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ABSTRACT: This is a survey on network models designed to produce graphs
that resemble natural networks. Unlike artificially generated networks, nat-
ural networks are graphs that have been constructed based on some phe-
nomenon or object of the real world. The report includes two extensive case
studies of natural networks that emerge from engineering applications: the
network model of the router-level Internet and the Web graph, which is a
model of the World Wide Web.

Several different models for generating such networks are discussed. After a
brief summary of basic graph theory, the traditional model of uniform ran-
dom graphs is presented with generalizations. Two recent models of natural
graphs are discussed in detail: the small-world networks that capture charac-
teristics of social networks, and the scale-free networks that imitate real-world
communication networks. Several variations of both models are presented,
including some deterministic models.

After studying the mathematical descriptions of the models and some ana-
lytically derived properties, experimental work is documented. Properties of
different network models are examined by software implementations of the
model descriptions. In addition to calculating some graph theoretical met-
rics, the algorithmic implications of the network models are studied through
the running times of an algorithm that determines the order of a maximum
clique in a given graph.

This report also contains a brief review on clustering algorithms for graphs.
The goal of clustering is to identify semantically meaningful entities from
arbitrary graphs. The traditional approach to clustering is to split the given
graph into clusters starting from the entire graph. This does not scale well
to very large graphs, and therefore algorithms that employ local search are of
interest. In this work, heuristic methods for finding clusters from large and
possibly unknown graphs are proposed.

KEYWORDS: Graph algorithms, graph clustering, network modeling, ran-
dom graphs
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ABBREVIATIONS AND NOTATIONS

AS Autonomous Systems (the Internet domains)
BA Barabási-Albert graph generation model
CBA Barabási-Albert model with tunable clustering
ER Erdős-Rényi model of random graphs
IMDb Internet Movie Database
SCC Strongly connected component
SWS Solvable Watts-Strogatz graph generation model
WS Watts-Strogatz graph generation model
WWW World Wide Web

G graph G = (V, E)
V set of vertices in a graph
E set of edges in a graph
n the number of vertices |V | (order of a graph)
m the number of edges |E| (size of a graph)
(u, v) edge connecting vertices u and v
〈u, v〉 directed edge from vertex u to vertex v
Γ(v) neighborhood of a vertex v
deg(v) degree of a vertex v
Kn complete graph of n vertices
Kn,k complete bipartite graph on n + k vertices
Cn,k 2k-regular circulant graph on n vertices
Pn a graph on n vertices forming a simple path with n − 1 edges

[a, b] closed interval from a to b
(a, b) open interval from a to b
[a, b) half-open interval containing a but not b
(a, b] half-open interval containing b but not a
f(x) ∼ g(x) similar functions; limx→∞ f(x)/g(x) = 1
x ∝ y x is proportional to y
I identity matrix
J unit matrix; all elements are equal to one
A adjacency matrix of a graph



1 INTRODUCTION

Networks are common models of complex systems, approachable by methods
of graph theory and statistical mechanics. Over recent years, the properties
of natural network models have become an intensive field of study and also a
recurring theme of popular science (see for example [11, 133]). The purpose
of constructing models for natural networks is to study their structure in more
general level than through a single instance, and to study different phenom-
ena in relation to the networks, such as epidemic spreading or robustness of
the network when imposed to random failures or deliberate attack.

The goal of this report is to examine the properties and practical impli-
cations of different network models in the form of a comprehensive sur-
vey of recent work. This includes the traditional models of uniform ran-
dom graphs [43, 44, 54] and the recently proposed small-world networks of
Watts and Strogatz [134] and the scale-free network model of Barabási and
Albert [12]. We discuss variations proposed of these models along with alter-
native approaches, first with emphasis on the construction and later, in the
experimental part of the work, studying the structural properties achieved
with the constructions.

The algorithmic implications of network structure are of special interest,
as in practice the performance of an algorithm is only relevant for all practi-
cal inputs instead of all imaginable inputs. For example, a routing algorithm
should work well on the communication networks for which it is intended,
and hence if a characterization of such networks is available, the routing
should be optimized with respect to that characterization instead of optimiz-
ing it for any mathematically possible network structure. We review some
results obtained on the behavior of for example shortest-path and graph col-
oring algorithms, and augment the existing experimental studies by examin-
ing the running times of a maximum clique algorithm for different network
models.

Another interesting problem is data clustering for graphs. Several algo-
rithms exist to cluster a graph based on adjacency information that produce
either one clustering for the entire graph or a hierarchy of possible cluster-
ings. These methods are only feasible for small graphs and we do not expect
them to scale well for very large graphs. In some application areas such as
locating clusters from the World Wide Web, finding clusters for the entire
network is neither feasible nor relevant, and hence local methods are re-
quired. We propose a heuristic for local search that identifies clusters from
massive and possibly partially unknown graphs.

To examine the graph models and their properties experimentally, we
have implemented a framework for generating graps stochastically that in-
cludes several of the models discussed in the preceding parts of the survey.
New models can easily be added to the toolset and variations of the existing
models are simple to include. We have also included functionality to de-
rive different measures for graphs either generated with the toolset or given
as properly formatted input to the toolset. We have analyzed the generation
models with respect to some of the measures proposed in recent literature,
such as the characteristic path length, clustering coefficient, and the degree
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distribution of the graphs.
The text is organized as follows. In Chapter 2, network modeling is intro-

duced through examples, and the fundamental graph theoretical terminol-
ogy is summarized. The network modeling efforts on the Internet and the
World Wide Web are reviewed as case studies. Chapter 3 summarizes math-
ematical models of networks, starting from the traditional random networks
of Erdős and Rényi [43, 44], and proceeding to the various models proposed
to capture essential properties of natural networks.

Chapter 4 addresses in general properties of these families of random net-
works, such as spectral properties, error tolerance, and behavior of random
walks. Some important graph problems and algorithms are also discussed. In
particular, GRAPH COLORING and algorithms involving shortest paths are
reviewed. Clustering of graphs is addressed with more detail, also present-
ing new heuristics for finding clusters locally. The conducted experiments,
mainly studying the properties of the generation models, are described and
their results are presented in Chapter 5. Closing remarks, including possibil-
ities for further work are discussed in Chapter 6.

2 1. INTRODUCTION



2 NETWORK MODELING

A network consists of a set of nodes and usually several connections between
the nodes. The nodes or the connections may contain some additional infor-
mation, such as labels or weights. Networks are common models of complex
systems in many fields of science; there are numerous examples in engineer-
ing, biology, sociology, and even linguistics, some of which will be presented
in Section 2.1 to provide a concrete view on network modeling.

Representing a complex system such as a human cell or the epidemic
spreading of a virus as a collection of nodes and connections obviously can-
not capture all information present in the original system. There are limita-
tions in all models; it is the task of the modeler to carefully select the features
of the modeled phenomenon that are relevant with respect to the goal. The
simpler the model, the more fluent the calculations. However, excess sim-
plicity tends to limit the usefulness of the model.

2.1 NATURAL NETWORKS

We begin our survey of network modeling by presenting examples of natural
networks that have been intensively studied and will be encountered several
times in this text. Both analytical and empirical results on these network
models are abundant. As an example of a biological network model, we
present the neural network of a widely studied worm, the Caenorhabditis el-
egans. It is a tiny nematode, only about one millimeter in length, having only
959 cells (see [133] and the references therein). It has been a target of in-
tensive research for decades now; the Nobel Prize in Physiology or Medicine
2002 was awarded to three researchers who have all been working on this
nematode. The entire genome of the C. elegans has been among the first to
be mapped and almost all connections between its nerve cells are known. It
even has a dedicated website at

�������������
	��
	
������������
��	
����	
�����
.

Following the example of Duncan Watts [133], we obtained data of the
synaptic connections available at the website and constructed a network with
all 202 neurons as equal nodes and and the 1,954 neuron synapses and gap
junctions are modeled as equal connections. If more than one synaptic con-
nection or gap junction exists between two neurons, only one connection
is present in the model for simplicity. The average number of connections
we obtained is approximately 19, and the longest separation between vertices
(when the minimal possible number of connections is traversed) is five con-
nections. Figure 2.1 shows the network we obtained from the data available
online. The lines represent the connections and the dots are the nodes. Ap-
parently, the model is not specifically designed for heavy biological analysis,
as most of the biological details have been stripped. The object of study is the
structure of the resulting network. Other common biological network models
are cell models, representing chemical interactions within a cell, for instance
in DNA replication. Among others, Arita [9] believes that reconstruction of
metabolism will be a major research area in biology and proposes a network
model to study metabolic structure; the topology of metabolic networks has
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Figure 2.1: The neural network of the C. elegans modeled as a simple net-
work of cells (circles) and synaptic connections (lines), ignoring all qualita-
tive information of the biological system under study.

been studied by Jeong et al. [69].
An engineering example is the electrical power grid of the western areas

of the United States, from the West Coast to the Rocky Mountains. This
network model was studied by Duncan Watts [133] as an example of a net-
work model in engineering in his doctoral study, as the data was readily avail-
able in appropriate format. The 4,941 nodes of the network are generators,
transformers and other stations related to the production and transmission of
electrical power. The connections are the electric power lines, ignoring lines
connecting the transmission network to the consumers. There are on average
2.67 connections per each node in the network.

Although in reality the machinery and functionality of different types of
nodes varies a great deal, Watts chose not to classify or label the nodes accord-
ingly, but simplified the network by treating all nodes as equal. Although
different transmission lines certainly have different length, direction, and
capacity, all connections were also treated as equal: unweighted and undi-
rected. This obviously delimits the usefulness of the model. For instance,
the effects of the failure of one power line cannot be simulated with the
model, as the information on which way the line works has been left out
of the model. However, some meaningful topological questions may be ad-
dressed even when the dynamical nature and properties of the nodes and
connections have been reduced. This has been a common practice in much
of the recent work on natural networks, and reflects on the approach taken
in Chapter 3.

Other engineering networks are, for instance, the connections between
international airports worldwide, or the public transportation network of any
metropolis. In sociology, network models that represent social connections
within a population have been studied already in the 1940s (see [107] and
the references therein). As it is practically impossible to measure the number
of social contacts a person has in any but subjective manner, exact network
models of social interactions are rare. Popular examples of such are col-
laboration networks, manageable by documentation. For instance, citations
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in scientific publications form a network. The nodes are the authors, and
a connection appears as one author cites a paper by another. Yet another
network emerges if a connection is placed between two authors as they first
publish together. A famous example are the Erdős numbers: an author who
has published something with the late Pál Erdős, a famous Hungarian math-
ematician, has Erdős number one, an author who has not published with
Erdős himself, but with someone of Erdős number one, has Erdős number
two, and so forth.1 Some recent research on scientific collaboration networks
is summarized in Section 5.3 in conjunction with our own observations on a
coauthorship network.

Another well-documented social network is the collaboration network of
movie stars, based on the Internet Movie Database (IMDb), in which more
than one million filmographies of cast and crew members have been stored.
The database is accessible online at

������� ����� ����� � � ����������� �
and covers most

of the movies made since 1891. The information is not limited to big Holly-
wood productions; several foreign movies, productions of independent stu-
dios, television productions, and even future releases are covered by the
database. The network that results in taking all the actors as nodes and plac-
ing a connection between each pair of actors who have appeared together
in at least one movie, is an example of a large collaboration network. The
biggest connected component of this network, that is, the part in which there
exists a “chain of collaboration” between any two actors2 captured 250,000
Hollywood actors appearing in about 110,000 movie titles in 1997, when
Duncan Watts first studied the network [133]. The average number of con-
nections per actor was approximately 61.

Motter et al. [98] have studied networks of linguistics and cognitive sci-
ence: the nodes are the words of a certain language and a connection exists
between two words if they are synonyms. The example network of Motter et
al. was based on a thesaurus of the English language. The network consists
of 30, 000 entries which are on the average linked to 60 of the other entries.
Other widely studied and obvious network models from the field of computer
science are the Internet and the World Wide Web, discussed in more detail
as case studies in Sections 2.3 and 2.4 respectively.

2.2 GRAPH THEORY

In order to discuss networks formally, the notion of a graph is necessary. Only
the most basic graph theoretical concepts are introduced here. The notations
and naming conventions are by no means unambiguous; numerous different
notations are used in the literature. See for example Reinhard Diestel’s book
“Graph Theory” [37] for a comprehensive introduction.

A graph G = (V, E) consists of two distinct sets: V = {v1, . . . , vn} con-
tains the vertices of the graph, and E contains the edges of the graph. Each
edge is a pair of vertices. The order |G| of the graph is the number of ver-

1In 1999, there were 492 authors with Erdős number one (according to [133]), but as
Erdős has continued publishing post mortem, this number is still growing. The website of
the Erdős number project is at �	�	��
�������	�	����	�����������������! "�	#�$�%&��'�')("�!�"�!��%	�&�&'*�	
+�,�	��(-� .

2The notion of a connected component will be formalized in Section 2.2.
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tices, denoted by |V | or briefly n. The number of edges is called the size of
the graph, denoted by |E| or m. The vertices may be labeled, often by the in-
tegers 1, . . . , n. A numerical value can be attached to each vertex (called a fit-
ness, often f : V → R) or edge (called a cost or a capacity, often c : E → R).
Directed edges are ordered pairs 〈u, v〉, where u ∈ V is the source of the
edge and v ∈ V the target, in which case the graph is a directed graph. Un-
less explicitly stated, in this text edges are unordered pairs {u, v}; such edges
are called undirected and are denoted by (u, v).

Graphs without duplicate edges are simple, and those where several edges
may connect two vertices u and v are multigraphs. The graphs considered in
this text, unless explicitly stated otherwise, contain no duplicate or reflexive3

edges. Therefore only one edge may connect each distinct pair of vertices.
Hence the maximum number of edges present is

(

n
2

)

= 1
2
n(n − 1). A graph

that contains all these
(

n
2

)

edges is called the complete graph, denoted by Kn.
The density of a graph G = (V, E) is defined as the ratio of edges present in
comparison to Kn, that is δ = m

(n
2)

= 2m
n(n−1)

.

In a bipartite graph G = (U ∪ V, E), the sets U and V are nonempty
and disjoint (U ∩ V = ∅) and edges may only appear between these sets:
E ⊆ {(u, v) | u ∈ U, v ∈ V }. Hence there are no edges connecting vertices
on either “side” of the graph to vertices on the same side. This generalizes
of course to finer partitions of the vertex set than simply U ∪ V , leading to
the definition of a k-partite graph. In the complete bipartite graph Kn,k all
possible edges connecting U , |U | = n, to V , |V | = k, are present in the
graph: E = U × V .

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there
exists a bijective mapping f : V1 → V2 (called an isomorphism) such that
(v, w) ∈ E1 if and only if (f(v), f(w)) ∈ E2. We write G1

∼= G2 to indicate
that an isomorphism exists for G1 and G2. A subgraph H = (V ′, E ′) of
G = (V, E) is a graph for which V ′ ⊆ V and E ′ ⊆ E with the additional
restriction that if (u, v) ∈ E ′, then u ∈ V ′ and v ∈ V ′. We write H ⊆ G
when H is a subgraph of G. Any subset V ′ ⊆ V of vertices induces a subgraph
H = (V ′, E ′) such that E ′ = {(u, v) | u, v ∈ V ′, (u, v) ∈ E}. Such a
subgraph is called the induced subgraph of V ′ in G. Note that an induced
subgraph necessarily contains all edges in G that have both endpoints in V ′,
whereas a general subgraph may exclude some or all of these edges.

A clique is a subgraph H induced by V ′ ⊆ V , |V ′| = h, such that H ∼=
Kh. An independent set is the vertex set V ′ of an induced subgraph H =
(V ′, E ′) such that E ′ = ∅. A clique in a graph G = (V, E) is an independent
set of the complement of the graph, G = (V, E), where E = {(u, v) |
(u, v) /∈ E, u 6= v}. Determining whether a clique or an independent set of
given order h exist in a given graph are NP-complete problems.4

The neighborhood of a vertex v ∈ V , denoted by Γ(v) ⊆ V , is the set
of vertices Γ(v) = {u | (v, u) ∈ E}. Note that a vertex itself is not con-
sidered to be a part of its neighborhood. If u ∈ Γ(v), u and v are said to
be adjacent. A graph is easily represented by its adjacency matrix A: for

3A reflexive edge (v, v) connects a vertex v to itself. Such edges are sometimes called
loops.

4See [52] or [114] for more on NP-completeness.
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Figure 2.2: Examples of graphs: an undirected graph G1 = (V1, E1) with
V1 = {a, b, c, d, e} and E1 = {(a, b), (a, c), (a, d), (a, e), (b, c), (c, e), (d, e)},
and a directed graph G2 = (V2, E2) with V2 = {a, b, c, d} and E2 =
{〈a, c〉, 〈b, a〉, 〈b, c〉, 〈b, d〉, 〈d, b〉, 〈d, c〉}.

V = {v1, v2, . . . , vn}, element aij of A is one if (vi, vj) ∈ E and zero other-
wise:

aij =

{

1 if (vi, vj) ∈ E
0 if (vi, vj) /∈ E

(2.1)

For an undirected graph, A is always symmetric. If edges are assigned
capacities, these can be used to form a similar matrix with the weight of the
edge (i, j) as aij , placing zeroes where edges are not present. Graphs are
often depicted by drawing vertices as dots and edges as lines connecting dots
according to the adjacency relation. In a directed graph, the edges are drawn
as arrows. See Figure 2.2 for examples.

The degree of a vertex is the number of edges connected to it, i.e., the
size of its neighborhood: deg(v) = |Γ(v)|. For a directed graph, the in-
degree degin(v) of a vertex v is the number of incoming edges (u, v) and
the out-degree degout(v) respectively the number of outgoing edges (v, w).
If all the vertices of a graph have the same degree deg(v) = k, the graph
is said to be k-regular. The average degree in a graph is denoted by k̄ and
the maximum degree by ∆. The average degree is defined as k = 2m/n =
δ(n − 1) by the definition of density. A degree sequence of a graph is a
vector d ∈ Z

n such that d = (deg(v1), deg(v2), . . . , deg(vn)). This can
be made unique by sorting the elements in decreasing (or increasing) order.
The degree distribution of a graph is a function P (k) that assigns each k ∈
[0, n) the probability that an arbitrary vertex v ∈ V has exactly k neighbors,
Pr [deg(v) = k ].

Two vertices are connected if there exists a path P ⊆ E of consecutive
edges in the graph between them (in a directed graph, edge orientation is
obeyed). A maximal set of connected vertices in a graph G induces a sub-
graph that is a component of G. A graph is connected if all vertices are pair-
wise connected. If a graph has more than one component, it is disconnected.
If there are at least two vertex-disjoint paths between any pair of vertices, the
graph is biconnected. The connected component of a graph is the subgraph
induced by the maximum5 vertex set S ⊆ V where all vertices in S are con-
nected; similarly the biconnected component is the subgraph induced by the
maximum vertex set S ′ ⊆ V where all vertices are connected by at least two
disjoint paths.

5A maximal set with respect to some property is such that no element can be added with-
out breaking the property, whereas a maximum set is one of the largest order (not necessarily
unique).
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A edge cut for a graph G = (V, E) is an edge set E ′ ⊆ E such that
G = (V, E \ E ′) is disconnected. Similarly a vertex cut is a set of vertices
whose removal disconnects the graph. A single edge that forms an edge-cut
is called a cut-edge or a bridge, and a single vertex that forms a vertex cut is
called a cut-vertex or an articulation point. A minimum edge cut of a con-
nected graph G = (V, E) is an edge cut C ⊆ E of minimum order. The
corresponding optimization problem, MINIMUM CUT, is solvable in polyno-
mial time. A graph G is k-edge-connected if at least k edges need to be re-
moved to disconnect G. The maximum k such that G is k-connected is called
the edge-connectivity of G and denoted by k (G). The vertex-connectivity of
a graph is defined equivalently.

Path length is defined as the number of edges on the path, |P |. A simple
path does not visit the same vertex twice. In this text, all paths are simple un-
less otherwise stated. A graph of order n that contains only those n− 1 edges
that are needed to form a simple path between the vertices is denoted by Pn.
A shortest path between two vertices is the one with the least number of edges
traversed. Note that this is not necessarily unique. The distance d (u, v) be-
tween vertices u and v is equal to the length of the shortest path from u to
v in G. If no such path exists in G, the distance is infinite (by convention):
d (u, v) = ∞. If edges are assigned weights w : E → R, a weighted distance
dist(u, v) =

∑

e∈P w(e) can be used to define an alternative measure of path
length.

The maximum value of d (u, v) from a fixed vertex u to any other vertex
v ∈ V is called the eccentricity of u. The minimum eccentricity over all
vertices is called the radius of the graph G and is denoted by r (G). The
maximum d (u, v) for all vertex pairs is called the diameter of the graph,
diam(G). Another common path-related quantity is the average path length
L(G) (also called the characteristic path length), which is the average value
of the distance d (u, v) over all possible pairs {u, v}, of which there are

(

n
2

)

in total:
L(G) =

2

n(n − 1)

∑

{u,v}⊆V

d (u, v). (2.2)

A cycle is a simple path that begins and ends at the same vertex. Similarly to
path length, the length of a cycle is defined as the number of edges traversed
on the cycle. The length of the shortest cycle is called the girth g of the graph.
If reflexive and multiple edges are excluded, g ≥ 3. A cycle of length three
is called a triangle; in the literature, the term triad also appears. A graph that
consists of n vertices and only those n edges that are needed to form a cycle
of all the vertices is denoted by Cn or by Cn,1. If a graph does not contain a
cycle of any length, it is said to be acyclic. The girth of an acyclic graph is by
convention infinite.

An acyclic graph is a called a forest. A connected forest is called a tree. A
subtree of a graph is a connected subset of edges that does not form a cycle.
A subtree that includes all vertices is called a spanning tree of the graph. A
spanning tree has necessarily n − 1 edges. If edges are assigned weights, the
spanning tree with smallest total weight is called the minimum spanning tree.
Note that there may exist several minimum spanning trees that may even be
edge-disjoint.

A tree is rooted if one vertex is chosen as the root. In a rooted tree, vertex
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w is the parent of vertex v if and only if w is the second vertex on the unique
simple path from v to the root vertex. The other vertices on that path are
called ancestors of v in the tree. Hence the root has no parent or ancestors.
A vertex with no other neighbors but the parent is called a leaf.

The spectrum of a graph G = (V, E) is defined as the list of eigenvalues
(together with their multiplicities) of its adjacency matrix A; even noniso-
morphic graphs can share the same spectrum [130]. It is often more conve-
nient to study the eigenvalues of the Laplacian matrix ∇ of G instead of A.
This is defined element-wise as (see e.g. [27])

∇uv =















1, if u = v and deg(v) > 0,

− 1
√

deg(u) · deg(v)
, if u ∈ Γ(v)

0, otherwise.

(2.3)

If D is the diagonal degree matrix Dvv = deg(v), the adjacency matrix and
the Laplacian matrix are related by the following equality:

∇ = I − D
− 1

2 AD
− 1

2 , (2.4)

where D
−1
vv = 0 if deg(v) = 0. This is convenient as the eigenvalues of ∇

all fall within the interval [0, 2], the smallest eigenvalue always being zero,
and therefore the spectra of different graphs of possibly very different orders
become more comparable [27, 130].

A family G, also called an ensemble, of graphs includes all graphs that ful-
fill the family description; the description usually contains parameters that
control the size of the family. One commonly used family is Gn, which con-
tains all graphs of order n. A property P of graphs in the ensemble G, as
defined in [19], is a closed subset of G such that if G ∈ P and G′ ∈ G, then
G ∼= G′ implies that G′ ∈ P . A property P is monotone if G ∈ P and
G ⊂ G′ imply G′ ∈ P , and convex if G′′ ⊂ G′ ⊂ G and G′′, G ∈ P imply
that G′ ∈ P . When G ∈ P , we say that G has property P .

2.3 CASE STUDY 1: MODELING THE INTERNET

The Internet has been an object of intensive study ever since its economical
value was recognized in the 1990s. Paxson and Floyd [116] found in 1997 the
topology of the Internet difficult to characterize due to the constant change
and growth that are essential qualities of the network. They motivate the
research on Internet simulation by the possibility to approach “complicated
scenarios that would be either difficult or impossible to analyze” [116]. Just a
few years later the size of the network has exploded and the problems related
to its topology are more urgent than ever; more efficient protocols are needed
for the ever-growing amount of traffic. It would also be helpful to be able to
predict the future evolution of the network in order to design better hardware,
traffic protocols, and routing algorithms [46, 130].

The methods for generating “Internet-like” networks can be classified into
three groups [92]:
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• Random networks: Fix a set of nodes on some space such as a coor-
dinate grid, usually located randomly according to the uniform distri-
bution. Add connections between the nodes with a probability that
follows some meaningful formula, for example related to the distance
between two nodes.

• Regular networks: Pick some regular structure, such as a grid, on
which the nodes are placed. Add connections according to the regular
structure following some (deterministic) rule.

• Hierarchical networks: Start by building a set of smaller graphs by
some generation method and connect these into the “next level” of the
hierarchy following a meaningful rule. Continue for as many steps as
appropriate.

Any successful method would have to be a combination of these, as it is quite
obvious that the Internet is neither completely regular nor entirely random;
both elements are present. Also, by observing the growth mechanism and
loose control of the Internet, some hierarchical element is surely present:
computers are organized first into local networks that form domains; domains
are further connected to form a larger structure, and so forth. In this section
we take a glance at some models that have been proposed to model the In-
ternet and the observations made during these modeling efforts. Many of the
phenomena present in this case study will also appear later in the theoretical
discussions on generating realistic networks in Chapter 3.

2.3.1 The Waxman model and its variants

In 1988, Bernard M. Waxman [135] presented a model for the Internet with
the intent to examine the routing of multipoint connections. He simplified
the network into a graph G = (V, E), where vertices represent the switches
and edges are the links between them. To make his model realistic, Waxman
assigned a capacity to each edge that represents the bandwidth of the actual
connection and also a cost to be used as a weight factor in calculating the
“real” path lengths, which are in reality more informative than the plain dis-
tances d (u, v). The problem of multipoint (commonly multicast) routing, to
which the model was tailored, is a problem of finding a subtree of G = (V, E)
with the smallest total edge cost that reaches all vertices in a given vertex set
S ⊆ V (i.e., a minimum Steiner tree).

Waxman [135] described two random graph models that capture some
characteristics of real networks: seemingly random connections that are how-
ever sensitive to physical separation of the nodes. In the first model, n vertices
are randomly and uniformly distributed over a rectangular grid and labeled
with the corresponding coordinates. The distance dist E(u, v) between each
pair of vertices u, v ∈ V is then calculated as the Euclidean distance on
the coordinate grid. Edges are placed between pairs of vertices {u, v} with
a probability P that depends on distE(u, v) and two constant parameters
α, β ∈ (0, 1]. The maximum distance on the grid is denoted by L.

Pr [(u, v) ∈ E ] = α exp
− distE(u, v)

βL
. (2.5)
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Waxman does not state why he chose this form of function which is common
in statistical mechanics (see e.g. [77]), but we expect the justification to be
that the probability decreases exponentially with distance, is relative to the
maximum distance, and can be scaled with the parameters; α controls the
density of the graph, and β controls the relative density of edges with low and
high cost, where the cost of an edge (u, v) is set to be dist E(u, v).

In Waxman’s second model, the distances are not the Euclidean distances
on a grid, but are randomly chosen from a uniform distribution on a given
interval (0, L). The edges are then placed as in the former model. Waxman
does not explain how the graphs generated by these procedures resemble or
differ from the Internet; his experiments were of small scale in comparison
to those performed nowadays; n was fixed to 25 and only 5 graphs were gen-
erated and simulated on for both models. However, the Waxman model be-
came and remained very popular until recently, when more complex models
began to emerge [39, 46, 138].

In 1996, Matthew Doar [39] argued that although the Waxman models
have been commonly used in generating graphs, they are not sufficient. He
proposed modifications to the coordinate grid model and studied the prop-
erties of graphs generated by the modified procedure. Doar took a layered
approach and modeled the Internet as a set of smaller networks with inter-
mediate connections. The first layer to be generated is a set of Local Area
Networks (LAN), which are then connected into Autonomous Systems (these
are the Internet domains), which can be connected further to form larger en-
tities. The parameters of the model are the numbers of “network units” on
each layer and the degree of vertices for each layer separately, as well as the
number of edges connecting the layers into a single graph. The algorithmic
description of the model relies on the use of a coordinate grid as in the Wax-
man models, as well as in Doar’s earlier modification of the Waxman model
together with Ian Leslie in 1993 [38].

In 1997, Zegura, Calvert and Donahoo [138] suggested and examined two
direct modifications to the edge distribution of the Waxman models: the “ex-
ponential method” (Equation 2.6) and the “locality method” (Equation 2.7),
replacing Equation 2.5 respectively by the following definitions:

Pr [(u, v) ∈ E ] = α exp
−d (u, v)

L − d (u, v)
, (2.6)

Pr [(u, v) ∈ E ] =

{

α if d (u, v) < δ
β if d (u, v) ≥ δ,

(2.7)

with α, β ∈ (0, 1] and δ is a constant. They discuss and experiment on
the values that should be assigned to the parameters to produce interesting
networks with these distributions or the original distribution by Waxman.

Zegura et al. [138] also present a hierarchical generation method some-
what similar to Doar’s layered model [39], and another hierarchical method
they call the Transit-Stub method that uses random models (either Waxman’s
or their own) to produce the building blocks of the hierarchical structure
under construction. They concentrate on the metrics used to describe a
network, such as the average degree of vertices, the diameter of graph and
the number of biconnected components [137, 138]. They also analyze the
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expected value of the vertex degree in the Waxman model and their own
exponential method in [138], and for the Transit-Stub method in [137] by
Zegura, Calvert and Bhattacharjee. Such analysis together with the use of
statistical methods to analyze the resulting networks indicates that they were
in part leading the way to current research practices.

Calvert, Doar and Zegura [25] present a detailed outline of the genera-
tion of layered Internet-like graphs. They discuss two different implemen-
tations of the described model: the Transit-Stub model of [137] briefly de-
scribed above and another implementation called Tiers, which is essentially
the model of Doar [39] also explained above in general terms. A brief note on
the practicalities of choosing a proper generator for some specific application
is provided in [25].

2.3.2 Power-law behavior on the Internet

Recently the research effort on Internet topologies has been tremendous
and several researchers have observed power law distributions, also known
as heavy-tail distributions, for instance in the growth of the World Wide
Web and the Internet itself [23, 46]. A power law is simply an expression
of the form x ∝ yβ, where x and y are the measured values and β is “near-
constant” [46]. More formally, a nonnegative random variable X obeys a
power-law distribution if

Pr [X ≥ x ] ∼ αx−β (2.8)

for constants α, β > 0. In some cases also a slowly varying function6 f(x)
is included as a coefficient of the probability [46]. Power laws have been
discussed as early as 1955 by Simon (and even earlier by Vilfredo Pareto;
see [122] and the references therein) in the context of for example income
distributions, city sizes, and the number of authors contributing to scien-
tific publications. The last example remains topical and will be addressed
in Section 5.3. Therefore models for random graphs with a power law de-
gree distribution have been suggested and studied intensively (see for exam-
ple [13, 23, 80]).

Michalis, Petros and Christos Faloutsos [46] have studied Internet topol-
ogy in order to enable design of better protocols and more accurate sim-
ulation. They reproach the need for intuition and experimental work in
choosing proper values for the parameters in graph generation models such
as those presented above in Section 2.3.1. They are also discontent with the
metrics used to characterize graphs, which are mainly measures of degree
and distance distribution. Especially average values are not very informative
for a power law distribution, they argue, proposing definitions of their own
to better characterize networks, including the power-law exponents of Equa-
tion 2.9, defined for an undirected graph G = (V, E).

deg(v) ∝ rank(v)R fd ∝ dD

P (h) ∝ hH λi ∝ iE
(2.9)

6A positive and measurable function f(x) is slowly varying if ∀t > 0 f(tx) ∼ f(x) as
x → ∞.
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• R is the rank exponent. The rank of a vertex is the index of that vertex
in order of decreasing degree.

• D is the degree exponent, which in [46] is called the out-degree ex-
ponent, but corresponds to the total degree deg(v) for an undirected
graph. fd = |{v | v ∈ V, deg(v) = d}| denotes the number of vertices
with degree d.

• H is the hop-plot exponent. P (h) = |{{u, v} | u, v,∈ V, dist(u, v) ≤
h}| denotes the number of vertex pairs that are within h “hops” of each
other in G = (V, E). This is meaningful only for values of h that are
significantly smaller than diam(G).

• E is the eigenexponent that characterizes the spectrum of G, consisting
of eigenvalues λi of order i.

For the Internet, H > 0 whereas the other three are positive. These power-
laws are intended for characterization of graph topologies into “realistic” and
“artificial” graphs instead of mere average values of more traditional metrics,
and have been enthusiastically accepted as indicators of Internet-like topol-
ogy (see for example [24, 70, 92, 94]). Generation models based on these
observations are described in the next section to portray the current state of
Internet modeling.

2.3.3 Modern generation models

Medina, Matta and Byers [92] propose the BRITE (Boston University Repre-
sentative Internet Topology Generator), based on an observation by Barabási
and Albert [12] that for a power law to be present in a network, the net-
work construction needs to exhibit growth and preferential attachment. This
means that the number of nodes in the network grows in time and the new
nodes will form connections to the old ones based on the number of con-
nections each old node has gathered thus far; the more connected an old
node is, the more “popular” it is to connect there. Nodes that have many
connections are therefore more likely to attract new connections than nodes
with low initial degree. We return to these foundations of the BRITE model
in Section 3.3.1.

The generation procedure of BRITE is founded on an H×H grid of high-
level squares, each divided further into a grid of L×L low-level squares. For
each high-level square, a random number of nodes are placed. The proba-
bility distribution for the number of nodes is chosen as the bounded Pareto
distribution, Pareto (k, p, α), where −(α + 1) becomes the power-law expo-
nent [32]

f(x) =
αkα

1 − (k/p)α
x−(α+1), k ≤ x ≤ p. (2.10)

At most one node can be placed in each of the low-level squares and therefore
x ≤ L2 must apply. The nodes are placed within their respective high-
level squares randomly and uniformly, avoiding collisions: if the square being
filled is already occupied, draw another random low-level square. Nodes are
assigned d connections as they are positioned. If no incremental growth is
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desired, all nodes are positioned simultaneously and then connected so that
each connects itself to d nodes selected from all possible nodes as described
below.

In the incremental version, a node may only connect to nodes that are
already present in the network when the node itself gets placed. Initially, a
small subset of at least d nodes are placed and randomly connected so that
incremental connection procedure can properly continue. The method of
choosing the connections can be varied: one may choose either the Waxman
probability function (Equation 2.5), or a preferential probability relative to
the node degree (essentially Equation 3.25 on page 42), or a combination of
these.

Medina et al. [92] also study some recently proposed metrics of network
models for different Internet topology generators: the presence of power laws
(as defined by Faloutsos et al. [46] discussed in the previous section), the aver-
age path length between pairs of nodes, and the average density of subgraphs
induced by vertex neighborhoods, which is a clustering property. They name
the following four factors that they believe to significantly affect the behavior
of a generator:

1. Incremental growth of the network: New nodes can be introduced
to the network and connected one by one following some specified
schedule.

2. Preferentiality of connections: Is a newly introduced node more likely
to connect to nodes that already have a large number of connections?

3. Geographical distribution of nodes: How far will the nodes be from
each other physically, i.e., what are the typical internode distances?

4. Locality of the connections between nodes: Does a newly introduced
node rather connect to nodes that are physically close than to nodes
located further away?

The topology generators examined by Medina et al. [92] are the Waxman
model [135] and the Transit-Stub model [25, 39] of Section 2.3.1, regular
grids, and of course, BRITE itself. They find that of the four power laws of
Equation 2.9, the rank power law with R and the degree power law with D
“are most effective in distinguishing different kinds of topologies”, and that
even though the hop-plot power law and the eigenvalue power law of Equa-
tion 2.9 apply for all the tested generators, the values of the exponents H and
E vary [92]. They believe, in agreement with Barabási and Albert [12], that
preferential attachment and incremental growth are truly responsible for the
presence of such power laws. They also find that incremental growth seems
to increase both the average path length and the “clustering” of connections
into dense neighborhoods.

The Inet generator [70] by Jin, Chen, and Jamin takes three parameters:
the order of the graph, the fraction of vertices with deg(v) = 1, and the size
of the plane on which the vertices are placed to simulate physical nearness.
The order of generated graphs is recommended to exceed 3,037, which is the
number of ASs on the Internet in November 1997, used as the foundation
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of the generator design. They compare their generator to four other genera-
tors, including BRITE and the approaches of Waxman and Doar described
above and an earlier version of Inet itself. They study the how the generated
graphs follow the power laws observed on the Internet, but report their results
narrowly, comparing a single snapshot of the Internet to only five randomly
generated graphs with somewhat unconvincing argumentation.

The field appears to be open for better and better Internet topology gen-
erators, although it is already difficult to determine whether one generator
outperforms the other, due to the abundance of possible metrics and the
ever-changing measurement results on the current state of the Internet.

Mihail et al. [94] study the clustering properties (see Section 4.5) of the
graphs generated by Internet topology generators. They examine graphs of
order 11,000, two generated with BRITE and three with Inet (which is not
a very large sample), isolating the 2,200 vertices with the highest degree to
locate the core. They compute the first 30 eigenvalues from the subgraphs
induced by these “core” vertices and use these to find clusters.

In their experiments, Mihail et al. note that the clustering coefficient C is
not a proper measure of clustering as Inet matches quite well the value of C of
real Internet data, but differs significantly in spectral properties. This is par-
ticularly true with respect to the clusters found by their own method as they
study the spectrum of the graph. They conclude that the clustering produced
by degree-sequence dependent generation methods is weak in comparison to
that of real data. Vukadinović et al. [130] aim to classify natural graphs and
graph generators with spectral methods, studying the multiplicity of eigen-
value one. They compare the classification results of a domain-level Internet
graph to that of the Inet generator.

2.4 CASE STUDY 2: MODELING THE WORLD WIDE WEB

Another widely studied network is the World Wide Web, with either indi-
vidual pages or entire websites as vertices, and links as edges. The interest
in mathematical models is justified by the size of the resulting network; in
1999 even the best search engines could cover only about one third of the
estimated size of the WWW [87]. Since then, the network has grown signif-
icantly and full indexing is impossible. In this section we review the models
proposed and some of the key observations made concerning the structure of
the World Wide Web. For a survey on metrics related to the WWW we direct
the reader to [36] by Dhyani et al.

The routing graph of the Internet is generally considered undirected, but
hyperlinks are most obviously directed and therefore the in-degree and out-
degree of vertices should be handled separately instead of simply looking at
the total degree of a vertex. The in-degree represents in a sense the popularity
of a website v ∈ V : how many administrators of other websites ui have cho-
sen to put a hyperlink 〈ui, v〉 on their website leading to v. The out-degree in
turn represents the forward connectivity of a website: how many hyperlinks
has the administrator of v ∈ V decided to put on his site pointing to other
sites wi by hyperlinks 〈v, wi〉.

One starting point of the World Wide Web modeling was a paper by Klein-
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IN SCC OUT

tendrils outside
from IN tendrils into OUT

a disconnected component
a tube connecting IN and OUT

Figure 2.3: A structural diagram of the WWW (adapted from [23]); this is
often called the “bow-tie diagram”.

berg et al. [80] in 1999, in which the authors construct a graph to represent
the WWW. We adopt their practice of calling such a graph the Web graph.
Their motivation is improving search performance on the WWW as well as
providing more accurate topic-classification algorithms; they foresee a “grow-
ing commercial interest” in WWW modeling, which is still a major driving
force in network research.

Broder et al. [23] were the first to map the structure of the Web graph.
They confirm that the degree distributions follow power laws, but the main
contribution is the study of the connected components, both directed and
undirected, of the Web graph. The largest strongly connected component
(SCC) of the graph — i.e., a subgraph in which any page can be reached
by hyperlinks from any other page — they call the central core of the graph.
The next two major subgraphs are called IN and OUT, where there exists
a sequence of hyperlinks connecting each page in IN to the central core
but not vice versa, and respectively OUT contains those pages that can be
reached from the central core but do not have hyperlinks pointing back at
the SCC. The rest of the Web graph Broder et al. call the tendrils of the
WWW; it consists of pages that cannot reach the central core or vice versa.
See Figure 2.3 for illustration.

By performing and analyzing three webcrawls7 that span approximately
200 million webpages, they found that the diameter of the central core is at
least 28 and that of the entire Web graph as seen in the year 2000 at least
500. The order of the SCC was approximately 56 million pages whereas the
IN, OUT and the tendrils each contained approximately 44 million pages.
The giant connected component in the undirected sense that contains all the
pages connected to the SCC, IN, or OUT in either direction is quite large,
also in comparison to the size of the SCC, containing 186 million pages.

The calculation of the diameters, 28 for the SCC and 500 for the giant
undirected component, has naturally not been exhaustive over all pages in
the components but based on a small sample of starting points for a breadth-
first analysis; the SCC sample contained 136 vertices, the IN sample 128 ver-

7In a webcrawl, a software agent follows hyperlinks proceeding from page to page auto-
matically, reporting the structure of the “scanned” network. The crawling often proceeds
breadth-first, following all the links on one page before using the links on the subsequent
pages.
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tices, and the OUT sample 134 vertices. The orders of the components were
approximated by analyzing breadth-first searches from 570 random starting
points.

Huberman and Adamic [66] have found that the number of webpages per
website follows a power law distribution. Albert, Jeong and Barabási [6] have
studied the Web graph finding power laws for both the in-degree distribution
and the out-degree distribution, as well as a fairly small average diameter: on
average 19 links suffice to navigate from a webpage to any other arbitrarily
chosen page. They discuss with Barabási et al. in [4] the webcrawl performed
by the latter in [12] that displays characteristics of a power law in the link
distribution of the World Wide Web. Barabási et al. have proposed earlier in
[12] that the number of links increases with the age of the website (i.e., the
longer the lifetime, the larger the number of incoming links). Adamic and
Huberman [4] argue that the age of a webpage does not correlate with the
amount of links it has gained, but only its initial ’attractivity’: “all sites are not
created equal”. Both approaches seem to be useful in current models of the
WWW: nodes are assigned an initial attractivity value, but also their lifetime
influences the number of links they will attract.

Broder et al. [23] examined the degree distributions of their sample of
the Web graph and verified the presence of power laws for the in-degree
and the out-degree of the Web graph, originally reported for experiments of
smaller scale such as that of Barabási and Albert [12]. They report γin = 2.09
which is in agreement with [12], and γout = 2.72. Many papers have been
written on the origin of these power laws in the growth process of the WWW
(see for example [88, 124, 126]), but we have not yet encountered recent
measurements of similar scale. However, sampling the World Wide Web
reliably is nontrivial [117]; the first problem is to define a “random” webpage,
and the second to construct a method to obtain one. Taking a “snapshot” of
the Web graph by some sort of a webcrawl is slow if a large portion of the
network is mapped. The WWW is continuously changing and therefore the
parts of the network covered by early phases of the crawl represent in fact a
different version of the graph than the parts covered later. As the time span
may be days or even weeks, this cannot be overlooked. However, webcrawls
are currently the best means to obtain such information. Reliable sampling
of the WWW and other large networks will be a pressing task in further work
on this area.

Kleinberg et al. [80] observed two special classes of webpages in relation
to a certain topic in the content of the pages: authoritative pages that are
devoted to the topic, and hub pages that contain several links to other pages
related to the same topic. This observation was used to improve search al-
gorithms. While conducting experiments on these algorithms, Kleinberg et
al. made several measurements of the Web graph. They compare the fre-
quency of vertices with the same in-degree on a log-log plot of degin ∈ [0, ∆in]
versus the number of vertices [0, n] with each value of degin z. They noted
that Pr [degin(v) = k ] ∼ 1/kα, α ≈ 2. Such distributions are called Zipfian
(due to [140]) and differ from those predicted by previous network models.
A Zipfian distribution is in fact such that the log-log plot of the ranks of the
values of the random variable versus their frequency follows a straight line.
In a power-law distribution, the values themselves versus their frequencies
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on a log-log plot fall on a line. The out-degree log-log plot shows a similar
distribution than the in-degree, although not as clearly.

Kleinberg et al. [80] stated the obvious question: if existing models of
random graphs do not explain this behavior, “what is a natural stochastic
process that will?” They believe that such a model would allow for better
modeling of the WWW, more informative predictions on the efficiency of
algorithms — especially those with poor worst-case behavior — as well as
predicting future development of the structure of the WWW. As a solution,
they suggest generating networks using random copying of neighborhoods
from existing vertices to newly added vertices: from an existing vertex v ∈ V ,
some neighbors S ⊆ Γ(v) are chosen to form (a part of) the neighborhood of
a new vertex u ∈ V .

The model of Kleinberg et al. contains four discrete-time stochastic pro-
cesses, one that creates vertices, one that creates edges, one that deletes ver-
tices, and one that deletes edges. The vertex processes are simple: at time t,
create a new vertex with probability αc(t). The vertex deletion is a Bernoulli
process with deletion probability αd(t); as a vertex is deleted, all of the ad-
jacent edges are also removed. The edge deletion process of the model re-
moves a vertex vt with probability δ. The authors however point out that an
ideal deletion process would have δ nonincreasing in degin,t(vt); we find it
somewhat confusing that edges are not deleted without deleting vertices. In
the process of edge creation at time t, a vertex vt is chosen from the graph
according to a probability distribution. This vertex v will be the source of
the created edges (vt, ui), i ∈ {1, . . . , k}, where k is sampled from a given
probability distribution. Therefore, degout,t+1(vt) = degout,t(vt) + k. The k

edges are created as follows:8

• With probability β, the target nodes of edges (vt, u) are chosen uni-
formly and independently at random from the graph Gt.

• With probability 1 − β, a vertex u, degout(u) = h is chosen randomly
and k vertices from Γ(u) are chosen as neighbors of vt in Gt+1. If
h < k, another node u′ ∈ V is randomly chosen and the remaining
k−h neighbors are copied from u′. This is repeated until k edges have
been obtained for vt.

To gain some intuition about this model, consider the publication of a new
webpage on some topic with some links to other pages. Some of these links
are likely to be the same that are listed on other pages on that topic, such as
major organizations related to the topic. This part of the neighborhood struc-
ture can be considered as “copied” from some previously existing webpage.
In addition, the author of the new page will possibly like to contribute an-
other point of view to the topic and is likely to include some “fresh” links on
the page in addition to the “established” links on the topic. New webpages
appear and some are removed; both processes seem random to the outside
observer. The number of links on a page is not constant in real life and
therefore it is drawn from a properly chosen distribution in the model.

8The authors do not state whether multiple edges between a pair of vertices are allowed
or omitted in the edge creation process.
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Kumar et al. [84] propose a family of stochastic models for the Web graph
that grow and change structure in time. The growth may be either linear or
exponential and the edges are placed with a copying process similar to that
of Kleinberg et al. [80] above. Another option for introducing the links is at
uniform, choosing the endpoints independently at random from a growing
graph. As the goal is to model the World Wide Web, the generated graphs
are directed.

In the linear growth copying model, a newly added vertex may form a
directed link to any other vertex existing at that time. Kumar et al. fix a
constant out-degree d for the added vertices and a copy factor α ∈ (0, 1). One
vertex v is added per time step and the d edges are either chosen uniformly
with probability α or copied from an already existing vertex w so that if the ith
edge of w with respect to some fixed edge ordering is 〈w, u〉, the ith edge of v
is 〈v, u〉. The vertex w will remain fixed during the edge-creating process of
vertex v; intuitively, in practical terms, w represents an established webpage
on the same topic as a newly created webpage represented by v and has been
chosen as a prototype by the author of the new webpage.

The exponential growth copying model has more parameters: the rate of
growth, out-degree, the copy factor, and a self-loop factor. A newly added
page (as there are now several of them, more at each time step due to the
exponential growth) may only point to pages that existed before the current
time step and not to those that are being created at the same time. Kumar et
al. [84] also suggest introducing a death process for both vertices and edges
as a future generalization of these models. Also the selection of the proto-
type vertex and the edges pointing out of the new vertices could be modified
to produce a desired power law. They derive the degree distributions and
bounds for the number of cliques in the generated graphs.

The design of stochastic models for the Web graph was continued by Lev-
ene et al. [88] who aim to match the data measurements reported by Broder
et al. in [23], where γ ≈ 2.1. This is achieved by combining a preferential
attachment process with a nonpreferential one, building on the foundation
of Simon’s early model [122] and considering the process as a urn transfer
model. Assume initially that there is a countable number of urns where balls
can be placed. The urns are labeled with the integers i = 1, 2, 3, . . . and each
ball in urn ui has exactly i pins attached to it. The process will be discrete-
time and has two parameters: α > −1 and p ∈ (0, 1). Initially at time n = 1,
urn u1 contains one ball and the other urns are empty. At time n ≥ 1, a new
ball with one pin is added to urn u1 with probability

pn+1 = 1 − (1 − p)
∑n

i=1(i + α)Fi(n)

k(1 + αp) + α(1 − p)
, (2.11)

where Fi(n) is the number of balls in urn ui at time n by Fi(n). Note that
E[pn+1] = p. With probability 1 − pn+1, and whenever pn+1 /∈ [0, 1], one
ball from ui is transferred to urn ui+1 with an additional pin — the urn ui is
selected randomly with probability that depends on the number of balls in
ui:

Pr [ui is chosen] =
(1 − p)(i + α)Fi(n)

k(1 + αp) + α(1 − p)
. (2.12)

Note that an empty urn is never chosen. At each time step, exactly one new
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pin appears, either along the new ball inserted to the first urn or as a result
of transferring a ball one urn up. Therefore at time n, there are exactly n
pins in total in all the balls in all of the urns. For α = 0, the transfer of
a ball from an urn is purely preferential as Pr [ui is chosen] = 1−p

k
iFi(n).

Larger values of α introduce a nonpreferential component in the selection
process. Denoting limn→∞( 1

k
E[Fi(n)]) = fi, Levene et al. [88] derive that

asymptotically fi ∼ ci−1(1+ρ), where c is a constant independent of i and
ρ = (1 + αp)/(1 − p). Hence they may control the exponent of the power
law by adjusting the parameters α and p.

In terms of the Web graph, adding a new ball corresponds to the creation
of a webpage with one incoming link, and moving a ball to the next urn corre-
sponds to adding a new incoming link (the level of preferentiality depending
on α) to an existing webpage. As the average in-degree of a webpage is re-
ported to be approximately 8 in [85], yielding p = 0.125, and the power-law
exponent to be 2.09 in [23], Kumar et al. [88] arrive at α ≈ −0.37. Look-
ing at the out-degrees, where the average is approximately 7.2 links per page
according to [85], p = 0.14 and hence α ≈ 3.42. Kumar et al. also provide
other interpretations related to the properties of the Web graph along with
simulation results. Their concluding hypothesis is that the the evolution of
the Web graph cannot be explained by preferential processes alone.
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3 MATHEMATICAL NETWORK MODELS

Alongside with empirical work, mathematical modeling of natural phenom-
ena has been a major tool for scientific discovery. The task of choosing
a proper description and a sufficient level of detail is nontrivial. As seen
in the previous chapter, network models have been employed to study var-
ious phenomena where connections between certain entities are of inter-
est. They may be either deterministic, such as the network models built to
match a given set of data (for example the neural network of the C. elegans
of Section 2.1), or stochastic (such as the Internet models of Section 2.3).
This chapter emphasizes the latter, but a couple of deterministic models are
presented as well. The goal of a stochastic network model is to produce a
network with similar characteristics as the modeled phenomenon. This ap-
proach is often applied when complete network data for the phenomenon is
unavailable or only represents a small sample of the population being mod-
eled.

In this chapter we discuss three main classes of network models: the tra-
ditional approach of uniform random graphs, and the recent suggestions of
small-world and scale-free random graphs. Variations of all three are pre-
sented and their properties discussed. The first section addresses the models
that consider all edges equiprobable; for the first two approaches, the uni-
form model and the percolation model, each vertex will receive the same
expected number of edges. The third approach allows for a predetermined
degree distribution that the graph must meet.

The genre of small-world networks differs from this by combining ran-
domness and structure; the common generation models first create a regu-
lar graph over which random edge replacement or addition will take place.
Another approach is taken to generate scale-free networks: scale-free graphs
can be grown by adding new vertices to a small graph and connecting the
new vertices to existing vertices. The goal of this model is to mimic natural
processes in the connection procedure and obtain a scale-free degree distri-
bution similar to that obtained by the natural process. Some approaches that
aim to combine elements from the small-world models and the scale-free
models are also discussed. We conclude the chapter with some deterministic
generation models that do not involve a random element.

3.1 RANDOM GRAPHS

In algorithm analysis, complexity has traditionally been evaluated over all
possible inputs. It is acknowledged that only studying the properties of an
algorithm for the worst-case input is not sufficiently informative; it would be
desirable to know how the algorithm behaves on an average instance (see
e.g. [120]). The problem is to determine the distribution from which the
input instances are drawn. Network modeling shares the same goal: what
does a typical network look like and what properties can it be assumed to
possess?

The standard answer has been for decades that a randomly generated net-
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work will be such an “average instance” and that the properties of random
networks will lead to greater understanding of the application problems at
hand. When designing an algorithm for a particular application, such as
routing on the Internet, a “typical” instance of a communication network is
hardly random, as seen in the previous chapter. It would be necessary to ob-
tain a random “Internet-like” graph to make justified and practical statements
about the efficiency of a particular routing algorithm designed to operate on
the Internet.

We begin this section by presenting the traditional view of random graphs
according to which a particular connection between two vertices will be as
likely to form as any other connection, all connections being pairwise inde-
pendent. We then move on to two recent proposals for models of random
graphs that match some real-world application problems better than the uni-
form random graphs. Both of these proposals, the small-world network model
initiated by Watts and Strogatz [134] and the scale-free network model ini-
tiated by Barabási and Albert [12], emphasize that there is some structure
in the connection topology that is not uniform. Some nodes of natural net-
works are just more important than others, as well as some connections have
a stronger influence on the network structure than others.

3.1.1 The Erdős-Rényi model: Uniform random graphs

This section describes two standard models of uniform random graphs that
have been intensively studied for the past decades. Both models produce
graphs in which the number of vertices is fixed and all edges have the same
probability to appear in the graph. A standard reference on such graphs is
Béla Bollobás’ book “Random Graphs” [19].

In 1959, E. N. Gilbert [54] presented a process for generating random
graphs with n vertices: each of the

(

n
2

)

possible edges is included in the
graph with probability p, considering each pair of vertices {v, w} indepen-

dently. The family Gn,p of these graphs contains 2(n
2) possible graphs in total.

An instance of the family Gn,p is often denoted by Gn,p. Such a process cre-
ates any G ∈ Gn,p with equal probability; an equivalent method would be
removing each edge from the complete graph Kn with probability 1 − p in-
dependently of the other edges. Gilbert studied the probability of a G ∈ Gn,p

being connected. This can be expressed in terms of the number of connected
graphs with |V | = n and |E| = m, denoted C(n, m), as each such graph has

probability pm(1 − p)(
n
2)−m of being chosen:

Pr [G connected ] =

(n
2)

∑

m=n−1

C(n, m)pm(1 − p)(
n
2)−m. (3.1)

The main results of this early paper presenting a now common model of ran-
dom graphs were the following bounds for a random graph G with n vertices
and a random pair of vertices {u, v}:

Pr [G is connected ] ∼ 1 − n(1 − p)n−1

Pr [d (u, v) < ∞ ] ∼ 1 − 2(1 − p)n−1.
(3.2)
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In the Gn,m model proposed by Erdős and Rényi [43, 44], the number of
vertices is again fixed to n, but instead of including each edge independently
with probability p, a total of m edges are randomly drawn from the set of all
possible n(n−1)/2 edges. In [43] Erdős and Rényi study the probability that
G ∈ Gn,m is connected, together with other probabilities related to the con-
nected components of a graph. In [44] they study the structure of a “typical”
graph in Gn,m when n grows to infinity and m = m(n), determining several
threshold functions to characterize what properties a typical instance is likely
to have.

The Gn,p and Gn,m models are in many ways equivalent (see for exam-
ple [19] for a detailed explanation of the small differences); literature often
credits both to Erdős and Rényi. When referring to a random graph, we gen-
erally mean a member of Gn,p, using the acronym ER for these traditional
uniform models of random graphs. Note that all graphs in Gn,m are included
in Gn,δ for δ = 2m/n, as the connection probability p is equivalent to graph
density. The probability spaces of the two families Gn,p and Gn,m are hence
somewhat different, but all the interesting properties are essentially identical.

We mention here two situations where Gn,m can be replaced with Gn,p

without losing significant information [19]. First, if a sum of expectations

of a random variable X ,
∑(n

2)
m=0 Em(X) is concerned, then no assumptions

on X are needed to exchange between the models. The second situation is
related to the properties of the families. We say that almost every graph G
in a family Gn of random graphs of order n has a property P , if Pr [G has P ]
goes to one as n → ∞. If almost every graph G ∈ Gn,p has a convex1 property
P , then almost every graph G ∈ Gn,m where m = bpnc also has P .

Both of the models Gn,p and Gn,m can also be described as random graph
processes [89], that is, stochastic processes {Xn, n = 0, 1, 2, . . .}. The value
of Xi is the state of the process at time i; continuous-time processes are also
possible. A stochastic process is defined through the set of possible states
and transition probabilities between the states. In a random graph process,
each state characterizes a graph and the transitions introduce modifications
to the graph, such as the addition of an edge. A good textbook on stochastic
processes is [62] by Grimmett and Stirzaker.

Consider a stochastic process {Gn,m}(
n
2)

m=0 starting on an empty graph of n
vertices, and “growing” from Gn,m−1 to Gn,m through the addition of a new
edge at time m uniformly at random among the

(

n
2

)

−m+1 possibilities. For
the process {Gn,p}p∈[0,1], consider a family of independent random variables
{Xi,j}i,j∈V uniformly distributed over [0, 1]. Now the edge set of a Gn,p is
obtained as E = {(i, j) | Xi,j < p}.

The degree of a single vertex of G ∈ Gn,p follows the binomial distribution:
deg(v) ∼ Binom(n − 1, p), from which it follows that for a random variable
Xk representing the number of vertices with degree k, it applies that Xk is
asymptotically Poisson distributed (see for example [19]):

Pr [Xk = r ] ∼ Poisson(λk) =
λr

k

r!
e−λk , (3.3)

1A property P is convex if F ⊂ G ⊂ H , F and H having the property P implies that G
also has P [19].
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w

v

Figure 3.1: A grid with randomly placed edges and an open path from v to
w.

where λk =
(

n−1
k

)

pk(1−p)(n−1)−k and r is any fixed integer. Also E[δ] = p, as
E[m] = p

(

n
2

)

and δ = m/
(

n
2

)

, and the density of any subgraph of order h has
expected value p, as within the subgraph, each of the

(

h
2

)

edges is included
with probability p.

3.1.2 Percolation

In this section we briefly review the concept of percolation for further ref-
erence. For a thorough view on percolation, we recommend the work of
Geoffrey Grimmett, see e.g. [60, 61]. From our limited point of view, perco-
lation is just another way of producing random graphs with plenty of known
analytical results. The process resembles greatly that of the previous section;
the main difference is that now in general, the vertex set is not limited to a
fixed number and edges may appear only between certain vertices instead of
all possible positions.

Consider the infinite square lattice Z
2 with a possibility of placing a vertex

at each “crossing” of the grid and an edge at each unit grid line. An infinite
random graph G = (V, E) is formed by taking the set of all crossings as
vertices and selecting the edge set by including each unit grid line randomly
and independently with probability p ∈ [0, 1]. A smaller graph results if we
restrict ourselves to a specified portion of Z

2, usually some rectangular area.
The central question in percolation theory is the following: In a random
graph constructed on a finite portion of Z

2, does an open path exist from
one boundary of the rectangle to the opposite boundary? An example of a
rectangular graph that contains such a path is shown in Figure 3.1.

As p is varied, the structure of the random graph begins to change. After
reaching some critical probability pc, the infinite graph contains (with prob-
ability one) an infinite cluster of connected vertices. Such a procedure of
adding edges is called bond percolation and it could of course be conducted
on other structures besides the square lattice Z

2. Another, somewhat less
studied variant is site percolation, where instead of adjusting the edge pres-
ence, the existence of a vertex is decided upon independently and randomly
with probability p. The edge set consists of one-unit grid lines that connect
two vertices that are both present.

Percolation phenomena have been widely studied in physics, for example
as models of magnetism. Also studies of epidemic spreading resort to per-
colation as a mathematical model: Newman and Watts [106] have studied
site percolation in so-called small-world networks. These results will be sum-
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marized in Section 4.1; the construction of such networks is presented in
Section 3.2.1.

3.1.3 Generating graphs to match a degree distribution

A disadvantage of the uniform models is that the degree distributions in nat-
ural networks, such as the power-law distribution observed for the Internet
and the Web graph, differ significantly from the Poisson distribution of ran-
dom graphs. This suggests that the ER model is not adequate for natural
networks, as important features of the underlying phenomena are being ig-
nored [12, 105]. It was already suggested by Erdős and Rényi in [44] that in
“a real situation, one should replace the hypothesis of equiprobability of all
connections by some more realistic hypothesis”. To better match the struc-
ture of natural networks, random networks that follow some predetermined
degree distribution are of interest. This section describes two approaches for
generating such graphs.

Molloy and Reed [96] study the degree sequences d = (d1, . . . , dn) of
graphs; these are unique when sorted in either increasing or decreasing order.
Each degree sequence characterizes a family of graphs. A graph G = (V, E)
belongs to the ensemble of degree sequence d, is the vertices of G can be
labeled so that di is the degree of vi for all i = 1, 2, . . . , n. A graph with
a specified degree sequence is a uniform random sample drawn from the
corresponding family. As properties are defined for random graphs with a
specified degree sequence, the calculations are in fact averages over such
families. A degree distribution may also be defined as a list of probabilities
p = (p1, . . . , pn) where pk = Pr [deg(v) = k ] for an arbitrary vertex v ∈ V .

Molloy and Reed construct a graph G = (V, E) to match a given degree
distribution by the following algorithm, interpreted as in [107]: attach to
vertex vi exactly ki “stubs” (half-edges that lack the other end-point), where
ki is drawn randomly and independently from p. If it happens that there is an
odd number of stubs in total, replace the stubs of a randomly chosen vertex
with a new set of k stubs, k again randomly drawn, and repeat this until
an even number of stubs are present in total. After successfully assigning
stubs to all vertices, choose two random stubs and merge the selected stubs
into a proper edge. We note that multiple and reflexive edges can be easily
avoided in this step if desired. Merging of random stubs is continued until no
stubs remain. Many properties of this model have been derived by Newman,
Strogatz and Watts [105, 107], such as the average distance, which was found
to be logarithmic in n. In [105], the authors also consider directed graphs.

Mihail et al. [94] construct a graph G = (V, E), V = {v1, v2, . . . , vn}
to match a given degree distribution d using Markov chains. The degree
sequence d = (d1, d2, . . . , dn), sorted in decreasing order of the degrees such
that d1 ≥ d2 ≥ d3 ≥ . . . ≥ dn) is said to be realizable if a graph that matches
d exists. It has been shown (see [94] and the references therein) that the
following condition is both necessary and sufficient for a degree sequence d

to be realizable:

k
∑

i=1

di ≤ k(k − 1) +
n

∑

i=k+1

min{k, di}, where 1 ≤ k ≤ n − 1. (3.4)
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The algorithm maintains a list of residual degrees of the vertices, degr(vi) =
di − deg(vi). In each iteration of the construction algorithm, a vertex vi is
picked and connected to degr(vi) vertices of highest residual degree, updat-
ing the residual degree of vi to zero and reducing the residual degrees of the
endpoints of the edges by one. Proceeding in this manner ensures that the
condition of Equation 3.4 stays valid after the iteration for those values of d

that are yet to be satisfied. This process runs in linear time and may also be
modified to link the vertices with preferential attachment. If the algorithm
constructs a disconnected graph, it must contain a cycle if

∑

i di ≥ 2(n− 1).
Removing an edge (u, v) from the cycle and an edge (s, t) from a component
that is not connected to the cycle, and replacing them by the edges (u, s) and
(v, t) does not affect d. As u is now connected to s and v to t, the two com-
ponents have become connected. This may be repeated as long as there are
multiple components.

An interesting question is how to obtain a random instance from the en-
semble G(d) of graphs that share the same degree sequence d. Mihail et
al. [94] achieve this by running a Markov chain2 starting with any realization
G ∈ G(d) obtained by the above algorithm. The process picks two edges
(u, v) and (s, t) at random from G, ensuring that the endpoints are all dis-
tinct, and replaces these by the edges (u, s) and (v, t) to obtain G′. If G′ is dis-
connected, the switching operation is canceled. From the theory of Markov
chains (see [94] and the references therein), it is known that performing such
perturbations will reach every possible graph in G(d) with equal probability
in the limit, independently of the start position G ∈ G(d).

Mihail et al. [94] recommend using the following stop condition to detect
when the graph has become sufficiently random: keep sorted adjacency lists
for all vertices that have a unique degree in the starting topology G, compute
such lists also for the current topology G′ and count the number of positions
in which these lists differ. The larger the count, the more “different” the
graphs G and G′ are expected to be. In their simulations, Mihail et al. have
found that this measure first increases linearly before leveling off at some
time T . For graphs of order 12,000 or less they recommend running for 3T
time steps. To estimate the exact mixing speed, the authors studied a graph
of order 11,000 for which they found T < 180,000. The graphs generated
by this algorithm are static and bound to one degree sequence. Mihail et
al. propose their model for generating Internet-like graphs; a setback is that
the Internet grows and thereby changes its degree sequence frequently.

3.2 SMALL-WORLD NETWORKS

When attending a cocktail party, people frequently notice to their surprise
that although they are not previously acquainted with each other, they share
common acquaintances. In the 1960s, Stanley Milgram studied this phe-
nomenon by estimating the number acquaintances needed to pass a letter
hand to hand, coast to coast in the United States. Although the outcome of

2A Markov chain is a stochastic process {X}n≥0 that satisfies the following “memoryless”
condition: for all n ≥ 1 and all xi in the state space, Pr [Xn = xn | X1 = x1, . . . , Xn−1 =
xn−1] = Pr [Xn = xn | Xn−1 = xn−1] [62].

26 3. MATHEMATICAL NETWORK MODELS



his experiment was somewhat entangled (see e.g. [81]), he concluded that
the length of the necessary acquaintance chain is usually six. This was such
a catchy result that it became a common phrase and even resulted in a play
by John Guare titled “Six Degrees of Separation” [63]. The six-degrees phe-
nomenon has been also known as the small-world phenomenon due to the
title of Milgram’s article, “The small world problem” [95]. It would indeed
be a small world if all U.S. citizens would be just a few acquaintances away
from each other. Another observation of social sciences is that in a network of
friends, two people who are both friends with a third person are more likely
to be friends with each other than with a randomly chosen person [104]. The
tight community of friends of a certain individual is often called the cluster
of that individual.

In this section we discuss models that aim to generate networks that re-
semble the social networks in these two aspects: the average distance from
one node to another is small, and the network consists of dense clusters. In
uniformly generated random graphs, the distance between any two vertices
is rather small, but there is no tendency toward cluster formation, as all edges
are equally likely. Altering the degree distribution does not produce the de-
sired clustering either, as the high-degree vertices may easily be placed far
apart instead of linking them into a dense neighborhood. We now describe
some models proposed to cope with this difficulty. For an extensive review
of the work leading to this genre of network modeling, see either Barabási’s
book “Linked” [11] on complex networks in general, or Watts’s book “Small
Worlds” [133], which is more mathematical than Barabási’s popularization
of the topic.

3.2.1 The Watts-Strogatz model: Random rewiring

In 1998, Watts and Strogatz [134] brought the small-world phenomenon to
the attention of researchers in various fields. They presented a simple pro-
cedure for randomizing networks of a certain structure and argued that the
resulting networks have a property often seen in natural networks that resem-
bles the small-world phenomenon of social networks. They generate small-
world networks with the following procedure, interpreted as in [16], which
we denote as the WS model. The initial graph is a circulant graph Cn,k of n
vertices where each vertex is connected to 2k of its nearest neighbors, k on
each direction along the ring.3 An example of a circulant graph is given on
the left in Figure 3.2.

Watts and Strogatz introduce randomness into the initial graph by select-
ing a vertex v and the edge (v, w) connecting it to the next vertex w on the
ring. With probability p, the edge (v, w) is rewired by replacing w with a
random vertex u ∈ V , with multiple edges forbidden. This is repeated for
each vertex along the ring. Then a second round of rewiring takes place,
now concerning the edges connecting “second-neighbors” on the ring, com-
pleting in total k rounds of rewiring. The above procedure may produce

3It appears to be a matter of definition whether the notation Cn,k is used to indicate
k neighbors on each side of a vertex or k neighbors in total, k/2 on each side. The latter
would require k to be even, which may be at times confusing. We therefore adopt the former
convention.
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Figure 3.2: On the left, the circulant graph C16,3; a randomly rewired version
(with small p) on the right (adapted from [134]).

disconnected graphs, which poses challenges to the analysis as well as the
use of many common metrics. Therefore Watts and Strogatz require that
1 � ln n � 2k � n, where 2k � ln n guarantees that the resulting random
graph is connected [19].

Newman et al. [104, 106] modify the WS model to avoid disconnected in-
stances. Instead of rewiring edges of the circulant graph Cn,k, they add some
random edges. The shortcuts are created by randomly selecting nk vertex
pairs {u, v}, one for each edge of the underlying Cn,k, and adding the edge
(u, v) with probability φ, generating on average nkφ shortcuts.4 This ver-
sion of the model, the SWS model, appears to be the established version of
the WS model; our implementation is described in Section 5.1.2 with some
properties of the model. Some small-world models allow other underlying
graphs than Cn,k; one such model is briefly discussed in Section 3.2.4.

The two properties of the WS model examined by Watts and Strogatz are a
global property, the characteristic path length L(p) of the graph, and a local
property, the clustering coefficient C(p). These are defined loosely as follows:
L(p) is a measure of “typical separation between two vertices in a graph”
and C(p) is a measure of “cliquishness of a typical neighborhood”. These
two measures are used in [134] and many other publications to determine
whether a given network has “the small-world property”. Watts and Strogatz
loosely define that if for a given graph G, C(G) is relatively high and L(G) is
as small as a random graph of the same order and size would have, then G
has the small-world property.

Definition 2.1. The characteristic path length L(G) of a graph G = (V, E)
is the average length of the shortest path between two vertices in G.

Definition 2.2. The clustering coefficient C(G) of a graph G = (V, E) is the
average clustering coefficient of its vertices v ∈ V . The clustering coefficient
Cv ∈ [0, 1] of a vertex v is the density of the subgraph induced by Γ(v).

Note that Cv = 1 if Γ(v) forms a clique. Therefore C(Kn) = 1. Note also
that the local clustering coefficient of a vertex that has only one neighbor is a
matter of definition as the divisor is zero and the result therefore undefined.
We exclude such vertices in our calculations when averaging to obtain C(G)
for a particular graph G. For a Gn,p graph, obviously E[C] = p, as the E[δ] = p

4It appears that u and v are implicitly distinct and previously nonadjacent vertices.
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Figure 3.3: Two Cn,1 graphs split in two from vertex v.

for any subgraph, including the neighborhood graphs. Another noteworthy
point is that C(v) is a measure for the relative number of triangles [65, 107]:

C =
3 × the number of K3 subgraphs

the number of P3 subgraphs
. (3.5)

It is also noteworthy that although the clustering coefficient is locally the
same as density, these measures are not globally dependent on each other.
Consider a graph G that consists of two Kh subgraphs that are connected to
each other by just one edge. There are 2h vertices in the graph and h(h −
1) + 1 edges. Therefore the density is

δ =
h2 − h + 1

2h2 − h
, (3.6)

which approaches 1
2

as h grows larger. All other vertices but the ones adjacent
to the “bridge” between the two cliques have C = 1, the two others having
C = 1 − 2

h
. Hence C(G) = 1 − 2

h2 , which approaches one as h grows. On
the other hand, a complete bipartite graph Kh,h has density δ = h/(2h− 1),
which is also close to 1

2
for large h, but has by definition C = 0, as the neigh-

borhood of any vertex is an independent set. Graphs of similar density may
therefore have entirely different values of C. Toby Walsh [131] proposes the
following “quantitative measure” for the presence of the small-world phe-
nomenon:

Definition 2.3. The proximity ratio µ of a graph G is the ratio between the
clustering coefficient C and characteristic path length L of G normalized by
the same measures for a random graph of the same order and size, Cr and Lr:

µ =
CLr

CrL
. (3.7)

Watts and Strogatz [134] compare the characteristic path length and cluster-
ing coefficient of a WS graph to the respective values for the circulant graph.
To analyze L(Cn,k) and C(Cn,k) we first derive some properties of the cir-
culant graphs. In a Cn,k, the degree of each vertex v ∈ V is exactly 2k and
hence it is 2k-regular. The number of edges in Cn,k is m = nk, as each vertex
has 2k neighbors and summing over the n vertices counts each edge twice.
From this we obtain δ(Cn,k) = 2k

n−1
. We also point out that when k ≥ bn

2
c,

Cn,k
∼= Kn and therefore has diameter one.
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To derive a generic formula for the diameter, fix a vertex v ∈ V and split
the “ring” in two from v as shown in Figure 3.3. For even values of n, there
will be a vertex directly opposite to v which we denote by w. The distance
from v to w is necessarily the diameter of the graph. Between v and the
possible opposite vertex w, there are r vertices on both sides,

r =







n−2
2

, n even,
n−1

2
, n odd.

(3.8)

The first k of the r vertices in either direction along the ring are at distance
one from v, the next k at distance two, and so forth. To determine the di-
ameter of Cn,k, we observe that each “step” may take us as far as k vertices
forward. Hence

diam(Cn,k) =







d n
2k
e, n even,

dn−1
2k

e, n odd.
(3.9)

The number of “full blocks” of k vertices on each side of the ring between
v and the opposite position (which is empty for odd n and the vertex w for
even n) is

b =







bn−2
2k

c, n even,

bn−1
2k

c, n odd.
(3.10)

We are now ready to define formula for L of Cn,k. The sum of distances from
v to the b full blocks of vertices on both sides of the ring is twice the sum of
distances to one side:

2

b
∑

i=1

ki = kb(b + 1). (3.11)

In addition, there are r (mod k) vertices at distance b + 1 on each side. We
add the distance to these vertices to Equation 3.11 to obtain the total distance
from v to all other vertices in the graph excluding the possible vertex w as
D = (b + 1)(2r − kb). The sum of all distances within Cn,k is T = nD
for odd n and T = n(D + diam(Cn,k)) for even n. As there are n(n − 1)
distances included in this sum, the average distance L = T

n(n−1)
. Making

some substitutions and simplifying, we obtain

L(Cn,k) =















1
n−1

(

(bn−2
2k

c + 1)(n − 2 − kbn−2
2k

c) + d n
2k
e
)

, n even,

(

bn−1
2k

c + 1
)

(

1 − kbn−1
2k

c
n − 1

)

, n odd.

(3.12)
Asymptotically for large n and fixed k, this yields L ∼ n

4k
, in accordance with

the result of Watts and Strogatz [134] that for the WS model L ∼ n
4k

� 1
when p → 1. This estimate can be obtained by approximating the diameter
of the graph by n

2k
, assuming the distances to take uniformly values from one

to the diameter, thereby obtaining an average of about half the diameter;
hence L ∼ n

4k
. Watts and Strogatz also state that C ∼ 3

4
when p → 0, for

which we show a derivation due to Comellas et al.:
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Theorem 2.1. [29] The clustering coefficient of Cn,k is C(Cn,k) =
3(k − 1)

2(2k − 1)
.

Proof. All vertices v ∈ V have same the clustering coefficient Cv for
Cn,k due to the symmetric structure. A given vertex vi has 2k − 2 common
neighbors with its immediate neighbor vi+1 (or symmetrically vi−1) on the
ring.

Therefore |Γ(vi) ∩ Γ(vi±1)| = 2k − 2. Similarly |Γ(vi) ∩ Γ(vi±j)| =
2k− (j +1), 1 ≤ j ≤ k. Summing over the neighbors of vi gives the number
of triangles Tvi

that contain vi:

Tvi
=

k
∑

j=1

(

2k − (j + 1)
)

=
3k(k − 1)

2
. (3.13)

Vertex vi has k neighbors on each side, which introduces a factor 2, which
cancels out as each triangle is counted twice in the sum. Note that T is the
same for all vertices due to the symmetry of the graph. As Tv is equal to the
number of edges present in Γ(v),

C(Cn,k) =
3k(k − 1)

2
(

2k
2

) =
3(k − 1)

2(2k − 1)
. (3.14)

�

We now return to discuss the small-world property. For Gn,m with m = nk,
Watts and Strogatz [134] have derived Lr ∼ ln n

ln k
and Cr ∼ 2k

n
� 1. For

random graphs, Lr ∼ ln n
ln k

(see e.g. [26] for this and more general results),
where k = p(n − 1) for Gn,p and k = 2m

n
for Gn,m. Now that m = nk,

L ∼ lnn
lnk

. The density of a Gn,nk is δ = 2k/(n− 1), which for large n is close
to 2k/n. For a uniform random graph C should be similar to the density and
therefore it is justified to state C ∼ 2k

n
. Note that for n � k, C � 1.

As the rewiring probability goes to one, L ≈ Lr and C ≈ Cr even though
the process does not produce truly random graphs. The problem is that only
one endpoint of the rewired edge is “randomized”; the source of the edge will
not change. As each edge from a vertex v to its k neighbors in one direction is
rewired once, the degree of v will remain unaffected. It may lose neighbors
as the k vertices preceding v are rewiring their edges, but it will certainly
maintain a degree at least k. This would not be true for a Gn,nk, and therefore
the rewiring procedure does not generate true random graphs. However,
much of the symmetry of the original graph is lost in the rewiring, which
justifies to some degree the classification of the rewired graphs as “random”.

Figure 3.4, adapted from [134], shows the “small-world” effect in more
concrete terms: C remains practically unaffected as L drastically drops after
very little rewiring — note that in Figure 3.4 the x-axis has logarithmic scale.5

Watts and Strogatz [134] define small-world networks to be those networks for
which L(p) is nearly as small as Lr, whereas C(p) is significantly larger than in
random networks, C(p) � Cr. Note that the rewiring probability required for

5On page 77, Figure 5.1 displays the same curves for our implementation of the SWS
model (a WS variant presented later in this section) and additionally the unscaled curves
together with those for random networks of the same order and similar size.
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Figure 3.4: Values of C(G) and L(G) normalized by C(Cn,k) and L(Cn,k)
respectively for p ∈ (0, 1]. Sample graphs are generated for parameter values
p = 1, 0.5, 0.25, 0.125, . . . until p < 0.0001. The values are averages over
20 random realizations of the WS model for n = 1, 000 and k = 5. Data is
interpreted from a figure in [134].

Table 3.1: Examples from previously encountered natural network models
with the values of the small-world measures listed. Note that Cr is practi-
cally the density δ of both the corresponding Gn,m and the network in ques-
tion. The calculations on the first row are our own; the other C. elegans
measurements and those of the IMDb and the Western U.S. power grid are
from [134]. The measurements of

	��
�
-domain are from [3], those of the

Internet AS level are from [24], and the thesaurus measurements from [98].

Network |V | |E| L Lr C Cr µ

C. elegans 202 1,954 2.28 2.04 0.30 0.096 2.9
C. elegans 282 1,974 2.65 2.25 0.28 0.05 4.8
edu 11,000 4.06 4.05 0.16 0.0012 129.6
IMDb 225,226 6,869,393 3.65 2.99 0.79 0.00027 2396.9
Internet AS 12,709 27,384 3.62 3.64 0.46 0.0014 330.2
Power grid 4,941 6,596 18.7 12.4 0.08 0.005 10.6
Thesaurus 30,244 3.16 2.5 0.53 0.002 209.7

the small-world phenomenon to appear is very small, p ≈ 0.01. Watts and
Strogatz also inspect the effect of the small-world property in a dynamical
system: a simplified model of epidemic spreading6, predicting that infectious
diseases spread more rapidly in small-world networks. They also touch upon
a few other possibly interesting research topics.

Watts and Strogatz suspected that the “small-world phenomenon might
be common in sparse networks with many vertices, as even a tiny fraction
of shortcuts would suffice” [134]. They examined their conjecture on the
largest connected components of some natural networks; values of L, C, and
µ of these and other natural networks are shown in Table 3.1. In the sense
of small L together with a large C, all of the models in Table 3.1 display the
small-world phenomenon. Note that the magnitude of µ can be very different
for networks that are all small worlds as defined by Watts and Strogatz [134].

6Modeling epidemic spreading with networks is briefly addressed in Section 4.1.
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The models listed in Table 3.1 are quite simple. For example, the data con-
cerning the World Wide Web from [3] concerns a graph drawn with the sites
visited by a certain webcrawl. The paper also provides measures for the en-
tire crawl and the largest connected component. We omit these here, as the
calculations are only estimates due to the large network size; the subgraph
of .edu-domains is sufficiently small to calculate the exact values for these
measures.

Values of Cr and Lr are averages of over 30 randomly generated Gn,m

graphs. If only n and k were given in the reference, we used the equality
m = nk

2
rounding to an integer. Some of the cited articles readily provide

values of Cr and Lr, but these may be calculated for just one Gn,m and are
not necessarily characteristic. We list these values instead of calculating our
own only if n and m or k are not reported in the referenced publication.
In some articles it is not clear whether the values of L and C are only for
the largest connected component, and whether they obey edge-direction for
directed models.

These problems reflect the general difficulty of employing such network
measures. Surprisingly, also general observations on the behavior of these
measures have been made. Vázquez, Pastor-Satorras, and Vespignani [127]
report several power-laws and other relations, including that of the Internet:
Ck ∼ k−ω, for a vertex with degree k, where ω = 0.75 ± 0.03. Such laws are
helpful in situations where an exact calculation is tedious.

3.2.2 Kleinberg’s lattice model

Jon Kleinberg argues that the WS model does not succeed in capturing the
algorithmic aspect of Milgram’s original research; if letters do propagate effi-
ciently from coast to coast, it certainly suggests that “individuals using local
information are collectively very effective at actually constructing short paths
between two points in a social network” [79]. Kleinberg shows that for the
WS model, there cannot exist a decentralized algorithm operating only on
local information that could construct such short paths. He suggests a mod-
ification of the WS model to capture this behavior. For graphs generated by
the Kleinberg lattice model (KL), there exists a decentralized algorithm that
will find the desired short paths with high probability. Instead of the circu-
lant graph, the ambient network in the Kleinberg model is an s × s grid in
which vertices are pairs v = (i, j), i, j ∈ {1, . . . , s}. The radius within which
local edges are present is fixed to p ≥ 1, using the Manhattan distance

distL(u, v) = dist L((i, j), (k, `)) = |k − i| + |` − j|. (3.15)

For p = 1, a grid appears (see Figure 3.5). In addition to these local connec-
tions, a fixed number q ≥ 0 of directed long-range edges are assigned to each
vertex v ∈ V randomly and independently: 〈v, w〉 is chosen with probability
proportional to d (v, w)−r, where r ≥ 0 is a constant. No duplicate edges are
allowed, which also excludes the vertices within Manhattan distance p of v
when selecting its q additional neighbors.

Clearly the order of the graph is n = s2 and it is connected for p ≥ 1.
The number of edges is less obvious. The order of a p-neighborhood that is
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Figure 3.5: On the left, a KL graph with s = 4, p = 2, and q = 0. On
the right, a KL graph with s = 5 and p = q = 1.

completely included in the lattice is

degp(v) = |{u | dist L(u, v) ≤ p}| =

p−1
∑

i=1

4i = 2p(p − 1), (3.16)

and hence 2m < n degp(v). This upper bound contains “ghost” p-neighbors
of vertices near the border of the lattice that are not included in the graph
(drawn in Figure 3.5 with dotted line). There are s vertices on each of the
four sides of the lattice. A vertex at distance d ∈ [0, p) from the border has
∑p−d

j=1(2j − 1) ghost neighbors, which gives a total of

4s

p−1
∑

i=0

p−i
∑

j=1

(2j − 1) = 4s

(

p3 − p2(p − 1) − p(p − 1)(2p − 1)

6

)

. (3.17)

In this count, some of the ghost neighbors in the four corner areas (shaded
in the example graph of Figure 3.5) are included twice. The number of such
vertices is

∑

i,j<p
i+j≤p

p−(i+j)−1
∑

k=1

k. (3.18)

By the Inclusion-Exclusion Principle, the number of undirected neighbors
is obtained by subtracting the ghost neighbors from the upper bound and
adding back those that were doubly subtracted. Dividing this by two to obtain
the number of undirected edges and adding the qn directed edges, we obtain
the size of the graph m. Our undirected implementation of this model is
presented in Section 5.1.3.

In experimental studies of his network model, Kleinberg [79] concluded
that r = 2 is the only integer value for which any decentralized algorithm is
able to reach any vertex from any other vertex by traversing a path of length
O(log n) using only local information on the network structure. Note that
when r = 0, the probability of an edge being present will no longer depend
on the separation distance, and hence the distribution of long-distance edges
is uniform. For r 6= 2, Kleinberg states that the expected “delivery time”
(for Milgram’s letters) of any decentralized algorithm is higher. Based on
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b
c

Figure 3.6: A ring of six K5 caves rewired to form a connected graph.
The rewired edges are shown with a dotted line, the replacements are
drawn thicker (adapted from [133]).

this observation of a unique value r = 2, Kleinberg argues that not all small-
world networks are in general quickly navigable. He generalizes this result
to d-dimensional lattices, where the optimal value is r = d and suggests that
“the correlation between local structure and long-range connections provides
critical clues for finding paths through the network”, not only in the lattice
model, but small-world networks in general [78].

3.2.3 Connected caveman graphs

An early attempt in social sciences to capture the clustering properties of so-
cial networks was the caveman graph, produced by linking together a ring
of small complete graphs called “caves” by moving one of the edges in each
cave to point to another cave (see [133] and the references therein). Fig-
ure 3.6 illustrates this principle. Note that the individuals of one cave will be
connected closely to each other and the populations of the separate caves are
connected sparsely.

Watts [133] derives the clustering and path length properties for a cave-
man graph G = (V, E), |V | = h(k+1), that consists of h “caves” isomorphic
to Kk+1. Clearly |E| = h

(

k+1
2

)

and hence δ = k
h(k+1)−1

. The clustering
coefficient of one cave is equal to that of the entire graph. The vertices in
each cave may be classified into the following four types (see Figure 3.6):

(a) one vertex va with deg(va) = k from which an edge was rewired to the
next cave; the new neighbor is not connected to any of the k others

that are all mutual neighbors — hence C =
(k
2)−(k−1)

(k
2)

= 1 − 2
k
,

(b) one vertex vb with deg(vb) = k− 1 that lost the rewired edge; all of the
remaining neighbors are connected and hence C(vb) = 1,

(c) one vertex vc with deg(vc) = k + 1 that gained a new neighbor from
the rewired edge that is not connected to the k other neighbors; within
the old neighbors one rewired edge is missing and hence C(vc) =
(k+1

2 )−(k+1)

(k+1
2 )

= 1 − 2
k
.

(d) k − 2 other vertices vd with deg(vd) = k, for which the only edge
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missing from the Kk+1 is the rewired edge; hence C(vd) =
(k
2)−1

(k
2)

=

1 − 2
k(k−1)

.

Taking a weighted average of the above we obtain

C(G) =
1

k + 1

(

k + 1 − 6k − 8

k(k2 − 1)

)

. (3.19)

As the caves are grown larger, the fraction of vertices with high clustering
grows and eventually C → 1. Watts [133] also calculates the characteristic
path length, obtaining

L =
8

k(k + 1)
+

(

n

k + 1

)2

2

(

n

k + 1
− 1

) + 1, (3.20)

based on reasoning about the average distances inside a cave and the dis-
tances required to move from one cave to another. Intuitively, the asymptotic
average distance is half the diameter, which is approximately diam(Ch,1) for
large graphs, as the caves are connected as vertices of Ch,1 and moving within
a cave takes at most one extra step.

In our experiments, reported in Chapter 5, we consider a hierarchical
caveman graph construction to model coauthorship networks. One cave is
considered to represent a research group, the members of the group being
closely connected. Several research groups are linked to form a laboratory,
and furthermore several laboratories are loosely connected to form a depart-
ment, etc.

3.2.4 Alternative models and measures of small-world networks

The above definitions and models of the small-world property have not been
entirely satisfactory, leading to other approaches. The question of the most
accurate model is still to be settled and variations come up frequently; there-
fore this text does not attempt to be a full review of the field, but rather a
glance at some of the recent suggestions. Pandit and Amritkar [112] define
“shortcuts” in graphs that are not tied to a certain graph topology. They call
such shortcuts the far edges of the network.

Simply stating, (i, j) is a far edge of order µ if no simple path of length
µ + 1 exists from i to j (for a formalization, see [112]). The minimal order of
(i, j) is µmin if there is at least one path of length µmin connecting i to j but
not a path of length µmin +1. A far edge with µmin = 1 is hence defined as an
edge that is not included in any triangle [56]. Note that no edge in Kn can
be a far edge and all edges of a tree are far edges of all orders.

Denoting the ratio of far edges to |E| by F , Pandit and Amritkar [112]
find by experiments that for the small-world region of the WS-graphs, where
C(G) ≈ C(Cn,k) and L(G) ≈ L(Gn,p), this ratio is small: F ≈ 0.01. They
suggest that F would be a better parameter for small-world generation than
p, as it is not in any way dependent on the generation method, whereas the p
of the WS model is strictly limited to the case of rewiring a Cn,k.

36 3. MATHEMATICAL NETWORK MODELS



Gent, Hoos, Prosser and Walsh [53] obtain networks with small-world
properties by a mechanism they call morphing. They start with two structures
(e.g. graphs) and combine (parts of) these to produce a structure that has
properties of both the original structures. For graphs, the procedure is the
following: take two graphs with a common vertex set V of size n, denote
these as G1 = (V, E1) and G2 = (V, E2). Form the “morph” Gm = (V, Em)
by including E1 ∩ E2 in Em and taking in addition a fraction p of edges in
E1 \ (E1 ∩ E2) and a fraction 1 − p of those in E2 \ (E1 ∩ E2).

Gent et al. also define a matrix morph in which two m × n matrices A1

and A2 are combined into Am by choosing each of the elements randomly
and independently from the two possible choices, from A1 with probability
p and from A2 with probability 1 − p. This too can be used to produce a
graph, as graphs are essentially captured by their adjacency matrices. Also
incidence matrices7 of graphs can be used. Also other kinds of morphs are
defined in Gent et al. [53], but they are of little interest here.

To produce a small-world network from two easily obtainable graphs, the
initial graphs G1 and G2 should be chosen so that the other has high cluster-
ing but high average path length (e.g. Cn,k) and the other has small diameter
(e.g. Gn,p). The advantage of this method over the WS model is, according to
Gent et al. [53], that “the theoretical analysis of morphs is likely to be much
easier than that of rewired graphs”. They have experimented with morphs
of the graph type described above and found that the behavior of L and C is
very similar in morphing as it is in the WS model. They also compare the
behavior of Walsh’s proximity ratio µ (see Definition 2.3 on page 29), again
finding curves of similar shape.

Latora and Marchiori [86, 90] in turn criticize the original WS model
for limited scope and propose a generalization to weighted graphs (allowing
further generalization to disconnected or dense graphs). Instead of speaking
in terms of the clustering coefficient C and characteristic path length L, they
define the small-world phenomenon first in terms of connectivity length D
in [90] and later in terms of efficiency E in [86].

The connectivity length D is introduced to embrace physical distances
into determining the presence of the small-world property. It is a valid mea-
sure for any metrical graph and portrays the efficiency of information prop-
agation defined by the separation distances ds(u, v), u, v ∈ V . A separation
distance is defined to be the smallest sum of physical distances over the set of
paths connecting u to v in G. It is not required that G is connected, so calcu-
lating the arithmetic average value of ds(u, v) is pointless — for disconnected
graphs, some distances may be infinite. Thus Marchiori and Latora define
the connectivity length as the harmonic mean of the separation distances,

D(G) =
n(n − 1)

∑

u,v∈G

ds(u, v)−1
. (3.21)

In [90] they report that the behavior of D resembles that of L when evaluated
globally, and that of 1/C on a local scale. In a later article, Latora and Mar-

7The rows of an n×m incidence matrix M of a graph G = (V, E), |V | = n, |E| = m,
represent the vertices ui ∈ V and the columns represent the edges ej = (vj , wj) ∈ E;
mij = 1 if ui ∈ {vj , wj} and zero otherwise.
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chiori [86] replace D by another measure of weighted graphs, the efficiency
E of a graph. They define a graph G = (V, E) by two matrices: the adjacency
matrix A and a distance matrix L, in which `ij is the “physical distance” or
interaction strength between vertices i and j ∈ V . Note that this is entirely
different from the number of edges d (i, j) on the shortest path from i to j.
They combine A and L to calculate a cost matrix D to represent the cost
of reaching one vertex from another, for example dij = aij · `ij. Latora and
Marchiori seem to allow also other relations from A and L to D, as long as
dij ≥ `ij .

The efficiency of a pair of distinct vertices i, j ∈ V is defined as εij =
1/dij. For instance, the graph could represent a communication network,
in which shorter distances are traveled faster. The average efficiency of the
graph G is naturally defined as the average of the individual efficiencies over
all n(n − 1) ordered pairs of distinct vertices:

E(G) =

∑

i6=j∈V εij

n(n − 1)
=

1

n(n − 1)

∑

i6=j∈V

1

dij
. (3.22)

This value is denoted by Eglob. It can be normalized with respect to the com-
plete graph Kn, in which dij = `ij ∀i, j ∈ V , and E is the largest possible:

E(Kn) =
1

n(n − 1)

∑

i6=j∈V

1

`ij
. (3.23)

The normalized efficiency En(G) is therefore the quotient of the above val-
ues, in the range [0, 1]: En(G) = E(G)/E(Kn). The corresponding local
quantity is defined for the neighborhood subgraphs induced by Γ(v), nor-
malizing by local efficiency of Kdeg(v). The definition is straightforward and
omitted. The local efficiency of the graph is henceforth defined as

Eloc =
1

n

∑

v∈V

E(Gv). (3.24)

Latora and Marchiori [86] define a system’s fault tolerance by the local ef-
ficiency measure. A small-world network, in the terminology of Latora and
Marchiori, has a high local and global efficiency. This characterization ap-
plies for unweighted graphs (where L is the unit matrix J) as well as discon-
nected graphs, unlike the characteristic path length L, which is infinite for
disconnected graphs.

Efficiency E is a rough approximation of both C and L (properly normal-
ized). If the graph G is considered a parallel communication network (in
which all vertices “transmit” simultaneously), Eglob measures the transmis-
sion efficiency of the network, whereas 1/L is essentially a similar efficiency
measure for a sequential communication network where one packet is trans-
mitted and delivered before another one is introduced into the system. Latora
and Marchiori explain that for systems in which the differences in vertex-to-
vertex distances, the elements of L, have small variation, these Eglob and 1/L
are essentially the same. If the graph G has mostly dense subgraphs, then the
local efficiency Eloc is close to C.
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Latora and Marchiori [86] have plotted Eglob and Eloc as functions of the
rewiring probability of the WS model, finding that the resulting curves of
1/Eglob and Eloc match well with those of Figure 3.4 of the WS model. The
empirical work does not employ the possibility of assigning weights to the
edges, but rather concentrates on studying models similar to those in [134],
such as the C. elegans -network (introduced in Section 2.1), the Web graph
(Section 2.4), and a network model of the Boston subway transportation sys-
tem.

Newman and Watts [106] modify the SWS model of Section 3.2.1 to al-
low reflexive and multiple edges during the shortcut addition (for analytical
simplicity) and exchange the underlying lattice from Cn,k to Z

2 and hyper-
cubes. We call this the MSWS model. The interesting regime of graphs for
Newman and Watts is that where p is small, as they believe it to be the natu-
ral regime for modeling social networks. They define the length scale ε of a
small-world graph to be the typical value of the pairwise distance d (u, v) for
shortcut edges when the edge (u, v) itself is ignored. They shake off a factor
of two for analytical simplicity, defining ε = (pkd)−1/d, where p is the short-
cut probability, k is the range to which each vertex of the underlying lattice
is locally connected (similar to parameter p of the Kleinberg model), and d
is the dimension of the underlying lattice. Later ε is called the characteristic
length of a graph by Newman, Moore and Watts [104].

If p → 0, ε diverges and ε ∼ p−1/d. Newman and Watts [106] argue that ε
is in fact the cross-over length for the transition from “a large world to a small
world”, discussed in e.g. [17]. This cross-over in concrete terms means that
the characteristic path length L changes from being linear in terms of the
graph order to logarithmic; ε defines the point when this happens. Newman
and Watts state that also the average number V (r) of neighbors that a vertex
has within a radius r from itself, can be expressed in terms of ε as V (r) =
ε(e4r/ε−1)

2
. Together with Cristopher Moore, Newman and Watts [104] also

give a mean-field approximation to the path length distribution of MSWS
graphs. The approximation is exact as the lattice gets large, n � 1/kp.

Most of the above models achieve small-world characteristics by combin-
ing randomness and regularity, but Kasturirangan [74] argues that the “fun-
damental mechanism behind the small-world phenomenon” is the presence
of edges of several different length scales and therefore graph constructions
that introduce multiple length scales can achieve the small-world property.
He defines the length-scale of a newly introduced edge as the distance be-
tween the vertices it connects if the edge in question was not present in the
network. Thus the distribution of length scales in a set of new edges to be
added to an existing network is defined by the current distances of their end-
points. Kasturirangan defines that a graph G′ = (V, E ∪ E ′) obtained from
G = (V, E) by adding the edges in E ′ is multiple scale with respect to G if
the length-scale distribution of E ′ contains r � 0 length scales `i such that
0 < `1 � `2 � . . . � `r ≤ |V |. In general, a network G = (V, E) is said to
be a multiple scale network if there exists a subgraph H = (V, E ′), E ′ ⊂ E,
such that G is multiple scale with respect to H .

Hence according to Kasturirangan [74], the introduction of long-range
edges is not as relevant in obtaining a small-world network than using a
proper distribution (with sufficiently many different length scales) for the
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Figure 3.7: Shapes of the degree distributions for the ER, WS, and KL
models from left to right. The rightmost figures show a collaboration
graph with n = 11,004 and m = 17,055. The upper plots are drawn on
a linear scale and the lower on a log-log scale.

length scales of the edges introduced to the network. Kasturirangan also
points out that the structure of the brain should portray small-world char-
acteristics, which were already observed by Watts for the C. elegans neural
network.

3.3 SCALE-FREE NETWORKS

Not all observations of natural phenomena fit the small-world approach. For
example, the degree distribution of the WS model and its variants seem to
differ significantly from many natural networks. Natural networks often have
some vertices of very high degree, which are absent by construction from
both the Watts-Strogatz model and the Kleinberg lattice model. Also the ER
model fails to match the degree distribution of many natural networks.

To illustrate this mismatch, in Figure 3.7 we have plotted the degree dis-
tributions generated by the ER, SWS and KL models both on linear and
logarithmic scale. All graphs are of order 10,000. Thirty independent in-
stances were generated for each set of parameters used. We used p = 0.25
for ER, p ∈ {0.25, 0.5, 0.75} and k = 100 for SWS (from left to right in the
plot), and the parameters r = 2, p = 10, q ∈ {10, 30, 50} for the KL model
(from left to right). The distributions shown are averages over the respective
sets. For comparison we show in the rightmost column plots of a collabo-
ration graph as an example of a natural network; it is a subgraph of a larger
collaboration graph discussed in more detail in Section 5.3. Note how the
distribution does not resemble any of those generated by the models.

The observation behind the scale-free network models is that the degree
distribution of several natural networks, that is, the probability that a vertex
has degree k, obeys a power-law P (k) ∼ k−γ ; these distributions were intro-
duced in Section 2.3.2. Power laws f(x) ∼ cx−γ are called scale-free due to
the fact that when x is multiplied by a constant, the proportionality of f(x)
to x−γ remains valid [88].

Values of the exponent γ for natural network models have been recorded
eagerly since the 1999 paper of Faloutsos et al. [46]. For many natural net-
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Table 3.2: The values for the exponents of the scale-free degree distri-
butions of some network models. For directed models, the values for
the in-degree and out-degree distributions are given individually. If the
reference provides only n = |V | and k, we take m = |E| = nk/2 and
round.

Network |V | |E| γ γin γout Ref.

Citations 783,339 6,716,198 3 [119]
IMDb 212,250 3,054,278 2.3 ± 0.1 [13]
Internet AS 8,613 18,346 1.115 [24]
Power grid 4,941 6,596 4 [12]
Synonyms 182,853 317,658 3.25 [118]
www.nd.edu 325,729 889,240 2.1 ± 0.1 [12]
www.nd.edu 325,729 1,497,135 2.1 2.45 [118]
WWW 200 million 1.5 billion 2.09 2.72 [23]

work models the value has been observed to settle in [2, 3] [40]. Some these
exponents are listed in Table 3.2 for reference; note that most of these net-
works are growing natural networks and that the values of the exponents de-
pend on the time and accuracy of the measurement. However, not all natural
networks are scale-free; Amaral et al. [8] find for example that the cumulative
distribution of the number of acquaintances for a network of 43 Utah Mor-
mons resembles a Gaussian curve rather than a power-law. Although their
network is very small, there is reason to believe that some particular mech-
anisms are required in the generation process of a network for it to obtain
scale-free distributions for properties such as the degree distribution.

3.3.1 The Barabási-Albert model: Growth and preferential attachment

In 1999, Barabási and Albert [12] suggested that independent of the com-
plex, natural network under study, the degree distribution obeys the power
law P (k) ∼ k−γ , where P (k) is the probability that a vertex has degree k.
They draw the conclusion that such decay “indicates that large networks self-
organize into a scale-free state” [12], which does not fit the ER or WS models
where the probability of having high-degree vertices decreases exponentially
with k. Barabási and Albert have studied those natural examples for which
the data is readily available: the Hollywood collaboration graph, the Web
graph, the power grid of the western United States, all of which were dis-
cussed in Chapter 2, and also a citation network of papers published in ref-
ereed journals. The scaling exponents are listed in Table 3.2; note that the
directed and undirected models for the WWW that are both based on the
www.nd.edu domain have different numbers of edges as the models have dif-
ferent level of accuracy: in the directed model, two edges may exist between
a pair of vertices whereas the undirected version only may have one.

Barabási and Albert [12] propose another model that imitates two proper-
ties of natural networks that they consider central for the observed scale in-
variance: growth and preferential attachment. Growth is included as natural
networks are hardly of static structure or size, whereas both of the models ER
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and WS assume a fixed number of vertices. Obviously, all the example net-
works chosen by Barabási and Albert (some of which are listed in Table 3.2)
grow continuously. New papers are published and new movies are filmed, for
example. In their growth, often a principle of preferential attachment is also
inherent: as new vertices appear, they are most likely linked to those existing
vertices that already have high degree. This is also intuitively understandable
for all of the examples: new actors appear in the films of esteemed stars, stu-
dents publish first with their supervisors and certainly cite their papers, and
so forth.

It also appeals to intuition that people would put such links on their web-
pages that lead to already popular websites. However it is not immediately
clear why the out-degree of the WWW is also scale-free. It could very well be
that a page that already has a lot of links evolves to have even more links be-
cause it is essentially just a link list, whereas a page that is more of a content-
providing page than a link-providing page is not very likely to gain more and
more outgoing links. The origin of such power laws in the Web graph are
discussed by Tadić in [126].

The generation process for scale-free networks by Barabási and Albert (the
BA model) is the following. The initial graph8 G0 = (V0, E0) at time t = 0
consists of a small initial set of vertices, |V0| = n0. At time step t, a new vertex
vt is added to V and assigned d edges; the probability that vt is connected to
w ∈ Vt−1 is

Pr [(v, w) ∈ Et ] =
deg(w)

∑

u∈V

deg(u)
. (3.25)

Clearly |Vt| = n0 + t and |Et| = m0 + mt. Barabási and Albert [12] state
that asymptotically Gt has a degree distribution that follows a power law with
γ = 2.9 ± 0.1 and is independent of time t. Note that if d = 1, the structure
will necessarily grow acyclic. Barabási et al. [13] analyze the BA model with
a “mean-field approach”, predicting γ = 3. The graphs of the BA model
resemble at least some natural networks, as the classification method of nat-
ural graphs by Vukadinović et al. [130] (briefly introduced at the end of Sec-
tion 2.3) classifies a biochemical network based on gene expression data close
to the BA model.

Barabási and Albert [12] study models with one of the key features miss-
ing — either growth or preferential attachment — to ensure that both are
needed. They conclude that for growing graphs with uniform attachment,
the degree distribution is exponential, P (k) = be−βk, instead of scale free.
Note that the attachment is not uniform over all vertices, but those that are
present in the graph at time t. Therefore “old” vertices are likely to gain more
vertices than “young”. For a graph of fixed order, yet exhibiting preferential
attachment upon the introduction of edges, Barabási et al. find that although
the network is initially scale free, P (k) will take a Gaussian form as time t
increases. In [13], Barabási et al. propose some modifications to the original
BA model, such as the addition of edges between existing vertices of the net-
work and also rewiring of existing edges. They expect the model to maintain

8The authors do not define what the initial graph is; E0 = ∅ is implicitly suggested.
This however causes problems as the sum of vertex degrees is initially zero.
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the scale-free nature as long as the modifications allow for the growth process
to be the dominating factor in the dynamics of the network.

Mukherjee and Manna [99] propose a model that produces scale-free net-
works that have a fixed set of vertices and edges are introduced according
to a specific probability distribution. Their construction starts from a Cn,1

with V = {v1, v2, . . . , vn}. During each time step t ∈ [1, n], an additional
edge is placed from vertex vt such that u 6= vt is the target vertex of the edge
with probability Pr[(vt, u) added] ∼ deg(u)α(t). For α ≥ αc(n), the degree
distribution is scale-free, although α = 1 yields the Poisson distribution.

A nonlinear model of preferential attachment where the connection prob-
ability of vertex v to the newly added vertex is proportional to deg(v)α, α > 0,
seems to match the observed distributions of some application data better
than the models that use Equation 3.25 [68, 100]. Nevertheless, Krapivsky,
Redner and Leyvraz [83] find that the linear form of Equation 3.25 is neces-
sary to produce a scale-free topology. Furthermore they state that the power-
law exponent γ can be tuned to take any value ≥ 2. This result is thus is
accordance to that of Eriksen and Hörnquist [45], who argue that the linear
preferential attachment rule of Equation 3.25 is both a sufficient and a nec-
essary condition for the appearance of a scale-free degree distribution in a
growing network.

Holme and Kim [65] notice that even though the WS model incorporates
the high clustering visible in natural networks and the BA model produces
the power-law degree distribution also apparent in natural examples, neither
model captures both of these properties. They therefore propose a modifica-
tion to the BA model to allow the adjustment of clustering to a desired level.
The only change to the BA model is the addition of an extra step, triangle
formation: as a new vertex u is introduced to the graph Gt, a total of d edges
(u, vi) are also added. The vertices vi are chosen preferentially according
to Equation 3.25. For each edge (u, vi), a triangle is formed by selecting a
random vertex w ∈ W = {w | w ∈ Γ(vi), (u, w) /∈ E} and adding the
edge (u, w) to the graph. If W = ∅, nothing is added and the process con-
tinues with the next preferential edge (u, vi+1) until all d edges have been
processed.

Holme and Kim tune the clustering by assigning a probability pC for per-
forming the triangle formation step after introduction of a new preferential
edge. This controls the number of triangle formation attempts and therefore
acts as a control parameter for the clustering of the resulting graph. From
experiments they conclude that such graphs have P (k) ∼ k−γ with γ ≈ 3,
and that C approaches a finite nonzero value as the graph grows. We have
included this clustering step in our implementation of the BA model, pre-
sented in Section 5.1.4.

Walsh [132] finds it problematic that d ≤ n0 is required for the BA model,
as the resulting graphs become quite sparse when n0 � n. He suggests the
following connection probability from a new vertex vt to an existing vertex
vi:

min

{

1,
d · deg(vi)
∑

j

deg(vj)

}

, (3.26)
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Applying these probabilities results in d connections per new vertex on av-
erage. Note that d does not need to be below n0 to obtain well-defined
connection probabilities. This proposal of Walsh is just one of the numer-
ous suggestions and generalizations that have been made based on the BA
model. We summarize some of those here to provide a quick glance to the
variety of scale-free models under research.

Bollobás et al. [20] criticize the analysis and argumentation of [12, 13],
providing an analysis of the asymptotic behavior of the degree distribution of
a close BA variant described below. They derive the exact degree distribution
Pt(k) at time t of the graph generation process for k ≤ t1/15, yielding as a
consequence the result γ = 3 predicted by Barabási et al. [13] by somewhat
heuristic arguments. The BA variant of Bollobás and Riordan [21] (the BR
model) allows multiple and reflexive edges, which seems to be a trend in
analytical models. The formulation of the BR model follows.

Denote again the number of edges added upon the addition of a single
new vertex by d. First, the case d = 1 is considered. The graphs are a result
of a random process {Gt

1}t≥0. The initial graph can be either G0
1 = (∅, ∅) or

G1
1 = (V 1

1 , E1
1) such that V 1

1 = {v1} and E1
1 contains only the reflexive edge

(v1, v1). The graph Gt−1
1 is modified to form Gt

1 by introducing a new vertex
vt and an edge (vt, vi) to connect it to the existing graph structure; vi ∈ Vt is
randomly drawn with probability deg(vi)/(2t−1), such that the edge (vt, vi)
is already counted into deg(vt) in assigning these probabilities for reasons of
analytical convenience.

For Gt
1 = (V t

1 , Et
1), obviously V t

1 = {vi | 1 ≤ i < t}, nt = |V t
1 | = t, and

mt = |Et
1| = mt−1 + 1. Graphs with d > 1 are generated by a generalization

of the above process: {Gt
d}t≥0 is defined as executing {Gt

1} on a sequence
of vertices v′

i, where v′
i is the vertex added to Gt

1 at time t = i. An instance
of {Gt

d}t≥0 is constructed by identifying the vertices v′
1, v

′
2, . . . , v

′
d to form a

single vertex v1 (that is, all occurrences of these vertices in the set of edges
are replaced with v1), the vertices v′

d+1, v
′
d+2, . . . , v

′
d+d to form v2, etc.

Bollobás and Riordan [21] denote the probability space of instances of the
above process {Gt

d}t≥0 for t ∈ {1, 2, . . . , n} by Gn
d . They concentrate on

studying the case d = 1 as the general process is defined by iterating the sim-
ple process and hence the properties of the instances of Gn

d can be deduced
from those of Gn

1 . Most importantly, they prove the following theorem:

Theorem 3.2. [21] Let d ≥ 2, m ∈ Z and ε ≥ 0, ε ∈ R be constants. Then
almost every Gn

d ∈ Gn
d is connected and diam(Gn

d) satisfies

(1 − ε) lnn

ln ln n
≤ diam(Gn

d) ≤
(1 + ε) lnn

ln ln n
.

The lower bound is obtained from the above process definition by four
lemmas, but the proof of the upper bound is complicated and resorts to ran-
dom pairings of integers. It takes up numerous pages in [21]. We do not at-
tempt to summarize the analysis of Bollobás et al. here but direct the reader
to the original paper. The proof steps are interesting and reveal some proper-
ties of the ensemble of the BR model, such as the fact that almost all vertices
can be removed from the graph with constant probability p < 1 without
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affecting the diameter. This property of scale-free graphs will be addressed
further in Section 4.2.

3.3.2 Variants of the BA model

Dorogovtsev et al. [42] define another directed BA variant in which vertices
have attractiveness consisting of initial attractiveness A0 ≤ 0 and the in-
degree of v:

A(v) = A0 + degin(v). (3.27)

The attractiveness of a vertex v ∈ V determines the probability of placing an
incoming edge at v:

Pr [〈u, v〉 ∈ Et+1 ] = A(v)/
∑

w∈V

A(w). (3.28)

An interesting feature is that Dorogovtsev et al. do not fix the origin of these
edges to the vertex added at that time step. The new edges might even come
from outside the current graph Gt. The initial graph is convenient to fix as
one vertex and d incoming edges (again the sources of these edges are left
open), although the behavior of Gt after several steps will be independent of
G0 [42].

The age a(v) of a vertex v is defined as the number of time steps that has
passed since v was introduced to the graph. Note that there is only one vertex
per each value of a(v) if the initial graph is chosen as above. The calculations
in the analysis of the degree distribution in [42] are nontrivial, yielding that at
a fixed time t, the average degree of a vertex v, a(v) > 0, follows a power law
degin(v) ∼ a(v)−β, where β = 1/(1 + A0/d). The scaling exponent for the
degree distribution is γ = 2 +A0/m. Let a = A0/d. For a = 0, Dorogovtsev
et al. [42] report γ = 2 and β = 1. For a = 1 (which corresponds to the
original BA model), γ = 3 and β = 1

2
. As a → ∞, the initial attractiveness

dominates and all vertices have equal attractivity, which causes the scaling
behavior to break: γ → ∞ and β → 0.

Another aging model is suggested by Amaral et al. [8], who simply classify
the vertices as active or inactive and allow only active vertices to gain new
edges. New vertices are added to the network, which are the origin of these
new edges. An active vertex will in time become inactive either after gaining
the maximum number of links allowed or randomly with a probability from
an exponentially decaying distribution. In addition to assigning an age or an
activity status, the vertices may be assigned a fitness that influences their de-
gree growth as done by Huberman and Adamic [66], but we omit discussion
of this generalization.

Volchenkov and Blanchard [129] propose a stochastic model that does
not employ a preferential attachment mechanism and may produce, among
other types of graphs, also scale-free networks. The process starts with a graph
G = (V, ∅) at a vertex vi. New directed edges are added from vi to random
vertices that are not yet adjacent to vi. When the system exceeds a fluctuating
stability threshold due to the addition of edges, the process moves to another
vertex vj . Therefore the out-degree of a vertex vi is proportional to the num-
ber of time steps the process has stayed at vi. The in-degrees are a result of a
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uniform random process. The definition of stability and setting the threshold
as well as controlling the fluctuations act as parameters to the model. The
out-degree distribution is reported to follow a power-law and the in-degree
distribution a Gaussian for properly selected parameters, but also very differ-
ent network topologies may result for different parameters. The simplicity of
the basic idea is appealing, but setting the parameters is nontrivial.

3.4 COMBINING SMALL-WORLD AND SCALE-FREE PROPERTIES

The BA model was originally suggested to explain the degree distributions
observed in natural networks (as shown in Table 3.2) that differ from those
produced by the earlier models, such as the ER and WS models. However,
also the WS model was designed to explain properties of natural networks:
small average distance combined with large clustering coefficient, which to-
gether constitute the small-world phenomenon (as shown in Table 3.1). It
is unfortunate than by construction the clustering coefficient C of the BA
model is small: as the hubs attract most of the edges, it is unlikely that dense
neighborhoods are formed. Even with the clustering step of Holme and Kim,
the clustering stays small for small d and hence for small δ. In this section
we study recent models in which the scale-free degree distribution has suc-
cessfully been combined with high clustering, which would better match the
properties of natural networks. Bu and Towsley [24] propose the following
generalization of the preferential probability formula of Equation 3.25:

Pr [vi is chosen] =
deg(vi) − β

∑

vj∈V

(deg(vj) − β)
, (3.29)

where β ∈ (−∞, 1). For small values of β, the high-degree nodes have less
advantage of being chosen. If β were allowed to take a value b ≥ 1, vertices
with deg ≤ b would not gain any new edges. Bu and Towsley show that this
probability distribution also produces a power law for the degree distribution.
In other respects their model is very close to the BA model, but the addition
of links is altered with the addition of vertices. The initial graph contains a
tree of n0 vertices9 and the generation method of this initial graph is not fixed.
With probability p (a parameter), d′ < d edges are added to the graph, using
Equation 3.29 to determine the endpoints. With probability 1 − p, a new
vertex with d edges is added using Equation 3.29 to determine the second
endpoint. Duplicate and reflexive edges are not forbidden by construction.
The analysis of the model yields

Pr [deg(vi) ≥ k] ∝ k
2d′−β(1−p)

(1+p)d′ . (3.30)

Bu and Towsley [24] also report experiments that show their model to come
closer to the measured values of the power-law exponent γ and the clustering
coefficient C for the Internet AS level graph than other power-law generation

9Bu and Towsley [24] require n0 vertices and m0 = n0 − 1 edges in the initial
graph, but do not explicitly state whether the initial graph is connected. For a graph
with n0 vertices and n0 − 1 edges to be connected, it must be a tree.
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models (including the BA model introduced in the previous section and the
Inet generator of Section 2.3.3). For the characteristic path length L, their
generator is not the closest one, but the accuracy may be adjusted by allowing
C to differ more from the measured value. Fifty graphs were generated with
each generator using different random seeds. For the values measured for
the Internet AS level, see Tables 3.1 and 3.2; the former table shows the most
recent of the measurements reported in [24], dating at January 2002, whereas
the latter contains values from September 2000. However the values of L and
C have remained almost constant during the six measurements reported by
Bu and Towsley: L ∈ [3.6168, 3.6367] and C ∈ [3.5585, 3.7914] in all of the
measurements.

Davidsen, Ebel and Bornholdt [33] formulate a model that they have
found to generate graphs with high clustering in terms of C, small average
distance L and scale-free degree distribution. Their model is defined in terms
of an acquaintance network, where a common acquaintance may introduce
two strangers. The graph G = (V, E) evolves by the addition of new vertices
or the replacement of existing vertices. With probability p at each time step,
a random vertex v is removed from the network along with all of its incident
edges, and replaced by a new vertex that only has one random acquaintance.
At each time step a vertex v ∈ V and two of its neighbors u, w ∈ Γ(v)
are picked randomly. The edge (u, w) is added to E unless it is already in-
cluded. If v has only one neighbor, v is connected by an edge to a random
vertex w ∈ V . We presume that reflexive and multiple edges are implicitly
forbidden, as they are not semantically justified for acquaintance networks.
The order n = |V | of the graph stays fixed as such steps are iterated.

Davidsen et al. [33] concentrate on the regime p � 1, where the linking
process dominates the death process and a power-law degree distribution ap-
pears. If p ≈ 1, the random linking of the replacement vertex will dominate
and the Poissonian distribution of these random links influences the degree
distribution. They state that in stationary state of the generation process,
C = 1−p(k−1), where k is the average degree. Hence the clustering is con-
siderably larger than the corresponding value of a G

n, nk
2

. They also derive an

estimate to L, which is of the same magnitude than the corresponding value
of a random graph, and calculate the power-low exponent γ to be 1.35 for
p = 0.0025 (the presence of the death-process causes an exponential cutoff
in the distribution).

3.5 DETERMINISTIC NETWORK MODELS

The graph models discussed thus far have included a random element. The
ER model is a simple stochastic process that adds edges between n vertices,
whereas in the small-world models the existence of some edges may be pre-
determined and the connection distribution modified (as in the KL model).
The BA model of scale-free networks relies on stochastic growth, introduction
of shortcuts and preferential attachment. The elimination of such stochastic-
ity would be of great theoretical interest, as true randomness is nearly im-
possible to obtain and stochastic systems are often harder to understand than
deterministic algorithms [15, 40].
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Comellas, Ozón, and Peters [29] present a deterministic model for cre-
ating graphs of high clustering and small diameter that conforms to exact
graph-theoretical analysis. They justify using diam(G) instead of the average
or characteristic path length L by ease of calculation. Another change with
respect to the previous models is the regularity of the resulting graphs; they
add edges similar to the shortcuts of WS model to reduce the diameter, but
restore the degree of vertices by edge replacement. The model is different
from those previously discussed as it is deterministic instead of probabilis-
tic. Deterministic small-world networks are also discussed in Ozón’s doctoral
thesis [111].

The starting point of the modification process is again a circulant graph
Cn,k. The diameter of the original graph is therefore given by Equation 3.9,
although in [29] diam(Cn,k) = dn/2ke is being used, which is only valid for
even n; for odd n the diameter is exactly (n − 1)/2 as the longest distance
from a vertex v to any of the other n− 1 vertices is the distance to the farthest
vertex on both “sides”, and there are exactly (n − 1)/2 vertices per side. See
Figure 3.3 for an illustration where diam(C5,1) = 2 6= d5

2
e = 3.

Comellas et al. [29] reduce the diameter of the circulant graph to a de-
sired value diam(H) by using a graph H of that particular diameter10 to con-
nect |H| = h vertices in Cn,k. They call these h vertices hubs. This will
temporarily cause the modified graph G to lose k-regularity, but this will be
corrected during the second step of the modification process. The only pa-
rameter of the model is the number of hubs h. In addition to shrinking the
diameter, Comellas et al. analyze the clustering properties of the resulting
graph G. They first calculate the clustering coefficient of the circulant graph
Cn,k (Theorem 2.1). As each vertex v ∈ V participates in Tv triangles, and
TCn,k

= 1
3

∑

v∈V Tv. The resulting graph G needs to be modified further
to restore k-regularity. The h hubs have now a degree higher than 2k and
therefore some of the edges connected to them need to be removed. Those
that connect a hub vi to vi±k cannot be removed as this could increase the
diameter.

To study the effect of edge removal from the hubs, Comellas et al. fix H
to a double loop graph Cn;a,b, a 6= b, which is a 4-regular graph resembling
Cn,k graphs in which each vertex is attached to the neighbors on the ringside
that are either at distance a or distance b in either direction. If a, b 6= 1, the
“ring” Cn,1 is not a subgraph of Cn;a,b. They state that

diam(Cn;a,b) =

⌈−1 +
√

2n − 1

2

⌉

. (3.31)

for a = diam(Cn;a,b) and b = a + 1 (see the references of [29] for the origin
of this equation). Combining Cn;a,b with Cn,k increases the degree of hubs
by four. They state the following result to decrease hub degree and analyze
the effect on the clustering coefficient CG:

Theorem 5.3. [29] Let vi be a vertex of Cn,k and R = {vi−a, vi−b, vi+c, vi+d}
be an independent set. Removing first the four edges (vi, vi−a), (vi, vi−b),
(vi, vi+c), and (vi, vi+d), 0 < a, b, c, d ≤ k, thereafter adding the edges
(vi−a, vi+c) and (vi−b, vi+d) reduces the number of triangles T in Cn,k by
4k−6, maintaining the degree of vertices in R and reducing deg(vi) by four.

10For example, diam(Kn) = 1 and diam(K1,n−1) = 2.
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Proof. Select R = {vi−a, vi−b, vi+c, vi+d} such that 1 ≤ a, b, c, d < k,
a 6= b, c 6= d. According to the previous proof, the number of triangles
removed on one side of vi is 2k−(a+1)+2k−(b+1)−1 (a triangle is counted
twice, therefore the subtraction of one). For the other side respectively 2k −
(c − 1) + 2k − (d − 1) − 1. Therefore a total of 8k − (a + b + c + d) − 6
triangles have been removed due to the removal of four edges.

The addition of two new edges naturally introduces new triangles. The
number of common neighbors of the newly connected nodes, |Γ(vi−a) ∩
Γ(vi+c)| = k−a+k−c = 2k−(a+c), is same as the number of new triangles
in the resulting graph. Also the other new edge contributes k − (b + d) new
triangles. Therefore the total reduction in the number of triangles in G is
(8k − (a + b + c + d)− 6)− (4k − (a + b + c + d)) = 4k − 6. This does not
depend on the choice of R as long as no duplicate edges are added. �

We also summarize the derivation of C(G) of the modified graph:

Theorem 5.4. [29] For a graph G produced from Cn,k by adding h ≥ 8 hubs
and removing edges as described above to restore regularity, the clustering
coefficient is

CG = C(Cn, k) − 6h(2k − 3)

nk(2k − 1)
=

3(k − 1)

2(2k − 1)
− 3h

nk(2k − 1)
.

Proof.

CG =
1

n

∑

v∈V

Cv =
1

n

∑

v∈V

Tv

k(2k − 1)
=

3TG

nk(2k − 1)
(3.32)

by the definitions of the clustering coefficient and the number of triangles in
a graph. From the previous result we have TG = TCn,k

− 2h(2k − 3), and
hence

CG =
3(TCn,k

− 2h(2k − 3))

nk(2k − 1)
= C(Cn,k) −

6h(2k − 3)

nk(2k − 1)
, (3.33)

by Theorem 2.1 and the definition of the clustering coefficient. �

The construction of Comellas et al. therefore produces graphs with small
(adjustable) diameter and a high clustering coefficient. They examine as an
example the case where n = 1,000, k = 5, h = 50 and find that diameter of
the resulting graph G is only 9% of diam(Cn,k) while CG is as high as 93% of
C(Cn,k).

Also deterministic scale-free models have been proposed that resort to hi-
erarchical generation to obtain deterministic growth while maintaining a
scale-free degree distribution. Ravasz and Barabási [118] in fact argue that
the “fundamental discrepancy between models and empirical measurements
is rooted in a previously disregarded, yet generic feature of many real net-
works: their hierarchical topology.” Barabási, Ravasz and Vicsek [15] use a
fractal-like approach (the BRV model) illustrated in Figure 3.8 to construct
hierarchical graphs in an iterative manner. The initial graph G0 consists of
only one vertex r0, the permanent root of the hierarchy. At the second step,
two copies of G0, that is, two single vertices, are added and connected to the
root to form G1. The third step adds two copies of G1 into the graph and
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G0
G1

G2

G3

Figure 3.8: The “fractal” graph Gt of BRV model for t ∈ {0, 1, 2, 3}
(adapted from [15]). Vertices added at time t are shown white.

connects each of the leaves of the copies to the root. The process continues
like this, taking two copies of Gt and connecting the leaves of the copies to
the root of the original Gt to obtain Gt+1.

By observing the process, it is simple to obtain some properties of Gt =
(Vt, Et) such as |Vt| = 3t−1 and |Et| = 3|Et−1| + 2t, which simplifies to
|Et| = 2 · 3t − 2t+1. This is because all edges are multiplied into the three
copies of Gt−1 that become subgraphs of Gt and the 2t leaf vertices of the
copies are all connected to the root vertex. Therefore, the degree of the root
grows by 2n at each step, being zero at n = 0, giving deg(rt) =

∑t
k=0 2k =

2t+1 − 2. The next step will produce two copies of rn, which will no longer
be the root. As only the root vertex gains additional edges, at time t there are
2 · 3t−i−1 vertices with degree 2i+1 − 2; namely the copies of the root vertices
of time i [15].

There is a unique root in the graph, two copies of the former root, six
copies of the previous and so forth. Hence Barabási et al. [15] argue that
because |V | grows as powers of three and |E| as powers of two, the network
topology is scale-free with a γ that is a multiple of ln 3

ln 2
. The authors point

out that γ can be varied by connecting a different number of the vertices
of the copies into the root of the previous step. It is noteworthy that these
graphs have no triangles by construction (that is, K3 subgraphs), which yields
∀t C(Gt) = 0 (see Section 3.2.1). Hence the model fails to capture the small-
world phenomenon.

Ravasz and Barabási [118] propose a deterministic model to combine the
scale-free degree distribution with high clustering. This RB model has the
same fundamental idea as the above model. Ravasz and Barabási start with
a K5, one vertex dedicated as the root of the entire construction, the other
vertices being peripheral (see Figure 3.9). At time t > 0, four copies of Gt−1

are added to the graph of the previous step. All new vertices that are copies
of peripheral vertices are marked peripheral and the peripherality mark is
removed from previously peripheral vertices. After this, all new peripheral
vertices are connected to the root vertex. The first three steps of the process
are depicted in Figure 3.9.

As |V0| = 5 and each graph Gt consists of five copies of Gt−1, we have
|Vt| = 5t+1. Similarly, |Et| = 5|Et−1| + 4t+1 as four copies are always taken
from each “white” vertex and all edges in Gt−1 are copied five times to Gt.
This recurrence simplifies to |Et| = 26 ·5t−16 ·4t. The degree of the root at
time t is deg(rt) = 4·deg(rt−1)+4, which simplifies to deg(rt) = 4

3
(4t+1−1).

By construction, the root vertex rt has 1
4
deg(rt) separate K4 subgraphs in its
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G2

G1G0 = K5

Figure 3.9: The graphs G0, G1, and G2 of the RB model (adapted from
[118]). The root vertex is drawn black, peripheral vertices white and
other vertices (previously peripheral or copies of the root) are shown
gray. The G0 copies in G1 are tilted in order to ease the root linking of
the peripheral vertices. As the number of root connections in G2 is large,
only arrowheads are drawn to represent these edges.

neighborhood, yielding the clustering coefficient for the root vertex at time t:

CR(t) =

(

4
2

)

deg(rt)

4
(

deg(rt)
2

) =
9

4t+2 − 7
. (3.34)

At time t > 0, there are Rt(i) = 4 · 5t−i−1 copies of rt−i in Gt for i ≤ t − 1;
in total there are

Rt =
t−1
∑

i=0

4 · 5t−i−1 = 5t − 1 (3.35)

copies of former roots present at time t > 0. There are also Pt = 4t+1

peripheral vertices in Gt at time t, as there are originally four of them, and
four copies are taken at each time step. For each peripheral vertex ut at time
t > 0, deg(ut) = 4 + t, the induced subgraph of Γ(ut) has

(

t+1
2

)

less edges
than a clique of the same size, as the new root is not connected to any of the
old root copies. This that for a vertex ut that is peripheral at time t > 0,

CP(t) =

(

4+t
2

)

−
(

t+1
2

)

(

4+t
2

) =
6(t + 2)

(t + 3)(t + 4)
. (3.36)

In total there are |Vt| − Pt = 5t+1 − 4t+1 nonperipheral vertices, one of
which is the root and Rt = 5t − 1 are copies of former roots. Hence there
are 4(5t − 4t) such nonperipheral vertices at time t that are not the current
root or copies of the former. At time t, four copies of each of the peripheral
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G1

G−1 G0 G3

G2

Figure 3.10: The pseudofractal graph Gt for t ∈ {−1, 0, 1, 2, 3} (adapted
from [40]). Vertices added at time step t are shown white.

vertex of the previous step are taken, after the induced subgraph of their
neighborhoods are fixed. Hence their clustering at time t is Cp(t − 1). Also
all the non-peripheral vertices of the previous step remain unaltered and four
copies are taken from each. The number of new non-peripheral vertices
at time t is by construction Nt = Pt−1 = 4t. Also five copies of all non-
peripheral vertices of Gt−1 are present in Gt. Note that the clustering of non-
peripheral vertices is the same than their peripheral ancestors: CN (t) = CP(t)
(given in Equation 3.36).

We derive C(Gt) by inserting the above formulas to the definition of C:

C(Gt) =

CR(t)+
t−1
∑

i=0

Rt(i)CR(i)+PtCP(t)+
t−1
∑

j=0

5jNt−jCP(t−j−1)

|Vt|
. (3.37)

Note that for t = 0 the sums are empty as the end index is lower than the start
index. Our implementation of the model agrees with the above equation, but
attempts to simplify this equation either by hand or with the help of symbolic
software were in vain. Following the example of Ravasz and Barabási [118],
we resorted to numerical simulation: as t → ∞, it appears that C approaches
0.74184, which we have verified for t ∈ [35, 440]. For t > 440, the graph
grows so large that the calculation of the above formula becomes infeasible
(|V440| ≈ 1.76 · 10308). An implementation of this model is described in
Section 5.1.5, where we also compare our observations on the generated
topology to those of Ravasz and Barabási.

Dorogovtsev, Goltsev, and Mendes [40] also question the necessity of ran-
domness in constructing scale-free graphs. Their deterministic procedure
(the DGM model) is based on [15]. The initial graph G−1 = (V−1, E−1)
consists of two vertices v and w and the edge (v, w). At each discrete time
step t ≥ 0 of the process, per each (u, v) ∈ Et−1, a new vertex w is added
together with edges (u, w) and (v, w). Thus at time t = 0, G is a triangle.
See Figure 3.10 for an illustration of the five first generations . Note that
Gt remains planar11 at each iteration. An implementation of this model is

11A graph is planar if it is possible to draw a diagram in which no two edges cross.
Planarity yields some interesting results and therefore can be a valuable asset for a
generation model.
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described in Section 5.1.5.
At time t, the number of edges |Et| = |Et−1|+ 2|Et−1| = 3|Et−1| is equal

to 3t+1, as |E−1| = 1. Similarly, the number of vertices |Vt| = |Vt−1|+ |Et−1|
is equal to 3(3t +1)/2. Therefore the average degree of of the resulting graph
Gt is

k̄t =
2|Et|
|Vt|

= 4(1 + 3−t). (3.38)

The degrees of the vertices are well-behaved: the vector k of distinct degree
values at time t ≥ 0 is clearly

k = (k1, k2, . . . , kt+1) = (2, 22, 23, . . . , 2t, 2t+1). (3.39)

Denoting ηi = |{v | v ∈ Vt, deg(v) = ki}|, the vector η of the number of
vertices with degree ki

η = (η1, η2, . . . , ηt+1) = (3t, 3t−1, 3t−2, . . . , 32, 3, 3). (3.40)

The construction follows preferential attachment, as vertices receive new
neighbors proportionally to their degree. As nt decreases as a power of kt,
the graph is a scale-free network. Dorogovtsev et al. [40] use a cumulative
distribution from the above sequences 〈ki〉 and 〈ηi〉:

Pcum(k) ≡
∑

i≥k

ηi

|Vt|
∼ k1−γ, (3.41)

where γ = 1 + ln 3
ln 2

≈ 2.585, which falls in the range (2, 3) as desired. The
authors of [40] also point out that the maximal degree of Gt is ∆ = 2t+1 ∼
|Vt|ln 2/ ln 3 = |Vt|1/(1−γ), coinciding with a cutoff relation for scale-free net-
works given in [41]. Dorogovtsev et al. also state that the number of vertices
with C(v) = 1

2
ki is ηi (see Equations 3.39 and 3.40 for k and η). From this

observation, it is straightforward to calculate the average clustering coeffi-
cient for Gt of the DGM model from the above local result C(v) = 1

2
deg(v),

taking several simplification steps:

C(G) =
1

|Vt|
t+1
∑

i=1

ηi
2

ki
= . . . =

4

5
· 6t + 3

2

2t(3t + 1)
. (3.42)

As t approaches infinity, C(G) → 4
5
. The analysis of the average path length

L is complicated and the details of the analysis are not published in [40],
the initial result being L ∼ ln Vt/ ln k̄, where k̄ is the average degree of Gt as
above. A plot of C and L is shown for t ≤ 13 in Figure 3.11, together with the
degree distributions. Computing L becomes infeasible quickly as the graph
grows, as it requires calculating all pairwise distances.

We omit here comparison with Gn,m graphs with the same order and size,
as the DGM graphs are quite sparse and hence the corresponding ER graphs
tend to be disconnected. Therefor L is not properly defined for most graphs
of the ensemble. In general, Lrand ∼ (ln n)/(ln 2m

n
) for Gn,m, whereas L of

the plot appears linear. Note that C quickly converges to 4
5

as expected; the
density δ corresponds to Crand. The degree distributions are scale-free and fall
nicely on a line, except for the highest degree value which settles a little to the
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Figure 3.11: Values of L, C and δ (left) and degree distributions (right)
of the DGM graphs for t ∈ [−1, 13]. The degree distributions settle in
left-to-right order such that G13 is the rightmost plot.

right of the line. The slope of the fitted lines is the same; fitting by gnuplot
to the last two distributions, ignoring the last data point, yields γ = 1.58469.

Because the process somewhat resembles a fractal process, Dorogovtsev et
al. have chosen to call it pseudofractal. They examine the effect of deleting
random vertices or edges of Gt. They state that in order to eliminate the gi-
ant component from Gt, almost all vertices or edges must be removed. This
is a known property of scale-free networks with γ ≤ 3 [28]. They conclude
that they “have failed to find any principal difference between the structural
properties of pseudofractals and those of random growing nets”, which some-
what surprisingly suggests that stochasticity is not absolutely necessary to ad-
equately model natural networks [40]. In practice, the details of the applica-
tion at hand will dictate whether randomness should be included.

Ravasz and Barabási [118] study common examples of natural networks,
including the portion of the World Wide Web under the the www.nd.edu

domain (see Section 2.4 and [6]) and the IMDb collaboration network of
actors (see Section 2.1). They find a scaling law C(v) ∼ 1/ deg(v) to be a
good approximation for several natural networks. However the above scaling
law does not hold for the ER, WS and BA models or their straightforward
variations, as the clustering coefficient is independent of the degree of the
vertex. Nevertheless it is valid for the above DGM model, where C(v) =
2/ deg(v), which suggests that it is in some sense more realistic than the
other models.

Jung, Kim and Kahng [71] remark that the BRV model has fixed charac-
teristic path length12 L independent of the system size which may be useful
in application areas that also have this property, such as metabolic networks
(see e.g. [69]). The deterministic generation model proposed in [71] is simi-
lar to the DGM model; it exchanges the triangle shape of the DGM model
to a tree structure. The analysis of the model is simple, yielding solutions
for the degree distribution and characteristic path length. The model also
incorporates a parameter for tuning the scaling exponent γ within the range
(2, 3).

12Jun, Kim and Kahng [71] and many others call the average of the shortest path
lengths the diameter of the graph, which in this text has been defined as the maximum
of shortest path lengths. This unfortunate lack of consistent terminology is prevalent
in applied graph theory.
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4 PROPERTIES OF NONUNIFORM RANDOM GRAPHS

In this chapter we review some important applications of nonuniform ran-
dom graphs such as epidemiology and system security and discuss algorith-
mic implications of the network models. The chapter ends with a study of
algorithms for finding clusters in graphs, including our proposal for a local
clustering heuristic.

4.1 EPIDEMIC SPREADING

Studies of dynamical behavior in networks often involve problems of spread-
ing, in which the propagation of some influence along the network structure
is studied. Such influence might be for example a forest fire or heat conduc-
tion in metal. An obvious field to study spreading is epidemiology. If healthy
individuals are infected with rate µ, and infected individuals are cured with
rate δ, the effective spreading rate of the epidemic is the ratio λ = µ/δ. In
many networks, such as the Gn,p family and locally connected lattices, there
exists an epidemic threshold λc below which the epidemic dies out exponen-
tially fast and above which the epidemic spreads and remains permanently in
the population [115].

Different stochastic network models of epidemic spreading have been de-
fined. In the SIR model (Susceptible, Infected, Removed), an individual
has a probability t` of infecting a neighboring individual, and a probability tg

of infecting a nonneighbor. Susceptibility s is the probability that a healthy
individual contracts an infection when exposed to a disease, whereas trans-
missibility t is the probability that a healthy individual gets infected when
in contact with an infected individual [97]. Infected individuals eventually
die [16]. In the SIS model (Susceptible, Infected, Susceptible), individuals
recover from the infection and return to being susceptible individuals instead
of dying [115]. For more information on the behavior of epidemics in differ-
ently structured populations, see for example [10] and the references therein.

Watts [133] discusses epidemic spreading in the SIR model, finding that if
the infection rate µ, interpreted as the probability that any infected individual
will infect a susceptible neighbor, is lower than the tipping point µtip ≈ 1

9
on

WS graphs with n = 1,000 and k = 10, the disease only infects an o(n)
population before vanishing. If µ & 0.5, the disease takes over the entire
population — regardless of the rewiring probability p. For the intermediate
region, the spreading behaves differently for different values of p. Watts does
not determine in detail the reasons or the nature of these differences. He
also briefly examines the SIS model, where individuals are not permanently
removed from the population.

As different networks allow for different spreading behavior, structural in-
formation can be useful in controlling epidemics. Pandit and Amritkar [112]
use information on the far edges (discussed in Section 3.2.4) to control epi-
demic spreading. Assume that as a vertex is infected at time t, during the
following time step t + 1 it will infect all of its neighbors and die. Such an
epidemic will spread in a WS graph almost as quickly as in a Gn,p, due to the
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presence of the shortcuts [112, 134]. If the network structure is known, far
edges of desired order can be computationally identified and the epidemic
controlled.

Pandit and Amritkar suggest an immunization procedure that blocks a
shortcut e = (u, v) by immunizing either u or v. If i vertices may be immu-
nized per time step, start by blocking all shortcuts and after that, immunize
random vertices. If there are more than i shortcuts, the epidemic will clearly
spread using the shortcuts that have not been blocked. They find that this
procedure “decreases the rate of spread of the epidemic more effectively but
takes longer to completely stop the spread” than completely random immu-
nization [112].

Newman and Watts [106] use percolation (see Section 3.1.2) in small-
world networks as a model of epidemic spreading, finding that the critical
fraction pc can be expressed in terms of the shortcut probability of the MSWS
model (see Section 3.2.4). By solving the below equation, where p is the
shortcut probability and k the radius of the local neighborhood, pc is ob-
tained:

p =
(1 − pc)

k

2kpc

(

1 + kpc(1 − pc)k
) . (4.1)

This result has been supported by numerical calculations, which however fail
to match the above equation for very small values of p. This problem roots in
the derivation of the equation, as is shown in [106].

Also Moore and Newman [97] study an epidemic in a small-world net-
work G = (V, E) that starts at a single individual. A graph G′ = (V ′, E ′)
is formed on top of an underlying small-world topology as follows. A vertex
v ∈ V is present in V ′ if the individual represented by the vertex is suscepti-
ble to the disease whereas an edge e ∈ E is present in E ′ if the disease will
spread to a susceptible individual along that edge. An interesting question
is, what fraction pc of either V or E must be present in G′ before a giant
component appears in G? Studying this as a question on percolation both
analytically and experimentally, Moore and Newman derive expressions for
the threshold fractions: for an SWS graph with t = 1 and s < 1, the required
fraction of vertices is

pc =

√

4φ2 + 12φ + 1 − 2φ − 1

4φ
, (4.2)

where φ is the average number of randomly added edges per an edge in the
underlying Cn,k (see the end of Section 3.2.1 for details of the graph con-
struction). For the case where s = 1 but t < 1, pc can be solved from

φ =
(1 − pc)

3(1 − pc + p2
c)

4pc(1 + 3p2
c − 3p3

c − 2p4
c + 5p5

c − 2p6
c)

. (4.3)

Moore and Newman [97] conclude that the presence of a single infected
individual will break into an epidemic infecting more than one half of the
susceptible individuals above the obtained threshold pc, whereas only about
five percent are infected below it.

Pastor-Satorras and Vespignani [115] study data from computer virus epi-
demics and simulations. They find that no epidemic threshold exists in scale-
free networks and therefore epidemics may spread quite effortlessly even
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when the rate of spreading is slow. Dezső and Barabási [35] study how to
stop epidemics in scale-free networks by providing policies that select which
individuals to vaccinate and arrive at the intuitive conclusion that making the
hubs (or at least all hubs of a given degree or higher, depending on the vacci-
nation cost) immune to the virus will more likely lift the epidemic threshold
sufficiently high to delimit the spreading of the epidemic.

Computer viruses are mostly SIS epidemics, as a computer can be cleaned
from the virus, but without an efficient anti-virus software, it may very well
be re-infected after the cleanup. A biological epidemic may to behave more
like a SIR epidemic; living organisms may develop immunity or even die.
The scale-free nature of the virus-spreading networks is clear, as a virus will
be more likely to infect a computer that has much traffic. Pastor-Satorras
and Vespignani [115] find that only when γ > 4, instead of the typical 2 <
γ ≤ 3, the behavior of the scale-free network under epidemic spreading
will resemble that of a uniform random network such as the Gn,p family. As
the case studies in Section 2.3 show, the Internet appears to fall under the
“dangerous” zone of scale-free networks, in which epidemics spread quickly
and persist infinitely.

Newman et al. [102] study the spread of viruses via electronic mail; these
“worms” automatically forward themselves from an infected machine to all
e-mail addresses listed in the address books stored on that machine. A net-
work of contacts listed in the address books forms a directed graph on which
the virus epidemic progresses. Newman et al. study prevention and control of
such epidemic outbreaks in communication networks of communities such
as company intranets or university campus networks. They have obtained
a sample network from a university computer system, containing approxi-
mately sixteen thousand vertices representing the users of the system. About
ten thousand of these vertices are connected in the sense that a virus may be
passed from one vertex onto the other. The network is not scale-free: the in-
degree distribution is P (k) ∼ e−k/ci , where ci ≈ 8.57 whereas the out-degree
distribution is P (k) ∼ (1

√
k) exp(−

√

k/d), where d ≈ 4.18. According to
Newman et al. [102], the former distribution form occurs in models of grow-
ing networks with random edge assignment and the latter in models with
sublinear preferential attachment.

The observations of Newman et al. on address book structure imply a
model in which the source of a new edge is chosen preferentially and the
target randomly. This is reasonable: in the real world, some people keep ad-
dress books, whereas some do not. Those that already have an address book
tend to add new entries regardless of whether the person being added has a
habit of keeping an address book. Implementing such a model and running
tests to study the epidemic spreading in more detail would be an interesting
task to consider in further work. Newman et al. find that a random immu-
nization of vertices does not have a significant effect on epidemic spreading,
whereas targeted protection of a suitably selected 10 percent of the vertices
(for example by installing anti-virus software on the computers) immunizes
almost the entire network. This is a promising result and complies with those
obtained for attack tolerance of networks in the next section.

In conclusion, knowledge of the network structure helps to control epi-
demics and this observation can be harnessed to produce better practical
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tools for such protection. In the following section, we briefly focus on a
related phenomenon of protecting networks against random breakdowns or
targeted attacks.

4.2 ERROR AND ATTACK TOLERANCE

It is often assumed that the high level of error tolerance demonstrated by
complex natural systems is due to their apparent redundancy. Albert, Jeong
and Barabási [7] argue that redundancy alone is insufficient to guarantee
robustness; also a scale-free topology is required. They have experimented on
natural network models, and found that a surprising amount of vertices may
be disabled without affecting the interconnectivity of the remaining vertices.
However, these systems are vulnerable to attacks on a few vertices of very high
degree that are mainly responsible for maintaining “routes” between vertices
of lower degree.

Random breakdowns can be imposed on a connected graph by removing
randomly chosen edges or vertices. Vertex removal of course results in the
loss of all incident edges as well and is therefore more severe. Considering
vertex removal, we denote the fraction of vertices being removed by p, which
means that pn vertices will be lost and therefore the probability for a single
vertex to “break down” is p. After a sufficient number of such removals has
taken place, the graph is no longer connected and the size of the largest
component is no longer of order n. The fraction of vertices (together with
the incident edges) that need to be removed for this to happen is the critical
threshold pc; the graph remains connected with high probability only if p ≤
pc.

Albert et al. [7] study changes in the diameter of graphs for varying values
of p. They compare the ER model, which has a degree distribution with
an exponential tail (that is, most vertices have similar degree), and the BA
model with a scale-free degree distribution, finding that the diameter of an
ER graph grows monotonically with p even though the edge set of such a
graph is hardly minimal for keeping the graph connected. As the connection
probability grows, the random graph becomes redundant in the sense that
multiple paths connect almost any pair of vertices. For the BA graphs, the
diameter remains practically unaffected as p grows from zero to 0.05.

It is nevertheless intuitive that if there are very few vertices with extremely
high degree, often called hubs, they are unlikely to be among the five percent
of removed vertices; having all of them removed is highly unlikely. Unlike
random removal, a systematic attack against these hubs will have drastic con-
sequences on a BA graph whereas for ER graphs, random breakdown and
disabling the vertices in order of decreasing degree do not substantially dif-
fer. Albert et al. [7] find that pc ≈ 0.28 for the ER model under both attack
strategies, whereas for the BA model, pc ≈ 0.18 for the systematic attack on
hubs and pc is close to one under random breakdowns.

Albert et al. [7] analyze the behavior of the Internet and the Web graph,
which both hold up to almost 100 percent of random breakdown but fall
quickly and abruptly under systematic attack. The authors estimate pc ≈ 0.03
for the Internet and pc ≈ 0.067 for the Web graph under systematic attack
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on hubs. This is a serious vulnerability for these and other communication
networks in which the hubs are easily identified. Shargel et al. [121] propose
a model that produces graphs with degree distribution varying from exponen-
tial to scale free and study the robustness of the resulting networks, finding
that neither one of the extremes produces the optimal network. We refer the
reader to [121] for details of the study.

Random vertex removal can be considered a percolation phenomenon as
in the studies of Cohen et al. [28] on the resilience of the Internet. Con-
sidering networks where the connection probability of two vertices depends
only on their degrees, they achieve an analytic result for the threshold pc by
ignoring cycles. Cohen et al. [28] conclude that for any graph whose degree
distribution obeys the power law P (k) = ck−γ with γ < 3, the threshold
pc approaches one as n grows infinite. Therefore fragmentation into small
components does not take place. Hence the Internet, for which γ ≈ 2.5, will
have a very high threshold; if it were truly infinite, it would hold up under
arbitrary removals, but as it is finite (yet huge, with n > 106), more than 99
percent of the vertices would have to be removed in order to fragment the
giant component originally present [28]. Flajolet et al. [48] introduce an an-
alytic measure of network robustness and study the robustness properties of
the Gn,p. They define `-robustness as follows [48]:

Definition 2.4. A triple (G, v, w), where G = (V, E) is a graph and v, w ∈ V ,
is `-robust if and only if there exist at least two edge-disjoint paths of length `
from v to w in G.

They provide results for the expected number of such paths between two ver-
tices of a Gn,p and the threshold probability for their existence. The analysis
employs generating functions. They find e.g. that any fixed pair {v, w} ⊆ V
is “likely” to be `-robust if

p ≥ pc1 =
1√

2n1−`
, (4.4)

where “likely” means that the average number of edge-disjoint paths is at
least one as n → ∞. On the other hand, they show that “almost” all pairs
{v, w} ⊆ V are robust if

p ≥ pc2 =
2

n1−`(log(n2 log n))`
, (4.5)

where “almost” means that the probability for an arbitrary pair to be `-robust
tends to one as n → ∞. It would be interesting to compare these bounds for
the Gn,p ensemble to measures calculated for other models.

4.3 OPTIMIZATION PROBLEMS

When a network model is constructed, the main goal is to obtain some prop-
erties of the studied phenomenon on the basis of the model. The variety of
problems that are of interest is wide, and many of the common problems
are computationally challenging. Also the algorithms for extracting proper-
ties of graphs are numerous. Exact algorithms can be tedious to carry out,

4. PROPERTIES OF NONUNIFORM RANDOM GRAPHS 59



and hence approximation algorithms are often employed. The properties of
both approaches are of practical importance considering issues of complex-
ity, approximation ratio, and behavior of the algorithms on special classes of
input.

For a compact review on the properties of the Gn,p ensemble with respect
to some of the central graph problems, see Frieze and McDiarmid [50], who
state several intriguing research problems related to the analysis and design
of graph algorithms. For information on graph algorithms in general, see for
example “Graphs, Networks and Algorithms” by Dieter Jungnickel [72] and
the references therein. In this chapter we aim to provide a brief review of
the research currently conducted on the nonuniform network models. Some
related experimental work is documented in Chapter 5.

When working with graph models, many application problems involve
optimization and search. In optimization, the goal is to find the best possible
substructure satisfying given criteria, operating under some fitness function
that associates to each substructure a number that indicates the fitness of that
substructure. Such optimization is often computationally demanding, as the
number of substructures to examine may well be exponential in the instance
size. Therefore approximation is widely used. The goal of an approximation
algorithm for an optimization problem is to find efficiently a solution that dif-
fers no more than a fixed factor in fitness from the globally optimal solution.
It is a matter of application to define how much the approximate solution
may differ from the optimum to be acceptable. Optimization is rarely done
by picking random solutions and examining their fitness, but rather system-
atically by a search algorithm.

The goal of a search is either to find the solution with the best possible fit-
ness value or, in applications other than optimization, to determine the pres-
ence or absence of the desired property. A complete search examines every
possible solution, which is not always feasible as it often requires exponen-
tial time or even exponential space. As a compromise, approximate solutions
are computed with heuristic methods. A heuristic is essentially a rule for de-
ciding where the search should proceed, designed to limit the search space
without severe loss of accuracy. Many heuristic approaches involve random-
ization. When the entire search space is not examined or specifically pruned
such that the optimal solution is found with certainty, the search algorithm
is said to be local. A local search may very well not find the global optimum
but rather a locally optimal solution.

For many types of computational problems, the substructure space can
be formulated as a graph in which the possible solutions are the vertices and
a connection appears if the solutions are somehow related in a meaningful
sense. In a graph, the search proceeds from one vertex to another by travers-
ing through the edges of the graph. As the goal of the search is to find the
vertex with optimal fitness, some fitness function is imposed on the graph.
Branch-and-bound is a search method that does not examine parts of the
search space that cannot contain a feasible solution by bounding the fitness
function. At a vertex v that has many feasible neighbors, such an algorithm
selects one and recursively studies it either completely, or stops when solu-
tions with fitness better than already obtained can no longer be found. Then
the search returns to the branching vertex v and proceeds to search one of the
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other possibilities, never returning to a part of the search space it has already
examined.

Popular local search methods include hill-climbing, where the search
proceeds to a random neighbor with higher fitness than the current vertex
(bound to get stuck on any vertex that has higher fitness than all of its neigh-
bors) and simulated annealing that allows with a decreasing probability the
search to proceed also to inferior neighbors. The greedy heuristic always pro-
ceeds to a neighbor with the highest fitness. Other approaches include for
example tabu search; see [1] for a comprehensive study of local search meth-
ods. These methods may be employed with several fitness functions, using
restarts to cover several areas of the search space. Usually, a local search
finds a local optimum quickly and can be run several times for improved per-
formance, while it still takes considerably less time than a complete search.
However the quality of the solution found by local search may be poor.

In some cases, a complete search is impossible to conduct. The running
time of a complete search can also vary from instance to another; when a
new problem instance is begin searched, it may require exponentially more
time than any preceding instance. Gomes, Selman and Kautz [59] address
this phenomenon of heavy-tailed cost distributions by applying some ran-
domness into complete search algorithms. For backtracking algorithms they
suggest randomization in selecting among the equally promising branches,
or if the fitness function is injective, among choices that receive a score above
a threshold (e.g. ≥ 90 % of the maximum score). Completeness is ensured
by keeping record of visited branches and hence avoiding re-entry.

Gomes, Selman and Kautz [59] suggest the use of an increasing cut-off
value to stop the search when it appears to be stuck at a local optimum and
restarting the search. Such randomization eliminates the heavy-tailed behav-
ior to some extent and provides significant speedup — Gomes et al. report an
improvement of several orders of magnitude for hard, real-world instances.
They consider tournament construction, planning, and circuit synthesis as
examples.

Shortly after the publication of [134] by Watts and Strogatz, Toby Walsh
[131] reported results on the behavior of search algorithms on small-world
networks. He argues that “such a topology can make search problems very
difficult since local decisions quickly propagate globally” [131]. This argu-
ment is based on the observation that a local property such as clustering says
very little about the global structure of the graph, such as the average path
length, but heuristics often resort to local information to guide the search.

Walsh conjectures that in a small-world graph, the inherent “mismatch”
of the local and global properties may mislead the search. As the search takes
longer, the problem instance is considered to be harder. This conjecture is
related to the work of Gomes and Selman [58], who find that the presence
of perturbations in the structure of a combinatorial search problem may seri-
ously mislead specialized search heuristics. They present results for the NP-
complete Latin square completion problem (i.e., filling an n × n table with
n distinct values such that each value appears exactly once in each row and
each column) with perturbations introduced by requiring the Latin square
to fulfill a locally consistent initial pattern. They conclude that using tai-
lored heuristics for some class of search problems must be carefully planned,
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as even minor perturbations in the structure of the problem instances can
result in a drastic performance degradation.

Martin Weigt [136] has studied the dynamics of heuristic optimization
algorithms considering the Vertex Cover problem as an example. The prob-
lem is to find a vertex cover U ⊂ V for a graph G = (V, E) such that
for all edges (u, v) ∈ E, at least one of the endpoints is included in U :
{u, v} ∩ U 6= ∅. The optimization problem is to find the vertex cover
with minimum cardinality |U | over all vertex covers of G, which is an NP-
complete problem [52]. Weigt [136] describes possible heuristics for finding
the minimum vertex cover using the following idea: vertices that have many
neighbors are more likely to get covered than those with only a few neigh-
bors. The information used by Weigt’s heuristics is limited to the degree
of the vertex currently being considered for the cover. He finds that pref-
erentially selecting vertices of high degree improves the performance of the
heuristic optimization algorithms, providing an analysis for different types of
algorithms using such heuristics.

Adamic [3] has studied the small-world properties of the World Wide Web
and proposes a search engine that uses these properties among a set of search
results to present them to end-users. He calls those webpages among the set
of search results that have a small average distance (a small number of links
to follow) to any other page in the search results centers; these are often link
lists pointing to other pages on the same topic. The best center is the one with
smallest average distance to all other pages. Adamic splits the set of search
results into strongly connected components (SCC), selects the best center
from the largest SCC of the Web graph, and forms a spanning tree starting
from that center. A list of the centers with the largest SCC first and others
in ascending order is displayed to the user performing the query; the user is
expected to use the centers to browse in the corresponding SCC. Adamic [3]
reports experiments for some queries and analyzes how connected the query
responses are with respect to the clustering coefficient, proposing marketing
uses for such information.

Another interesting problem on graphs is the Maximum Clique problem,
in which a complete subgraph of a maximum order in a given graph is to
be found. This has several interesting applications; Bomze et al. [22] discuss
applications in coding theory, tiling, fault diagnosis, and pattern recognition.
Their work also provides a good overview of the problem and the existing
algorithms; both exact and approximation algorithms are abundant for this
problem. In Section 5 we report experiments conducted on the running time
of a recent algorithm for Maximum Clique by Östergård [110] on selected
network models.

The influence of degree correlations on computational complexity has
also been considered by several authors, but we omit this interesting branch
for brevity and direct the reader to the work of Vázquez and Weigt [128] and
the references therein.

4.3.1 Shortest paths and spanning trees

Computing a shortest path between a pair of vertices is a central building
block in many applications. For example the small-world property of small

62 4. PROPERTIES OF NONUNIFORM RANDOM GRAPHS



characteristic path length and high clustering cannot be detected unless
some estimate on the average length of a shortest path between vertex pairs
can be obtained. Also the diameter of a graph can be determined by calcu-
lating all shortest paths. A similar concept to a shortest path is a spanning
tree, which is a subtree of G = (V, E) containing all the vertices in V . If the
edges are assigned costs, a minimal spanning tree is a tree with the minimum
total cost.

Spanning trees of graphs are useful in communication networks, where
messages need to be delivered from one node to another efficiently. The
process of determining the path to follow for each message is called routing.
The information needed for such decisions is usually stored in routing tables
that can be built and optimized based on path length and connection reli-
ability. For example, if one wishes to “send a message” from vertex v ∈ V
to an arbitrary vertex w ∈ V in a given graph G, one reasonable (although
suboptimal) approach is to use a minimal spanning tree to determine the in-
termediate vertices to be traversed to reach vertex w. Applications for shortest
path algorithms also include scheduling problems, abundant in many engi-
neering disciplines [72].

In addition to pairwise communication, it is at times necessary to deliver
a message to several nodes in a network instead of just one, which is called
multicasting. When all of the nodes need to receive the message, the term
broadcasting is used. When modeling communication networks, it is com-
monly assumed that a message may traverse one edge per time step, and any
vertex v may pass a message to one of its neighbors w ∈ Γ(v). Sometimes a
multicast from v to Γ(v) is assumed.

Frieze and Molloy [51] have derived an upper bound O(ln n/n) to the
smallest connection probability p for which a broadcast can be with high
probability performed in dlog2 ne rounds in a Gn,p graph. In their analysis, a
single round constitutes of all the vertices holding the message passing it to
at most one neighbor. Finding efficient broadcast algorithms for especially
scale-free networks would be of interest, as the presence of scale-free charac-
teristics in communication networks is quite well established now.

Finding shortest paths is classically done with Dijkstra’s algorithm, which
is a O(n2) algorithm in its basic form and O(m+n log n) when implemented
with a Fibonacci heap (see for example [72]). It would be interesting to con-
struct an algorithm especially suited for small-world or scale-free networks
that performs significantly better than this. Kasturirangan [74] employs his
multiple-scale hypothesis, introduced at the end of Section 3.2.4, to formu-
late a local algorithm for the shortest path problem. The time-complexity
of this algorithm is O(logs n), where n denotes the order of the graph, s is
a scaling factor, and si are the length-scales, i ≤ logs n. He assumes that
all the length scales tightly cover the graph. The general idea of using the
properties of network structure to improve algorithmic behavior is quite cap-
tivating, as there often is plenty of information available regarding the origin
of the network on which a certain algorithm needs to be performed.

Kim et al. [75] have studied three path-finding strategies for BA graphs that
are based on local information only, which is reasonable as the complete
information of the global structure is often infeasible to obtain or process.
The greedy strategy tries the neighbor with the highest degree first, the ran-

4. PROPERTIES OF NONUNIFORM RANDOM GRAPHS 63



dom strategy selects a random neighbor, and the preferential strategy selects a
neighbor with probability proportional to its degree. The estimated diameter
of the network with respect to the approximate shortest paths calculated with
these search strategies over many graph realizations varies; for the random
and preferential strategies it follows a power law, but scales logarithmically
for the greedy strategy as well as for a global search of the shortest path.

Kim et al. also examine the effect of random attack or hub removal (as
discussed in Section 4.2) to the proceeding of these strategies, finding similar
behavior for all strategies and concluding that hence the attack vulnerability
reported in [7] (summarized in Section 4.2) is a true topological property of
the BA model.

Zhang et al. [139] have studied the effect of network structure on the
performance of Freenet. Freenet is a peer-to-peer network, that is a special-
purpose network formed on top of the Internet with dynamic topology. They
find that a certain type of performance degradation is due to poorly clus-
tered routing tables. They are able to improve the situation by introducing
a cache replacement policy that aims to alter the network structure into a
small-world network: most neighbors are chosen geographically close and
some are required to be random far-away nodes.

Pandurangan, Raghavan and Upfal [113] also discuss properties of peer-to-
peer networks, presenting a method of reducing their diameter by a preferen-
tial linking procedure. This essentially introduces small-world characteristics
into the network. As such intentional introduction of the small-world prop-
erty improves peer-to-peer networks, it is likely that the performance of other
communication networks could be improved as well by intervening in the
growth process of the network in question.

4.3.2 Coloring

A vertex coloring of a graph G = (V, E) is a mapping1 f : V → C that assigns
a color c ∈ C to each vertex such that f(v) 6= f(w) whenever (v, w) ∈ E.
The smallest |C| for which such a mapping f exists for a given G is the
chromatic number of G, denoted by χ(G). If χ(G) ≤ k, G is said to be
k-colorable. Also the term k-partite is used, as the vertices colored with the
same color form an independent set (see Section 2.2). The common decision
problems concerning graph coloring are the following:

• Is it possible to color a given graph G with a given number of colors k?

• What is the smallest k for a given graph G such that there exists a
proper coloring f?

It is NP-complete to determine whether a given graph is 3-colorable; the gen-
eral decision problem is k-Colorability [52]. The application areas of graph
coloring algorithms include scheduling and other allocation tasks, such as
register allocation or frequency assignment in GSM networks, studied by
Javier Ozón in his doctoral thesis [111].

1Such maps f : V → C are called vertex colorings. Also edge colorings have been
studied, see e.g. [37] for basic results on graph coloring.
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Walsh [131] has studied coloring of some of the DIMACS benchmark
graphs (see Section 5.3) that are based on register allocation problems de-
rived from real program code. He finds that fpsol2i.1, zeroini.1, and
mulsoli.1 are small-world networks: they have clustering coefficients C >
0.8 whereas the characteristic path length L is actually somewhat smaller
than for random graphs. Walsh has also performed experiments to study
his conjecture, discussed earlier in this chapter, that a small-world topology
makes a search problem hard. He finds that as the rewiring probability of
the WS model increases, the number of vertices visited by a particular col-
oring algorithm by Mike Trick increases rapidly in the small-world region
and drops again when the rewiring probability is above one half. The algo-
rithm used is presumably the algorithm described in [93], but the URL to
the implementation provided by Walsh has expired.

The graphs Walsh studied were very small, of order 100, but he runs the
coloring algorithm for the same small-world graph 1,000 times, randomiz-
ing the vertex ordering, and plots the probability that the search visits more
than a defined number of vertices against the actual number of vertices vis-
ited. From these plots Walsh finds that the distribution is heavy-tailed for
p = 0.065: some runs were significantly slower than others within a single
instance of graph coloring in a WS graph. However, random graphs and WS
graphs with a lower rewiring probability p = 1

256
≈ 0.004 behave differently;

the tails of these search cost distributions decay rapidly. Therefore Walsh
predicts that also for other search problems, such as finding a Hamiltonian
cycle, small-world networks will be more likely to be exceptionally hard than
purely random graphs. Using randomization and rapid restarts to avoid the
heavy-tailed distribution, Walsh finds that using a geometric restart ratio to-
gether with randomization reduces the search complexity efficiently even for
small-world instances. Later in [132] Walsh experiments with the BA model,
finding that randomization and rapid restarts are less effective on power-law
graphs than on the WS graphs. He also states that the BA graphs are easier to
color than random graphs, but display a wider spread of search cost.

Gent et al. [53] have studied coloring small-world networks by using a
reduction from Coloring to the “standard” NP-complete problem of Satisfi-
ability (see e.g. [52]), and using a stochastic local search implementation to
solve the Satisfiability instances. The small-world graphs were WS graphs
with n = 100, k = 4 with different rewiring probabilities; any instance with
χ > 5 was filtered out, as Gent et al. found that the coloring cost of those
instances were at least an order of magnitude lower than the cost of coloring
the other instances. They observed, among other things, that for larger values
of the rewiring probability p, the local search did not need to be very greedy
to perform optimally.

The results of Gent et al. are interesting: adding just a few random edges
to the circulant graph made the cost of the local search jump, but adding
more randomness into the graph eventually improved the performance of
the local search procedure significantly below the cost of coloring the regu-
lar structure. Also, for complete search methods, the regular structure was
easier to color than the randomized one, but the alterations were moderate
in comparison to those of the local search. It appears that for both the local
and the complete algorithms, the graphs that combine regular elements with
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random elements are hard to solve: the local search did worst when p < 0.01,
whereas the complete search seemed to be most disturbed by p ≈ 0.1. Gent
et al. provide informative illustrations on their experiments, which were re-
peated for a hundred different realizations of the WS model for each value
of p examined.

4.4 RANDOM WALKS

A simple random walk is a stochastic process in which two choices are pos-
sible at each state. For example, random walk on a line, starting from the
origin, proceeds at each time step one unit to the left with probability p or to
the right with probability 1 − p. Essentially the same concept is also known
as the Wiener process and Brownian motion. For a review of the properties
of such a process, see for example [62]. Some objects of study with random
walks are, in simple terms, the position to which the walk will end up af-
ter a considerable amount of time, and the average time required to reach a
certain position. Of special interest is the mixing time of the random walk:
the time it takes until the probability that the walk is in a certain position is
nearly constant. In rough terms, if this happens in time that is polynomial
in the input size, the process is said to be rapidly mixing (see e.g. [18] for a
detailed discussion).

The concept of a random walk generalizes to more than one dimension;
on a plane, a random walk may go either up, down, left, or right, and so forth.
Naturally random walks may also be defined on graphs. A uniform random
walk is traverses a graph G = (V, E) by proceeding to each of the deg(v)
neighbors of the current vertex v ∈ V with equal probability. In the general
setup the walk is not assumed to have any other information of the graph
but the (number of) neighbors of the current vertex. For directed graphs, the
walk proceeds in the direction of the edges using degout(v) instead of the total
degree. For analytical properties of random walks, see for example [62].

Bosiljka Tadić [123] studies how random walks with adaptive move strate-
gies proceed in directed networks resembling the Web graph. The test net-
works have been generated by her own model of directed scale-free networks
that grow and rearrange, using preferential attachment both in growth and
rearrangement [124]. The model follows power laws for both the in-degree
and the out-degree. The adaptive random walk is allowed to use locally avail-
able information, in particular the out-degree of the current vertex and the
in-degrees of the neighboring vertices, to decide where to proceed. The edges
are assigned weights so that vertices with high in-degree are more likely to be
visited.

Tadić finds that for certain parameter values of her model, indicating a
high degree of “rewiring” in the graph, an adaptive random walk proceeds
to some fixed level of hierarchy in the graph considerably quicker than a
uniform random walk. The difference in access time is some orders of mag-
nitude [125]. Hence she concludes that such an adaptive walk can pass mes-
sages efficiently for that particular class of Web-like graphs when the degree
of rewiring is large [123, 125].

Adamic et al. [5] study the behavior of search algorithms in power-law
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graphs such as the BA graphs. They hope to find efficient algorithms for that
particular ensemble as so many natural networks have been shown to display
a power-law degree distribution. They are especially interested in distributed
search that lacks global knowledge or control, which was also the starting
point of Kleinberg’s lattice model [79]. Distributed search algorithms, not re-
quiring a central server to have complete knowledge of the network topology,
are necessary in ad-hoc networks that are important in mobile communica-
tion (see [31] for an example and further references).

Adamic et al. propose a decentralized algorithm that exploits the power-
law topology to make the search more efficient. Even though searching with
a uniform random walk is more likely to visit high-degree vertices, they im-
pose scaling to emphasize high-degree vertices during the search and con-
struct a message passing algorithm based on this principle and apply variants
of this to power-law graphs. The variation is mainly on the knowledge that
a vertex possesses of its neighborhood while passing a message. The scaled
approach approach passes messages somewhat more faster than a uniform
random walk for the power-law ensemble.

It would be interesting to study as future work the possibility of random
sampling the World Wide Web or other very large networks by using random
walks in such a way that the level randomness can be reliably estimated. Also
the mixing time of the walks should be small so that the sampling would be
efficient. It appears that not much work on this topic exists yet. Deo and
Gupta [34] propose a construction that attempts to derive results by a process
of regularization through the addition of reflexive edges, which may not be
the most practical approach.

4.5 CLUSTERING

Clustering in general is defined to be the task of “unsupervised classification
of patterns” into clusters, which is of interest in many disciplines but com-
binatorially nontrivial [67]. The patterns could be for example hand-written
characters that need to be sorted into clusters that represent letters such that
each hand-written sample gets classified as the corresponding letter. A clus-
tering task typically comprises of the following subtasks:

1. representing the pattern in suitable form,

2. defining a measure to determine pattern proximity, and

3. grouping the patterns into clusters.

In this section, we restrict to the case of finding clusters in graphs, which cor-
responds to the last two steps: defining a measure that determines whether
two vertices belong to the same cluster or different clusters, possibly choosing
a proper threshold value for the measure, and finally performing the group-
ing into clusters. Jain et al [67] point out the importance of evaluating the
resulting clusters, as “all clustering algorithms will, when presented with the
data, produce clusters — regardless of whether the data contain clusters or
not”.
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In the study of social networks, it is widely believed that there is a com-
munity structure, something similar to the caveman graphs of Section 3.2.3,
in any society: people form communities that are dense in comparison to the
connection density between different communities. Knowledge of such com-
munities is important for example in epidemiological research. This topic
is brought forward in recent work by Newman and Girvan, but traces back
to the 1970s (see [55, 103] and the references therein). In bioinformatics,
clustering algorithms are important for analyzing similarities in e.g. genomic
sequences; once a similarity graph is formed, for example families of proteins
may be found by clustering algorithms [76].

4.5.1 Global clusters

A traditional approach to global clustering (see for example [103] and the
references therein) has been the hierarchical clustering method, in which
connection strengths, such as the pairwise distances, of the vertex set are cal-
culated and a new network is constructed by inserting edges between vertex
pairs in decreasing order of these strength values. At each strength level, a
clustering structure is visible as the connected components of the construc-
tion; the entire hierarchy may be drawn into a dendrogram, which is a tree
that shows the clustering at different levels. This method works well for ex-
ample for objects on the plane and their Euclidean distances, but it is not
suited for simple graphs without physical distances or edge weights.

Also algorithms that search for maximal subgraphs that have a density
higher than a preset threshold have been proposed (see for example [76]
and the references therein). Without a threshold such an algorithm would
search for complete subgraphs, which include K2 and K3, which are neither
very appealing as clusters; any edge will produce a K2 subgraph whereas K3

is a simple triangle. Another approach was proposed by Matsuda et al. [91]
consider p-quasi complete subgraphs as clusters:

Definition 5.5. A graph G = (V, E), n = |V |, is p-quasi complete for p ∈
[0, 1], if for all v ∈ V , deg(v) ≥ p(n − 1).

The connection probability p is given as a parameter to their algorithm.
They show that it is NP-complete to determine whether a given graph has a
0.5-quasi complete subgraph of order at least k. Hence they conclude that
approximation algorithms are the only feasible approach for locating such
subgraphs [91].

Newman and Girvan [103] use dendrograms with edge betweenness as
the splitting criteria; the betweenness of an edge is the number of shortest
paths between arbitrary vertices that contain the edge in question. If there
are k shortest paths connecting a pair {v, w}, each of them will have weight 1

k

in calculating the betweenness measures of the included edges. The current
algorithms to compute betweenness for an edge operate in O(nm) time. For
results on betweenness distributions, see [127] and the references therein.

Newman and Girvan assume edges with high betweenness to be links be-
tween communities instead of internal links within a community: the several
shortest paths passing through these edges are the shortest paths connecting
the members of one community to those of another. Hence they split the
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network into clusters by removing one by one edges with high betweenness
values. If more than one edge has the highest betweenness value, one of them
is chosen randomly and removed. The removal is followed by recalculation
of the betweenness values, as the shortest paths have possibly been altered.
This gives an algorithm polynomial in n and m for clustering. Of course one
still must decide when to stop the partitioning, just as for the hierarchical
clustering method.

In some applications it is desirable to be able to observe the clustering
structure resulting at different levels of hierarchy, but in some cases just a
single clustering is required. Employing a hierarchical method in that sit-
uation requires setting a threshold to detect when to stop the hierarchical
process. To avoid the problem of setting a threshold, partitional clustering al-
gorithms that produce a single clustering structure for the given graph have
been proposed. The partition may either be a true graph partition, where
distinct clusters cover the vertex set, or a loose partition where some vertices
may not be included in any cluster and some vertices may belong to more
than one cluster, formally referred to as a graph cover.

A traditional method to produce a true partitioning into clusters for a
graph is to take the minimal spanning tree and remove the edges that are
“the weakest” under some measure: if the edge cost represents distance, re-
move the longest, and if the cost represents the bond strength, remove the
cheapest. For unweighted graphs, some other measure of the “importance”
of an edge needs to be derived, such as the betweenness measure used above
by Newman and Girvan [103].

Hartuv and Shamir [64] describe the following clustering algorithm for
undirected, unweighted graphs. They define that G is highly connected if the
edge-connectivity k (G) > n

2
(see Section 2.2). Such graphs have diam ≤ 2.

If the graph G = (V, E) is not highly connected itself, split it in two con-
nected subgraphs H and H by removing a cut C of minimum order from E.
Repeat for both of these subgraphs. Return upon finding a highly connected
graph. Whenever an isolated vertex is encountered, it is not considered a
cluster but simply grouped into a set of singletons.

Denoting by N the number of clusters found and by f(n, m) the running
time of the Mincut algorithm for a graph with order n and size m, they
bound the complexity of this algorithm by 2N · f(n, m). Hartuv and Shamir
also suggest heuristics to improve the behavior, such as preprocessing G by
removing low-degree vertices, which in turn reduces the number of Mincut
iterations necessary. They mention experiments that show good performance
of the algorithm for noisy gene expression simulated data.

Kim [76] uses biconnected components to cluster genome data; the artic-
ulation points themselves provide information of the application problem in
addition to the clustering itself.

A clustering method that suits the unweighted and undirected graphs is
proposed by Mihail et al. [94], who define clusters in terms of the relative
density of a set of nodes S ⊂ V in a graph G = (V, E):

δr =
|{(u, v) ∈ E | u, v ∈ S}|

|{(u, v) ∈ E | {u, v} ∩ S 6= ∅}| , (4.6)

which is a measure of the fraction of the number of edges “inside” S, which
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we call the in-degree of S and denote by degin(S), and the total number of
edges incident to S. A set S is a good cluster if δr is large.2

To find such clusters, Mihail et al. [94] resort to spectral analysis of G.
Spectral methods are commonly employed, as the properties of the graph
spectrum are often closely related to other structural properties of graphs.
Goh, Kahng and Kim [57] have studied the spectrum created by the BA
model for d = 2 (see Section 3.3.1) and are able to find the exact spectrum
for graphs up to 5,000 vertices and determine the first few of the largest eigen-
values for graphs of order as high as 400,000. Hence we do not expect the
clustering method of Mihail et al. [94] to scale up to very large graphs such as
the Web graph, although it successfully identifies clusters from the Internet
AS graph (one cluster being the dominant Internet service providers in the
United States).

4.5.2 Heuristics for local clusters

Some interesting graphs are either too big to fit in the main memory of an or-
dinary computer or impossible to obtain completely, such as the World Wide
Web, from which only small snapshots are available. Therefore an approach
for locating the clusters that relies on having complete adjacency informa-
tion available is not always practical. We propose an algorithm that starts
from a given vertex and determines a proper cluster for that vertex using lo-
cal information only. Note that such an algorithm must be an approximation
algorithm, as an exact algorithm by definition would take into account the
entire graph.

In a given graph G = (V, E), a natural definition of locally available
information is the neighborhood of the vertices included in the cluster. It
also makes sense for a cluster to be connected and we therefore concentrate
only on the connected component containing v instead of the entire graph
when finding the cluster of v. We denote the connected component of v as
Gv = (Vv, Ev), the cluster of v by K(v) = (V ′, E ′), and the order of the
cluster by |K(v)| = κ. Note that V ′ ⊆ Vv and E ′ ⊆ Ev . The main question
is how to define clusters and what function will yield clusters that comply
with the definition.

The naïve definition of a cluster as a subgraph containing v with maxi-
mum density obviously fails, as any clique has density 1 and any search pro-
cess would reach an optimum upon the addition of any u ∈ Γ(v) to K(v),
as the density would be δ(K2) = 1. Hence it is essential to find a fitness
function that avoids getting “stuck” at small cliques containing v. The prob-
lem is avoided with the relative density of Equation 4.6, as it only reaches the
value one for a clique that has no edges pointing outside the clique from any
vertex.

The cluster of v should intuitively contain at least the largest clique that
contains v. This is simply achieved by including all u ∈ Γ(v) that are also
pairwise neighbors of each other to K(v), but is not entirely sufficient. This

2The formula of δr and the description on page 8 of [94] are inconsistent, but we
believe the formula to be mistyped as it is counterintuitive: it compares the number
of edges between S and V \S to the total number of edges incident to S, which should
rather be small for a good cluster.
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is impractical as determining maximum clique order in a graph is NP com-
plete. Moreover, the natural cluster of a vertex is not necessarily a complete
subgraph, but rather just a “surprisingly” dense subgraph with possibly a little
less than

(

κ
2

)

edges connecting the κ vertices.
We start by defining a measure of how “surprising” the density of a given

subgraph is as the probability that K(v) contains as many edges as it does or
more. The probability that each edge is independently present is the density
of the entire graph G, δ = m/

(

n
2

)

, where n = |Vv| and m = |Ev|. Therefore
the probability that K(v) contains ` or more edges is defined by the binomial
distribution, where M =

(

κ
2

)

, is

p = Pr [X ≥ ` ] =
M

∑

i=`

(

M

i

)

δi(1 − δ)M−i. (4.7)

To base a heuristic algorithm on this observation, we take as our fitness func-
tion F = ln(1/p) and maximize. The purpose of the natural logarithm is
to attenuate the exponential growth of 1/p. The initial cluster for vertex v
is Γ(v), which is modified by allowing random additions from {u | u ∈
Vv \ V ′, w ∈ K(v), u ∈ Γ(w)} and random removals from K(v) \ {v}.
Upon a vertex removal operation we also remove all vertices from K(v) that
are no longer connected to v by a path. This is achieved without much effort
by performing a depth-first search starting from v in G, restricting the search
to vertices in K(v).

We ran iterated simulated annealing [77] on this fitness function: after
each round of modifying the current cluster, we accept the new cluster can-
didate if it has higher fitness f ′ than the current fitness f , but if the fitness
decreases, we accept with probability exp(f − f ′)/T , where T is the tem-
perature of the system. After each round, the temperature is decreased by a
scaling factor α: T ′ = αT . The initial temperature T0, the scaling factor α,
and the number of rounds are parameters of the search.

For small graphs we observed that vertices tend to select as their cluster the
largest clique of the graph and the path connecting the vertex to the clique. It
would be better if the “attractivity” of a large clique decreased exponentially
as the distance to the clique grows. Also, the computations required for the
binomial distribution can be tedious. However approximation of the bino-
mial coefficient using e.g. the Stirling formula, Chernoff bounds, or simply
the normal distribution is possible. The effect to running time and accuracy
would of course need to be determined for such approximation. Another pos-
sibility is to define as a cluster a subset that has more edges connecting the
vertices in the cluster than would be expected and no more edges pointing
outside from the cluster than would be expected by the density of the entire
graph. This approach is similar to that of relative density δr of Equation 4.6.

To be precise, we would want a cluster K to contain unusually many
edges in addition to its spanning tree with respect to the density of the en-
tire graph. We treat the possibly unknown and possibly very large graph Gv

having density δ as a Gn,δ graph; hence the average degree of a vertex v ∈ Vv

is k = δ(n − 1). To form a spanning tree, each vertex in the cluster K must
use at least one of its edges to connect to other vertices in K.

Denoting the order of the cluster by κ, the vertices in K have κk edges,
κ − 1 of which are the edges that form the spanning tree. This means that
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each v ∈ K is on average connected to 2 − 2
κ

other vertices in K by the
spanning tree, and hence there are on average κ − (2 − 2

κ
) vertices left in K

and n−κ elsewhere in the graph to which v may connect to, which sums up
to N = n − 2 + 2

κ
vertices not yet connected to v. Calculating the fraction

of the vertices not connected to v by the spanning tree but inside the cluster
of all N possible neighbors, we obtain

pin =
κ − 2 + 2

κ

n − 2 + 2
κ

. (4.8)

Equivalently, the probability that v ∈ K will have an edge pointing outside
of K is

pout = 1 − pin =
n − κ

n − 2 + 2
κ

. (4.9)

For a particular cluster candidate K we may calculate the exact number of
edges between vertices included in K, degin(K), as well as the number of
edges pointing outside from K, degout(K). Note that the κ − 1 tree edges
exist for any cluster candidate as connectivity is required. Hence the fraction
of “extra” in-edges in K from all edges incident to K is

min(K) =
degin(K) − (κ − 1)

degin(K) + degout(K)
, (4.10)

whereas the fraction of the out-edges is simply

mout(K) =
degout(K)

degin(K) + degout(K)
. (4.11)

For K to be a good cluster, we want min to be larger than pin. Simultaneously,
we would like mout to be at most pout, the smaller the better. The following
function obtains large values for good clusters and small for poor cluster can-
didates K, and hence may act as a starting point for defining a fitness function
for local clustering:

f(K) =
min(K)

pin(K)
·
(

mout(K)

pout(K)

)−1

=
(degin(K) − κ + 1)(n − κ)

degout(K)(κ − 2 + 2
κ
)

. (4.12)

The fundamental idea behind this construction is to compare the fraction of
both types of edges present to the probability than an edge is of that type by
dividing the observed fraction by the expected fraction. Large value indicates
that we observe a larger fraction than expected and a small value that we
observe a smaller fraction than expected. A good cluster has a large value
for the in-edges and a small for the out-edges. As we want f to obtain larger
values when the in-degree fraction is surprisingly large and the out-degree
fraction is small or as expected, we invert the latter and multiply. Note that
n does not have to be exactly known; it can be replaced by a constant that is
larger than the order of any cluster in the graph.

The function f(K) is not directly applicable as a fitness function as the
out-degree is zero for components of the graph. This results in possible di-
vision by zero. Also, if the cluster candidate is only a tree, the numerator
will be zero. For the purpose of local search the function should therefore
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be modified in some manner that does not change the “order of goodness”
between cluster candidates, as we prefer to maximize a strictly positive real-
valued continuous function. One simple modification is adding a constant
to both the numerator and the denominator.

f1(K) =
(degin(K) − κ + 1)(n − κ) + 1

degout(K)(κ − 2 + 2
κ
) + 1

. (4.13)

There are some problems with the functions of Equations 4.12 and 4.13: one
has to know or guess the order n of the entire graph, and the values that the
function can take are not limited to the same range for different values of
n. Hence we define yet another fitness function with the same goals as the
previous, but that only takes values in [0, 1]. We take the relative density of
Equation 4.6 and multiply it by the density of the subgraph induced by K,
obtaining

f2(K) =
degin(K)

(

κ
2

) · degin

degin + degout
=

2 deg2
in

κ(κ − 1)(degin + degout)
. (4.14)

Experiments with the fitness functions of Equations 4.13 and 4.14 are de-
scribed and reported in Section 4.5.2. We have attempted clustering of natu-
ral networks, regular networks, and networks generated by some of the mod-
els of Chapter 3.

For a local search that proceeds by crawling the neighborhoods of the in-
cluded vertices in a large, possibly unknown directed graph such as the Web
graph, the incoming edges of vertices in the cluster are unknown until their
source vertices are first encountered. If these are included in the out-degree
of the cluster, the search needs to restart upon their discovery. However, in
the search for local clusters, we ignore vertices unreachable from the cluster.
Hence it is reasonable to define the out-degree of a cluster to consists only of
the edges pointing from the cluster to other parts of the graph. Note that this
affects the expected out-degree of a cluster candidate and hence the fitness
function of Equation 4.13 changes for directed graphs. However, the func-
tion of Equation 4.14 is directly applicable. We have recently constructed
a web crawler that finds the cluster of a defined webpage using simulated
annealing on the fitness function of Equation 4.14. We will present results
obtained from this experiment in further work.
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5 EXPERIMENTAL RESULTS

We conducted a series of experiments by generating graphs with a subset of
the generation models presented above and studying some of their structural
and algorithmic properties. The software written for the experiments consists
of a larger toolset written in C language and some additional tools written in
Java.1 The graphs used in the experiments are undirected and have no weight
or fitness functions imposed on their vertices or edges. Such generalizations
may be considered in further work. We used one AMD Athlon XP 1600 MHz
workstation with 1,024 MB of main memory running Debian GNU / Linux
2.4.20 to run the experiments.

At present our toolset can efficiently handle graphs up to some thousands
of vertices and perform various different examinations. Sparse graphs are
computationally more approachable than dense graphs of the same order.
Some computations work well for graphs of more than a hundred thousand
vertices, whereas some become infeasible already at a few thousand vertices.
Random numbers are generated with Donald E. Knuth’s [82] ran array

function.
We label the vertices V of a graph G = (V, E) with integers such that

V = {0, 1, . . . , n − 1}. Edges are pairs of integers containing the source
and target labels. A graph may be stored in three forms, which can be varied
according to the task at hand: as a list of edges, as a complete set of adjacency
lists, or as an adjacency matrix implemented as a bitmap. The graph analyzer
consists of simple functions that take as an input a graph and calculate for
output a certain measure. Many operations are implemented for both the
adjacency list and the adjacency matrix representations; for sparse graphs we
prefer the former, for very dense graphs, we use the the latter.

In this section we explain the algorithms we use to calculate some of the
measures used to analyze graphs. The calculations of most of the measures
are straightforward to derive for a given graph, but a few are nontrivial es-
pecially for large or dense graphs. For example, the clustering coefficient is
obtained by straightforward examination of the number of edges in the re-
spective induced subgraphs and the degrees of the vertices. Note also that
the definitions of some of these measures are properly defined only for con-
nected graphs; for disconnected graphs, we concentrate on the largest con-
nected component.

The All Pairs Shortest Paths problem (see e.g. [30]) needed for the cal-
culation of the characteristic path length L is solved by the Floyd-Warshall
algorithm [49] for sparse graphs (δ < 0.5) using adjacency lists, and by expo-
nentiation of the adjacency matrix for dense graphs. The toolkit also includes
an implementation that uses Dijkstra’s algorithm, for situations where the
complete distance matrix would be too large to handle efficiently. All these
approaches are unfortunately too slow for the exhaustive calculation of the
average length of the shortest path, which we do by a breadth-first search that
only counts the number of vertices at distance 1, 2, . . . from a given vertex.
These listings are analyzed by a simple Java tool to produce values of L and

1The toolset is available at http://www.tcs.hut.fi/~satu/models/.
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diam. This approach took about two hours to complete for a graph of order
over 100,000 vertices.

A breadth-first algorithm we implemented to compute the girth g of a
graph does not scale well to large degrees; hence also a depth-first version
using incremental depth was implemented. This recursive procedure is not
very efficient either. Especially regular graphs with many relatively small
cycles are problematic. The efficiency might be improved if the vertices were
classified by their role in the graph topology and the girth search would only
take place for representatives of the vertex classes, but this efficiency aspect
will be considered possibly in future work if the exact value of graph girth
becomes relevant. Such a classification is however likely to be nontrivial.

The measurements requiring repetition are handled as in [109] and the
references therein. A confidence interval with confidence level α contains
the estimated value with probability (1 − α). A confidence interval may be
defined for a random sample (x1, . . . , xN) from an unknown distribution by
using approximation of the standard deviation σ and Student’s t-distribution.
First approximate the expected value µ by the sample mean

x =
1

N

N
∑

i=1

xi. (5.1)

The estimated variance σ̂2 of x is therefore

σ̂2 =
1

N − 1

N
∑

i=1

(xi − x)2. (5.2)

The confidence interval of the expected value is [x − ∆, x + ∆], where
∆ is obtained from Student’s t-distribution as ∆ = tn−1, 1−α/2 σ̂. We obtain
samples as long as the confidence level obtained by this method is lower than
a desired value α, up to a maximum of sixty iterations. We kept the minimal
number of repetitions for all experiments at 30 as the measured distributions
are not necessarily normal. As in all experimental work, it is important to vary
both the input instance and the size of the instance to produce reasonable
results [73]. The goals and parameters of each experiment set is explained in
conjunction with reporting the results.

5.1 IMPLEMENTED GENERATION MODELS

In this section we describe the implemented generation models. The stan-
dard model for random graphs, Gn,p, is categorically included, as well as
both of the “famous” models, the Watts-Strogatz model and the Barabási-
Albert model. For the former, the more analytically approachable variation
by Newman et al. is chosen, and for the latter, the clustered variant was imple-
mented. An undirected version of the Kleinberg lattice model is included to
provide a different regular structure for added randomization than the circu-
lant graph of the SWS model. The deterministic RB model is implemented
as well as the DGM model. Some regular structures also have their own
generation procedures: complete graphs, complete bipartite graphs, flat and
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toroidal lattices, and circulant graphs. As the models are at times not de-
scribed in literature with sufficient detail for unambiguous implementation,
we explain here the assumptions and implementation details of the models.

5.1.1 Erdős-Rényi model

The naïve method to generate a random graph G = (V, E) with n edges and
a probability p that each edge independently appears in E would to draw a
uniformly distributed random number r ∈ [0, 1] for each pair of distinct ver-
tices and include the corresponding edge in E if r ≥ p. This would require
(

n
2

)

= n(n − 1)/2 random numbers; one for each pair of distinct vertices. As
pointed out by Nuutila [109], Kapidakis [73] provides a way of generating a
Gn,p in O(n + m) time instead of the above O(n2) worst-case estimate. This
is of interest of sparse graphs where m � n2. The fundamental observation
is that the n2 random trials of the naïve method are independent Bernoulli
trials with success probability p (a success being the addition of the edge).
This suggests two things: the number of edges |E| = m created in the trial
set obeys the binomial distribution Binom

((

n
2

)

, p
)

, and more importantly,
when the number of trials before the first success is denoted by X , it applies
that

Pr [X = k] = (1 − p)k−1k, k ≥ 0. (5.3)

This means that E[X] = 1
p
. These observations combined give that X is

geometrically distributed with parameter p.2 The next edge will appear a ge-
ometrically distributed number of “steps” after the first, as the trials between
them are again independent Bernoulli trials. Therefore we may construct a
Gn,p by hopping forward on the sequence of possible edges by steps of length
obeying the geometric distribution Geom(p), skipping a pair (v, w) if v ≥ w
to ensure that each pair is considered only once. We construct a blocking
table that is initialized to forbid the hopping procedure to select a reflexive
edge and to store information on what edges have been included. If the selec-
tion procedure hops to a position that is forbidden by the block list, it simply
ignores that and hops again.

The Gn,m graphs are generated by the naïve method of choosing the end-
points of an edge randomly and uniformly among all vertices using two ran-
dom integers, avoiding duplicate and reflexive edges, until a total of m edges
have been added. The clustering coefficient and average path length of the
ER model, namely this latter implementation, is studied together with the
SWS model in Figure 5.1 on page 77.

5.1.2 Solvable Watts-Strogatz model

Our implementation of the SWS model, described in Section 3.2.1, is quite
straightforward and uses the above Gn,p generation procedure. First, the cir-
culant graph Cn,k = (Vc, Ec) is generated. Then Gn,p′ = (Vr, Er) of the
same order is generated with the probability parameter p′, which depends on
the parameter p of the solvable WS model. As one shortcut edge is generated

2From a uniformly distributed random number X ∈ (0, 1) we obtain a geometri-
cally distributed random variable Z = dln(u)/ ln(1 − p)e ∼ Geom(p).
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Figure 5.1: On the left, C(G) and L(G) normalized by C(Cn,k) and
L(Cn,k) respectively for p ∈ (0, 1]. Sample graphs are generated for
parameter values p = 1, 0.5, 0.25, 0.125, . . . until p < 0.0001. The val-
ues are averages over at 30 random realizations of the SWS model for
n = 1,000 and k = 5. Data of Figure 3.4 for the WS model from [134]
is included for comparison. On the right, the unscaled values of C(G)
and L(G) averaged over a set of 30 random realizations are shown to-
gether with the respective values for Gn,m instances generated to match
the order and size of the 30 random samples for each value of p.

per each edge present in the Cn,k, which by definition contains nk edges, we
generate a Gn,p where

p′ = p · nk
(

n
2

) = p · 2k

n − 1
. (5.4)

As the edge generation procedure of the random graph Gn,p takes as a pa-
rameter a blocking table that forbids certain edges (as explained above in
the implementation details of the Gn,p model), we construct such a table
that forbids reflexive edges and all edges e ∈ Ec. This will ensure that the
generation produces a simple graph with the property Ec ∩ Er = ∅. As the
vertices of both graphs are labeled {0, 1, 2, . . . , n − 1}, the edge sets Ec and
Er may trivially be joined to obtain the SWS-graph G = (V, E) such that
V = Vc = Vr = {0, 1, . . . , n − 1} and E = Ec ∪ Er.

We studied whether this method of generation produces graphs that fulfill
the original definition of “smallworldness” by Watts and Strogatz [134] by
a series of test runs. As the implementation is based on the SWS version
instead of the original WS model, differences to the measurements of [134]
are sure to appear: the case of p = 1 differs as for the original model because
the WS graphs will be more random as all edges are rewired, whereas SWS
maintains the clustering inherent in the underlying Cn,k. Measurements for
both the original WS model and our implementation of the SWS model are
shown in Figure 5.1.

5.1.3 Undirected Kleinberg lattice model

As Kleinberg’s model (described in Section 3.2.2) is a directed model, un-
like any other used in the experiment set, the implementation ignores the
directed nature of the randomly added links that reach outside the local
neighborhood to make these graphs directly comparable to those of other
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Figure 5.2: The p-neighborhoods of a single vertex v (drawn in black)
in a Kleinberg lattice graph for p ∈ {1, 2, 3, 4}. Each p-neighborhood is
encompassed by a dotted square and the newly reachable vertices have
lighter color than those of the smaller neighborhood. The grid is drawn
for interpreting the lattice distances; it is not the edge set of the graph.

generators. The vertices of the lattice are labeled by their Euclidean coordi-
nates on the s × s square lattice. The coordinate labels (x, y) are mapped to
single integer values ` such that the upper left corner of the lattice is assigned
label zero, the one below that vertex will be labeled as number one, and so
forth until the bottom of the lattice is reached. Then the labeling continues
from the top vertex of the next “column” to the right. This simple “top-down
left-right” labeling allows also a simple mapping to the coordinate labels:
x = b `

s
c, y = ` mod s. The lattice distance calculation is therefore simple

to implement by taking advantage of C’s integer arithmetic operations.
The local neighborhood by definition contains all vertices that can be

reached by taking at most p “steps” on the lattice, that is, with Manhattan
distance distL ≤ p (see Equation 3.15 on page 33). Therefore the size of
the local neighborhood of “radius” p ≥ 1 is at most 2p(p + 1), as observed
from Figure 5.2. If the distance of a vertex is more than p from the lattice
border, this will be exact, otherwise an upper bound. In addition to the local
p-neighborhood, each vertex is linked to q vertices that are further away than
p steps. The linking probability is proportional to the negative rth power of
the lattice distance. To add q long-distance neighbors for vertex v, we first
count the normalizing sum for v, namely

S =
∑

u/∈Γ(v)∪{v}

1

distL(u, v)r
, (5.5)

then obtain a uniformly distributed random value ρ ∈ (0, 1), multiply by S
to obtain the “target value” t = Sρ and then build an incremental sum si of
the values 1/(distL(u, v))ρ for all u /∈ Γ(v)∪ {v} until si ≥ t. For the vertex
w for which this first happens, we add the edge (v, w) to E. If q > 1, we draw
another random value ρ′ and repeat the process until either v is linked to all
other vertices or q long-range connections have been formed.

The limiting distance p is a parameter of the model, required to be an
integer greater or equal to one. In general, p is quite small as otherwise it
would be a poor parameter of locality. The graph is expected to be sparse
for p � s. The q random edges do not significantly increase the degree
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Table 5.1: The values of clustering coefficient C and characteristic path
length L for some KL graphs with s = 25, r = 2, and several values of
p and q. Also the corresponding values for Gn,m graphs with same order
and size are shown to ease comparison. Each cell of the below tables
contains the four values in the below order, all being averages over at
least 30 independent instances.

CKL LKL

Crand Lrand

s = 25 ⇒ n = 625

p
q

1 2 4 8

0
0.000 16.67
0.007 4.878

0.475 8.584
0.018 2.913

0.574 4.543
0.057 2.071

0.641 2.523
0.181 1.819

1
0.083 4.673
0.009 3.841

0.378 3.590
0.021 2.762

0.531 2.726
0.060 2.041

0.627 2.095
0.184 1.816

2
0.103 3.789
0.013 3.357

0.318 3.154
0.024 2.661

0.494 2.543
0.063 2.016

0.614 1.982
0.187 1.813

4
0.115 3.120
0.019 2.859

0.250 2.762
0.031 2.506

0.438 2.361
0.069 1.977

0.591 1.877
0.194 1.807

8
0.132 2.619
0.032 2.484

0.204 2.451
0.044 2.249

0.370 2.143
0.082 1.931

0.553 1.809
0.206 1.794

of any particular vertex, as they are connected further away from the source
vertex and the distances are Euclidean grid-distances. The best presentation
form would be an adjacency list instead of an adjacency matrix. However
the generation algorithm becomes somewhat messy to implement with lists
as the neighborhood relation is constantly browsed, and hence we chose to
use the adjacency matrix. The parameter r is fixed to two (as Kleinberg [78]
recommends) for the experiments, although a parameter of the generation
procedure.

We compared the clustering coefficient and the characteristic path length
of the KL model to those of Gn,m graphs of the same order and size, using
different values of p and q for s = 25 and r = 2. As the calculation of the
pairwise distances is computationally demanding, the order of the graphs was
kept relatively small. The results are shown in Table 5.1.3.

Graphs that meet the small-world requirements of Watts and Strogatz have
L ≈ Lrand and C � Crand. In Table 5.1.3, the small-world phenomenon
is the most evident for graphs with q ∈ {1, 2}. In general, the value of q
needed to produce the drop in L without significantly disturbing C is small
in comparison to the size of the p-neighborhood. Clustering properties of KL
graphs for s = 100 and eleven different (p, q)-pairs are listed in Section 5.2.
We also plotted in Figure 5.3 the degree distributions of some KL graphs for
comparison with the other models. The small jumps in the distributions are
caused by the boundary conditions of the lattice: the closer to the end of the
lattice a vertex is, the more of its p-neighbors are absent from the graph.

5.1.4 Barabási-Albert model with tunable clustering

For the BA model, described in Section 3.3.1, the initial graph is chosen
to be a connected random graph with n0 vertices, as using an empty graph
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Figure 5.3: On the left, degree distributions of some KL graphs, shown on
log-log scale on the right. The curves are averaged over 30 independent
instances. The generation parameters are s = 100, r = 2, p = 10, and
q ∈ {10, 30, 50}.

would initially cause division by zero in Equation 3.25 of the preferential
attachment probabilities. The initial graph must be connected to ensure that
a connected graph will result regardless of the random linking. We iterate
the Gn0,p′ construction starting with p′ = 2

n0
and increasing p′ in steps of

0.05 until a connected sample is obtained. Note that the graph could not be
connected if it had less than n0 − 1 edges, and also that |E0| = m0 is not
constant for a given n0 in this implementation.

At time step t, a new vertex vt is introduced and assigned d distinct edges
that link it to the graph Gt−1 of the previous step. It is clear that n0 ≥ d
must hold for the first step to be well-defined. The preferential attachment
is implemented by retrieving a uniformly distributed random integer r from
the range [0,

∑

v deg(v)) and then incrementing a counter c by adding the
degree values deg(v0), deg(v1), . . . , deg(vt−1) one at a time. When the
counter value c first exceeds the random integer r after adding deg(vk), the
vertex vk is chosen as the target vertex of the preferentially attached edge.
This is repeated until such vertex vk is found for which (vt, vk) /∈ Et, after
which the edge is included in the graph. Such preferential attachment is
iterated until d distinct edges have been placed, which necessarily happens
as n0 ≥ d and nt = nt−1 + 1. The degree of the vertex vk and hence also the
sum of degrees will not be incremented until all d edges have been assigned,
in order to maintain the preferential distribution the same for throughout the
time step t. Before the time t + 1, the degree of vt is set to d and the degrees
of all its new neighbors incremented by one. Note that nt+1 = nt + 1 and
mt+1 = mt + d.

The form of the distribution in Figure 5.4, containing thirty independent
BA instances, is very similar to that of Barabási and Albert [12]. The figure
suggests that the graphs generated by this implementation are scale-free in
the sense used in recent literature on nonuniform networks: the distribution
falls near a straight line on a log-log plot as expected. The usefulness of
such diagrams seems controversial, but much of the discussion on scale-free
topologies relies on determining the exponent γ for different models and
network instances. We therefore follow this convention and determine γ for
our implementation. Summing over the thirty independent BA instances
and fitting a line f(x) = γx + c on the logarithms of the data with gnuplot
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Figure 5.4: On the left, a plot of the degree distribution of thirty inde-
pendent BA graphs with parameters n0 = d = 20, n = 10,000. For each
degree k present, the number of vertices with that degree is shown. The
right side shows a plot obtained by averaging over the degree frequencies
of the thirty instances shown on the left.

yields f(x) = −2.7317x + 7.85957. With asymptotic error, we have γ =
−2.7317±0.0192. This total distribution and the fitted line are shown on the
right Figure 5.4. By limiting the fitting to x ∈ [1.2, 2.4] we obtain line that
visually judging follows the shape of the distribution better, as the “noisy”
spread at the low-frequency degrees is eliminated. The line fitted only on
the limited interval is g(x) = −2.92712x + 8.24662, with γ closer to the
analytical result of three.

The implemented model includes the clustering step of Holme and Kim
[65] (see end of Section 3.3.1) and is therefore abbreviated as the CBA
model. The probability pC that a clustering step will follow the first pref-
erential linking is a parameter of the generation procedure. If the probability
parameter is given value zero, the step is omitted and all d links are attached
preferentially. At time t, after the first of the d edges has been assigned pref-
erentially as (vt, u), a uniformly distributed number r ∈ [0, 1] is drawn. If
r ≤ pC , the triangle formation step is attempted. A uniform random integer
r′ ∈ [0, n) for a starting point of a wrapping search of a neighbor of u that is
not yet a neighbor of vt. As such a vertex is encountered, triangle formation
takes place. If all n − 1 vertices are improper for triangle formation, we in-
stead perform preferential linking. After a successful triangle formation, we
test by drawing a new r whether to perform another triangle formation step
or return to preferential linking. This is repeated until deg(vt) = d.

The generated topologies remain scale-free when the clustering step is
applied, a claim supported by our experimental data shown on the right in
Figure 5.5, similar in shape to that of the BA model shown in Figure 5.4. Also
the experiments of Holme and Kim produce similar distributions. Fitting
lines to the distributions of the figure, we obtain values of γ varying from
2.00311±0.05274 for p = 0.0 to as low as 1.30135±0.06415 for p = 1.0 when
fitting to the entire distribution. When the fitting was limited to range x ∈
[1.5, 2] to eliminate the noise at the end, the values ranged from 2.98301 ±
0.08173 for p = 0.0 to 3.30847 ± 0.1155 for p = 1.0.

We ran some tests to examine the increase in clustering as pC is increased,
which turns out to be rather small for many parameter sets. It can easily be
seen from Figure 5.5 that the CBA graphs are not small-world graphs in the
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Figure 5.5: On the left, degree distributions of five CBA graphs with
n = 10,000, n0 = d = 20, and varying clustering probabilities p. On
the right, plots of the clustering coefficient C of CBA graphs with n =
1,000, n0 = d = 10 together with Gn,p graphs (the ER model) generated
to match the order and size of the CBA graphs. Also, values of C for
CBA graphs with n = 10,000, n0 = d = 20 are shown. The values are
averages of at least 30 graphs, with negligible standard deviation.

same sense than the WS or SWS graphs (see Figures 3.4 and 5.1); although
L ≈ Lr, also C ≈ Cr.

5.1.5 Deterministic clustered scale-free model

The clustered deterministic RB model, also described in Section 3.5, starts
with an initial complete graph Kn0 . Our generation procedure takes the or-
der of the initial graph as a parameter, but we have restricted our experiments
to K5 as originally defined by Ravasz and Barabási [118]. One of the vertices
of the initial graph is chosen as the root vertex, the others are marked as “pe-
ripheral” vertices. A new generation Gt is created by taking four copies of
the previous graph Gt−1. Also the copy count is defined as a parameter to
the implemented procedure although it is in the experiments fixed to four as
in [118]. In the resulting disconnected graph, all vertices that are a copy of
a peripheral vertex are marked peripheral, and the peripherality mark is re-
moved from previously peripheral. All new peripheral vertices are connected
by an edge to the root vertex, which joins copies of Gt−1 are joined with Gt−1

to form a connected Gt.
Our interpretation of the construction is based on personal communi-

cation with Erzsébet Ravasz, as the formulas for |Vt| or |Et| are not given
in [118] and the description of the model is quite succinct. Ravasz and
Barabási [118] report numerical simulations indicating C ≈ 0.743, whereas
we obtained C ≈ 0.74184. Some of the first values of C(Gt) together with
δ(Gt) are shown on the left in Figure 5.6.

Ravasz and Barabási also find these graphs scale free with γ = 1 + ln 5
ln 4

≈
2.161. A plot of the degree distribution of G8 (n = 1,953,125 and m =
9,107,674) together with some earlier generation is given in Figure 5.6. Fit-
ting lines to these distributions with gnuplot we note that the slope seems
to be constant. The slopes of the lines fitted to the distributions are given
in Table 5.2 and average at γ ≈ 1.138, close to ln 5

ln 4
≈ 1.161. In personal

communication, Ravasz explained the value of γ being higher than this due
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Figure 5.6: On the left, density δ and clustering coefficient C of some Gt

generations; the horizontal line shows the limit value 0.743 obtained by
Ravasz and Barabási in [118]. On the right, degregv e distributions of
some Gt generations with lines fitted to the plots. Ravasz and Barabási
predict γ ≈ 2.161.

Table 5.2: The slopes −γt ± εt of the lines (with asymptotic standard
error εt) fitted to the distributions of the respective Gt in the degree
distribution plots of Figure 5.6.

t −γt εt

4 −1.1511 ±0.08656
5 −1.1426 ±0.05714
6 −1.13569 ±0.04035
7 −1.1313 ±0.03015
8 −1.12819 ±0.02373

to the gaps in the degree distribution; not all values of k are present in the
graphs at time t, but only a restricted subset.

5.1.6 Hierarchical caveman model

The connection probability p ∈ (0, 1] of the top level of the hierarchy is
given as a parameter, together with a scaling coefficient s that adjusts the
density of the lower-level caves. The minimum nmin and maximum nmax for
the numbers of subcomponents (subcaves at higher levels, vertices at the bot-
tom level) are given as parameters. The generation procedure is recursive; a
brief description is given below and a sample graph is shown in Figure 5.7.
These graphs all have high clustering and relatively short path length by con-
struction unless both the initial connection probability and the scaling factor
are set to produce sparse caves and a sparse hierarchy. The example graph of
Figure 5.7 has C ≈ 0.82 and L ≈ 2.51, whereas the respective values for ER
graphs are Crand ≈ 0.15 and Lrand ≈ 2.13, averaged over a set of at least 30
instances.

A cave at a certain level ` of the hierarchy is formed of a random number
r ∈ [nmin, nmax] of subcaves with connection probability sp′, where p′ is the
connection probability at level `. If sp′ ≥ 1, the connection probability of
the next and lower levels will be one. Each subcave is either a hierarchi-
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Figure 5.7: An example graph, n = 55, m = 217, generated with the
hierarchical caveman model that has seven caves. The generation pa-
rameters were ` = 1, nmin = 5, nmax = 10, p = 0.8, and s = 1.2. If the
other parameters are kept fixed but ` = 2 and p = 2

3
, the top-level caves

all resemble this graph.

cal cave, or at the bottom level, a random graph of the Gn,pb
with a random

n ∈ [nmin, nmax]; pb is the connection probability of the bottom level. A cave
that consist of subcaves is randomly connected into a larger graph; the con-
nections are placed as in a Gn,p, considering the subcaves as single vertices,
the inter-cave connection being assigned to a random member at each sub-
cave.

5.2 ALGORITHMIC IMPLICATIONS

We have studied the behavior of an algorithm for the Maximum Clique
problem by Patric Östergård [110], provided in the cliquer library imple-
mented by Sampo Niskanen [108].3 We measured the running time of the
clique unweighted max weight routine with random vertex labeling. We
used just one workstation and hence had reasonable control over the load
during the test runs. For more extensive tests, the number of elementary op-
erations of interest should be counted when feasible, as running time is not a
good measure of algorithmic performance under varying computer load and
details of the hardware configurations as well as program optimization [73].

To examine whether the clustering of a graph affects the performance of
the algorithm of the Maximum Clique problem provided in the cliquer

library, we generated test sets with CBA, SWS, and KL models. All graphs
are of order n = 10,000 and have density δ ≈ 0.019. Averages for density and
clustering coefficient of the graphs are shown in Figure 5.8. The density of
the CBA test is δ ≈ 0.01925, which was matched as closely as possible for the
other two models by properly fixing the other model parameters, using the
definition of density δ = m/

(

n
2

)

. For SWS, the regular connection distance
used is k = (δ(n − 1))/(2(1 + p)) rounded to the closest integer value,

3Available at http://www.hut.fi/~pat/cliquer.html.
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Figure 5.8: Average values of density δ (left) and clustering coefficient C
(right), plotted for the CBA (◦), SWS (4), and KL (+) test sets. The
x-axis shows the clustering probability p for CBA, rewiring probability
p for SWS, and p

10
for the local neighborhood radius p of the KL model.

The vertical lines represent the average values over 31 independent Gn,d

instances with n = 10,000 and d = 0.01925.

Table 5.3: The parameters of the maximum clique runtime tests.

Model p Studied Step Parameters

CBA clustering step prob. p ∈ [0, 1] [0, 1] 0.1 n0 = 500,
d = 100

SWS rewiring probability p ∈ [0, 1] [0, 1] 0.1 k from δ
KL local connection radius p ∈ N [0, 10] 1 s = 100,

q from δ

using the expected number of edges E[m]. For KL, the number of long-
distance connections q is derived from the exact edge count m, defined in
Section 3.2.2. For comparison, ER graphs were generated from the Gn,p

family with the same order and connection probability p = 0.01925.
A relatively large order was chosen, as problems with small graphs have

been observed in the experiments of [17], where the asymptotic region of the
measured properties was not reached. The varied parameters are shown in
Table 5.3. We generated 31 instances for each parameter value, obtaining
in total 341 graphs per test set. We ran cliquer at least 30 times on each
graph to measure the variations of the running time. For the ER graphs, the
average running times over the set of independent instances, all having the
same generation parameters, are shown in Figure 5.9.

The running times for the CBA (top), SWS (middle), and KL (bottom)
models vary as shown in Figure 5.10. For some of the parameter values,
the running times of cliquer are very high and hence examining all 31
instances with at least 30 repetitions is infeasible. Therefore cliquer was
only ran once per instance for p ∈ [0.4, 0.7] for the SWS model and p >
8 for the KL model, which decreases the reliability of these runs. For the
SWS model, the instances for which p ∈ {0.0, 0.1}, examining even a single
instance is so slow that cliquer takes more than three days to complete and
hence these runs are skipped. For p ∈ {0.2, 0.3} that are also very slow, we
ran cliquer only once for just one instance to demonstrate the increase in
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Figure 5.9: On the left, average values of maximum clique order plotted
for the CBA (◦), SWS (4), and KL (+) test sets. The x-axis shows the
clustering probability p for CBA, rewiring probability p for SWS, and p

10

for the local neighborhood radius p of the KL model. All ER instances
had cliques of 5 vertices. On the right, the average running times of the
independent ER instances sorted in increasing order, averaging at 1.6
seconds. The dotted line shows the clustering coefficient scaled by 80 per
each instance.

running times.
The running time clearly grows with clustering coefficient, but much

faster. The highly clustered graphs of the SWS model are almost all difficult
instances for cliquer. The clique order is plotted in Figure 5.9. Graphs with
larger cliques take more time to examine, and the clustering coefficient, as a
measure of “cliquishness”, measures how likely is it for a neighborhood of a
vertex to be a clique. However, as Figure 5.9 shows for the ER running times,
changes in C alone do not determine the running time; as C approaches one
half, the running time of cliquer rapidly rises from just a couple of seconds
(CBA, ER, and KL for small values of p) to several minutes (KL for large
values of p, SWS). As all of these graphs have the same order and similar size
(as their densities have been adjusted to match as closely as possible), it is ap-
parent that neither order nor density are sufficient predictors of the running
time. We are interested to study this phenomenon further; for example by
studying the distribution of clique orders in the graphs.

5.3 PROPERTIES OF NATURAL GRAPHS

In addition to graphs produced by generation models, we found it informa-
tive to study graphs that have been formed from real-world data. We call
such graphs natural to make the distinction to those artificially constructed
by a generation model. One example of natural graphs is the neural net-
work of the C. elegans presented in Section 2.1, for which values of C and L
were shown already in Table 3.1 on page 32. Farkas et al. [47] use spectral
properties to classify small networks that are constructed on real data. They
compare the spectrum of a graph to the spectral properties known for differ-
ent families (such as ER, WS and BA models of Chapter 3) and interpret
which one fits the given data the best. We do not resort to spectral methods
in this study.
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Figure 5.10: Running times of Österg̊ard’s maximum clique algorithm
for the CBA (top), SWS (middle), and KL (bottom). On the left, the
average running time for each instance is shown. On the right, the mean
values of the average running time together with a scaled plot of C are
shown. In all plots, standard deviations are drawn.

The DIMACS4 benchmark graphs for coloring and clique problems5 are
one collection of such graphs originating from different applications. We
studied the ASCII format graphs (*.col). Any duplicate edges present were
ignored and all graphs were treated as undirected. Disconnected graphs
were also ignored, as well as the Mycielski transformation graphs, which are
triangle-free and therefore have zero clustering by definition.

The SGB road mileage graphs of the DIMACS benchmark set have a set
of 128 U.S. cities as vertices and an edge (u, v) if the road mileage from
the city represented by u to that represented by v is smaller than a thresh-
old. For a threshold of 250 miles the graph is disconnected, but the other
SGB road mileage graphs are connected and hence have well-defined aver-
age path length. The values of L and C for some of these graphs are shown on
the left in Figure 5.11 together with the respective data on random graphs.

4http://dimacs.rutgers.edu/
5http://mat.gsia.cmu.edu/COLOR/instances.html
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Figure 5.11: The clustering and path length behavior of some SGB graph
compared to Gn,m graphs of the same n and m. The values are averages
over 30 Gn,m graphs. On the left are road mileage graphs for different
connection distances and on the right dependency graphs of N -queens
puzzles for N ∈ [5, 16].

The graphs display some small-world behavior, as the clustering coefficient
is considerably higher and the average path length is of similar magnitude
for all of the road mileage graphs than their random counterparts. Hence the
small-world phenomenon is present. As the connection distance grows, the
graphs seem to behave more similarly.

The SGB Queen graphs are representations of dependencies between the
squares of a N × N chess board when solving the N queens problem. If
such a graph is N -colorable, then the N queens problem has a solution. We
studied the clustering and path length properties of twelve of these graphs,
the results shown on the right in Figure 5.11. Note how the path length is
almost exactly the same as for a random graph of the same parameters but
clustering decays slower for the Queen graphs than for the random graphs.
Hence the small-world effect cannot be observed for these graphs.

Newman [101] has studied scientific collaboration networks constructed
from other databases, such as the Los Alamos e-Print Archive. He argues that
the coauthorship in scientific publications is closer to true social acquain-
tance than the IMDb network of Section 2.1 and believes his reconstruction
of the collaboration network from database entries to be the first of its kind.
Newman has chosen to identity authors by two alternative definitions: either
by using the last name and the first initial or by using all of the initials for
each author. He believes the former to provide a lower bound and the latter
an upper bound to the number of truly separate authors, but as bibliographic
data is often quite varying in quality, this claim is probably an educated guess
rather than firm knowledge. The former method may cause several authors
to be considered a single person, whereas the latter introduces the chance
that a single authors “splits” into two vertices in the network as different pub-
lication fora commonly use different numbers of initials.

We downloaded several bibliographies from The Collection of Computer
Science Bibliographies [2] and built a collaboration graph based on this data.
To limit the order of the resulting network, we downloaded only the math-
ematical bibliographies.6 We retrieved only those bibliographies that were

6As listed at http://liinwww.ira.uka.de/bibliography/Math/ on December 2,
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available in BibTEX format. The sample includes 379 files from the FTP
server of the Department of Mathematics at the University of Utah7 and
about 50 other files accessible through [2]. Only eight bibliographies were
unavailable at the time.

The BibTEX files were processed with a simple Java-program in order to
ignore authors that are not persons (such as institutes and committees), sim-
plify the spelling of the names, ignore Roman numerals, and interpret which
word is the first name and which is the last name of an author. All BibTEX-
fields that are not author-fields are ignored entirely, as well as comments. As
the bibliographic data was somewhat diverse and especially all exotic names
have varying forms of spelling even within just one bibliography file, we rep-
resent all authors with the same first initial and surname by the same vertex.
For comparison we also tested a construction in which only the surname was
used. Dashes and other such characters in the names were removed, and
special Unicode characters were replaced by their ASCII counterparts. Even
with the above simplifications, more than 170,000 bibliographic entries with
multiple authors were found. Each such entry is represented by a line in the
parser output that defines the “vertex labels”, which are the simplified last
names of the authors, with duplicates eliminated. For example,

< ecateland gskordev hpeitgen jallouche jshallit wgilbert >

This data was translated to simplified DIMACS graph format with another
Java-program. The first line of the output is “p edge n m”, where n and m
define the number of vertices and edges respectively. Each edge (v, w) is
represented by a line “e v w”. Multiple and reflexive edges were omitted.
For more details of the parsing and the related simplifications, see the source
code. An example of a collaboration graph is given in Figure 5.12, where the
bibliographic entries of this work have been parsed into a graph; the figure
only shows the largest connected component.

The graph that results from joining all the above BibTEX files with just
the surname as author identification has 78,758 vertices and 331,551 edges.
Adding the first initials increases it to 129,215 vertices and 350,914 edges.
We denote the former graph by Glast and the latter by Ginit. In the largest
database used by Newman [101], the MEDLINE database for biomedical
research, there were 1,090,584 vertices when authors were classified by first
initial and last name and as many as 1,520,251 when classified by all initials
— the true number of authors is likely to be somewhere in between. This
difference is of similar magnitude than the difference resulting in our greater
simplification with last names only versus first initials and last names. In the
smaller databases studied by Newman, the relative difference was somewhat
smaller.

Our collaboration graphs are both very sparse; δ(Glast) ≈ 6 · 10−4 and
δ(Ginit) ≈ 4 ·10−5. The largest connected component of Glast has 73,707 ver-
tices and 327,891 edges, therefore covering 93.6 % of the network. For Ginit,
the connected component covers 84.1 percent of the graph with 108,624

2002.
7Available at ftp://ftp.math.utah.edu/pub/tex/bib.
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Figure 5.12: The two largest connected components of a collaboration
graph based on the BibTEX file of this work. Only some vertices are
labeled to keep the picture clear.

vertices and 333,546 edges. In our experiments we concentrate on the con-
nected subgraph of Ginit, obtained by yet another Java-program. It is notewor-
thy that as these graphs are large and the Java programs are all but optimized,
some of the computations can be quite lengthy and were better left to run
overnight. We will consider integrating these tools to the C library of graph
generation and analysis as further work, possibly introducing some optimiza-
tion as well.

We concentrate on the largest connected component of Ginit, denoted by
Gc with n = 108,624 and m = 333,546. The order of the second largest
component is significantly smaller; it contains only 20 vertices. In total there
were 7,838 components in Ginit. Excluding Gc, the average order of these
components is only 2.6 and the median order 2. We calculated some of the
basic measures for Gc, obtaining density δ(Gc) ≈ 5.65 · 10−5, average degree
k ≈ 6.14 and girth g = 3. The clustering is quite high with C ≈ 0.64.
The diameter of the network is as high as 22 and the average path length is
L ≈ 5.94 — almost exactly “six degrees of separation” between two authors.
As L(Gc) is considerably smaller than diam(Gc) and the clustering is fairly
high, it is safe to say that the collaboration graph exhibits the small-world
property.

The degree distribution of the connected collaboration graph is shown
in Figure 5.13; it somewhat resembles the scale-free distribution of the BA
model. Fitting a line with gnuplot to the log-log plot of the degree distri-
bution yields γ = 2.40746 ± 0.04618; the line f(x) = −γx + b, where
b = 5.56419 ± 0.08804 is shown in Figure 5.13. Note that if the degrees
with frequency one are ignored, the fitted line appears to match closer the
slope and position of the distribution. The slope of the obtained line is
2.39494 ± 0.04694.

Newman [101] finds that his collaboration graphs do not perfectly follow

90 5. EXPERIMENTAL RESULTS



 0

 1

 2

 3

 4

 5

 6

 0.5  1  1.5  2  2.5  3

Lo
ga

rit
hm

 o
f d

eg
re

e 
fr

eq
ue

nc
y

Logarithm of degree k

Degree distribution
Fitted line

Ignoring frequency of one

 0

 1

 2

 3

 4

 0.5  1  1.5  2  2.5

Lo
ga

rit
hm

s 
of

 r
an

k 
fr

eq
ue

nc
y

Logarithm of degree k

Degree distribution
Fitted line

Figure 5.13: Degree distribution of the collaboration graph as a log-log
plot on the left, and on the right, the degree rank distribution of the
same graph.

a power-law, but rather a from with exponential cutoff

P (k) ∼ k−γe−k/c, (5.6)

where c is a constant. He finds γ ≈ 2.5 and c ≈ 5,800 for his MEDLINE
collaboration graph (see Section 5.3). It would be interesting to find better
fitting curves for our data as well when continuing work on this area, as there
is apparent curvature on both ends of the log-log plot. A debated issue with
plots of degree distributions is whether to examine them as a power-law using
the degree values or to examine them as a Zipfian distributions (see page 17)
using the ranks of the degrees. The “noise” on the bottom fades nicely when
plotting the ranks of the degrees instead of the degrees themselves also for
our collaboration graph. This is shown on the right in Figure 5.13; the fitted
line is γ = 2.57468 ± 0.04372 and b = 5.81331 ± 0.08208.

Some of the vertices have surprisingly high degree as the number of col-
laboration partners is unlikely several hundreds. We traced the names corre-
sponding to then ten vertices for which deg(v) > 250. Nine of these were
to Asian surnames with a common first initial: jlee has the highest degree,
namely 478, and slee has degree 351. As also dlee is among the ten highest
degrees with 254 neighbors, it is obvious that using the last name only would
combine all these to a vertex with disturbingly large degree: vertex lee in
Glast has degree 1,586, which is only exceeded by smith with 1,679 neigh-
bors. Barabási et al. [14] have noticed the same problem with surnames of
Chinese and Japanese descent. The only English surname appearing in the
top ten is dcrawford with degree 275, presumably largely attributed to a sin-
gle author. In comparison, Pál Erdős, being a very productive scientist, has
published papers in collaboration with some 500 authors. Choosing to in-
clude the first initial makes the network much more realistic considering the
above observations. Yet even then we have reason to believe that most of the
high-degree vertices correspond to more than one author and can therefore
be considered noisy data that distorts the shape of the degree distribution.

For comparison, we briefly summarize some of Newman’s results from
[101]. For his coauthorship graphs of scientific publications, diam ∈ [14, 31].
For the graph containing complete Los Alamos e-Print Archive data, which
is of similar order than ours with 98,502 vertices, the diameter is 20 and
L ≈ 5.9, whereas we obtained diam(Gc) = 22 and L(Gc) ≈ 5.94 for our
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Table 5.4: Some measurements on the collaboration networks derived
from the Computer Science Bibliographies archive’s mathematical arti-
cles (CSB) and the publications stored in the Los Alamos e-Print Archive
(LAE). The latter data is from [101]. Note that the diameter is defined
for the largest connected component. The CSB measures for the average
degree, distance, and clustering are calculated for the largest connected
component, whereas we presume Newman’s calculations to include the
entire graph.

Measure CSB LAE

Total order |V | 129,215 52,090
Order of the largest component 108,624 44,336
Percentage covered by the largest component 84.1 85.4
Order of the second largest component 20 18

Average number of collaborators k 6.14 9.7
Average shortest distance L 5.94 5.9
Diameter 22 20
Clustering coefficient C 0.64 0.43

graph. For Newman’s graphs C ∈ (0.066, 0.726), where the lowest value
corresponds to the MEDLINE graph and the highest to SPIRES (the lat-
ter contains publications on high-energy physics). In comparison to these
graphs, our mathematical database is more clustered with C(Gc) = 0.64. A
more thorough comparison of Gc and the Los Alamos e-Print Archive graph,
see Table 5.4. Unfortunately the calculation of the proximity ratio µ is infea-
sible for graphs of this order, as finding Cr and Lr for 30 random graphs of
the same order and size is tedious.

Barabási et al. [14] have studied the dynamical properties of collabora-
tion graphs and propose a model to capture the evolution of these graphs.
The collaboration graphs they constructed, considering different time pe-
riods, contain 70,975 authors for the mathematical data and 209,293 neu-
roscience authors. They study the evolutionary properties by investigating
measures related to authors who have appeared as new vertices in the graphs
during some given time period. Using logarithmic binning8 to reduce noise
in the tail they find γ = 2.4 for the mathematical data and γ = 2.1 for the
neuroscientific data.

An interesting observation is that the average path length L as well as the
clustering coefficient C of the collaboration networks constructed by Barabási
et al. [14] decreases in time as the network itself grows. The largest connected
component grows faster than the other parts of the network and the average
degree increases. The reasons behind these observations would be of interest
to study in future. Their model is essentially a preferential-attachment model
of new novice authors combined with preferential introduction of internal
edges, which are collaborations between “established” authors. Simplifica-
tions are assuming that once a new paper is published (and therefore new

8In order to filter noise in data analysis, data points can be grouped into “bins”
either of uniform, linearly growing, or logarithmically growing size.
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edges introduced), there are always a constant number of coauthors, and that
the arrival rate of novice authors is constant. We consider implementing and
generalizing this model as further work to study the effects of these restric-
tions on the results reported by Barabási et al. in [14].

5.4 CLUSTERING EXPERIMENTS

We studied the clusters found by a local search using the fitness functions f1

and f2 of Equations 4.13 and 4.14 described in Section 4.5.2. We performed
simulated annealing (as described in Section 4.5.2) on different graphs G =
(V, E), with Γ(v) as the initial cluster of vertex v. For a graphical example,
see Figure 2.1, where the grouping of the vertices in the picture is done by
the clusters found with the fitness function f1 of Equation 4.13. Edges that
connect vertices u and v such that u ∈ K(v) and v ∈ K(u) are drawn black;
edges where only one vertex includes the other in its cluster are drawn dark
gray, and plain edges light gray. It would be of interest to know whether this
classification of connections has any biological meaning, i.e. whether the
black connections are somehow more important than the gray.

We have made the following observations on regular structures for both
heuristics. In a Kn or a Kn,n, each vertex will choose the entire graph as its
cluster. For a graph that consists of two cliques of relatively the same size
connected by one edge, each vertex chooses its own clique as its cluster. We
also clustered a graph that connects a K20 and a P10 with a single edge, form-
ing a large “head” and a long “tail”. All vertices in the “head”, including the
one to which the tail is connected, consider the clique their cluster. When
using f1, a couple of the tail vertices nearest to the clique also choose parts
of the clique to be included in their clusters; after the midpoint of the tail
the vertices only consider their immediate neighbors in their cluster. With
f2, none of the tail vertices choose the clique as their cluster, but a couple of
their nearest neighbors along the tail.

For a one-level caveman graph, generated as explained in Section 5.1.6
with parameters nmin = 10, nmax = 25, p = 0.95, and s = 0.95, both heuris-
tics find exactly the original caves as created by the generation process. The
examined instance has n = 235 vertices and m = 2,163 edges and constitutes
of 13 caves. We measured how extensively the clustering algorithm traverses
the graphs when determining the cluster of a single vertex with simulated an-
nealing using T0 = 1,000, α = 0.95, taking 25 iterations, each constituting
of 100 rounds. The results are shown in Figure 5.14, where the 13 caves are
clearly visible due to vertex labeling; the two runs plotted are separate, as the
measurement of the explored area consumes some time that does not effect
the search behavior; nevertheless the orders of the clusters found remain the
same, as the search constitutes of several iterations and hence almost surely
finds the local optimum for any run.

We also chose five instances of each of the test sets of Section 5.2 for all
four models CBA (p = 0.5), ER, KL (p = 5), and SWS (p = 0.5), and
computed the clusters for 10 randomly chosen vertices in each graph. The
graphs have n = 10,000 and δ ≈ 0.019. The average orders of the clusters
found and the portions of the graphs traversed during the search are shown
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Figure 5.14: On the left, the orders of the resulting clusters (same for
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the right, the running time of the algorithm per each start vertex for the
fitness function f1 and f2.
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Figure 5.15: The averages of the orders of the clusters found (left) and
the number of vertices visited during the search (right) starting at 10
random vertices in each graph, 5 graphs from each model CBA, ER, KL,
and SWS. The five randomly chosen instances are not ordered in any
way and the selection of the random vertices differ for the two fitness
functions f1 and f2. The standard deviations are shown in both plots;
the key is only shown for the left figure and applies for both.

in Figure 5.15. The search was run for 30 iterations per start vertex, each
iteration having 300 rounds with both fitness functions.

The orders of the clusters found give some hints on the structure of the
graphs: in the CBA model, the cluster orders vary significantly, hinting that
the vertices are not all equal. The smallest cluster in the CBA sample is the
cluster of a vertex of degree 104 and contains only 68 vertices, whereas the
largest cluster has order 599 and belongs to a vertex with 628 neighbors. As
the minimum degree of all the CBA graphs is 100, the former is clearly not
a hub vertex, whereas the latter is of medium degree within the CBA degree
distribution, the maximum degree of the CBA instances being above 1,200.

For all of the other models the orders of the clusters vary much less than
for the CBA model, suggesting that the vertices in those graphs are more or
less equal, which is true by the model descriptions. It seems to be easier
to find a cluster in the KL and SWS instances, as the number of vertices
examined during the search is only about two thirds of that for the CBA and
ER models. This can be explained by the regularity in the structure of the

94 5. EXPERIMENTAL RESULTS



zdezso

cyoon

pholme

sforrest

mgirvan

cmoore

jhopcroft

gpandurangan

dsivakumar

abroder

rstata

Figure 5.16: The clusters of the example collaboration graph; the vertices
enclosed in a dotted line all consider each other as members of their
cluster, unless an arrow is drawn to indicate the cluster in which the
vertex gets grouped by local clustering.

former.
To give some examples of clustering natural data, we have clustered the

collaboration graph of Figure 5.12; the outcome of the clustering using f2

and simulated annealing per each vertex separately is shown on the left in
Figure 5.16. We also clustered a larger collaboration graph, shown in Fig-
ure 5.17. This figure was produced with a tool implemented by Kosti Rytkö-
nen that uses string forces to hold the graph together with connected vertices
as close to each other as possible. The edges in the graphs are colored ac-
cording to the cluster structure as follows: black edges connect vertices that
both consider each other in their cluster, gray those in which only one of
the endpoints included the other in its cluster; the rest of the edges in G are
drawn light gray. Note that in general K(v) 6= Γ(v) and hence not all of the
vertices in K(v) are connected to v with an edge in E.

Also the C. elegans clustering using f1 of Figure 2.1 on page 4 has been
drawn with the same tool, but manually modified. For the above collab-

Figure 5.17: On the left, the clusters of a collaboration graph G = (V, E)
with n = 503 and m = 828, obtained using f2 and simulated annealing.
On the right, the neural network of Figure 2.1 clustered with f2 and
drawn using spring forces.

5. EXPERIMENTAL RESULTS 95



oration graph, no manual modification has been made. Even though the
visualization tool does not use the information of the clusters in any way,
relying only on the adjacency information, it appears to group (in this case
and also for many other graphs we have drawn, such as hierarchical caveman
graphs of different orders) vertices naturally in a way that brings most clusters
(as defined by either f1 or f2) physically close.

For comparison, we also provide the unmodified figure of the C. elegans
neural network clustered using f2 and drawn with the spring-force method
on the right in Figure 5.17. In this case the clusters are joined together to
form a “backbone” instead of grouping into small clusters such as those of
Figure 5.17. Scientific collaboration forms a sparse structure in comparison
to a nematode brain and hence allows for clearly separate clusters to appear.

We are interested in studying as further work the distributions of cluster or-
ders in larger collaboration graphs, such as those described in Section 5.3, as
well as other natural graphs or graph models. Of special interest is clustering
the Web graph, for which possible application areas are numerous. Also sim-
ilarities between the clustering obtained by our local method and clusterings
obtained by established global methods are of interest.
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6 CONCLUDING REMARKS

The models proposed for generating natural-like networks are numerous, and
the simple ideas behind each model can be harnessed further to develop
network topology generators that match a particular application area. This
development is most evident in modeling efforts of the Internet; communi-
cation networks in general and the related algorithms such as routing appear
an immediate and fruitful target for design improvements that are founded
on observations of network structure.

Our implementations of the models succeed in capturing many of the
properties of the models that have been analytically derived, and hence the
toolset provides a good foundation for further experimentation and easily ex-
tends to cover future models and modifications. Generalizations to weighted
and directed graph models are of interest in the future. We especially plan to
study further the clustering properties of different graph models as well as nat-
ural graphs, aiming to construct formally approachable local clustering algo-
rithms for large graphs. We are also interested in studying methods to obtain
random samples from large graphs to avoid the computational difficulty in
calculating exact measures for large data sets; studying Markov chains oper-
ating on vertex sets of different kinds graphs is of general interest, continuing
the study of random walks for different models.

This field of research is still growing. Hence several new proposals for
natural-like network models or their essential properties will certainly be pub-
lished in the future as well. Naturally a new multi-disciplinary research topic
such as this will initiate from conjectures and simple studies of limited accu-
racy, but robust approaches are already starting to appear. There is a strong
demand for straightforward analytical approaches, connections to methods
of natural sciences, and rigorous experimentation practices. Many promis-
ing ideas are currently clouded with incomplete reasoning and experiments
of very limited scale. We believe that many useful applications and fruitful
discoveries in this area are yet to appear.
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[43] P. Erdős and A. Rényi. On random graphs I. In Selected papers of
Alfréd Rényi, volume 2, pages 308–315. Akadémiai Kiadó, Budapest,
Hungary, 1976. First publication in 1959.

BIBLIOGRAPHY 101
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[124] B. Tadić. Dynamics of directed graphs: the world-wide web. Physica
A, 293(1–2):273–284, 2001.
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[126] B. Tadić. Temporal fractal structures: origin of power laws in the
world-wide web. Physica A, 314(1–4):278–283, 2002.

[127] A. Vázquez, R. Pastor-Satorras, and A. Vespignani. Large-scale topo-
logical and dynamical properties of the internet. Physical Review E,
65(6):066130, 2002.

BIBLIOGRAPHY 107



[128] A. Vázquez and M. Weigt. Computational complexity arising from
degree correlations in networks. Physical Review E, 67(2):027101,
2003.

[129] D. Volchenkov and P. Blanchard. An algorithm generating random
graphs with power law degree distributions. Physica A, 315(3–4):677–
690, 2002.
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