a
search feasible in practice, isomorph rejection must usually be performed
also (i) prior to the search by a careful choice of starting points for the search;
and (ii) during the search by explicit isomorphism computations.

A number of generic techniques have been developed for performing iso-
morph rejection in exhaustive generation algorithms. These include [28, 49,
63, 69]. Perhaps the most widely applicable of the techniques is the one
introduced by McKay [63]; this is also the technique behind the isomorph
rejection scheme used by the STS(19) classification algorithm in Chapter 4.
For reasons of space we will not give a detailed description of the model in
[63], which uses a very abstract setting to cover as many application domains
as possible. A readable informal exposition of the techniques for isomorph
rejection, including McKay’s technique, is given in [8].

3 AUXILIARY ALGORITHMS

This chapter describes the auxiliary problems and their solution algorithms
that are used in the STS(19) classification algorithms described in Chapters
4 and 5.

The organization of this chapter is as follows. Section 3.1 gives a descrip-
tion of Algorithm DLX [52], which we use to solve instances of the exact
cover problem associated with the construction of STS(19). Section 3.2
briefly discusses the isomorphism problem for graphs and STS(v). We also
give a black-box description of the graph canonical labelling package nauty
[60, 61], which we use to compute automorphism groups and canonical la-
belling for block graphs and incidence structures. Section 3.3 gives pointers
to permutation group algorithms, which are required in preprocessing stages
of the classification algorithms.

3.1 Exact cover

The exact cover problem is to determine, given a collection F1, . . . , Fm of
subsets of a finite set E as input, whether there exists a subcollection that par-
titions E. In the search version of the problem we are also asked to produce
one such subcollection (or all of them) whenever these exist.

The exact cover problem is NP-complete [31], and hence generally con-
sidered intractable in the sense that no algorithm whose running time is
bounded by a polynomial in the length of the input instance (e.g., a poly-
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nomial in m · |E|) is likely to exist.

Algorithm DLX

We employ Algorithm DLX [52] in solving the exact cover problem. Algo-
rithm DLX is essentially the straightforward backtrack search that attempts
to cover the elements of E one at a time by using the available subsets
F1, . . . , Fm. The tricks that make the algorithm run fast are (i) a heuristic that
minimizes the branching factor at each level of the search; and (ii) clever use
of doubly linked circular lists which enables fast backtracking.

In describing the algorithm it is convenient to view an exact cover problem
instanceE, F1, . . . , Fm as am×|E|matrixA with entries in {0, 1}. Each row
of the matrix corresponds to one subset Fi, and each column of the matrix
corresponds to an element of E. The entry at row i, column j of the matrix
is 1 if j ∈ Fi; otherwise the entry is 0. A solution to the problem instance
is now a collection of rows of A such that every column is covered exactly
once, that is, for every column there exists a unique row in the collection
with a 1 in that column.

Example 3.1 Let E = {e1, . . . , e7} and

F1 = {e3, e5, e6}, F2 = {e1, e4, e7}, F3 = {e2, e3, e6},

F4 = {e1, e4}, F5 = {e2, e7}, F6 = {e4, e5, e7}

be an instance of the exact cover problem. The matrix A that corresponds to
this instance is

A =

















0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

















.

(An exact cover is given by the subsets F1, F4, F5.)

The global data structure manipulated by Algorithm DLX consists of mul-
tiple circular doubly linked lists. Each 1 in the matrix A corresponds to
a list entry x with five fields L[x], R[x], U [x], D[x], C[x]. Rows of the
matrix are doubly linked as circular lists via the L and R fields (“left” and
“right”); columns are doubly linked as circular lists via the U and D fields
(“up” and “down”). Each column list includes a special entry called the col-
umn header. The C field of each list entry points to the column header of
the column in which the entry lies. A column header contains an additional
field, S[x] (“size”), which is used to keep track of the number of rows linked
to the column list.

The uncovered columns are linked to a circular list via the L and R of
their column headers. The column header list also contains a special entry,
the root, h, which is used to access the column header list.

Example 3.2 The global data structure for Algorithm DLX initialized with
the instance of Example 3.1 is depicted below.
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h e2 e3 e4 e5 e6 e7e1

F1

F2

F4

F5

F6

F3

2 2 2 3 2 2 3

The arrows represent theR,U, L,D links in the list entries depicted by boxes.
The column headers appear on the topmost row.

Algorithm 1 gives a pseudocode description of Algorithm DLX. Algorithm
2 contains pseudocode for the operations of covering and uncovering a col-
umn.

The covering and uncovering operations contain the two tricks in the al-
gorithm. Consider the first line of procedure cover in Algorithm 2. The
operations

L[R[c]]← L[c], R[L[c]]← R[c]

clearly remove the column header c from the uncovered column list. The
elegant observation for backtracking is that the operations

L[R[c]]← c, R[L[c]]← c

suffice to insert c back to the list. Thus, it suffices only to keep track of
the elements deleted from a list to enable their insertion back to the list. This
eliminates essentially all of the bookkeeping usually required by backtracking
since all information required to “rewind” the global data structure back to
the earlier state is present on the L,R, U,D fields of the deleted list entries.

The second trick is the minimum branching degree heuristic. At each
level of the search, a column with the minimum number of linked rows is
selected for covering. Compared with a similar algorithm with no heuristic
(that is, the next uncovered column in some fixed order is always selected),
the minimum branching degree heuristic typically reduces the total number
of search tree nodes by a factor that is exponential in the number of levels in
the tree [52].
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Algorithm 1 Algorithm DLX [52].

procedure search (k : integer)
If R[h] = h, report the current solution Q1, . . . , Qk−1 and return.
Otherwise choose an uncovered column c with S[c] minimum.
Cover column c.
For each r ← D[c], D[D[c]], . . . , while r 6= c,

Set Qk ← r;
For each j ← R[r], R[R[r]], . . . , while j 6= r,

Cover column C[j];
search (k + 1);
For each j ← L[r], L[L[r]], . . . , while j 6= r,

Uncover column C[j].
Uncover column c and return.

initial invocation
search (1).

Algorithm 2 Covering and uncovering a column [52].

procedure cover(c : column header)
Set L[R[c]]← L[c] and R[L[c]]← R[c].
For each i← D[c], D[D[c]], . . . , while i 6= c,

For each j ← R[i], R[R[i]], . . . , while j 6= i,
Set U [D[j]]← U [j] and D[U [j]]← D[j];
Set S[C[j]]← S[C[j]]− 1.

procedure uncover(c : column header)
For each i← U [c], U [U [c]], . . . , while i 6= c,

For each j ← L[i], L[L[i]], . . . , while j 6= i,
Set S[C[j]]← S[C[j]] + 1;
Set U [D[j]]← j and D[U [j]]← j.

Set L[R[c]]← c and R[L[c]]← c.
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3.2 Graph isomorphism

The graph isomorphism problem is to determine, given two graphs X, Y as
input, whether they are isomorphic. In the search version of the problem we
are also asked to produce an isomorphism from X to Y whenever the graphs
are isomorphic.

The graph isomorphism problem is of fundamental importance in combi-
natorial computation since the isomorphism problem of most combinatorial
structures can be reduced to testing isomorphism of two graphs derived from
these structures. Indeed, it often is the case that the isomorphism problem
for a class of combinatorial objects is equivalent to the graph isomorphism
problem in the sense that polynomial time computable reductions exist in
both directions [6].

The computational complexity of the graph isomorphism problem has at-
tracted a vast amount of research (see for example [41, 53, 70] and the refer-
ences therein). It is currently believed that the graph isomorphism problem
is neither NP-complete nor admits a polynomial time algorithm, although
polynomial time isomorphism algorithms exist for many families of graphs.

The computational complexity of the STS(v) isomorphism problem in
relation to the graph isomorphism problem is unresolved [17]. It is clear that
the isomorphism problem for STS(v) is reducible to testing the incidence
graphs of the STS(v) for isomorphism, but it is unknown whether graph iso-
morphism can be reduced to testing two STS(v) for isomorphism. It is known
that testing isomorphism of 2-(v, 3, λ) designs is polynomial time equivalent
to graph isomorphism [19]. On the other hand, an isomorphism algorithm
operating in subexponential O(vlog v+f(k,λ)) time exists for STS(v) [64] and
2-(v, k, λ) designs with k, λ bounded [3]. For STS(v) with no subsystem, an
O(v5) algorithm exists [77].

A problem related to the graph isomorphism problem is the graph auto-
morphism (generator) problem, which, given a graph X as input, asks for a
set of generators for the full automorphism group Aut(X).

The graph isomorphism and automorphism problems are equivalent in
hardness in the sense that a polynomial time algorithm for one exists if and
only if the other has a polynomial time algorithm [58].

Canonical representatives and canonical labelling

Most general-purpose graph isomorphism algorithms are based on the idea of
computing a code [70] (or certificate [56, 65]) for each input graph such that
two graphs are isomorphic if and only if they have the same code. In practice,
this certificate is a graph that is isomorphic to the input graph [54, 61]. Such
algorithms that determine the canonical representative of a family of isomor-
phic graphs are useful also for other purposes besides testing isomorphism, as
we shall see later in Section 4.4.

An algorithm for computing the canonical representative of a graph takes
as input a graph X and outputs a graph C, isomorphic to X , such that the
same graph C is output no matter which graph from the isomorphism equiv-
alence class of C is input to the algorithm; the graph C is the canonical
representative of its isomorphism equivalence class. An isomorphism of X
onto C is a canonical labelling of X .
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In practice, we shall be more interested in obtaining a canonical labelling
for the input graph X than the actual canonical representative. For future
convenience we shall adopt a more fixed setting, which will be given in the
following definitions.

We work over a fixed finite nonempty vertex set V . A permutation ϕ ∈
Sym(V ) acts on a graph X on V in the obvious way, that is, ϕ(X) is the
graph with V (ϕ(X)) = V and edge set defined by

{v, w} ∈ E(X) ⇔ {ϕ(v), ϕ(w)} ∈ E(ϕ(X)).

Let G(V ) be a set of graphs on V such that for all ϕ ∈ Sym(V ) and
X ∈ G(V ), we have ϕ(X) ∈ G(V ). In other words, G(V ) is a set of graphs
closed under permutation of the vertex set V .

We say that a function κ : G(V ) → Sym(V ) is a canonical labelling map
for G(V ) if, for all X ∈ G(V ) and ϕ ∈ Sym(V ), we have

κX(X) = κϕ(X)(ϕ(X)). (4)

In other words, κ assigns to every graph X ∈ G(V ) a canonical labelling
κX ∈ Sym(V ), which takes X to the canonical representative κX(X).

Canonical labelling of graphs with nauty
The nauty package by Brendan McKay [61] computes for an arbitrary graph
a canonical labelling and generators for the full automorphism group. The
mathematical basis of the algorithm is described in [60].

For our purposes it is almost sufficient to regard nauty as a black box that
for a given input graph X simply outputs a canonical labelling κX and gen-
erators for Aut(X). To get good performance from nauty in the canonical
labelling of block graphs of STS(v), and to enable the derivation of a canoni-
cal labelling map for incidence structures, we will require a slightly expanded
view.

Some further preliminary definitions are necessary. We continue to work
over a fixed finite set of vertices V and a set of graphs G(V ), closed under
permutations of V . Fix an arbitrary total order on V and label the elements
of V as v1, v2, . . . , v|V | so that vi < vj holds if and only if i < j. For each
ordered partition π = (V1, . . . , Vm) ∈ Π(V ), let c(π) = (W1, . . . ,Wm),
where

W1 = {v1, . . . , v|V1|},
W2 = {v|V1|+1, . . . , v|V1|+|V2|},

...
Wm = {v|V |−|Vm|+1, . . . , v|V |}.

A permutation ϕ ∈ Sym(V ) acts on an ordered partition π = (V1, . . . , Vm) ∈
Π(V ) so that

ϕ(π) = (ϕ(V1), . . . , ϕ(Vm)).

In particular, for all ϕ ∈ Sym(V ) and π ∈ Π(V ), c(π) = c(ϕ(π)).
The canonical labelling map computed by nauty can now be described

as follows. A function κ : G(V )× Π(V )→ Sym(V ) is a canonical labelling
map with initial partition constraint if for all X ∈ G(V ), ϕ ∈ Sym(V ), and
π ∈ Π(V ), we have

κX,π(X) = κϕ(X),ϕ(π)(ϕ(X)) and κX,π(π) = c(π). (5)
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The group of automorphisms computed by nauty is analogously constrained
by the initial partition π ∈ Π(V ). For a graph X ∈ G(V ) and an initial parti-
tion π ∈ Π(V ), the group of automorphisms computed by nauty is

Autπ(X) = {α ∈ Aut(X) : α(π) = π}. (6)

Clearly, (5) reduces to (4), and (6) reduces to the full automorphism group
of X if we take π to be the unit partition. The following theorem shows that
a similar situation arises if we produce the initial partition using a vertex
invariant. A function ι : G(V ) → Π(V ) is a vertex invariant for G(V ) if, for
all X ∈ G(V ) and ϕ ∈ Sym(V ),

ι(ϕ(X)) = ϕ(ι(X)). (7)

Theorem 3.3 Let κ : G(V ) → Sym(V ) be a canonical labelling map with
initial partition constraint and let ι : G(V ) → Π(V ) be a vertex invariant
for G(V ). Then, the map κ̂ : X 7→ κX,ι(X) is a canonical labelling map for
G(V ). Moreover, Autι(X)(X) = Aut(X) for all X ∈ G(V ).

Proof. Let X ∈ G(V ) and ϕ ∈ Sym(V ). By (5) and (7), we have

κ̂X(X) = κX,ι(X)(X) = κϕ(X),ϕ(ι(X))(ϕ(X))

= κϕ(X),ι(ϕ(X))(ϕ(X)) = κ̂ϕ(X)(ϕ(X)).

Thus, (4) holds for κ̂. Since for any α ∈ Aut(X) we have α(X) = X , it must
be that ι(X) = ι(α(X)) = α(ι(X)). Thus, Autι(X)(X) = Aut(X). �

Canonical labelling of incidence structures
In addition to graphs, we shall also perform isomorph rejection on incidence
structures. For this purpose we require the analogous concepts of a canonical
representative and canonical labelling for incidence structures.

We work over a fixed nonempty set of points P and a fixed nonempty set
of blocks B (disjoint from P). Let S(P,B) be a set of incidence structures on
P,B. We assume that S(P,B) is closed under permutation of the points P
and the blocks B, where a permutation ϕ ∈ Sym(P) + Sym(B) acts on an
incidence structure X ∈ S(P,B) so that ϕ(X ) ∈ S(P,B) is the incidence
structure defined by

(ϕ(p), ϕ(B)) ∈ I(ϕ(X )) ⇔ (p, B) ∈ I(X ) (8)

for all p ∈ P and B ∈ B.
A function  : S(P,B)→ Sym(P)+Sym(B) is a canonical labelling map

for S(P,B) if, for all X ∈ S(P,B) and ϕ ∈ Sym(P) + Sym(B) we have

X (X ) = ϕ(X )(ϕ(X )). (9)

We now construct a canonical labelling map for S(P,B) from a canonical
labelling map for graphs. This is a well-known construction, see, for example,
[33].

Let κ be a canonical labelling map with initial partition constraint for the
set of all graphs on P ∪ B. We assume that the set P ∪ B is ordered so that
p < B holds for all p ∈ P and B ∈ B. Let X ∈ S(P,B) and let IX be
the incidence graph of X . The incidence graph IX and κ can be used to
canonically label an incidence structure X as follows:
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Theorem 3.4 The map  : X 7→ κIX ,(P ,B) is a canonical labelling map for
S(P,B). Moreover, Aut(X ) = Aut(P ,B)(IX ).

Proof. Let X ∈ S(P,B) and let ϕ ∈ Sym(P) + Sym(B). Observe that
κIX ,(P ,B) ∈ Sym(P) + Sym(B) by (5) and the assumed ordering of P ∪ B.
Now, for all p ∈ P and B ∈ B,

(p, B) ∈ I(X (X )) ⇔ (−1
X (p), −1

X (B)) ∈ I(X )

⇔ {κ−1
IX ,(P ,B)(p), κ

−1
IX ,(P ,B)(B)} ∈ E(IX )

⇔ {κ−1
ϕ(IX ),(P ,B)(p), κ

−1
ϕ(IX ),(P ,B)(B)} ∈ E(ϕ(IX ))

⇔ (−1
ϕ(X )(p), 

−1
ϕ(X )(B)) ∈ I(ϕ(X ))

⇔ (p, B) ∈ I(ϕ(X )(ϕ(X ))).

The first and last equivalence follow from (8); the second and fourth equiv-
alence are a consequence of (2); the third equivalence is implied by (5) and
ϕ(P) = P , ϕ(B) = B.

A permutation α ∈ Sym(P ∪ B) is an automorphism of X if and only if
α(P) = P ; α(B) = B; and for all p ∈ P and B ∈ B,

(p, B) ∈ I(X ) ⇔ (α(p), α(B)) ∈ I(X ).

By (2) an equivalent definition is to require α ∈ Aut(IX ), α(P) = P , and
α(B) = B. Thus, Aut(X ) = Aut(P ,B)(IX ). �

3.3 Algorithms for permutation groups

Several algorithms in this report require computation with permutation
groups. For example, the isomorph rejection strategy in Section 4.4 requires
the construction of the point automorphism group of an incidence structure
from a set of generators output by nauty. Also, the algorithm in Section 5.2
requires the construction of orbits of a group.

For reasons of space we omit the detailed description of these auxiliary
algorithms from this report because they are neither performance-critical nor
central to the main subject matter.

A comprehensive introduction to computation with permutation groups,
which is more than adequate for the applications required in this report, is
given in [11]. More advanced material appears in [29, 30, 44]. Computa-
tional complexity aspects of permutation groups are studied in [41, 57].

4 CONSTRUCTING THE STS(19)

This chapter describes the classification algorithm for the STS(19) and the
organization of the computer search which resulted in the classification. The
results of the classification appear in Chapter 6.

We divide the construction process for the STS(19) into two stages. In the
first stage, we classify the seeds for the main search. This preliminary stage is
described in Section 4.3. In the second stage, we compute for each seed the
extensions of the seed into an STS(19) with the help of Algorithm DLX. This
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stage of the classification is executed in parallel on a network of workstations.
Whenever an STS(19) is discovered, we perform isomorph rejection on it
using nauty. The isomorph rejection phase is described in Section 4.4. If
the isomorph rejection step accepts the STS(19) as the representative of its
isomorphism equivalence class, then we record some of its properties such as
the full automorphism group order and the number of Pasch configurations.
The organization of the search is briefly discussed in Section 4.5.

4.1 Conventions and assumptions

Before we describe the structure of the algorithm in more detail, let us fix
some conventions. Throughout this chapter we will regard the STS(19) as
incidence structures constructed using a fixed point setP = {p1, p2, . . . , p19}
and a fixed block set B = {B1, B2, . . . , B57}. (Recall from Section 2.2 that
an STS(19) has b = 57 blocks and that every point is incident with exactly
r = 9 blocks.) We allow the point and block sets of an incidence structure to
be proper subsets of P and B.

We assume that P is totally ordered so that pi < pj if and only if i < j.
This order on P induces a lexicographic order on the set of all nonempty
subsets of P and, recursively, on the set of all subsets of nonempty subsets of
P .

We let a permutation ϕ ∈ Sym(P) + Sym(B) act on an incidence struc-
ture X with P(X ) ⊆ P and B(X ) ⊆ B so that P(ϕ(X )) = ϕ(P(X )),
B(ϕ(X )) = ϕ(B(X )), and

(p, B) ∈ I(X ) ⇔ (ϕ(p), ϕ(B)) ∈ I(ϕ(X ))

for all p ∈ P and B ∈ B.
The orbits of Sym(P) + Sym(B) on the set of incidence structures over

P,B (and their subsets) clearly correspond to the isomorphism equivalence
classes of such incidence structures.

4.2 Seeds and the top-level algorithm

For lack of a better name, a seed is an incidence structure S with P(S) = P
and B(S) ⊂ B, |B(S)| = 25, that satisfies the following three properties:

(i) Every block is incident with exactly three points.

(ii) Every pair of distinct points is incident with at most one block.

(iii) There exists a block that is incident with exactly one point from every
other block.

Every STS(19) contains 57 substructures that are seeds. Namely, a seed
is formed by fixing an arbitrary block Bi of an STS(19) and taking the inci-
dence structure induced by Bi and the blocks that intersect Bi. We say that
this incidence structure is the seed induced by the block Bi.

To see that the induced incidence structure is a seed, observe that each
of the three points incident with Bi is incident with 8 other blocks. These
three sets of 8 blocks each must be pairwise disjoint since each pair of distinct
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points is incident with exactly one block. Thus, we obtain a set of 25 blocks,
which clearly satisfy (i)–(iii).

A seed may alternatively be regarded as a set of three disjoint one-factors
of the complete graph K16. Namely, the block in (iii) is easily seen to be
unique: two blocks that intersect in p can intersect at most 4 common blocks
that do not contain p. Thus, the remaining 24 blocks partition into 3 sets
of 8 blocks each based on the point shared with the block in (iii). Each set
of blocks constitutes a one-factor of K16 if we remove the common point
from all the blocks. The three resulting one-factors are disjoint by (ii). The
converse of this construction is straightforward.

Example 4.1 An example of a seed.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19

B1 • • •
B2 • • •
B3 • • •
B4 • • •
B5 • • •
B6 • • •
B7 • • •
B8 • • •
B9 • • •
B10 • • •
B11 • • •
B12 • • •
B13 • • •
B14 • • •
B15 • • •
B16 • • •
B17 • • •
B18 • • •
B19 • • •
B20 • • •
B21 • • •
B22 • • •
B23 • • •
B24 • • •
B25 • • •

Up to isomorphism there are 14,648 seeds; these were classified using the
algorithm described in the next section. To classify the STS(19), we run the
main search algorithm (Algorithm 3) for each of the 14,648 nonisomorphic
seeds.
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Example 4.2 The three disjoint one-factors of K16 that correspond to the
seed in Example 4.1 are depicted below.

p10 p11

p18 p19

p7

p15p14

p6

p12 p13 p16 p17

p9p8p5p4

Algorithm 3 Top-level search algorithm.

procedure extseed (S : incidence structure)
Initialize Algorithm DLX based on the seed S.
Run Algorithm DLX.
For each solution Q1, . . . , Q32 reported by Algorithm DLX,

Construct from S and Q1, . . . , Q32 an STS(19), X ;
Perform isomorph rejection on X and S;
If X is not rejected, report X as a solution.

The main search algorithm uses Algorithm DLX in the following way to
create (up to labelling of the blocks) all STS(19) that contain the seed S
as a substructure. Recall that in an STS(19) every pair of distinct points is
incident with exactly one block. An STS(19) is therefore a solution to the
problem of covering the

(

19
2

)

= 171 unordered pairs of points with 57 triples
from the set of all

(

19
3

)

= 969 triples. Thus, to create the extensions of S with
Algorithm DLX, we determine from S the 171 − 25 · 3 = 96 pairs that still
need to be covered; these become the columns to be covered by Algorithm
DLX. Similarly, each triple that does not intersect a block of S in more than
one point defines a row. Each row covers precisely the

(

3
2

)

= 3 columns
(pairs of points) that occur in the corresponding triple.

To produce an STS(19) from a seed S and a completion Q1, . . . , Q32

reported by Algorithm DLX, we must label the 57 triples in the solution
with B1, . . . , B57. In practice, we can pick almost an arbitrary labelling; the
only requirement that we place on the labelling is that block B1 induces the
seed S. We state this requirement explicitly since it is needed in subsequent
correctness proofs.

Requirement L. For each STS(19), X , generated by the main search
algorithm as an extension of a seed S, we require that the block B1 in X
induces the seed S.
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Since 57 seeds occur in every STS(19), our algorithm gives us a complete
classification of the STS(19) in the sense that Algorithm DLX generates at
least one representative from every isomorphism class of STS(19). The iso-
morph rejection part of the algorithm then takes care that exactly one repre-
sentative from every isomorphism class is output.

4.3 Generation of seeds

In this section we describe the algorithm that was used to generate the 14,648
nonisomorphic seeds for the main search.

In principle, any suitable algorithm can be used for generating the seeds
since the seed classification requires only a minute fraction of the total CPU
time required for the classification. The approach described in this section
was chosen because it is straightforward to describe and implement. More-
over, the correctness of the algorithm is obvious.

Recall from Section 4.2 that a seed corresponds up to isomorphism to
three disjoint one-factors of K16. Now, the union of any two disjoint one-
factors in a graph is a collection of cycles of even length. Thus, up to iso-
morphism the disjoint pairs of one-factors in K16 are characterized by the
partitions of 16 into even parts, each of which is at least 4. We obtain 7
isomorphism classes:

16, 12 + 4, 10 + 6, 8 + 8, 8 + 4 + 4, 6 + 6 + 4, 4 + 4 + 4 + 4.

For example, the one-factors induced by any two of the points p1, p2, p3 in
Example 4.1 correspond to the case 4+4+4+4. This can be easily observed
by looking at any pair of one-factors in the corresponding figure in Example
4.2.

It remains to extend the 7 isomorphism classes in all possible ways by a
disjoint one-factor and reject isomorphs. Even a brute-force search through
all possible one-factors suffices here because K16 has only 15 · 13 · 9 · 7 ·
5 · 3 = 2,027,025 distinct one-factors. In practice, the number is smaller
because 16 of the 120 possible edges cannot be used since they occur in the
two fixed one-factors. A generation algorithm for the distinct one-factors of
K16 is straightforward to implement. (See [56] for examples of generation
algorithms for elementary combinatorial structures.)

We perform isomorph rejection using a hash table that stores the canoni-
cal representative seed from each isomorphism class encountered. First, we
transform a setF = {F1, F2, F3} of disjoint one-factors ofK16 on {p4, . . . , p19}
into a seed whose blocks are

{{p1, p2, p3}} ∪
3

⋃

i=1

{{pi} ∪ e : e ∈ Fi}.

Then, we compute the canonical representative of the seed with the help of
nauty and the canonical labelling map  from Section 3.2. If the canonical
representative does not occur in the hash table, we accept the seed as the
representative of its isomorhism class; otherwise we reject it.

In this way 14,648 nonisomorphic seeds were obtained in a little over one
hour of CPU time on a Linux workstation with a 450-MHz Pentium II CPU,

4 CONSTRUCTING THE STS(19) 27



which is perfectly adequate compared with the time required by the main
search.

We verified that the seed classification is correct using two independent
algorithms, which we will not describe in significant detail here for reasons
of space. The second algorithm generates the seeds block by block using
backtrack search with an isomorph rejection step after each added block.
The third algorithm utilizes a correspondence between one-factorizations of
K16 and certain error-correcting codes. Each coordinate in these codes cor-
responds to a one-factor. By stopping the coordinatewise code generation
algorithm in [46, Ch. 5] after three generated coordinates, we obtain a clas-
sification of the seeds in less than three minutes of CPU time at the cost of a
significantly more complex algorithm.

4.4 Isomorph rejection

The most involved part of the STS(19) classification algorithm is the elimi-
nation of isomorphic STS(19) output by the main search algorithm. There
are three major issues that need to be addressed.

First, the main search on different seeds must be conducted in parallel
because of the considerable resource requirements. This presents a diffi-
culty since the parallel runs should preferably be independent of each other,
whereby no comparisons between isomorphism class representatives encoun-
tered in distinct runs are allowed. Second, the search is to be conducted in
part on computers that do not have enough main memory to store the mil-
lions of isomorphism class representatives potentially encountered as exten-
sions of a single seed. Third, isomorphism testing must be fast, since there
are, as we now know, in the order of 7.1 · 1011 STS(19) that must be tested
for isomorphism.

Luckily enough, essentially all of the above difficulties are solved by a re-
cent algorithm framework for isomorph-free exhaustive generation [63]. For
reasons of speed, we shall work with block graphs of STS(19). By Theo-
rems 2.19 and 2.20, this is essentially equivalent to working with the STS(19)
themselves. Our basic isomorph rejection strategy is to use nauty to compute
a canonical representative for the block graph of a generated STS(19), fol-
lowed by a hash table query to test whether the canonical representative was
encountered earlier in the search.

We can parallelize the search on different seeds by performing a test that
assigns a unique parent seed for each isomorphism class of STS(19). This
test is described in Section 4.4.

As mentioned above, the basic strategy of storing the isomorphism class
representatives in a hash table will not suffice since there exist seeds for which
the number of representatives to be stored is in the range of millions. For
such seeds we perform an additional test, which together with the parent test
suffices for complete isomorph rejection and does not require the storage of
isomorphism class representatives. This test is described in Section 4.4.

In Section 4.4 we describe the implementation tricks that we used to make
the tests fast enough. Of central importance is a vertex invariant based on
Pasch configurations that speeds up the operation of nauty on block graphs
and enables fast rejection of STS(19) in the parent test.
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Parallelization
To enable parallelization, we must guarantee that algorithm runs performed
on different seeds do not output isomorphic STS(19). This can be accom-
plished by using the canonical labelling and the automorphism group of the
block graph output by nauty to test that the STS(19) originates from the cor-
rect parent seed. The following test is motivated by the general theory in
[63].

The intuition behind the test is as follows. Recall that every STS(19) con-
tains 57 seeds. Now, for each isomorphism class of STS(19), we have to fix
(up to isomorphism) one of these seeds as the parent seed. This can be done
using a canonical labelling map. Namely, since the canonical representative
is unique for every isomorhism class, we can set (say) the seed induced by
block B1 in the canonical representative to be the parent seed. The test now
checks whether there exists an isomorphism from the canonical representa-
tive to the generated STS(19) that maps the parent seed in the canonical
representative to the seed from which the STS(19) was generated. In prac-
tice, the test is a bit more involved because we use block graphs in place of
the STS. Furthermore, the test does not guarantee complete isomorph rejec-
tion in the sense that isomorphic STS may still pass through the test if they
have the same parent. This incompleteness will be corrected with a second
test, which is described in the next section.

The parent test is as follows. Let X be an STS(19) and let X be the block
graph ofX . Furthermore, let κ be a canonical labelling map for block graphs
of STS(19).

The parent test. Under the assumptions above, we say that X passes the
parent test relative to seed S if the seed induced by block B1 in X is isomor-
phic to S and

B1 ∈ {α(κ−1
X (B1)) : α ∈ Aut(X)}. (10)

Otherwise we say that X is rejected in the parent test relative to S.
We must now make the intuition rigorous and prove that the parent test

behaves as intended. This amounts to checking the following items:

(i) For every isomorphism class of STS(19), at least one representative
generated by the main search algorithm will pass the parent test relative
to some seed.

(ii) Whenever two isomorphic STS(19) pass the parent test relative to some
seeds, the seeds must be isomorphic.

Theorem 4.3 Let X , X ′ be two isomorphic STS(19) such that X passes the
parent test relative to a seed S and X ′ passes the parent test relative to a seed
S ′. Then, S and S ′ are isomorphic.

Proof. LetX and X ′ be block graphs ofX and X ′, respectively. By (10) there
exist α ∈ Aut(X) and β ∈ Aut(X ′) such that

α(κ−1
X (B1)) = B1 = β(κ−1

X′ (B1)). (11)

Because X and X ′ are isomorphic, the block graphs X and X ′ are isomor-
phic. Thus, κX(X) = κX′(X ′), that is, κ−1

X′κX is an isomorphism of X onto
X ′. Moreover, since α and β are automorphisms, ϕ = βκ−1

X′κXα
−1 is an
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isomorphism of X onto X ′ that satisfies ϕ(B1) = B1 by (11). By Theorem
2.19, ϕ extends to an isomorphism of X onto X ′. Since S and S ′ are the
seeds induced by block B1 in X and X ′, respectively, the extended ϕ gives
an isomorphism of S onto S ′. This is because an isomorphism must map
blocks that intersect onto blocks that intersect; the seed induced by a block
B consists of precisely the blocks that intersect B. �

Theorem 4.4 For every isomorphism class of STS(19), at least one represen-
tative generated by the main search algorithm will pass the parent test relative
to some seed.

Proof. Let X be an arbitrary STS(19) and let X be its block graph. Put
Bp = κ−1

X (B1). Let S be the seed induced by block Bp in X . Now, S is
isomorphic to exactly one seed, S ′, considered in the main search.

Let ϕ be an isomorphism of S onto S ′. Extend ϕ to a permutation of
P ∪ B in an arbitrary way and put X ′ = ϕ(X ). Since X ′ contains S ′ as
a substructure, at least one of the possible X ′ is output by the main search
algorithm when it is initialized with the seed S ′. Requirement L for the main
search algorithm (recall Section 4.2) implies that block B1 in X ′ induces
the seed S ′. Since ϕ maps S to S ′, we must have ϕ(Bp) = B1 because
the block that intersects all the other blocks in a seed is unique. Let X ′

be the block graph of X ′. Clearly, X ′ = ϕ|B(X). Since X and X ′ are
isomorphic, κ−1

X κX′ is an isomorphism of X ′ onto X . Consequently, α =
ϕ|Bκ

−1
X κX′ ∈ Aut(X ′). Thus, X ′ will pass the parent test relative to S ′ since

ακ−1
X′ (B1) = ϕ|Bκ

−1
X (B1) = ϕ|B(Bp) = B1. �

Elimination of hash table queries

To eliminate the need to store isomorphism class representatives in a hash
table, we employ an additional test, based on automorphisms of a seed. This
test is also motivated by the general theory in [63].

The intuition behind the second test is in the following observation.

Theorem 4.5 Let S be a seed and let X ,X ′ be STS(19) for which S is the
seed induced by the block B1. If X and X ′ are isomorphic and both pass the
parent test relative to S, then there exists an isomorphism of X onto X ′ that
can be restricted to an automorphism of S.

Proof. Let X and X ′ be the block graphs of X and X ′. Exactly as in the
proof of Theorem 4.3, we obtain an isomorhism ϕ from X to X ′ such that
ϕ(B1) = B1. By Theorem 2.19, ϕ has an extension to an isomorphism from
X to X ′. Because ϕ(B1) = B1, ϕ must map S to S. �

Thus, the automorphisms of S can be employed to select exactly one rep-
resentative for each isomorphism class of STS(19) among those STS(19) in
the class that pass the parent test relative to S. In practice, we shall select the
lexicographic minimum element from every orbit of the seed automorphism
group.

There is one technicality that we have to resolve before we proceed to
describe the second test. Namely, in Section 4.1 we chose to treat the blocks
as labelled. For purposes of the present test, we have to treat the blocks as
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unlabelled. Formally, for every STS(19), X , we put

u(X ) = {{p ∈ P(X ) : (p, B) ∈ I(X )} : B ∈ B(X )}.

In other words, u(X ) is the block unlabelled version of X .
We now describe the second test. Let S be a seed and letX be an STS(19)

such that the seed induced by the block B1 is S. An automorphism ϕ ∈
Aut(S) acts on u(X ) by permutation of the points, that is, for all triples
{pi, pj, pk} ⊆ P ,

{pi, pj, pk} ∈ u(X ) ⇔ {ϕ(pi), ϕ(pj), ϕ(pk)} ∈ ϕ(u(X )).

The automorphism test. Under the assumptions above, we say that X
passes the automorphism test if

∀ϕ ∈ Aut(S) u(X ) ≤ ϕ(u(X )), (12)

where ≤ is the lexicographic order induced by the order on P . Otherwise,
we say that X is rejected in the automorphism test.

Note that all generated STS(19) pass the automorphism test trivially when
the full automorphism group of the seed is trivial. This is very convenient
because most seeds have a trivial full automorphism group; see Table 1 in
the next section.

Checking the correctness of the automorphism test amounts to verifying
the following items:

(i) If X and X ′ are distinct isomorphic STS(19) generated from a seed S
such that both X and X ′ pass the parent test relative to S, then either
X or X ′ is rejected in the automorphism test; and

(ii) For every isomorphism class of STS(19), at least one representative
generated by the main search algorithm will pass the parent test and
the automorphism test.

Item (i) is proven by Theorem 4.5 provided that we have u(X ) 6= u(X ′)
whenever X and X ′ are distinct STS output by Algorithm DLX. This as-
sumption clearly holds for the main search algorithm as described in Section
4.2.

To see that Item (i) holds, suppose that X and X ′ are distinct isomorphic
STS(19) that both pass the parent test relative to S. Then, by Theorem 4.5
there exists a ϕ ∈ Aut(S) such that ϕ(u(X )) = u(X ′). Since X and X ′ are
distinct, we have either u(X ) < u(X ′) or u(X ) > u(X ′). Thus, either X or
X ′ is rejected in the automorphism test.

For Item (ii) it suffices to prove the following claim.

Theorem 4.6 Let S be a seed and let X be an STS(19) for which the seed
induced by the block B1 is S. Let ϕ be an arbitrary extension of an auto-
morphism of S into a permutation of P ∪ B. Then, X passes the parent test
relative to S if and only if ϕ(X ) passes the parent test relative to S.

Proof. It suffices to prove the “only if” direction. Let X be the block graph of
X and X ′ the block graph of ϕ(X ). Because X passes the parent test relative
to X , there exists an α ∈ Aut(X) such that ακ−1

X (B1) = B1.
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Since ϕ maps S to S, the seed induced by block B1 in ϕ(X ) is S and
ϕ(B1) = B1. We must still show that (10) holds. Clearly, ϕ|B is an isomor-
phism from X to X ′. Thus, β = ϕ|Bακ

−1
X κX′ ∈ Aut(X ′). But then,

βκ−1
X′ (B1) = ϕ|Bακ

−1
X (B1) = ϕ|B(B1) = B1

and ϕ(X ) passes the parent test relative to S. �

We now argue that Item (ii) holds. From Theorem 4.4 we know that at
least one representative from every isomorphism class of STS(19) will pass
the parent test relative to some seed. For an arbitrary isomorphism class,
let X be this representative. The previous theorem implies that if X passes
the parent test relative to S, then so does the lexicographic minimum of its
orbit under Aut(S), which will pass the automorphism test. This minimum
representative is generated by the main search algorithm, which establishes
(ii).

Implementation details

In this section we describe the implementations of the parent test and the
automorphism test. We start with the parent test.

We use nauty in computing the canonical labelling for block graphs for
the purposes of the parent test. The use of a vertex invariant is required to
guarantee good performance from nauty on these strongly regular graphs.
For this purpose, we define a vertex invariant based on the Pasch configu-
rations of the underlying STS(19). It will also turn out that this invariant
provides a quick way to reject many STS(19) in the parent test without con-
structing the block graph or running nauty, which provides a significant per-
formance gain. The use of Pasch configurations as an isomorphism invariant
is not new [32, 76].

The vertex invariant is as follows. Let X be an STS(v) and let X be the
block graph of X . For a block B ∈ B(X ), denote by P (B) the number
of Pasch configurations in X that contain the block B. Suppose {P (B) :
B ∈ B(X )} = {p1, . . . , pm}, p1 > · · · > pm. Put ιP (X) = (V1, . . . , Vm),
where Vi = {B ∈ B(X ) : P (B) = pi} for all i ∈ {1, . . . , m}. In other
words, ιP partitions the vertex set of the block graph so that the first cell
contains the blocks that have the maximum number of occurences in Pasch
configurations, the second cell contains the blocks that have the next largest
number of occurences in Pasch configurations, and so on.

It is not immediately clear that ιP is well-defined because the definition
uses the underlying STS(v) from which the block graph was derived.

Theorem 4.7 For v ≥ 19, the function ιP is a well-defined vertex invariant
for the set of block graphs of STS(v).

Proof. Let X be the block graph of an STS(v), X , and let ϕ ∈ Sym(B(X )).
Let X ′ be any STS(v) such that its block graph X ′ = ϕ(X). It suffices to
verify (7) for ιP . (To establish well-definedness, take ϕ = I.) Put ιP (X) =
(V1, . . . , Vm) and ιP (X ′) = (V ′

1 , . . . , V
′
m′). By Theorems 2.19 and 2.20, ϕ

has an extension to an isomorphism from X to X ′. Thus, P (B) = P (ϕ(B))
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for all B ∈ B(X ), which implies m = m′ and

ϕ(Vi) = {ϕ(B) : P (B) = pi, B ∈ B(X )}

= {ϕ(B) : P (ϕ(B)) = pi, B ∈ B(X )}

= {B′ : P (B′) = pi, B
′ ∈ B(X ′)} = V ′

i

for all i ∈ {1, . . . , m}. Thus, (7) holds for ιP . �

By Theorem 2.23, the Pasch configuration invariant ιP coincides on block
graphs of STS(v) with the vertex invariant that partitions the vertices of a
graph according to the number of 4-cliques in which a vertex occurs. The
Pasch configuration invariant is much faster to compute, however, since by
Theorem 2.23 every block of an STS(19) occurs in 232 configurations of
four pairwise intersecting blocks that do not form a Pasch configuration.

The following observation enables quick rejection of STS(19) in the par-
ent test when ιP is used.

Theorem 4.8 Let X be a block graph of an STS(19). If the canonical la-
belling map κ in the parent test is constrained with the initial partition ιP (X),
then X passes the parent test (relative to any seed) only if B1 occurs in the
first cell of ιP (X).

Proof. Suppose ιP (X) = (V1, . . . , Vm) and c(ιP (X)) = (W1, . . . ,Wm),
where c(ιP (X)) is defined as in Section 3.2 (subject to the total order B1 <
B2 < · · · < B57). Since ιP is a vertex invariant, any automorphism α ∈
Aut(X) satisfies α(ιP (X)) = ιP (X) by (7). So, since κ−1

X,ιP (X)(W1) = V1 by
(5), we have ακ−1

X,ιP (X)(W1) = V1 for all α ∈ Aut(X). Because B1 ∈ W1, X
will not pass the parent test unless B1 ∈ V1. �

In other words, if the vertex invariant ιP is used in computing canonical
labelling for block graphs, then a block graph X will not pass the parent test
unless the number of Pasch configurations in which the block B1 occurs is
the maximum taken over all blocks of the STS(19).

This observation translates into the following algorithm for performing the
parent test. Let X be an STS(19) that satisfies Requirement L.

(i) Starting from i = 1, compute for every block Bi the number of Pasch
configurations P (Bi) in which the block occurs.

(ii) If P (Bi) > P (B1) for some i, then reject the STS(19).

(iii) Construct the block graph, X , of X .

(iv) Construct the initial partition π = ιP (X) from the array P . (Partition
B into maximal cells of blocks B with P (B) constant, sort the cells
into order of decreasing P (B).)

(v) Input X and π to nauty.

(vi) Using the automorphism orbits of X and the canonical labelling κX

output by nauty, test whetherB1 and κ−1
X (B1) are in the same automor-

phism orbit. If so, accept the STS(19); otherwise reject the STS(19).
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Since Step (i) of the algorithm requires a very fast implementation, we
shall outline it a bit more. Internally, the algorithm represents an STS(19)
as an array of 57 integers, where the ith element of the array contains the
lexicographic rank of the 3-subset of points incident with Bi. (Ranking and
unranking algorithms for subsets are considered in [56].) This representation
allows rapid testing of whether two blocks intersect, which is useful also for
Step (iii) of the algorithm. For the intersection test we maintain a look-
up table of

(

19
3

)

= 969 words. The ith word in the table contains the bit
representation of the 3-subset that has lexicographic rank i, that is, 19 bits
of the word correspond to the points; the three bits that correspond to the
elements of the rank i 3-subset are set to 1, all the other bits of the word are
set to 0. Now, blocks Bi and Bj intersect if and only if the bitwise-and of the
corresponding look-up table words is nonzero.

The number of Pasch configurations in whichBi occurs can be computed
with the help of the fast intersection test as follows. A Pasch configuration can
only be formed by Bi and three blocks, Bj, Bk, B`, that intersect Bi so that
no two of the three intersect Bi in the same point. Such a set Bj, Bk, B`

forms a Pasch configuration with Bi if and only if the three blocks intersect
pairwise but there exists no point common to all three blocks. The look-up
table helps here also, since three blocks are incident with a common point if
and only if the bitwise-and of the three corresponding look-up table words is
nonzero. An alternative algorithm for finding the Pasch configurations in a
Steiner triple system is considered in [75].

We now turn to the implementation of the automorphism test. Let S
be the seed relative to which the automorphism test is performed. First, we
require a list of the elements of Aut(S), which we compute from the au-
tomorphism group generators output by nauty on the incidence graph IS .
(Recall Section 3.2 and Theorem 3.4.) We expand the generators into the
full group using the reduced representation algorithm of Jerrum [43]. In
practice, even the naïve straightforward algorithm of computing multiplica-
tive closure of the generators suffices since the groups have small order and
the group needs to be generated only once in the initialization phase of the
algorithm.

Speed is of essence also in the automorphism test (in particular since the
automorphism test will be performed before the parent test), so we will sketch
the implementation in more detail. LetX be the STS(19) that is to be tested
and let ϕ ∈ Aut(S). Recall that X is represented internally as an array of
57 integers, where the ith element of the array contains the lexicographic
rank of the 3-subset of points incident with block Bi. We represent u(X )
(and respectively, ϕ(u(X ))) by a bit vector of length

(

19
3

)

= 969, where bit
position i is set to one if and only if a block of X is incident with the 3-subset
of points that has lexicographic rank i. The bit representation for ϕ(u(X ))
is constructed analogously. Here we take advantage of the fact that we can
precompute the permutation that ϕ induces on the lexicographic ranks of
3-subsets of P , and use this permutation in constructing the bit vector for
ϕ(u(X )) from the array representation of X . Lexicographic comparison be-
tween u(X ) and ϕ(u(X )) can be computed by comparing the bit vectors
word by word, which is reasonably fast since at most 31 word comparison
operations are required if the word length is 32 bits or more.
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Because the automorphism test must consider every ϕ ∈ Aut(S), the
test is slow to perform on those seeds for which the automorphism group is
large. Moreover, the memory requirement is 969 words for each element
of Aut(S) in the present implementation. To avoid this difficulty, we use a
hash table of canonical representatives for isomorph rejection for seeds with
a large automorphism group.

To sum up, the isomorph rejection algorithms for seeds with small and
large automorphism groups, respectively, are given in pseudocode as Algo-
rithms 4 and 5.

Algorithm 4 Isomorph rejection for seeds with Aut(S) small.

procedure smallreject(X : incidence structure)
For every ϕ ∈ Aut(S),

If ϕ(u(X )) < u(X ), reject X and return.
For every i = 1, 2, . . . , 57,

Set P (Bi)← the number of Pasch configurations
in X that contain Bi;

If P (Bi) > P (B1), reject X and return.
Construct from P the initial partition π.
Construct the block graph, X , of X .
Run nauty on X, π.
If B1 and κ−1

X,π(B1) are not on the same orbit under Aut(X),
reject X and return.

Accept X and return.

Algorithm 5 Isomorph rejection for seeds with Aut(S) large.

procedure largereject(X : incidence structure)
For every i = 1, 2, . . . , 57,

Set P (Bi)← the number of Pasch configurations
in X that contain Bi;

If P (Bi) > P (B1), reject X and return.
Construct from P the initial partition π.
Construct the block graph, X , of X .
Run nauty on X, π.
If B1 and κ−1

X,π(B1) are not on the same orbit under Aut(X),
reject X and return.

Construct the canonical representative κX,π(X).
If κX,π(X) occurs in the hash table, reject X and return.
Insert κX,π(X) into the hash table.
Accept X and return.

4 CONSTRUCTING THE STS(19) 35



Table 1: The seeds for STS(19).

|Aut(S)| Seeds
1 11,706
2 2,218
3 14
4 412
6 20
8 127

12 13
16 50
24 16
32 25
36 3
40 1
48 5
64 9

|Aut(S)| Seeds
72 2
96 7

120 1
128 6
192 2
256 4
288 1
512 2
768 1

1,536 1
1,728 1

36,864 1

Total 14,648

4.5 The search

We conclude this chapter by giving a brief description on how the classifica-
tion of STS(19) was carried out in practice.

First, the 14,648 nonisomorphic seeds were classified using the algorithm
described in Section 4.3. Table 1 lists the full automorphism group order for
the seeds. The seed classification took a little over one hour on a Linux work-
station with a 450-MHz Pentium II CPU. We applied the cellquads vertex
invariant on levels 0 and 1 of the nauty search tree in computing canonical
labelling for incidence graphs.

The main search was distributed using the batch system autoson [62] to
a network of 65 IBM Intellistation Pro workstations with 450-MHz Pentium
II CPUs and 15 other workstations with CPUs ranging from 1GHz Athlon
Thunderbird to 200-MHz Pentium. All of the workstations ran the Linux
operating system.

Each autoson job executed the main search algorithm on one of the
14,648 seeds. The CPU time required by each job was recorded using the
Linux library function times(2). Each job recorded the search statistics and
the STS(19) of interest on a separate file. The recorded statistics were

(i) the total number of extensions a seed has to an STS(19); and

(ii) the number of STS(19) that pass the isomorph rejection; and

(iii) for each STS(19) accepted by the isomorph rejection phase, the full
automorphism group order and the number of Pasch configurations.

In case an accepted STS(19) was anti-Pasch or the full automorphism group
had order at least 12, the STS(19) was saved on a separate file.

For the 11 seeds whose automorphism group had order greater than 200,
Algorithm 5 was used for isomorph rejection. The maximum number of
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block graphs that had to be stored in the hash table was 100,813. Algorithm
4 was used for isomorph rejection on all the other seeds.

The total time requirement for the main search was about two years of
CPU time, or about two and a half weeks real time with the available compu-
tational resources. The CPU time was fairly evenly distributed on the differ-
ent seeds in the sense that there were no seeds whose CPU time requirement
was prohibitively large: the slowest job took 14 hours of CPU time and the
fastest job took 7 minutes. (Note that these execution times have not been
scaled to uniform processor speed.)

All of the algorithms were implemented in the C programming language
and compiled using the GNU C compiler.

5 PRESCRIBING A GROUP OF AUTOMORPHISMS

In this chapter, we first describe an algorithm for classifying the STS(19)
with a nontrivial full automorphism group. We then apply the algorithm to
verify that the classification of these STS(19) obtained as part of the main
search is correct. The primary motivation for the material in this chapter
was to resolve the observed discrepancy for automorphism group orders 2
and 3 between the main search data and the results reported by Colbourn,
Magliveras, and Stinson [16]. This discrepancy will be discussed in more
detail in the following chapter.

Our approach to classifying the STS(19) with a nontrivial automorphism
group is based on results in [16] concerning the automorphisms that an
STS(19) can admit. Namely, each STS(19) with a nontrivial automorphism
group must admit at least one of the so-called basic automorphisms as an
automorphism.

To classify the STS(19) with a nontrivial automorphism group, it suffices
to construct, for each basic automorphism α, all STS(19) that admit 〈α〉 as
a group of automorphisms. This construction problem can be formulated
as an exact cover problem, which we solve using Algorithm DLX followed
by an isomorph rejection step. To make the exact cover search feasible, we
must again perform isomorph rejection prior to the search. This amounts to
starting the search from a select collection of partial solutions.

The organization of this chapter is as follows. Section 5.1 describes the
results in [16] on automorphisms of STS(19). Section 5.2 outlines the clas-
sification algorithm for STS(19) that admit a given group of automorphisms.
Section 5.3 describes the starting points of the search for different basic auto-
morphism types. The implementation of the search is described in Section
5.4.

5.1 Automorphisms of STS(19)

In this section we follow Colbourn, Magliveras, and Stinson [16] in deter-
mining a collection of basic automorphisms such that any STS(19) with a
nontrivial automorphism must admit at least one automorphism from this
collection.

Let α 6= I be a permutation of degree 19 with cycle type an1

1 · · ·a
nt

t . Let `
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be the least common multiple of a1, . . . , at and let p be any prime that divides
at least one of a1, . . . , at. Then α`/p has cycle type 1npm, where n+pm = 19
and m is the number of ai that are divisible by the maximum power of p
that divides `. Thus, any STS(19) that admits a nontrivial automorphism α
must also admit an automorphism with cycle type 1npm, where p is prime
and n + pm = 19.

The following observation and Theorem 2.13 show that n ∈ {0, 1, 3, 7, 9}.

Lemma 5.1 [16] The set of points fixed by any automorphism of a Steiner
triple system induces a subsystem.

Proof. Let X be an STS and let α ∈ Aut(X ). The claim is obvious for
α = I. Otherwise, let Q be the set of all points fixed by α. Now, no block
{x, y, z} with x, y ∈ Q and z /∈ Q can exist because then {x, y, α(z)} would
be a block, which is a contradiction since α(z) 6= z. Thus, Q induces a
subsystem. �

The case n = 9 is impossible as is demonstrated by the following [16]:
If there existed a nontrivial automorphism fixing nine points of an STS(19),
then the deletion of these nine points yields a one-factorization of K10 with
an automorphism fixing every one-factor. The following lemam shows that
no such one-factorization exists.

Lemma 5.2 [16, Lemma 1.1] For n ≥ 2 there exists a one-factorization of
K2n having a nontrivial automorphism that fixes every one-factor if and only
if n is even.

Proof. Suppose that F = {F1, . . . , F2n−1} is a one-factorization of K2n, that
n is odd, and that α is an automorphism that fixes every one-factor Fi. First,
suppose that α fixes a vertex x. Then, since every one-factor is fixed, every
edge incident with x is fixed. Hence, α = I. Thus, an automorphism α 6= I

that fixes every one-factor must have type tu for some t ≥ 2, tu = 2n. Sup-
pose t > 2. Let (x1, x2, . . . , xt) be a t-cycle of α. Then, since {x1, x2} ∈ Fi

for some i, we have that {α(x1), α(x2)} = {x2, x3} ∈ Fi, which is impos-
sible. Hence, t = 2 and u = n is the only remaining possibility. Suppose
α = (x1, x2)(x3, x4) · · · (x2n−1, x2n). Every edge in the one-factorization F
is either fixed or moved by α. In the latter case, the edge lies on an orbit of
length two. Because each one-factor has an odd number of edges since n is
odd, any one-factor must contain an odd number of fixed edges. But there
are 2n − 1 one-factors in F and only n fixed edges. Hence, also the case
t = 2, u = n is impossible. For the converse part of the proof, see [16]. �

Hence, all STS(19) that admit a nontrivial automorphism must admit an
automorphism with cycle type 1npm, where p is prime, n + pm = 19, and
n ∈ {0, 1, 3, 7}. Automorphisms of this type are called basic automorphisms.
It is easy to see that there are six types of basic automorphisms:

191, 1129, 1136, 1328, 1726, 1734.

To construct all STS(19) with a nontrivial full automorphism group, it suf-
fices to construct all STS(19) that admit at least one basic automorphism as
an automorphism.
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5.2 The construction algorithm

In this section we describe an algorithm that generates up to isomorphism all
STS(19) with a prescribed group of automorphisms.

The construction of designs with a prescribed group of automorphisms
as described in this section is not new. Indeed, block orbit by block orbit
construction of t-(v, k, λ) designs with a prescribed group of automorphisms
can be traced back to the seminal article of Kramer and Mesner [55]. (See
[33] and the references therein for further developments of the technique.)

Let P = {p1, p2, . . . , p19} be a fixed set of 19 points and let G ≤ Sym(P)
be the desired group of automorphisms. (In practice, we set G = 〈α〉 for
each basic automorphism α, see Section 5.3.) The key observation is that all
STS(19) over P that have G as a group of automorphisms are unions of orbits
of G on the set of all 3-subsets of P . Thus, to construct up to isomorphism all
STS(19) that have (a group that is permutation isomorphic to) G as a group
of automorphisms, it suffices to consider all unions of 3-subset orbits of G
such that every 2-subset occurs in exactly one 3-subset.

We formulate the construction problem for such STS(19) again as an ex-
act cover problem, in which the task is to cover the 2-subsets of points with
orbits of 3-subsets. Those 3-subset orbits that cover a 2-subset more than once
can clearly be rejected from consideration. Moreover, instead of covering all
2-subsets, it suffices to cover orbits of 2-subsets. This is because any 3-subset
orbit either covers all the 2-subsets or none of the 2-subsets in a 2-subset orbit.
Algorithms that compute the orbits of a permutation group can be found in
the references given in Section 3.3.

We use Algorithm DLX to generate all the solutions to the orbit covering
problem, and perform isomorph rejection on the resulting STS(19) using a
hash table that contains canonical representatives of the STS(19) generated
so far. As a side effect of the computation of the canonical representative, we
obtain generators for the full automorphism group of the STS(19).

Algorithm DLX features no isomorph rejection, so care must be taken
to initialize the algorithm so that redundant symmetry in the search space
is eliminated. The starting points of the search for different basic automor-
phism types are described in the next section.

5.3 Starting points for the search

In this section we describe the starting points of the search that we used for
different basic automorphism types.
Type 19

1. Without loss of generality we may assume that the automorphism
of type 191 is

α = (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19).

In this case it is not necessary to fix any blocks since the search is fast enough
even with no symmetry reduction. In the following cases, however, a number
of blocks must be fixed to speed up the search.
Type 1

1
2

9. We may assume that

α = (p2, p3)(p4, p5)(p6, p7)(p8, p9)(p10, p11)(p12, p13)(p14, p15)(p16, p17)(p18, p19).
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Since the pairs {p2i, p2i+1} for i ∈ {1, . . . , 9}must each occur in exactly one
block, an STS(19) that admits α as an automorphism must contain the triples
{p1, p2i, p2i+1} for i ∈ {1, . . . , 9}. (A block of the form {pj, p2i, p2i+1} with
j > 1 cannot occur in an STS(19) that admits α as an automorphism since
then {α(pj), p2i, p2i+1} would also be a block, which is impossible because
the pair {p2i, p2i+1} would then occur in two distinct blocks.)

Since {p1, p2, p3} is a block, the blocks incident with p2 form a one-factor
of K16 on {p4, . . . , p19} that is disjoint from the one-factor {{p2i, p2i+1} :
i ∈ {2, . . . , 9}} formed by the blocks incident with p1. This pair of disjoint
one-factors forms a collection of even-length cycles of length at least 4. It
is straightforward to check that cycles of length 4 cannot occur because α is
an automorphism. Thus, there are three alternatives for the cycle structure,
namely one 16-cycle; one 10-cycle and one 6-cycle; and two 8-cycles. With-
out loss of generality the second one-factor may hence be fixed as one of the
following:

{p4, p6}, {p5, p8}, {p7, p10}, {p9, p12}, {p11, p14}, {p13, p16}, {p15, p18}, {p17, p19};

{p4, p6}, {p5, p8}, {p7, p10}, {p9, p12}, {p11, p13}, {p14, p16}, {p15, p18}, {p17, p19};

{p4, p6}, {p5, p8}, {p7, p10}, {p9, p11}, {p12, p14}, {p13, p16}, {p15, p18}, {p17, p19}.

Each row gives an alternative one-factor; the point p2 has been omitted from
each block for brevity.
Type 1

1
3

6. We may assume that

α = (p2, p3, p4)(p5, p6, p7)(p8, p9, p10)(p11, p12, p13)(p14, p15, p16)(p17, p18, p19).

Any block that contains the point p1 must occur in an orbit of length 3. More-
over, the two other points in such a block must occur in different 3-cycles.
Thus, we may include the blocks {p1, p2, p5}, {p1, p8, p11}, {p1, p14, p17}.
Type 1

3
2

8. We may assume that

α = (p4, p5)(p6, p7)(p8, p9)(p10, p11)(p12, p13)(p14, p15)(p16, p17)(p18, p19).

The points p1, p2, p3 form a subsystem by Lemma 5.1, so we may include the
block {p1, p2, p3}. Now the pairs {p2i, p2i+1}, i ∈ {2, . . . , 9}, must occur
in exactly one block, so we have that for every i ∈ {2, . . . , 9} there exists a
j ∈ {1, 2, 3} such that {pj, p2i, p2i+1} is a block.

It is easy to see that the aforementioned blocks are the only orbits of length
1 under 〈α〉; all the other orbits have length 2. Thus, each of the points
p1, p2, p3 must occur in an odd number of orbits of length 1, one of which
is the block {p1, p2, p3}. So, disregarding the block {p1, p2, p3}, we obtain a
division into 4 cases, based on how the points p1, p2, p3 are incident with the
8 orbits of length 1.

Case 8. We may assume that point p1 is incident with all the 8 orbits of
length 1. In this case we may also include the blocks {p2, p4i, p4i+2}, where
i ∈ {1, . . . , 4}.

Case 6+2. We may assume that point p1 is incident with 6 orbits of length
1 and point p2 is incident with 2 orbits of length 1. So, assuming that p1 is
incident with the length-1 orbits {p1, p2i, p2i+1} for i ∈ {2, . . . , 7}, we may
also include the blocks {p2, p16, p17}, {p2, p18, p19}, {p1, p16, p18}, and the
blocks {p2, p4i, p4i+2} for i ∈ {1, 2, 3}.
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Case 4 + 4. We may assume that points p1 and p2 are both incident with
4 orbits of length 1. Assuming that p1 is incident with the length-1 orbits
{p1, p2i, p2i+1} for i ∈ {2, . . . , 5} and that p2 is incident with the length-
1 orbits {p2, p2i, p2i+1} for i ∈ {6, . . . , 9}, we may also include the blocks
{p1, p4i, p4i+2} for i ∈ {3, 4}, and the blocks {p2, p4i, p4i+2} for i ∈ {1, 2}.

Case 4 + 2 + 2. We may assume that point p1 is incident with 4 orbits
of length 1 and that points p2, p3 are both incident with 2 orbits of length
1. We may further assume that the length-1 orbits are {p1, p2i, p2i+1} for i ∈
{2, . . . , 5}, {p2, p2i, p2i+1} for i ∈ {6, 7}, and {p3, p2i, p2i+1} for i ∈ {7, 8}.
By including more blocks we obtain four alternatives, all of which must be
considered. We may assume that either

(i) {p1, p12, p16}, {p1, p14, p18} are blocks, in which case we may further
assume that either {p2, p4, p6}, {p2, p8, p10}; or {p2, p4, p6}, {p2, p8, p16},
{p2, p10, p18} are blocks; or that

(ii) {p1, p12, p14}, {p1, p16, p18} are blocks, in which case we may further
assume that either {p2, p4, p6}, {p2, p8, p10}, {p2, p16, p19}; or {p2, p4, p6},
{p2, p8, p16}, {p2, p10, p18} are blocks.

Type 1
7
2

6. We may assume

α = (p8, p9)(p10, p11)(p12, p13)(p14, p15)(p16, p17)(p18, p19).

The fixed points p1, . . . , p7 form a subsystem, which we may assume to be

{p1, p2, p3}, {p1, p4, p5}, {p1, p6, p7}, {p2, p4, p6},

{p2, p5, p7}, {p3, p4, p7}, {p3, p5, p6}.
(13)

As in the previous case, a consideration of the orbits of length 1 shows that
each fixed point of α must be incident with an even number of the 6 orbits of
length 1 that do not belong to the subsystem (13). We obtain a division into
3 subcases:

Case 6. Since the full automorphism group of the STS(7) is 2-transitive,
we may assume that p1 is the point incident with all the 6 orbits of length 1.
Furthermore, we may fix the blocks {p2, p4i, p4i+2} for i ∈ {2, 3, 4}.

Case 4+2. By 2-transitivity we may assume that p1 is incident with 4 orbits
of length 1 and p2 is incident with 2 orbits of length 1. Assuming that p1 is
incident with orbits {p1, p2i, p2i+1} for i ∈ {4, 7} and that p2 is incident with
orbits {p2, p2i, p2i+1} for i ∈ {8, 9}, we may include the block {p1, p16, p18}
and the blocks {p2, p4i, p4i+2} for i ∈ {2, 3}.

Case 2+2+2. The full automorphism group of the STS(7) has two orbits
on the set of 3-subsets of {p1, . . . , p7}. For the fixed subsystem (13) we may
select {p1, p2, p3} and {p1, p2, p4} to be the representatives of these orbits.
From these we obtain two alternatives, both of which must be considered.
Namely, we include the blocks {p1, p2i, p2i+1} for i ∈ {4, 5}, {p2, p2i, p2i+1}
for i ∈ {6, 7}, and {pj, p2i, p2i+1} for i ∈ {8, 9}, where either j = 3 or
j = 4. By including further blocks we split the alternatives j = 3, 4 into
two. Namely, having fixed either j = 3, 4, we may include either the blocks
{p1, p12, p14}, {p1, p16, p18} or the blocks {p1, p12, p16}, {p1, p14, p18}. Thus,
in total four alternatives need to be considered.
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Type 1
7
3

4. We may assume

α = (p8, p9, p10)(p11, p12, p13)(p14, p15, p16)(p17, p18, p19).

We may again include the sub-STS(7) as in (13). This leaves 57 − 7 = 50
blocks unspecified, all of which must occur in orbits of length 1 or 3. Since
50 = 3 · 16 + 2 is not divisible by 3, there exist at least two orbits of length
1. We may thus include the blocks {p8, p9, p10} and {p11, p12, p13}. Now, we
may without loss of generality assume that the blocks incident with the pairs
{p14, p15} and {p17, p18} are {p8, p14, p15} and {p11, p17, p18}. This is because
exactly 8 orbits of length 3 are incident with the points p8, p9, p10, of which 7
orbits are incident with one of the points p1, . . . , p7. The blocks in the one
remaining orbit of length 3 must therefore cover a pair of points from some
3-cycle of α. Since the same argument applies to the points p11, p12, p13, we
may without loss of generality fix the above mentioned blocks.

5.4 The search

The classification of the STS(19) with a nontrivial automorphism group took
approximately one and a half days of CPU time on a Linux workstation with a
450-MHz Pentium II CPU. It took 23 hours of CPU time to run the classifi-
cation algorithm from the 19 starting points specified in Section 5.3. This
resulted in a collection of 216,857 STS(19), from which the isomorphic
STS(19) were removed in 10 hours of CPU time with an unoptimized al-
gorithm. In total 164,758 nonisomorphic STS(19) were obtained in this
way.

All of the algorithms were implemented in the C programming language
and compiled using the GNU C compiler.

6 THE STEINER TRIPLE SYSTEMS OF ORDER 19

This chapter contains results on STS(19) extracted from the main search
data and from the independent classification of the STS(19) with a nontrivial
automorphism group.

For the STS(19) with full automorphism group order 2, 3, and 8, our re-
sults do not agree with those obtained by Colbourn, Magliveras, and Stinson
[16]. We are nevertheless confident that our results are the correct ones, be-
cause our results for nontrivial automorphism groups can be obtained in two
different ways as described in Chapters 4 and 5. Moreover, the total number
of distinct STS(19) can be computed in two different ways from the main
search data.

The results in this chapter are organized as follows. Section 6.1 gives the
total number of nonisomorphic and distinct STS(19). Section 6.2 analyzes
the STS(19) with a nontrivial automorphism group and the automorphisms
that an STS(19) can admit; the aim is to correct the tables in [16]. Section
6.3 gives the recorded statistics on the number of Pasch configurations in
STS(19). From the statistics we obtain the number of anti-Pasch STS(19)
and the maximum number of Pasch configurations that an STS(19) can ad-
mit. Section 6.4 concludes the chapter with a short discussion of future work
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Table 2: The STS(19).

|Aut(X )| STS(19) Anti-Pasch
1 11,084,710,071 2,538
2 149,522 1
3 12,728 41
4 2,121 0
6 182 5
8 101 0
9 19 4

12 37 0
16 13 0
18 11 0
19 1 0
24 11 0
32 3 0
54 2 0
57 2 1
96 1 0

108 1 0
144 1 0
171 1 1
432 1 0

Total 11,084,874,829 2,591

on the STS(19) and limitations of the present classification approach.

6.1 A census of the STS(19)

As a result of the main search, we obtain the number of pairwise nonisomor-
phic STS(19).

Theorem 6.1 The number of pairwise nonisomorphic STS(19) is

N(19) = 11,084,874,829.

By Theorem 2.20, this yields the following corollary for the strongly regular
block graphs of STS(19).

Corollary 6.2 There are at least 11,084,874,829 pairwise nonisomorphic
strongly regular graphs srg(57, 24, 11, 9).

Table 2 lists the number of nonisomorphic STS(19) and the number of
anti-Pasch STS(19) for each possible full automorphism group order.

The orbit-stabilizer theorem allows us to compute the number of distinct
STS(19) from the data in Table 2. Let X1, . . . ,XN(19) be representatives of
the isomorphism classes of STS(19). Then, the number of distinct STS(19)
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over a fixed point set is
N(19)
∑

i=1

19!

|Aut(Xi)|
. (14)

This yields the following result.

Theorem 6.3 The number of distinct STS(19) is

1,348,410,350,618,155,344,199,680,000.

This value can be obtained in an alternative way from the data generated by
the main search. Namely, the main search algorithm computes for every seed
Si, 1 ≤ i ≤ 14,648, the number of distinct extensions of Si to an STS(19).
Denote this number by Mi for each seed Si. Because any STS(19) contains
exactly 57 distinct seeds, the orbit-stabilizer theorem gives that

1

57

14,648
∑

i=1

19! ·Mi

|Aut(Si)|
(15)

is the number of distinct STS(19). (The full automorphism group order for
each seed appears in Table 1. Cross-tabulating the values Mi with the values
|Aut(Si)| is not feasible here for reasons of space; such a table would require
several thousand entries.)

The fact that both (14) and (15) give the same number for distinct STS(19)
gives us confidence that the classification is correct. Additional confidence
is gained from the fact that our independent classification of STS(19) with a
nontrivial full automorphism group gives results identical to those in Table
2 for the number of nonisomorphic STS(19) with a nontrivial full automor-
phism group.

6.2 Systems with a nontrivial automorphism group

The STS(19) with a nontrivial automorphism group were classified in [16],
however, as we noted before, that paper contains a number of errors. In
particular, the results for full automorphism groups of order 2 and 3 are in-
correct, and the partition of STS(19) into classes in terms of the nonbasic
automorphisms that they admit is incorrect for STS(19) with full automor-
phism group order 8. The aim of this section is to correct these results.

As is shown in [16] (cf. Section 5.1), every STS(19) with a nontrivial au-
tomorphism group must admit at least one automorphism of the six basic
types

191, 1129, 1136, 1328, 1726, 1734.

For each basic automorphism type, the number of nonisomorphic STS(19)
admitting such an automorphism is:

191 4
1129 184
1136 12,885
1328 80,645
1726 72,150
1734 124
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These numbers are inconsistent with those in [16] on automorphism types
1136, 1328, and 1726, where it is erroneously claimed that the respective num-
bers are 12,021, 80,591, and 80,558. (To prove that the results in [16] cannot
be correct, it suffices to check, for example, that the 12,885 STS(19) admit-
ting an automorphism of type 1136 are indeed nonisomorphic and admit an
automorphism of the required type.) An electronic listing of all the 164,758
nonisomorphic STS(19) with a nontrivial automorphism group is available
from the author upon request.

We now correct the tables in [16]. The basic automorphism structure of
STS(19) with a nontrivial automorphism group is summarized in Table 3.
The format of Table 3 is identical to [16, Table 1] for ease of reference. The
STS(19) are partitioned into classes according to the order of the full auto-
morphism group. Each such class is partitioned further into subclasses ac-
cording to the types of basic automorphisms that the STS(19) admit. When-
ever more than one subclass exists, these are denoted by letters a, b, c, . . ..
For example, the class 4b contains the 662 STS(19) that have full automor-
phism group order 4 and admit only automorphisms of type 1328 among the
basic automorphism types.

In [16] it is also obtained that, in addition to the basic automorphism
types, an STS(19) can admit a nonbasic automorphism whose type belongs
to the list

1192, 1163, 113262, 112144, 112182, 1382, 1344, 132262, 132243.

Together with the basic automorphism types, these are the only types of au-
tomorphism an STS(19) can admit.

The classes in Table 3 partition further into subclasses according to the
nonbasic automorphisms admitted by an STS(19). This subdivision is given
in Table 4. Table 4 is identical to [16, Table 2] with the exception of the
class 8a, which partitions into two subclasses instead of the one given in [16].
Namely, among the 84 STS(19) in class 8a there exist two STS(19) whose
full automorphism group has order 8 and that admit automorphisms of type
1328, 1726, and 1344. Accordingly, the number of STS(19) that admit an
automorphism of type 1344 is 185 instead of the 183 claimed in [16].

6.3 Pasch configurations

Tables 5 to 11 list the number of Pasch configurations in STS(19) for each
full automorphism group order. The column “P” in the tables gives the num-
ber of Pasch configurations; the column “STS(19)” gives the number of non-
isomorphic STS(19) containing this number of Pasch configurations.

From these tables we can extract the number of anti-Pasch STS(19) and
the maximum number of Pasch configurations in an STS(19). Previously it
was known that there are more than one thousand anti-Pasch STS(19) [66].

Theorem 6.4 The number of nonisomorphic anti-Pasch STS(19) is 2,591.

The large number of anti-Pasch STS(19) prevents listing them here, how-
ever, an electronic listing of the anti-Pasch STS(19) is available from the
author upon request.
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Table 3: Basic automorphisms.

Order Class 191 1129 1136 1328 1726 1734 STS(19)
432 ∗ ∗ ∗ ∗ 1
171 ∗ ∗ 1
144 ∗ ∗ ∗ 1
108 ∗ ∗ ∗ ∗ 1
96 ∗ ∗ ∗ 1
57 ∗ ∗ 2
54 ∗ ∗ ∗ 2
32 ∗ ∗ 3
24 ∗ ∗ ∗ 11
19 ∗ 1
18 a ∗ ∗ 1

b ∗ ∗ ∗ 2
c ∗ ∗ 2
d ∗ ∗ ∗ 6

16 ∗ ∗ 13
12 a ∗ ∗ 7

b ∗ ∗ ∗ 8
c ∗ ∗ 12
d ∗ ∗ ∗ 10

9 ∗ 19
8 a ∗ ∗ 84

b ∗ 17
6 a ∗ ∗ 14

b ∗ ∗ 14
c ∗ ∗ 116
d ∗ ∗ 10
e ∗ ∗ 28

4 a ∗ ∗ 839
b ∗ 662
c ∗ 620

3 a ∗ 12,664
b ∗ 64

2 a ∗ 169
b ∗ 78,961
c ∗ 70,392

Total 4 184 12,885 80,645 72,150 124 164,758
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Table 4: Nonbasic automorphisms.
Class 1192 1163 113262 112144 112182 1382 1344 132262 132243 STS(19)

432 ∗ ∗ ∗ ∗ 1

171 ∗ 1

144 ∗ ∗ ∗ ∗ 1

108 ∗ ∗ 1

96 ∗ ∗ 1

57 2

54 ∗ 2

32 ∗ ∗ 3

24 ∗ 11

19 1

18a ∗ 1
18b ∗ 2
18c ∗ 6
18d ∗ 2

16 ∗ ∗ ∗ 5
16 ∗ 6
16 ∗ ∗ 1
16 ∗ 1

12a ∗ 8
12b 7
12c 12
12d ∗ 10

9 ∗ 9
9 10

8a ∗ 2
82

8b ∗ ∗ 5
∗ ∗ 10

∗ ∗ 2

6a ∗ 14
6b 14
6c ∗ 104

12
6d ∗ 10
6e 28

4a 839
4b ∗ 498

∗ 153
11

4c ∗ 48
572

Total 10 15 137 518 16 4 185 24 48

6 THE STEINER TRIPLE SYSTEMS OF ORDER 19 47



Table 5: Pasch configurations in STS(19) with |Aut(X )| = 1.

P STS(19)
0 2,538
1 35,742
2 263,580
3 1,314,921
4 4,958,394
5 15,095,241
6 38,479,651
7 84,328,790
8 162,042,722
9 276,885,482

10 426,046,203
11 596,271,490
12 765,950,843
13 910,509,472
14 1,008,606,577
15 1,047,848,142
16 1,027,119,044
17 954,708,823
18 845,586,319
19 716,600,889
20 583,312,837
21 457,752,251

P STS(19)
22 347,316,148
23 255,585,528
24 182,930,596
25 127,610,069
26 86,994,788
27 58,048,786
28 38,001,524
29 24,453,668
30 15,483,681
31 9660,784
32 5948,963
33 3621,508
34 2183,650
35 1300,661
36 770,041
37 451,540
38 263,545
39 151,688
40 89,084
41 50,804
42 29,632
43 16,852

P STS(19)
44 10,567
45 5,943
46 3,864
47 2,125
48 1,558
49 715
50 664
51 350
52 316
53 78
54 126
55 68
56 93
57 19
58 56
59 5
60 11
62 17
64 1
66 2
70 2

The maximum number of Pasch configurations in an STS(v) is denoted
by P (v). See [80] for a discussion of the function P (v) and [39] for some
recent results. For v ≥ 19 it has been known that P (19) ≥ 84 with three
known designs attaining this value. As a result of the classification, we obtain
that P (19) = 84.

Theorem 6.5 The maximum number of Pasch configurations in an
STS(19) is 84; there are three such designs (with automorphism groups of
order 108, 144, and 432).

6.4 Discussion

Clearly, not all the relevant results on STS(19) were produced in this chap-
ter. For example, it is not known whether there exists a weakly 4-chromatic
STS(19), nor is it known how many STS(19) admit a subsystem of order 7.
The main result of this report is that settling these questions is now possi-
ble using exhaustive search, provided that the test for a particular property
runs fast enough so that it can be executed for every isomorphism class rep-
resentative in a reasonable amount of time. For example, one year of CPU
time divided uniformly to the N(19) isomorphism class representatives gives
2.84 · 10−3 seconds of CPU time per representative.
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Table 6: Pasch configurations in STS(19) with |Aut(X )| = 2.

P STS(19)
0 1
2 35
4 216
6 794
7 3
8 2,024
9 18

10 4,119
11 63
12 6,506
13 242
14 8,538
15 571
16 9,748
17 1,247

P STS(19)
18 9,354
19 2,049
20 8,604
21 2,920
22 7,920
23 3,602
24 7,756
25 3,943
26 8,078
27 3,892
28 8,432
29 3,261
30 8,132
31 2,657
32 7,481

P STS(19)
33 1,751
34 6,277
35 1,247
36 4,994
37 742
38 3,915
39 386
40 2,848
41 203
42 1,814
43 120
44 1,184
45 50
46 687
47 23

P STS(19)
48 436
49 7
50 261
51 8
52 135
54 121
55 1
56 38
58 28
60 7
62 23
64 1
66 6
70 3

Table 7: Pasch configurations in STS(19) with |Aut(X )| = 3.

P STS(19)
0 41
1 16
2 31
3 240
4 70
5 131
6 602
7 190
8 266
9 1,016

10 350
11 441
12 1,298
13 404
14 556

P STS(19)
15 1,306
16 416
17 528
18 987
19 352
20 421
21 694
22 224
23 296
24 412
25 156
26 200
27 251
28 86
29 135

P STS(19)
30 148
31 54
32 67
33 76
34 36
35 43
36 40
37 18
38 18
39 27
40 6
41 11
42 14
43 2
44 6

P STS(19)
45 4
46 4
47 3
48 16
49 2
50 1
51 1
52 5
54 2
57 1
58 1
59 1
60 5
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Table 8: Pasch configurations in STS(19) with |Aut(X )| = 4.

P STS(19)
4 7
8 41

10 1
11 3
12 91
13 5
14 1
16 123
17 11
19 3

P STS(19)
20 114
21 18
22 14
23 1
24 124
25 11
26 45
28 159
29 9
30 148

P STS(19)
32 201
33 7
34 198
36 138
37 2
38 154
40 111
41 1
42 96
44 60

P STS(19)
46 54
48 52
50 51
52 19
54 18
56 4
58 13
60 8
62 5

Table 9: Pasch configurations in STS(19) with |Aut(X )| = 6.

P STS(19)
0 5
6 3

12 3
13 1
15 9
18 4
19 5

P STS(19)
21 14
24 8
25 4
27 12
30 2
31 4
33 14

P STS(19)
34 3
36 11
37 4
39 15
42 5
45 11
46 2

P STS(19)
48 22
51 7
54 1
58 4
60 1
66 6
78 2

Table 10: Pasch configurations in STS(19) with |Aut(X )| = 8.

P STS(19)
8 1

16 4
24 3
34 2
36 5

P STS(19)
38 6
40 3
42 20
44 4
46 18

P STS(19)
48 4
50 12
52 5
54 8
56 2

P STS(19)
58 2
62 2
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Table 11: Pasch configurations in STS(19) with |Aut(X )| ≥ 9.

|Aut(X )| = 9
P STS(19)
0 4
9 2

15 4
18 4
21 1
27 1
36 2
48 1

|Aut(X )| = 12
P STS(19)
7 1

14 1
15 1
18 2
22 1
23 1
26 4
30 1
38 3
42 2
48 8
50 2
54 2
60 4
66 4

|Aut(X )| = 16
P STS(19)
36 2
44 4
52 2
60 5

|Aut(X )| = 18
P STS(19)
18 1
39 6
48 2
57 2

|Aut(X )| = 19
P STS(19)
19 1

|Aut(X )| = 24
P STS(19)
30 2
40 4
42 4
64 1

|Aut(X )| = 32
P STS(19)
28 1
44 2

|Aut(X )| = 54
P STS(19)
57 2

|Aut(X )| = 57
P STS(19)
0 1

38 1

|Aut(X )| = 96
P STS(19)
28 1

|Aut(X )| = 108
P STS(19)
84 1

|Aut(X )| = 144
P STS(19)
84 1

|Aut(X )| = 171
P STS(19)
0 1

|Aut(X )| = 432
P STS(19)
84 1
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Naturally the most complete classification of the STS(19) one could hope
for would be to catalogue them all on a storage device during the main
search, which would then enable the subsequent study of any property of
interest by searching the catalogue. As a result of the present work, such a
catalogue was prepared for the anti-Pasch STS(19) and the STS(19) with a
nontrivial automorphism group. The complete catalogue of all the STS(19)
would require disk space in the order of tens or hundreds of gigabytes, which
is impractical at least for the time being. (The design of an efficient compres-
sion scheme for STS(v) could be a topic of further research.) Meanwhile, it
is always possible to rerun the main search provided that sufficient computa-
tional resources are available.

Given that a complete classification of the STS(19) can now be produced
within a manageable amount of time, the next obvious question is whether
the next open case, v = 21, can be classified using the approach described in
Chapter 4. Unfortunately, the answer seems to be no. For the STS(21), there
are 219,104 nonisomorphic 28-block seeds. The running time of the main
search algorithm on a few randomly selected seeds was estimated to be more
than one year for each seed on a Linux workstation with a 450-MHz Pentium
II CPU. A complete classification with the present approach seems thus to
require CPU time in the order of hundreds of thousands of years, which is
clearly infeasible. The time required for a classification of the STS(21) with
a nontrivial automorphism group was not estimated; this remains a topic for
future work.

7 CONSTRUCTION OF OTHER STRUCTURES

The classification framework described in Chapter 4 for STS(19) can be
used essentially without change to classify certain other combinatorial ob-
jects that admit representation up to isomorphism as incidence structures. In
this chapter we study some examples of such objects.

For the framework to be directly applicable, the incidence structure rep-
resentation must have the following four properties:

(C1) The construction problem for a structure can be formulated as an exact
cover problem, in which the blocks are used to cover certain subsets of
points.

(C2) A seed is the structure induced by a block and all blocks that intersect
the block. The block that induces a seed is unique, that is, no two
blocks intersect the same set of blocks.

(C3) The block automorphism group of a structure is equal to the automor-
phism group of the block graph.

(C4) Two structures are isomorphic if their block graphs are isomorphic.

Property (C1) guarantees that the exact cover algorithm can be used for ex-
haustive generation.

Properties (C2) and (C3) guarantee that the parent test and the automor-
phism test in Section 4.4 work as intended. Indeed, a careful reading of
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Sections 4.4 and 4.4 shows that Properties (C2) and (C3), the latter in the
form of Theorem 2.19, are the only properties that are required for the cor-
rect operation of the tests if Requirement L holds. Note that Property (C3) is
required only when block graphs are used for isomorph rejection.

Property (C4) is required by isomorph rejection with canonical represen-
tative block graphs and by the Pasch invariant in Section 4.4. The Pasch
invariant naturally also requires a constant block size of three. In this chapter
we restrict to structures with block size three.

More specifically, we consider three types of objects: one-factorizations
of the complete graph K2n [1, 84] and two types of 3-GDDs: latin squares
[15] and generalized Steiner triple systems [26]. For each of the objects con-
sidered, we will perform the following. First, we derive a representation for
the objects using incidence structures. Then, we establish that Properties
(C1)–(C4) hold for the representation. This is the content of Sections 7.1
and 7.2.

The material in this chapter is to a large degree a description of work in
progress. Initial estimates, presented in Section 7.3, suggest that the clas-
sification framework is likely to perform well when compared with existing
algorithms [23] on classifying one-factorizations of the complete graph K2n.
Estimates have not yet been computed for the other two types of structures
considered.

7.1 One-factorizations of K2n

We first derive an incidence structure representation for one-factorizations of
K2n. Let n ≥ 1 and let F be a one-factorization of K2n. Clearly, F contains
2n− 1 one-factors F1, . . . , F2n−1, each of which consists of n edges. Suppose
the vertex set of K2n consists of vertices v1, . . . , v2n.

We represent F using an incidence structure of the following form. The
point set of the incidence structure consists of the vertices v1, . . . , v2n and
2n − 1 additional points f1, . . . , f2n−1, one point for each one-factor. Each
block of the incidence structure is associated with an edge of K2n. Namely,
for each edge {vi, vj}, the incidence structure contains a block incident with
the points {fk, vi, vj}, where k is determined from {vi, vj} ∈ Fk.

It is straightforward to check that two one-factorizations ofK2n are isomor-
phic if and only if their incidence structure representations are isomorphic.

The exhaustive construction of one-factorizations of K2n can be formu-
lated as an exact cover problem in which the task is to cover once all

(

2n
2

)

+
2n(2n− 1) = 3n(2n− 1) pairs of the form

{vi, vj}, 1 ≤ i < j ≤ 2n; {fi, vj}, 1 ≤ i ≤ 2n− 1, 1 ≤ j ≤ 2n

using 3-subsets of the form {fk, vi, vj}, 1 ≤ i < j ≤ 2n, 1 ≤ k ≤ 2n − 1.
The solutions of this problem are precisely the incidence structure represen-
tations of one-factorizations of K2n. This establishes Property (C1).

A seed is the structure induced by a block {fk, vi, vj} and all blocks that
intersect it. There are n blocks that contain fk, 2n − 1 blocks that contain
vi, and 2n− 1 blocks that contain vj . Thus, a seed consists of 1 + (n− 1) +
2(2n − 2) = 5n − 4 blocks. The block that induces a seed is easily seen to
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be unique for n ≥ 3. (For n ≤ 2 all blocks induce the same seed.) Thus,
Property (C2) holds for n ≥ 3. An example of a seed for n = 6 is given below.

Example 7.1 A seed for the one-factorizations of K12.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

B1 • • •
B2 • • •
B3 • • •
B4 • • •
B5 • • •
B6 • • •
B7 • • •
B8 • • •
B9 • • •
B10 • • •
B11 • • •
B12 • • •
B13 • • •
B14 • • •
B15 • • •
B16 • • •
B17 • • •
B18 • • •
B19 • • •
B20 • • •
B21 • • •
B22 • • •
B23 • • •
B24 • • •
B25 • • •
B26 • • •

We study next the block graphs of (incidence structure representations of)
one-factorizations of K2n. As was done in Section 2.2 for block graphs of
STS(v), we establish Properties (C3) and (C4) for a block graph of a one-
factorization by studying the maximum cliques in the graph. Since each pair
of distinct points is incident with at most one block, we obtain from the proof
of Lemma 2.18 that a set of pairwise intersecting blocks with no common
point has cardinality at most 7. This can be improved to at most 6 because
no point fi is incident with more than two blocks in such a set. Hence, a
sub-STS(7) cannot occur. However, a set of six blocks is possible:

{f1, v1, v2}, {f1, v3, v4}, {f2, v1, v3}, {f2, v2, v4}, {f3, v1, v4}, {f3, v2, v3}.

Such a set corresponds to a one-factorization of K4.
Since each pair of points is incident with at most one block, every edge in

the block graph can be associated with the unique point common to the two
blocks. Thus, a point vj can be associated with a clique of order 2n−1 in the
block graph. Similarly, a point fi can be associated with a clique of order n.
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By the upper bound just derived, other maximal cliques in the block graph
have order at most 6. When 2n− 1 > 6, that is, n ≥ 4, the cliques associated
with the points vj are maximum and hence can be easily found from a block
graph.

For n ≥ 4, a one-factorization can be recovered up to isomorphism from a
block graph as follows. Label the edges of the maximum cliques in the block
graph arbitrarily with the points v1, . . . , v2n. For each pair of distinct points
vi, vj , locate the block common to the corresponding maximum cliques in
the block graph. This block is adjacent to n − 1 other blocks that do not
belong to either of the maximum cliques. These n blocks induce a clique
in the block graph that corresponds to a point fk. If the edges of this clique
are unlabelled, label all the edges in this clique with fk. Continue with the
next pair vi, vj until all edges of the block graph have been labelled. Finally,
reconstruct the blocks of the incidence structure by setting each block to be
incident with the three edge labels that occur in the incident edges.

Since any automorphism of a block graph must permute the maximum
cliques among themselves, the previous argument also shows that the block
automorphism group and the automorphism group of the block graph are
equal for n ≥ 4. Thus, Properties (C3) and (C4) hold for n ≥ 4.

It is interesting to note that Pasch configurations have a natural inter-
pretation in terms of one-factorizations. Namely, a Pasch configuration in
an incidence structure representation of a one-factorization corresponds to
two one-factors and four edges, two from each one-factor, that form a 4-
cycle. For example, the blocks B1, B2, B7, and B17 in Example 7.1 induce
a Pasch configuration. Anti-Pasch one-factorizations are thus equivalent to
one-factorizations in which no pair of one-factors contains a 4-cycle.

7.2 Group divisible designs with block size 3

For simplicity, we will consider uniform group divisible designs only.
Consider a 3-GDD of group type tu. The exhaustive construction of such

designs can clearly be formulated as an exact cover problem, in which the
task is to cover once all distinct pairs of points from different groups using 3-
subsets of points such that no two points in a 3-subset are in the same group.
This establishes Property (C1).

It is straightforward (cf. Theorem 2.7) to see that in a 3-GDD of type tu,
each point must occur in r = t(u−1)/2 blocks and that the number of blocks
is b = t2u(u− 1)/6.

Since each pair of points occurs in at most one block, the number of
blocks that intersect a block of a uniform 3-GDD is 1 + 3(r − 1) = 3r − 2.
This is the cardinality of a seed. The block that induces a seed is unique for
r > 3. To see this, observe that any two blocks that intersect in a point p can
intersect at most 4 common blocks that do not contain p. The blocks must
intersect 2(r − 1) common blocks that do not contain p so that they induce
the same seed. Thus, Property (C2) holds for r ≥ 4.

We next analyze the block graphs of uniform 3-GDDs. Let M be the
maximum cardinality of a set of pairwise intersecting blocks that do not have
a common point. The proof of Lemma 2.18 gives M ≤ 7 with equality if and
only if the blocks form a sub-STS(7), which requires u ≥ 7.
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Each point of a uniform 3-GDD forms a clique of order r in the block
graph. For r > M , these v = tu cliques are the only maximum cliques
in the block graph. Hence, a uniform 3-GDD can be reconstructed from
its block graph by labelling the maximum cliques arbitrarily with v points
and setting each block to be incident with the labels of the three maximum
cliques to which it belongs. Furthermore, the group partition G can be re-
constructed using the observation that two maximum cliques in the block
graph are vertex-disjoint if and only if the corresponding points are in the
same group. An automorphism of the block graph must permute the max-
imum cliques among themselves. Hence, any automorphism of the block
graph can be extended to an automorphism of the underlying 3-GDD using
the permutation induced to the maximum cliques (cf. the proof of Theorem
2.19). This establishes properties (C3) and (C4) for r > M .

In the following we discuss two examples of 3-GDDs: latin squares and
generalized Steiner triple systems.

Latin squares

A latin square of order n is a quadruple (R,C, S, L), where R, C, and S are
(pairwise disjoint) sets of cardinality n and L is a mapping L : R × C → S
such that for any two of i ∈ R, j ∈ C, x ∈ S, the equation L(i, j) = x has
a unique solution. Elements of R are called rows, elements of C are called
columns, and elements of S are called symbols or entries of the latin square.

Latin squares are equivalent to many other combinatorial objects (see
[15]), among them transversal designs TD(3, n). A latin square of order n
defines a transversal design TD(3, n) (that is, a 3-GDD of type n3), where the
groups are the sets R, C, S, and the blocks are all triples of the form {i, j, x},
where i ∈ R, j ∈ C, x ∈ S such that L(i, j) = x.

Conversely, a TD(3, n) defines a latin square of order n: label the three
groups of the GDD arbitrarily asR,C, S, and define the function L by setting
L(i, j) = x if and only if {i, j, x} is a block of the TD. Since each pair of
points from distinct groups occurs in a unique block, L is well-defined and
satisfies the required property. (Note that there are six possibilities to label
the three groups as R,C, S, so each TD(3, n) defines six latin squares.)

Two latin squares are called main class isotopic if the corresponding trans-
versal designs are isomorphic.

The block graph of a TD(3, n) is a strongly regular graph srg(n2, 3(n −
1), n − 2, 6). A short case-by-case analysis shows that the maximum cardi-
nality of a set of pairwise intersecting blocks with no common point in a
TD(3, n) is M = 4, which occurs precisely when the four blocks induce a
Pasch configuration.

It is again interesting to note that a Pasch configuration is a TD(3, 2), that
is, a latin square of order 2. Thus, an anti-Pasch TD(3, n) corresponds to a
latin square with no subsquares of order 2. A latin square with no subsquares
of order 2 is called an N2 square [15].

Generalized Steiner triple systems

Generalized Steiner (triple) systems were introduced by Etzion [26].
We require first some standard definitions. Let Zq = {0, 1, . . . , q−1} and

denote by Zn
q the set of all ordered n-tuples x = x1x2 · · ·xn (words) over Zq.
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Table 12: The seeds for one-factorizations of K12.

|Aut(S)| Seeds
1 66
2 166
4 78
8 24

10 3
12 1
16 14
20 4
24 6

|Aut(S)| Seeds
32 11
48 9
64 1
96 4

128 2
192 1
384 2

7,680 1
Total 393

The (Hamming) distance between two codewords x, y ∈ Zn
q is dH(x, y) =

|{i : xi 6= yi}|, that is, the number of coordinate positions in which x and
y differ. The (Hamming) weight of a codeword x ∈ Zn

q is wH(x) = |{i :
xi 6= 0}|, that is, the number of nonzero coordinates in the codeword or,
equivalently, the distance from the all-zero codeword. A code of length n
over Zq is a nonempty subset of Zn

q . The minimum distance of a code is the
minimum Hamming distance between pairs of distinct codewords.

A 3-GDD of type tn can be viewed as a code of length n and constant
weight 3 over the alphabet Zq, q = t + 1. Namely, we identify the el-
ements of each of the groups G1, . . . , Gn in the GDD arbitrarily with the
nonzero elements of Zq. Now, each block of the GDD defines a codeword
x = x1 · · ·xn so that xi = j if the block is incident with the point identified
with j ∈ Zq \ {0} in Gi; and xi = 0 otherwise, that is, when no point from
Gi is incident with the block.

A 3-GDD of type tn is a generalized Steiner triple system if the minimum
distance of the corresponding code is 3.

In this case M ≤ 7, where equality requires n ≥ 7. A Pasch configuration
does not seem to have an immediate natural interpretation.

7.3 A performance estimate

We conclude this chapter by estimating the performance of the classification
algorithm in Chapter 4 in classifying the nonisomorphic one-factorizations
K2n for n = 6, the largest value of n for which a complete classification is
known (see [1, 23]).

First, we classify the 26-block seeds using block by block backtrack search
with an isomorph rejection step after each added block. In total, there are
393 nonisorphic seeds, which are obtained in less than two minutes of CPU
time on a Linux workstation with a 450-MHz Pentium II CPU. The full
automorphism group order for each seed is listed in Table 12.

We estimate the CPU time required for a complete classification by run-
ning the main search with stochastic pruning. In describing the estimation
technique it is convenient to view the entire search as forming a tree. The
nodes of the tree are the partial incidence structures considered in the search;
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Table 13: CPU time estimates for the main search on one-factorizations of
K12.

p S T (s) Estimate
0.20 {29, 32, 35} 32,440 47 days
0.27 {36, 37, 38} 77,840 46 days
0.20 {39, 40, 41} 32,390 47 days
0.50 {35, 36, . . . , 40} 61,790 46 days

a node X is a child of a node Y if X can be obtained from Y by addition of
one block. A node is on level ` in the search tree if it consists of ` blocks. For
example, on level 26 of the tree there are 393 nodes, which correspond to
the seeds. Let S ⊆ {27, . . . , 66} be a set of levels on which stochastic prun-
ing is performed and let 0 ≤ p ≤ 1 be the probability of accepting a node.
Whenever the search reaches a node on one of the levels ` ∈ S, we flip a
biased coin that has probability p of coming up heads and probability 1 − p
of coming up tails. If the coin comes up heads, then we accept the node and
continue the search to the children of the node; otherwise we reject the node
and return to the previous level in the search.

In this way we obtain a crude estimate of the time required to run the
main search, assuming that the search tree is sufficiently uniform. If T is
the time required by the main search with stochastic pruning, then T/p|S|

is our estimate for the CPU time requirement of the main search. Note
that systematic bias is produced by the fact that the search tree is completely
traversed up to the pruning levels during estimation. Thus, the expected
fraction of the search tree that is traversed is strictly more than p|S|, even
when the search tree is completely uniform. (For a more thorough discussion
on estimating the efficiency of backtrack algorithms, see [51, 68].)

We conducted four estimation runs, each with a different selection of p
and S. The results of the estimation appear in Table 13. All of the estimates
were performed on a Linux workstation with a 450-MHz Pentium II CPU.
The pseudorandom number generator used in estimation was the Linux stan-
dard library function drand48(3) initialized with the system time. Based on
the estimations in Table 13, it would seem that a classification of the noni-
somorphic one-factorizations of K12 could be obtained in less than 50 days
using the algorithm of Chapter 4.

In comparison, the algorithm used by Dinitz, Garnick, and McKay [23]
required a little over 160 MIPS-years (160 years on a computer running at
1 MIPS) to classify the nonisomorphic one-factorizations of K12. Assuming
a processor speed of 450 MIPS for the computer used in the estimation,
the estimates indicate that a classification could be obtained in less than
50/365 · 450 ≈ 62 MIPS-years with the classification algorithm of Chap-
ter 4. Thus, with an estimated performance improvement of factor 2.5 over
an earlier algorithm, the algorithm of Chapter 4 seems promising for use in
the classification of other structures as well. The first task is to conduct an
independent verification of the classification in [23].
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