
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 76

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 76

Espoo 2002 HUT-TCS-A76

ON MODEL CHECKING SAFETY PROPERTIES

Timo Latvala

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 76

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 76

Espoo 2002 HUT-TCS-A76

ON MODEL CHECKING SAFETY PROPERTIES

Timo Latvala

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Timo Latvala

ISBN 951-22-6265-7

ISSN 1457-7615

Otamedia Oy

Espoo 2002

ABSTRACT: Safety properties are an interesting subset of general temporal
properties for systems. In the linear time paradigm, model checking of safety
properties is simpler than the general case, because safety properties can be
captured by finite automata. This work discusses the theoretical and some of
the practical issues related to model checking LTL properties.

Our first contribution is a theorem relating abstraction for Coloured Petri
nets as defined by Lakos [36] and preservation of safety properties. We show
that a subset of the safety properties are preserved for this abstraction frame-
work. Our other contribution is an efficient algorithm for translating LTL
safety properties to finite automata. Minor contributions include new proofs
for some old complexity results regarding LTL and safety properties.

The implementation of the translation algorithm is also experimentally
evaluated. Experiments support the feasibility of the approach. In many tests
the implementation is quite competitive when compared to algorithms trans-
lating full LTL to Büchi automata. The implementation can also check if an
LTL formula is pathologic. The check performs well according to experi-
ments.

KEYWORDS: Computer aided verification, model checking, LTL, safety
properties, abstraction, Coloured Petri nets

CONTENTS

1 Introduction 1
1.1 Contributions and Results 2
1.2 Related Work . 2
1.3 Outline . 3

2 Preliminaries 4

3 Automata Theoretic Foundations 6

4 Linear Temporal Logic 9
4.1 Syntax and Semantics of LTL 9
4.2 Expressiveness and Complexity 11
4.3 Safety and Liveness Properties 12
4.4 Deciding safety . 15

5 Abstraction and Safety Properties 18
5.1 Coloured Petri Nets . 18
5.2 Abstraction and Petri Nets 20
5.3 Temporal Logic and Refinement 23
5.4 An Example . 25

6 Model Checking Safety Properties 28
6.1 Detecting Bad Prefixes . 29
6.2 Informativeness . 31
6.3 Translation Algorithm . 34
6.4 Finite Trace Semantics for LTL 40

7 Implementation 42
7.1 Translation . 42
7.2 Checking Pathologic Safety 44

8 Translation Experiments 46
8.1 Random Formulae . 47

Syntactically Safe Formulae 47
General Formulae . 49

8.2 Model Checking Case Studies 50

9 Discussion 53

References 55

1 INTRODUCTION

Developing reliable systems is not an easy task. If the system has concurrency
it is even harder. When concurrency is introduced in a system, phenomena
which are not present in sequential systems manifest themselves. The in-
herent non-determinism of concurrent systems can give rise to subtle errors
which are very hard to understand and can be difficult to reproduce.

Concurrency is a devious source of complexity. Even a simple system
can exhibit complex behaviour when concurrency is allowed. This is also
obvious from many examples in concurrency theory. Determining if a finite
automaton accepts any string or a given string can be decided with simple
linear-time algorithms. In the concurrent case, i.e. deciding if the intersec-
tion of k finite automata accept any string or a given string, the best known
algorithms decide the problem in exponential- and linear-time respectively.

One of the ways introduced to aid designers in designing correct concur-
rent systems is model checking [8, 51]. Introduced roughly 20 years ago,
model checking has already revolutionised the way hardware systems are de-
signed, and can be considered industry practice today [23].

The basic idea of model checking is simple. Both the system and the
properties the system should have, are expressed as mathematical models.
Special algorithms allow comparison of the system against the properties and
if the system model violates a property, a violating execution can be displayed.
If the model and the properties have been specified correctly, no error will go
unnoticed. In the ideal case, all of these stages are automatic and very little
human intervention is required.

Unsurprisingly, model checking has its limitations. The perhaps most
acute problem is how to enable model checking to cope with the ever increas-
ing size and complexity of systems. For some classes of systems, the methods
scale quite well. This has made possible the success of model checking in
hardware systems. Finding methods which scale for systems which are asyn-
chronous and data intensive seems to be more challenging. Consequently,
concurrent software systems are still debugged mostly using traditional meth-
ods. The problems related to scaling in model checking are referred to as the
state explosion problem [60].

In this work we focus on efficient model checking of safety properties, us-
ing the automata theoretical approach [62, 34, 63]. Safety properties describe
properties of the system which have finite counterexamples or, more infor-
mally, properties requiring that “nothing bad happens”. A typical safety prop-
erty requires e.g. that the value of x always is greater than three. Many com-
mon properties such as invariants are safety properties which makes safety
properties very interesting.

In the automata theoretic approach to model checking both the system
and the property to be verified are described as automata. The property holds
if all of the executions of the system automaton also are executions of the
property automaton. Usually the property is not given as an automaton but
in some temporal logic such as linear temporal logic (LTL). There are also
other logics such as CTL which can be used for specification. In this work
we will mostly restrict ourselves to properties expressed using LTL.

This work discusses the theoretical and some of the practical issues of

1 INTRODUCTION 1

model checking LTL safety properties. The most relevant complexity result
are presented and analysed. Coloured Petri Nets are one of the formalisms
used to describe concurrent systems. We investigate which properties, espe-
cially safety properties, are preserved when abstractions defined in [36] are
used. Most of this work is dedicated to investigating how to efficiently com-
pile an LTL formula into an automaton, when the given formula describes a
safety property. Efficient compilation of the formulas facilitates the verifica-
tion of larger and more complex systems.

1.1 Contributions and Results

We develop an efficient translation of safety LTL formulae to finite automata,
based on the algorithm presented by Kupferman and Vardi [32]. The al-
gorithm has been implemented and extensive experiments have been per-
formed. Our results show that the algorithm scales better than algorithms for
translating general LTL formulae to automata. Currently, the implementa-
tion is not the fastest of the available translators. However, the experiments
indicate that using finite automata for safety model checking results in a real
difference in performance for practical models, especially when the property
does not hold. The implementation also includes the first implementation
to our knowledge of an algorithm for deciding if a formula is a pathologic
safety formula.

The work also has some strictly theoretical contributions. Minor contribu-
tions include new proofs for some of the complexity results related to safety
model checking. A more significant contribution is that we show that the ab-
straction/refinement framework introduced by Lakos can be used to aid the
abstraction when model checking safety properties. We prove that the ab-
stractions in the framework preserve a subset of the safety properties in LTL.
We also extend the result to some branching time properties. The feasibility
of the approach is argued with a small example.

1.2 Related Work

Model checking of safety properties has been investigated by number of au-
thors. Alpern and Schneider [2] were the first to give a formal definitions of
safety and liveness. The work of Sistla [53] on characterising safety of LTL
formulas syntactically continues this work and adds to it significantly. Most
of the automata theoretic insight into safety and liveness comes from Kupfer-
man’s and Vardi’s [32] paper. Many important notions are defined there for
the first time, among them the notions of informativeness for prefixes and
classification of LTL formulae into intentionally, accidentally and patholog-
ically safe. The paper also introduces a translation from LTL formulae to
finite automata, which is the basis for the algorithm in this work. Many com-
plexity results are also due to them. Geilen [21] also considers translating
LTL into finite automata. His approach reformulates some of the results of
Kupferman and Vardi using their notion of informativeness. The focus of
the paper is on presenting a tableau algorithm for run-time monitors of LTL
properties. Havelund and Rosu [25] also focus on monitoring executions
of systems. They present a dynamic programming algorithm which checks

2 1 INTRODUCTION

sequences against properties specified in a linear temporal logic with past op-
erators. An algorithm for model checking past temporal logic specifications
is also presented in [3].

Lakos [36] has defined and introduced most of the concepts related to
abstraction and refinement used in this work. He also proved that the refine-
ments used are in some sense behaviour respecting. Lewis [41] continued
Lakos work and investigated refinement especially in the context of incre-
mental development. Lewis also proves that given certain conditions, the
refined net is weakly bisimilar to the original net. The approach of Padberg
et al. [49] is close to the results presented in this paper. They show how a
rule-based approach for morphisms can be used to stepwise refine nets while
preserving invariants.

1.3 Outline

We begin in Section 2 by introducing Kripke structures, the system model
used in this work, and by defining some fundamental concepts. Section 3
gives the automata theoretic foundations, while setting the stage for the au-
tomata theoretic approach to model checking employed in this work. Sec-
tion 4 defines LTL and presents the relevant complexity theoretical results
and clarifies the connection between LTL and automata on infinite words.
The important concepts of safety and liveness are also defined and discussed
in this section. In Section 5 abstraction for Coloured Petri Nets w.r.t. model
checking safety properties is investigated. The translation algorithm from
LTL to finite automata is given in Section 5. Section 6 discusses imple-
mentation issues while Section 7 focuses on experimentally evaluating the
performance of the algorithm. Section 8 discusses the results and speculates
on possible future work.

1 INTRODUCTION 3

2 PRELIMINARIES

Formal languages. A very important concept in this work is the concept of
languages. Let Σ be a finite set called the alphabet. A finite word of length
n over Σ is a mapping w : {1, 2, . . . , n} → Σ. Words are also in many cases
presented as strings w = σ0σ1 . . . σn, where σi ∈ Σ. A language of finite
words over Σ is a set L of finite words. We can also talk about infinite words.
They are mappings w : N → Σ. Languages are defined as in the finite word
case.

Regular expressions. One way we will define languages in this work is
using regular expressions. We define the syntax of regular expressions w.r.t.
an alphabet.

• Every letter from the alphabet is a regular expression.

• If α and β are regular expressions, then so are ε, (α ∪ β), (αβ) and α∗

Every regular expression defines a language. The letter σ ∈ Σ defines the
one-word language {σ}. By ε we denote the empty string and (α ∪ β) is the
union of the languages of α and β. With (αβ) we denote the concatenation
of the languages of α and β. In some cases the shorthand αi = αα · · ·α, i.e.
α i times, is used. The Kleene star, α∗ is defined through the union:

α∗ = ε ∪
⋃

i∈N+

αi

In many cases our alphabet will be 2Σ. In this case we will use boolean
terms over Σ to define sets of letters. If Σ = {a, b}, then a ∨ b denotes
{{a}, {b}, {a, b}} while ¬a denotes {∅, {b}}. The expression > can be seen
as a shorthand for 2Σ.

Formal models. All formal reasoning requires a formal model of the sys-
tem under inspection. In this work we will consider the common model
where time is discrete and no concept of duration exists. This means that
the ordering between events is relevant, but time between events is not. At
each point in time, the system can be described by its state. The behaviour of
the system is the possible sequences of states of the system. All behaviours of
the system are considered infinite. For the class of systems we are especially
focusing on, reactive systems, this assumption is easy to justify. Reactive sys-
tems continuously react to inputs from the environment and they have no
natural terminating state. Abstractly, their behaviour can be seen as infinite.
It is of course possible that the system, e.g. due to a programming error, en-
ters a state from which it cannot proceed. This can, however, be simulated
by having the system loop in the same state.

The notions above can be formalised using the Kripke structure model.
The model is very simple and abstract, but it will be sufficient for our pur-
poses most of the time. Later we will also introduce higher-level formalisms
which are closer to programming languages. These mainly function as gen-
erators of Kripke structures.

Definition 1 A Kripke structure is a tuple M = 〈S, δ, s0, π〉, where

• S is a set of states,

4 2 PRELIMINARIES

• δ ⊆ S × S is the transition relation obeying the condition that ∀s ∈
S : ∃s′ ∈ S : (s, s′) ∈ δ,

• s0 is the initial state of the system, and

• π : S → 2AP is a labelling function which assigns a set of atomic
propositions to each state.

An execution of a Kripke structure M is an infinite sequence of states σ =
s0s1s2 . . ., where s0 is the initial state of M and (si, si+1) ∈ δ.

The set of states S can be either finite or infinite. Most definitions in this
work are oblivious to this, however, a few of the algorithms require finiteness
for termination.

We can also define the language of a Kripke structure. An execution σ

can be projected onto the alphabet 2AP by using the labelling function π.
This projected sequence can be considered a word in (2AP)ω. The set of exe-
cutions of the Kripke structure generates a set of infinite words, the language
of the Kripke structure, denoted L(M).

The relation between executions and infinite words will allow us to use
automata theory to specify behaviours of systems. This is one of the fun-
damental ideas which underlies the automata theoretic approach to model
checking.

2 PRELIMINARIES 5

3 AUTOMATA THEORETIC FOUNDATIONS

Finite automata on finite an infinite words are essential constructs for the au-
tomata theoretic approach to verification. This section introduces alternating
automata and non-deterministic automata.

Just as finite automata on finite words are equivalent to regular languages
finite automata on infinite words are equivalent to omega-regular langua-
ges(c.f. [59]). Omega-regular languages are like the normal regular lan-
guages but an additional operator, ω, is allowed for omega-regular expres-
sions. The expression (a ∪ b)(ba)ω characterises all strings which start with
a or b and are followed by infinitely many ba:s. In the following we consider
words defined over an alphabet Σ.

Let X be a finite set and B+(X) the set of all positive Boolean formulas
over X including the abbreviations true and false. A set Y ⊆ X satisfies a
formula θ ∈ B+(X) iff θ is satisfied by setting all the elements in Y to true
and all elements in X \ Y to false.

For the familiar non-deterministic automaton, if Q is a set of states, a tran-
sition relation δ can be defined as δ ⊆ Q × Σ × Q. A transition δ(q, σ) =
{q1, q2, q3} maps a state and a letter σ ∈ Σ to a set of states. The non-
deterministic nature of the automaton allows it to move to several states in
one transition. Alternating automata generalise this by allowing the automa-
ton use a bounded number of copies of itself which work non-determinis-
tically. Formally, transitions are mapped to arbitrary positive formulas in
B+(Q). As an example, if we have the transition δ(q, σ) = q1 ∧ (q2 ∨ q3), the
automaton moves to the states q1 and non-deterministically to q2 or q3. Let
w = σ0σ1 . . . be a word and let wi = σiσi+1 . . . denote the suffix of w starting
from the i:th position. The automaton above accepts a suffix wl from q if it
accepts wl+1 both from q1 and from either q2 or q3. In this framework the
non-deterministic transition above is expressed as δ(q, σ) = q1 ∨ q2 ∨ q3 Non-
deterministic automata are thus automata where only the or-connective is al-
lowed in the transition relation. Non-determinism captures existential choice
with the perfect guessing capability of the automata. Non-determinism can
easily capture existential style questions such as “accept any word which has
the property p”. Alternating automata can succinctly express both universal
and existential choice.

When a word w = σ0σ1 . . . is read by an automaton it induces runs of
the automaton. For a non-deterministic automaton a run can be seen as a
function r : N → Q, where r(0) is an initial state and for every i ≥ 0,
r(i+ 1) is in δ(r(i), σi). Each position is mapped to a state of the automaton
and the run must respect the transition relation of the automaton. Due to
non-determinism, one word induces several runs.

Runs for an alternating automaton are not so simple. An alternating au-
tomaton can be seen as making copies of it self, when “and” appears in a
transition. A run of an alternating automaton is thus better viewed as a la-
belled tree rather than as a path as for non-deterministic automata. A tree is
a non-empty set T ⊆ N

∗, where for every x · c ∈ T with x ∈ N
∗ and c ∈ N we

have x ∈ T . The elements of T are called nodes and the empty word ε is the
root of T . For x · c ∈ T , x ∈ T is the unique parent of x · c, and respectively
all x · c ∈ T are the children x. A node without children is called a leaf. The

6 3 AUTOMATA THEORETIC FOUNDATIONS

level of a node is its distance from the root ε. A path π = x0x1 . . . of a tree
is a maximal sequence of nodes such that x0 is the root ε and xi is the parent
of xi+1 for all i ≥ 0. A Σ-labelled tree is a pair 〈T, V 〉, where T is a tree and
V : T → Σ maps each node of T to a letter in Σ.

Definition 2 An alternating automaton is tuple A = 〈Σ, Q, δ, Q0, F 〉 where

• Σ is the input alphabet,

• Q is a finite set of states,

• δ : Q× Σ → B+(Q) is a transition function,

• Q0 ⊆ Q is a set of initial states and,

• F ⊆ Q is a set of final states.

A run of A over an infinite word w = σ0σ1 . . . is a Q-labelled tree 〈Tr, r〉,
where T ⊆ N

∗ and r(ε) ∈ Q0. For every node x ∈ Tr with δ(r(x), σ|x|+1) = θ

there is a possibly empty set {r(x · c) | x · c ∈ Tr} which satisfies θ. With
the Büchi accepting condition, A accepts a run 〈Tr, r〉 if all infinite paths
π ⊆ Tr visit at least one state in F infinitely often. A word is accepted if there
exists an accepting run for it.

If δ(r(x), σi) = true, then x does not need to have any children. Thus all
branches of the tree need not be infinite in the run. On the other hand false

must not appear in a run, since false is not satisfiable.
The special cases of non-deterministic and deterministic are easy to de-

fine. An automaton A is non-deterministic iff δ(q, σ) uses only disjunctions.
A is deterministic iff δ(q, σ) ∈ (Q ∪ false) and |Q0| = 1. The Büchi ac-
cepting condition is the obvious: a run r : N → Q is accepted if at least one
state in F is visited infinitely often in the run and a word is accepted if has
an accepting run.

Alternating automata can also accept finite words. A run on a finite word
w = σ0σ1 . . . σn is a finite Q-labelled tree 〈Tr, r〉 with T ⊆ N

≤n, where N
≤n

is set of N-words not longer than n. Otherwise, a run is defined in the same
way as in the infinite word case. A run is accepted iff for all nodes x of level
n we have that r(x) ∈ F .

The set of words an automaton A accepts is denoted L(A) and is called
the language of A. If L(A) = ∅ the automaton is called empty.

Alternation does not increase the expressive power of finite automata. Al-
ternating automata on finite words define a regular language and alternating
automata on infinite words an omega-regular language (c.f. [63]). However,
both in the finite and the infinite word case, alternating automata can be
exponentially more succinct than non-deterministic automata. The transla-
tion of an alternating automaton to a finite automaton constructs an non-
deterministic automaton which is exponentially larger. In the general case,
the blow-up is unavoidable. The intuitive idea behind the translation is that
the finite automaton guesses a run tree of the alternating automaton. At a
given point of a run, the finite automaton keeps a whole level in memory.
When it reads the next symbol it guesses the next level.

3 AUTOMATA THEORETIC FOUNDATIONS 7

All finite automata are closed under union, intersection and complemen-
tation. While complementing non-deterministic automata involves an ex-
ponential penalty, alternating automata on infinite words can be comple-
mented with only a quadratic blow up [31] and alternating automata on finite
words complemented in linear time (c.f. [63]).

In many applications it is important to determine if the automaton is
empty. For a non-deterministic automaton on finite words, determining if
the automaton is empty can be done in linear time simply by checking if any
final state is reachable from an initial state using the normal graph traversal
algorithms. The problem can be shown to be NLOGSPACE-complete using
the reachability method (c.f. [63]).

An automaton on infinite words is non-empty if there exists a path from
an initial state to a final state, and the final state can be reached from itself.
Despite the algorithmically more challenging task, the linear time bound can
be maintained in the following way. The strongly connected components
(SCC) of the automaton can be computed in linear time [56]. If a non-
trivial SCC contains a final state the automaton is non-empty. Using the
reachability method this problem can also be shown to be NLOGSPACE-
complete.

Unsurprisingly emptiness checking for alternating automata is much more
challenging. For both the finite word and infinite word case, it is in fact
PSPACE-complete.

Proposition 3 ([6]) The non-emptiness problem for alternating automata is
PSPACE-complete

Proof:
An alternating automaton can be translated into a non-deterministic automa-
ton with an exponential blow-up [6]. Non-deterministic automata can be
tested for emptiness in logarithmic space and thus if we do the translation
and the emptiness checking on-the-fly, we get a polynomial space algorithm.

To prove PSPACE-hardness of the emptiness problem we can reduce,
as we later shall see, the validity problem for LTL to the emptiness prob-
lem(c.f. [63]). ut

8 3 AUTOMATA THEORETIC FOUNDATIONS

4 LINEAR TEMPORAL LOGIC

Temporal logic [50] is a popular way of specifying properties of reactive sys-
tems. There are two basic variants of temporal logic, linear and branch-
ing [37]. In linear temporal logic (LTL), introduced to the verification setting
by Pnueli [50], any given point in time has only one future, while branch-
ing time logics [37] allows several possible futures. The perhaps most known
branching time logic is computation tree logic (CTL), introduced in [15].

There has been a two decade long debate, albeit currently not so in-
tense, among researchers in the concurrency community which paradigm,
the branching or the linear, is superior in reasoning about concurrency. To
the author’s knowledge, the most recent contribution to this debate is [64].

In this work, we almost exclusively focus on the linear paradigm. The
primary reason is that current research indicates [32] that the concept of
safety does not seem to be as fruitful in the branching time paradigm.

LTL allows properties of systems be specified easily, especially compared
to e.g. first order logic. The great innovation of Pnueli [50] was that this
modal logic was suitable for this task. Common properties like invariants,
fairness and causal relationships can be concisely expressed without the hor-
de of quantifiers that first order logic would require.

LTL also enjoys a complexity advantage compared to full first order logic.
It is expressive enough in most cases. In contrast, solving the first order logic
model checking problem is non-elementary (c.f. [9]).

4.1 Syntax and Semantics of LTL

The syntax of LTL consists of atomic propositions, the normal boolean con-
nectives, and temporal operators. Let AP be a set of atomic propositions.
Well-formed formulae of LTL are constructed in the following way:

• true, false and every p ∈ AP are well-formed formulae

• If ψ and ϕ are well-formed formulae, then so are ψ ∧ ϕ, ψ ∨ ϕ, ψ U ϕ,
ψ V ϕ, ¬ϕ and Xϕ.

LTL is interpreted over infinite sequences of atomic propositions, i.e. infinite
words in (2AP)ω. A model (or word) π = σ0σ1σ2 . . ., where σi ⊆ AP , is a
mapping π : N → 2AP . By πi we denote the suffix πi = σiσi+1σi+2 . . . and
πi denotes the prefix πi = σ0σ1 . . . σi. For an LTL formula ψ and a model
π, we write πi |= ψ, “the suffix πi is a model of ψ”. The semantics of the
models relation |= is defined inductively in the following way.

• For all πi we have that πi |= true and πi 6|= false.

• For atomic propositions p ∈ AP , πi |= p iff p ∈ σi

• πi |= ψ1 ∨ ψ2 iff πi |= ψ1 or πi |= ψ2.

• πi |= ψ1 ∧ ψ2 iff πi |= ψ1 and πi |= ψ2.

• πi |= Xψ iff πi+1 |= ψ.

• πi |= ¬ψ iff πi 6|= ψ.

4 LINEAR TEMPORAL LOGIC 9

• πi |= ψ1 U ψ2 iff there exists k ≥ i such that πk |= ψ2 and for all
i ≤ j < k πj |= ψ1.

• πi |= ψ1 V ψ2 iff for all k ≥ i, if πk 6|= ψ2, then there is i ≤ j < k such
that πj |= ψ1.

Usually we do not write π0 |= ψ but simply π |= ψ. Other commonly
used abbreviations are Fψ = trueU ψ, Gψ = false V ψ, and the normal
abbreviations for the boolean connectives ⇒,⇔. Of interest is also the un-
less-operator W which is defined by the equivalence ψ1 W ψ2 ≡ ψ1 U ψ2 ∨
Gψ1. A sufficient set of operators which can express all LTL-properties is
∨, U,X,¬. Note also the duality between until and release, ¬(ψ1 U ψ1) ≡
¬ψ1 V ¬ψ2.

The operatorX is the so called next-operator which requires that a formula
is true in the next position of the execution. The binary operator U is called
the until-operator. ψ1 U ψ2 means that eventually ψ2 will be true, and until
then ψ1 is true. This version of the until-operator is called reflexive because
the operator is satisfied if ψ2 is true immediately. The dual of until, V , is
called the release-operator. The formula ψ1 V ψ2 requires that ψ2 is true if ψ1

has not been true at an earlier point of time. In this case ψ1 and ψ2 must be
simultaneously true at some point. Note that ψ1 is not required to eventually
become true. The operator G has the meaning “globally” or “henceforth”.
It requires that a formula is true in all positions from the current onward.
The dual of G is F, called “finally” or “eventually”. The meaning of Fψ is
that ψ must be true at the current point or at some point in the future. The
unless-operator, W , also known as the weak until operator, says that the first
argument holds at least up until the second argument. The second argument
is never required to hold though.

An LTL formula ψ specifies a language L(ψ) = {π ∈ (2AP)ω| π |= ψ}.
The connection between the executions of a Kripke structure and the mod-
els of an LTL formula is now clear. The executions generate words over 2AP ,
which can also be interpreted as models of an LTL formula. Thus, given a
Kripke structure M and an LTL formula ψ, we write M |= ψ iff the pro-
jection to the atomic propositions of the LTL formula of each execution of
the Kripke structure M is a model of ψ. Sometimes this is referred to as the
universal model checking problem. The dual of the universal model check-
ing problem is the existential model checking problem where we ask if any
execution of the Kripke structure satisfies the given formula.

Example 4 Writing simple properties in LTL is fairly straightforward. Speci-
fying an invariant is easy. Let p be the atomic proposition having the meaning
that the variable x is greater than zero. Claiming that this is an invariant is
easy:

Gp

Requiring that x will always return to state where it is greater than zero is not
much more difficult:

GFp

Causal relationships are also easily expressed. If p is an atomic proposition
meaning that “A goes up” and q means “A comes down” formalising “if A

10 4 LINEAR TEMPORAL LOGIC

goes up it must eventually come down” gives:

G(p⇒ Fq)

Formalising using temporal logic is not always easy. Especially more complex
properties require care. “If p before q then also eventually r” becomes:

p V ¬q ⇒ Fr

4.2 Expressiveness and Complexity

LTL is fairly expressive as can be seen from the examples above. It charac-
terises a well-defined subset of the omega-regular languages. The precise sub-
set LTL formulae characterise is the star-free omega-regular languages [58],
the omega-regular languages which are formed without using the Kleene star.
This means that, despite LTL being fairly expressive, it cannot express fairly
simple properties such as “in every second state p is true”. LTL has been ex-
tended in several ways in order to achieve full omega-regularity. See e.g. [64]
for a survey.

Many of the complexity measures in this section will use the size of the
formula as a parameter. The size of a formula is defined through the set of
subformulas of a formula ψ. It is also called the closure of ψ and is denoted
cl(ψ). The size of a formula is defined as the cardinality of the closure.

As LTL characterises a subset of the omega-regular languages, LTL can be
translated to an automaton on infinite words. The translation to alternating
automata is easy to present. We assume that the formula ψ is in positive
normal form (PNF), i.e. negations only appear before propositions. Any LTL
formula can without a significant blow-up be rewritten in PNF using the
duality between U and V .

The translation straight-forwardly follows the semantics of LTL. Using the
expressiveness of alternation it is easy to translate the boolean operators ∨
and ∧. Also the next state operator X is easily translated. The translation of
the binary temporal operators is based on two equalities:

• ψ1 U ψ2 ≡ ψ2 ∨ (ψ1 ∧X(ψ1 U ψ2))

• ψ1 V ψ2 ≡ ψ2 ∧ (ψ1 ∨X(ψ1 V ψ2))

With these ’recursive’ definitions of until and release which relate the truth
of an until or a release formula to its truth in the next state, it is easy use
the transition relation to define their semantics. The automaton has |cl(ψ)|
states.

Proposition 5 [4, 63] Given an LTL formula ψ, we can construct an alter-
nating Büchi automaton Aψ = 〈2AP , cl(ψ), δ, {ψ}, F 〉, such that L(Aψ) =
L(ψ).

Proof:
The alphabet is 2AP , the set of states is the set of sub-formulas of ψ and the
set of accepting states contains all the states (formulas) of the form ϕ1 V ϕ2.
The transition function δ is defined in the following way for each σ ∈ 2AP :

4 LINEAR TEMPORAL LOGIC 11

• δ(true, σ) = true • δ(false, σ) = false

• δ(p, σ) = true if p ∈ σ • δ(p, σ) = false if p 6∈ σ

• δ(¬p, σ) = true if p 6∈ σ • δ(¬p, σ) = false if p ∈ σ

• δ(ψ1 ∨ ψ2, σ) = δ(ψ1, σ) ∨ δ(ψ2, σ)
• δ(ψ1 ∧ ψ2, σ) = δ(ψ1, σ) ∧ δ(ψ2, σ)
• δ(Xϕ, σ) = δ(ϕ, σ)
• δ(ψ1 U ψ2, σ) = δ(ψ2, σ) ∨ (δ(ψ1, σ) ∧ ψ1 U ψ2)
• δ(ψ1 V ψ2, σ) = δ(ψ2, σ) ∧ (δ(ψ1, σ) ∨ ψ1 V ψ2)

ut

Many translations have been presented which translate an LTL formula to
a Büchi automaton. See e.g. [22, 11, 12, 18, 55, 20]. However, quoting
Vardi [63] “this presentation has the advantage that it separates the logics
from the combinatorics”. The logics is handled by the translation from LTL
to alternating automata, while the combinatorics is dealt with in the trans-
lation from an alternating Büchi automaton to a non-deterministic Büchi
automaton.

Expressiveness usually implies a heavy baggage of complexity. This is also
the case for LTL. The classical problems of satisfiability and validity, i.e. de-
termining for a given LTL formula ϕ if there exists a model π such that π |= ϕ

and determining if all models satisfy ϕ respectively, are PSPACE-complete in
the size of the formula [54]. Polynomial space algorithms for both problems
are available through the translation to an alternating automaton and a reduc-
tion to the emptiness problem. If the automaton is empty the corresponding
formula is not satisfiable. The validity problem can of course be reduced to
the satisfiability problem by negating the formula under inspection.

Deciding the model checking problem, does M |= ϕ, given a Kripke
structure M and a LTL formula ϕ, can also be answered using automata
theoretic techniques. First, the negation of the formula is translated into an
automaton. Then, the intersection of the system and the formula automaton
is taken. If the intersection automaton is empty, the formula holds. This
procedure takes time |M | × 2O(|ϕ|). We will cover this more in depth later.

4.3 Safety and Liveness Properties

Temporal properties can be classified into different categories. One possi-
ble classification is splitting the properties into safety and liveness properties.
Lamport [37] informally described safety properties as properties which re-
quire that “something bad never happens” and liveness properties as prop-
erties which require that “something good eventually happens”. A typical
safety property is an invariant, which e.g. requires that the value of a variable
is positive. An example of a liveness property is that the system will always
eventually return to its initial state.

Divding properties into safety and liveness properties has proven its use in
many cases. For many logics and proof systems concerned with properties of
concurrent systems, a method for proving safety properties has been devel-
oped first which has been followed by a more general method which also can
handle liveness properties.

12 4 LINEAR TEMPORAL LOGIC

The formal definition of safety and liveness properties uses the language
analogy. We first define what a safety language is and then simply define
that a safety formula is a formula which defines a safety language. The terms
language and property can be considered synonyms in this context.

We again consider languages L ⊆ Σω of infinite words over some alphabet
Σ. A finite word x ∈ Σ∗ is called a bad prefix for L if for any y ∈ Σω x·y 6∈ L.
The finite word x cannot be extended in any way to a word of L.

Definition 6 A language L is called a safety language iff every w ∈ Σω \ L
has a finite bad prefix.

In other words, if we can identify the bad prefixes for a safety language it is
enough that we observe a finite part of a word to determine that it is not part
of the language.

Let L̄ denote the complement of the language, i.e. L̄ = Σω \ L. If L̄ is
a safety language, we call L a co-safety language. Every w ∈ L has a good
prefix x ∈ Σ∗ such that x · y ∈ L for y ∈ Σω iff L is a co-safety language.

There are also other ways of defining safety languages. The definition
of [2] defines safety languages in the following way. A language L ⊆ Σω is a
safety language iff for all w ∈ Σω: if ∀i ≥ 0, ∃u ∈ Σω such that wiu ∈ L then
w ∈ L. In other words, given a safety language L, any word w for which all
prefixes wi can be extended to a word in L must also be in L. Our definition
focuses on the fact that each word not in L must have a finite bad prefix. The
equivalent definitions defines the safety languages in complementary ways.

Safety languages can be subdivided into subclasses. A language L is closed
under stuttering if σ0σ1 . . . σiσiσi+1 . . . is in L then σ0σ1 . . . σi . . . σiσi+1 . . .

and also σ0σ1 . . . σiσi+1 . . . are in L. Repeating any σi finitely many times or
removing all repetitions will not affect the membership of a word in a lan-
guage closed under stuttering. If a language is both a safety language and
closed under stuttering it is called a safety language with stuttering. Lam-
port [38] calls this class of languages safety languages. The definition used in
this work is according to [32]. It is equivalent to the definitions in [14], [2]
and [47]. Stuttering is interesting because all partial order reductions require
that the property is insensitive to stuttering [60].

Sistla [53] further introduces the term strong safety languages. A language
L is a strong safety language iff

• L is a safety language with stuttering, and

• ∀w = σ0σ1 . . . σi−1σiσi+1 . . . ∈ L also w′ = σ0σ1 . . . σi−1σi+1 . . . ∈ L

for all i > 0.

Even if any σi is deleted, except σ0, the resulting sequence should still be in
L. According to Sistla, the motivation for the second condition is that even
if the system is not observed at times, the observed behaviour should still
satisfy the property. This class of properties is also of special interest to real
time monitoring, as it is the only class of properties which can be monitored
successfully without always starting the system from its initial state.

The verification community generally agrees that many properties which
are verified are safety properties. This is not surprising since it is usually sim-
ple to think of many safety properties a system should have, while formulating

4 LINEAR TEMPORAL LOGIC 13

Safety properties

Omega−regular properties

Strong safety

Stuttering safety

LTL properties

Figure 1: Hierarchy of omega-regular safety languages

many liveness properties is more challenging. Although some simple proper-
ties such as termination cannot be expressed within the framework of safety
properties, some fairly complex properties are expressible.

Example 7 We already mentioned that all invariants are safety properties.
Thus, if we have an atom no_deadlock defined, deadlock freedom can be
expressed as an invariant.

Gno_deadlock

All invariants are also strong safety properties. No matter how many states are
removed from the model, the invariant will of course still hold.

Some properties about resource allocation are also safety properties. The
property that all answers are preceded by a request can be formulated in the
following way. Let the atomic propositions ans and req have the expected
meanings. The formula defining the property is:

¬ansW req

In some applications it is important that once we enter a certain state
there is no way to leave. This property can be expressed by:

G(p⇒ Gp)

Liveness properties cannot be characterised by observing finite prefixes of
executions. This is already suggested by the informal characterisation “even-
tually something good happens”.

Definition 8 A language L over an alphabet Σ is a liveness language iff the
set {πi | π ∈ L} is Σ∗.

The definition captures the intuition that any finite sequence can be ex-
tended to satisfy a liveness property.

Example 9 Fairness is a typical liveness property and it required for proving
many liveness properties. Strong fairness, i.e. if a request is made infinitely
often it is also granted infinitely often can expressed in the following way:

GFreq ⇒ GFgrant

14 4 LINEAR TEMPORAL LOGIC

A classical property for normal sequential programs is that all runs terminate.

Fterminate

Many properties related to resource allocation are also liveness properties.
Let the atomic proposition p have the meaning that we have the resource
and the atomic proposition q that we are ready to give the resource away.
Then the property “once we have the resource, we will have it at least until
we are ready to give it away” is expressed by the formula

G(p⇒ pU q).

In the above definitions of liveness, only languages where no word has a
bad prefix, were accepted. This means that languages where some words
have bad prefixes are neither safety nor liveness languages. Manna and
Pnueli [47] call a language a progress language if some of its words do not
have bad prefixes. The division of properties into safety and progress proper-
ties is semantically meaningful. The only properties which are both safety
and progress properties are the ones which are equivalent to true (c.f. [47]).

4.4 Deciding safety

Knowing which formulas are safety formulas is not always easy. Clearly some
formulas are safety formulas by the virtue of their structure, e.g. positive
formulas using only the temporal operator G.

An easy syntactic characterisation can be given using past temporal logic
formulae. The past operators consider a finite past unlike their future coun-
terparts, which refer to an infinite future. Past temporal logic uses operators
like since, previously and once. A formula Gϕ, where ϕ only contains past
modalities, is safety formula and any safety property expressible with LTL is
expressible in this way [47].

For the future fragment of temporal logic, Sistla [53] has presented a syn-
tactic characterisation of safety formulae. We call these syntactically safe
formulae.

Proposition 10 ([53]) Every propositional formula is a safety formula, and if
ψ and ϕ are safety formulae then so are ψ ∨ ϕ, ψ ∧ ϕ,Xψ,Gψ, and ψ V ϕ.

Proof:
The proof proceeds by induction on the formula structure and is somewhat
different (hopefully also simpler) than the original proof by Sistla. We need
only consider the cases ∨,∧, X and V because Gψ ≡ false V ψ. For each
case, we show that applying the operator preserves the property that each
counterexample has a bad prefix.

We start with the base case. Let ψ be a propositional formula and π be a
model such that π 6|= ψ. Specifically it is the first state in the model which
fails and can thus be used as a bad prefix.

Let φ and ϕ be safety formulae and π a model such that π 6|= ψ, where ψ
is one of the following.

4 LINEAR TEMPORAL LOGIC 15

• ψ = φ ∨ ϕ. By the semantics of the or-operator, both π 6|= φ and
π 6|= ψ. As both are safety properties they have finite bad prefixes πψ
and πϕ. One of prefixes will be valid for both as they are from the same
model one of them will be a subsequence of the other.

• ψ = φ∧ϕ. By the semantics of the and-operator a bad prefix for either
φ or ϕ will do. This of course exists by the safety of φ and ϕ.

• ψ = Xφ. The semantics of X implies that π1 6|= ψ. Then by the safety
of φ there exists an i such that π1

i is a bad prefix for φ. Any σ0π
1
i , where

σ0 ∈ 2AP , is then a bad prefix for ψ.

• ψ = φV ϕ. If π 6|= φV ϕ then there exists an i ≥ 0 such that πi 6|= ϕ

and πj 6|= for all 0 ≤ j < i. Without loss of generality we fix our i to
be the smallest such number. By the safety of φ and ϕ there exists bad
prefixes πik for φ and πl for ϕ. There are now two possible cases:

– k ≤ l : Now πl is a bad prefix for ψ because, πkl is a bad prefix for
φ and since πl includes πk it is also a bad prefix for ψ.

– k > l : Now πk is a bad prefix for ψ. The argument is symmetric
to the argument above.

ut

Sistla [53] mentions that the syntactic fragment is also expressively complete
for LTL safety properties, but no actual proof is provided. By leaving out
the X -operator from the fragment, a fragment which expresses safety with
stuttering is obtained.

Proposition 11 ([53]) Every positive formula using only the Release opera-
tor V expresses a safety property with stuttering.

The result is not surprising because it is well-known that if the next-operator
X is omitted, LTL can only express stuttering insensitive properties (c.f. [9]).

For strong safety properties Sistla [53] has proved a stronger result. The
result does not restrict itself to strong safety properties of LTL. Using only G,
LTL is expressively complete w.r.t. omega-regular languages and strong safety
properties.

Proposition 12 ([53]) The omega-regular strong safety properties are exactly
those expressed by positive formulae using only the temporal operator G.

The above characterisations of safety properties, although useful, do not
always help us in answering the question, given an LTL formula ψ, is it a
safety formula. Often formulas are not given in the normal form. Thus it is
an interesting problem decide if a given formula represents a safety property.

Sistla [53] solved the problem and presented an algorithm for LTL for-
mulas, which Kupferman and Vardi [32] later generalised to general omega-
regular properties expressed as alternating automata. The result is somewhat
discouraging as it shows that deciding safety is PSPACE-complete. However
using the same argument which has been used to defend the feasibility of
LTL model checking, i.e. formulas tend to be so short that the procedure is
useful in practice, checking for safety should be feasible in most cases.

16 4 LINEAR TEMPORAL LOGIC

As there is a linear translation in the number of states from LTL to al-
ternating Büchi automata, we present the more general result concerning
alternating automata.

Proposition 13 ([32, 53]) Deciding if the language of an alternating Büchi
automaton is a safety language is PSPACE-complete.

Proof:
Let the given automaton be A. The automaton can be translated into an
exponentially larger Büchi automaton A′. Denote by A′

l the same Büchi au-
tomaton where all states have been marked as accepting. If L(A′

l) ⊆ L(A′)
then the language of A is a safety language [2, 53]. This condition is equiva-
lent to that L(A′

l) ∩ L(Ā′) = ∅. Complementing an alternating automaton
can be done with a quadratic blow-up and as we have previously shown,
intersecting two automata and doing an emptiness check can be done in
polynomial space.

The PSPACE-hardness result is due to Sistla [53]. It is possible to reduce
the LTL validity problem to safety checking. Any LTL formula ϕ is valid iff
ϕ∨Fp is a safety formula, where p is an atomic proposition not appearing in
ϕ. This holds because the expression is equivalent to true, a safety formula,
only when ϕ is valid. A formula equivalent to a safety formula is also a safety
formula. ut

4 LINEAR TEMPORAL LOGIC 17

5 ABSTRACTION AND SAFETY PROPERTIES

One of the most important ways of combating state explosion is the use of
abstraction. The idea of abstraction that models should only include rele-
vant details pervades almost all disciplines of software engineering and com-
puter science. An interesting question is how abstraction can aid model
checking of safety properties. We consider this in the context of the abstrac-
tion/refinement framework for Coloured Petri nets presented by Lakos [36].

In the previous sections, we considered model checking when a Kripke
structure M constructed in advance. Usually the Kripke structure is de-
scribed implicitly using some formalism for describing systems. One such
formalism is Petri nets.

Petri nets are a class of widely used modelling formalisms for concurrent
and distributed systems. In the basic model, a system is represented by a set
of possible control states, transitions with preconditions between the control
states and an initial state. More high-level versions of Petri nets allow type
information for the control states and complex functions on the transitions.
Petri nets model both states and actions explicitly and are generally consid-
ered a versatile formalism for modelling different kinds of systems. Here we
use Coloured Petri nets introduced by Jensen [30].

Abstraction is usually applied on a high-level formalism which generates
a Kripke structure. The idea is that if irrelevant details are omitted from
the high-level model, the resulting Kripke structure will be smaller and thus
easier to model check. Lakos [36] has presented an abstraction/refinement
framework for modelling with Coloured Petri Nets (CPNs). The framework
is designed to support incremental development. Lakos suggests that most
software development proceeds in an incremental manner, and therefore it
is natural that the models of software we use should be built likewise. The
process would begin with the design of an abstract model, which is later re-
fined to encompass more and more details, finally resulting in the complete
model. Lewis and Lakos [42] describe several projects where incremental
modelling has been used.

The framework presented by Lakos restricts refinement to three forms,
namely type refinement, node refinement, and subnet refinement. Lakos
argues that with these three forms of refinement are equally powerful as his
earlier more general proposal [35]. Lewis and Lakos have implemented a
version of Maria which supports this refinement framework [42]. One of the
most attractive features of this framework is that given two nets it is possible
to statically check if one is a refinement of the other.

An interesting question is, which temporal logic properties are preserved,
especially safety properties, by the refinements which the framework allows.
This could make it possible to prove properties on the abstract net, which
presumably has a smaller reachability graph than the refined net, and infer
that the same properties hold for the refined net.

5.1 Coloured Petri Nets

We quite closely follow the notations of [36] in order to make it easy for
readers to check details from this paper.

18 5 ABSTRACTION AND SAFETY PROPERTIES

We denote the functions over Σ with ΦΣ = {X → Y |X, Y ∈ Σ}, the
multisets over a colour set X by µX = {X → N}, and the finite sequences
over a colour setX by σX = {x1x2 . . . xn | xi ∈ X}. We define CPNs within
the context of a given universe of colour sets Σ.

Definition 14 A CPN is a tuple 〈P, T, A, C, E,M,Y,M0〉 where

• P is a finite set of places,

• T is a finite set of transitions, P ∩ T = ∅,

• A is a set of arcs, A ⊆ P × T ∪ T × P ,

• C : P ∪ T → σ assigns colours to places and transitions,

• E : A→ ΦΣ determines the arc inscriptions,

• M = µ{(p, c)| p ∈ P, c ∈ C(p)} is the set of markings,

• Y = µ{(y, c)| t ∈ T, c ∈ C(t)} is the set of steps, and

• M0 is the initial marking, M0 ∈ M.

Markings are defined as multisets over (place, colour) pairs and steps are
multisets over (transition, colour) pairs.

The following notation is convenient in many definitions. For a CPN N ,
a node x ∈ P ∪ T , and a set of nodes X ⊆ P ∪ T we define:

• the preset of x, •x = {y ∈ P ∪ T | (y, x) ∈ A}

• the postset of x, x• = {y ∈ P ∪ T | (x, y) ∈ A}

• the border of X , bd(X) = {x ∈ X | ∃y ∈ (P ∪T) \X : y ∈ •x∪x•}

• the environment ofX , env(X) = {y ∈ (P∪T)\X | ∃x ∈ X : •x∪x•}

The preset of x is thus the nodes which have an arc to x while the postset
of x are the nodes which have an arc from x. Similarly, the border of X
is the nodes in X which have an arc to or from a node not in X while the
environment X is the nodes not in X which have an arc to or from a node
in X .

A change of state, i.e. the effect of firing of a set of transitions, is defined
in two parts using the positive and negative incremental effects.

Definition 15 The incremental effects E+, E− : Y → M of the occurrence
of a step Y ∈ Y are given by:

• E+(Y) =
∑

(t,m)∈Y

∑

(t,p)∈A{p} × E(t, p)(m)

• E−(Y) =
∑

(t,m)∈Y

∑

(p,t)∈A{p} × E(p, t)(m)

Definition 16 A step Y ∈ Y is enabled in a marking M ∈ M if M ≥
E−(Y). We denote this M [Y 〉. An enabled step Y in a marking M can
occur and lead to a marking M ′ ∈ M, denoted M [Y 〉M ′, such that M ′ =
M − E−(Y) + E+(Y).

5 ABSTRACTION AND SAFETY PROPERTIES 19

Next we consider sequences of steps Y ∗ = Y1Y2 . . . Yn ∈ σY . A step
sequence Y ∗ is enabled in a marking M0 and may occur leading to a marking
Mn, denotedM0[Y

∗〉Mn, if there exists markings M1,M2, . . .Mn−1 and steps
Y1, Y2, . . . , Yn such that M0[Y1〉M1, M1[Y2〉M2, . . ., Mn−1[Yn〉Mn. A step Y
is realisable by a sequence Y ∗ in marking M , leading to a marking M ′, if
M [Y ∗〉M ′ and

∑

y∈Y ∗ y = Y . When Y is realisable by Y ∗ in M we can see
Y ∗ as a decomposition of Y into smaller steps.

In order to use temporal logic to specify properties on nets we must define
the concept of an execution.

Definition 17 An execution ξ of a CPN N is an infinite sequence of mark-
ings ξ = M0M1M2 . . . such that M0 is the initial marking and Mi[Yi〉Mi+1

for some enabled step Yi in Mi. If no step is enabled in a marking Mi, an
execution is made infinite by setting Mi+1 = Mi.

Repeating the last state is standard trick for being compatible with the infi-
nite sequence semantics of temporal logic. Deadlocking sequences are con-
sidered infinite by repeating the last state.

We can now define what it means for a temporal logic formula to hold for
a Petri net. Given an LTL formula ψ we evaluate each atomic proposition
occurring in ψ in all markings of ξ. Let eval(ξ) be the infinite sequence in
(2AP)ω when each atomic proposition has been evaluated in the markings of
the sequence. For a CPN N we write that N |= ψ if for all executions ξ of N
we have that eval(ξ) |= ψ.

5.2 Abstraction and Petri Nets

In many programming languages the main mechanisms for abstraction and
refinement are subtyping or subclassing. Usually, subclassing only requires
that a subclass has syntactically the same methods as a superclass. Essen-
tially, this does not restrict the behaviour of the subclass in any way. An-
other approach is to require that the refinement must preserve bisimilarity
or some other appropriate equivalence relation. In most cases this is too
strong a requirement because it constraints the possibilities for refining too
much. Lewis [41] discusses this issue in depth in his PhD thesis. The ab-
straction/refinement framework introduced by Lakos introduces behavioural
compability as the key notion. Informally, any refinement must ensure that
“every refined behaviour has a corresponding abstract behaviour”. Further-
more, three key forms of refinement are introduced and it is argued that
these three forms and their compositions are all you need. The three forms
of refinement are type refinement, subnet refinement and node refinement.

Consider the simple order processing system of Figure 2. Orders are re-
ceived and stored in the placed pending orders. Next, pending orders are
registered and processed. After this step, it is still possible to cancel the order.
If the order is not cancelled, the order goes into production, and is ready for
delivery when the requested item has been produced. Finally the produced
item is delivered.

Type refinement allows the refined net to replace types with compatible
subtypes. A subtype can, e.g., introduce new data components into a token.
The subtype must be compatible with the supertype in the sense that the

20 5 ABSTRACTION AND SAFETY PROPERTIES

receive
order

process
order

orders

pending
orders

cancel order

produce
order

ready
orders

deliver

x x x
x

x

x

x

Figure 2: A simple order processing system

cancel order

x x x
x

x

x

x

x

receive
order

pending
orders

order
process

orders

produce
order

deliver
orders
ready

payed
orders

Figure 3: Subnet refinement

subtype can be used everywhere the parent type can. Usually this means
that the values of the subtype can be projected onto the supertype. The arc
inscriptions must be changed so that they fit the new tokens, however con-
sistency with the old arc inscriptions must be maintained. Given a marking
of the refined net, the corresponding marking of the abstract net is obtained
by projecting the subtype onto the supertype. Thus, every refined behaviour
has a corresponding abstract behaviour. The refinement can however restrict
behaviour w.r.t. the abstract behaviour, as even though a token satisfies the
abstract requirements of a transition the refined conditions may not be satis-
fied resulting in a deadlock not present in the abstract net. In our example
we could e.g. refine the type for the orders to include more information.
Instead of just including the name of the item, the type could also include
information on the urgency of the order.

Subnet refinement allows places, transitions, and arcs to be added to the
net. The additions may not add new behaviour to the abstract part of the net,
but they can restrict behaviour. The corresponding abstract marking of a re-

5 ABSTRACTION AND SAFETY PROPERTIES 21

x

x

x

inp1 out1

accept2

accept1

buf
x

x
x

x

x

offer1

offer2

out2inp2

Figure 4: Canonical place refinement.

Passed

Fail

OK

x x

x

x x x

xx

Ready
orders

TestedUnder testProduced
orders

Testing

Test

Figure 5: A node refinement for the order processing system

fined net is obtained by ignoring the added components. The order process-
ing system could be refined by adding a check that the customer has payed
the order before anything is produced. This restricts the behaviour of the net,
because it introduces a possible deadlock if the customer has not payed his
order. Figure 3 shows the order processing system with the refinement.

The third form of refinement is node refinement. In node refinement
a place or a transition is replaced by a place or a transition bordered sub-
net. Lakos advocates the use of a canonical base for both refinements. By
further refining the canonical bases an arbitrary node refinement can be ac-
complished. The basis for the canonical refinement can be seen in Figure 4.
It is important that the refinement maintains the abstract marking, which is
accomplished by the use of the canonical basis. As an example, we could
refine the place “ready orders” to a new subnet which would test the ordered
product for errors and only after the product has passed the tests, it would be
ready for delivery. Figure 5 shows the place refinement for the “ready orders”
place.

The mathematical framework of the theory is built around morphisms
between nets. A refinement (or abstraction) is given by a morphism φ : N →
N ′ between the refined and the abstract net. In other words a morphism is
in this context a mapping from nodes and arc inscriptions of the refined net
to the abstract net, obeying certain restrictions. The first restriction is that a

22 5 ABSTRACTION AND SAFETY PROPERTIES

morphism must be surjective w.r.t. P ′, T ′ and A′, because refinement may
only add components and not delete them. Thus φ−1 is always well defined.

We are mostly interested in complete steps, as firing many transitions in
the refined net can correspond to firing one transition in the abstract net.

Definition 18 ([35]) Given a morphism ψ : N → N ′, a step Y of N is
complete if ∀t′ ∈ T ′ : ∀t ∈ bd(ψ−1(t′)) = {t′} × ψ(Y)(t′).

In other words a step Y is complete if the border transitions occur with
matching modes.

Now we are ready to define behaviour respecting morphisms. Lakos calls
a behaviour respecting morphism system morphisms [35].

Definition 19 A system morphism φ : N → N ′ is a mapping from N to N ′

such that:

• ψ is surjective w.r.t. P ′, T ′ and A′.

• ψ is linear and total over both M and Y.

• ∀M ∈ M : ∀Y ∈ Y : Y is complete and realisable as Y1Y2 . . . Yn
at marking M =⇒ ψ(Y) is realisable as ψ(Y1)ψ(Y2) . . . ψ(Yn) at
marking ψ(M).

• For any reachable marking M , for all Y ∈ Y, if Y is complete then
φ(M + E+(Y) − E−(Y)) = φ(M) + φ(E+)(φ(Y)) − φ(E−)(φ(Y)).

System morphism can be composed and the result will be a system mor-
phism [35]. The three previously defined refinements can be expressed with
system morphisms and are therefore behaviour respecting in the sense above.
Essentially, any system morphism can be seen as a refinement.

5.3 Temporal Logic and Refinement

The general idea of abstraction is that we can prove properties of the refined
net by proving the properties on the abstract net.

Let N be a refined net of N ′ with a corresponding system morphism
φ : N → N ′. What we actually wish to prove is that if N ′ |= ϕ then all
executions ξ of the refined net N are models ϕ when viewed through the
morphism, i.e. φ(ξ) |= ϕ. The abstract behaviour of the refined net should
be the same as the behaviour of the abstract net. The refined nets can how-
ever introduce new deadlocks and can therefore have executions which have
no corresponding abstract execution.

Because the refined the can introduce new deadlocks, intuitively the ab-
stract behaviour should preserve all safety properties which do not require
that something will happen in the future, not even in a bounded number of
steps. In other words, the refinements should preserve the stuttering safety
properties, and as it turns out this is indeed the case.

Theorem 20 N ′ |= ϕ implies that for all executions ξ of N we have that
φ(ξ) |= ϕ, when ϕ is a stuttering safety formula.

5 ABSTRACTION AND SAFETY PROPERTIES 23

Proof:
The proof proceeds by induction on the structure of the formula. Let N ′ |=
ϕ.

Let ϕ be a propositional formula and N ′ |= ψ. Because φ is surjective
w.r.t. P ′, clearly φ(M0) = M ′

0 and the claim follows.
Let ϕ = f ∨ g. By the assumption N ′ |= f or N ′ |= g. The induction

hypothesis then gives φ(ξ) |= f or φ(ξ) |= g and thus φ(ξ) |= f ∨ g. Proving
ϕ = f ∧ g proceeds in a similar manner.

Now let ϕ = f V g and N ′ |= ϕ. System morphisms guarantee that for
a finite sequence of markings Mi,Mi+1, . . . ,Mk in the refined net there is
a corresponding sequence φ(Mi), φ(Mi+1), . . . , φ(Mk) in the abstract net.
Equivalently, the absence of a sequence in the abstract net guarantees its
absence in the refined net. However, when we consider infinite executions
of the refined net, it is possible that they have deadlocked and repeat the last
state even though the projected execution would not deadlock in the abstract
net. Consider the projection of an execution φ(ξ). If ξ is not a deadlocking
execution we can immediately conclude that φ(ξ) |= ϕ because φ(ξ) is an
execution of the abstract net. Now consider the case where from some k
onward ξ(i) = ξ(i + 1) for all i ≥ k because ξ is a deadlocking execution.
By the semantics of V , f V g can hold if ξi |= f for all i ≥ 0 or there exists j
such that ξj |= g and ξl |= f for all 0 ≤ l ≤ j. In the case no such j exists,
φ(ξ)i |= f for all i ≥ 0 by the induction hypothesis and thus φ(ξ) |= ϕ. If
the bound j exists there are two possibilities: j > k or j ≤ k. If j > k the
situation reduces to the case where φ(ξ)i |= f for all i ≥ 0. If j ≤ k, by
the induction hypothesis φ(ξ)i |= f for 0 ≤ i ≤ j and we can also apply the
induction hypothesis to show that φ(ξ)j |= g. From this we can conclude
that φ(ξ) |= f V g.

Gf is covered by the last case as Gf ≡ falseV f . ut

The question which naturally follows is can we prove that even more proper-
ties are preserved. The depressing but probable answer is no. For all temporal
operators which demand that something will eventually occur, likeX , U and
F, it is easy to construct counterexamples where the properties are not pre-
served in the refined net. It should however be noted that refinement notions
which preserve too much information are usually very restrictive. Lewis [41]
dwells into the issue why refinements which preserve e.g. bisimilarity are of-
ten inappropriate.

It is however possible to strengthen the notion refinement in order to pre-
serve more properties. Lewis [41] has investigated how refinement must be
strengthened in order to achieve weak bisimilarity. Intuitively, this should
hold if the refinement does not introduce any new deadlocks. In [41] the
notion of “at least as live” is defined and weak bisimilarity is proven to hold.

Proposition 21 ([41]) If the net N is a refinement of N ′ by the system mor-
phism φ : N → N ′ and N is at least as live as N ′, then N is bisimilar to
N ′.

The construction works by labelling all refined actions which do have coun-
terparts in the abstract net as τ -actions. Thus the projected executions can
include some repetitions, i.e. stuttering. The notion of “at least as live” is

24 5 ABSTRACTION AND SAFETY PROPERTIES

however computationally very heavy. Currently no better technique than
constructing the full reachability graph exists to determine if the refined net
is at least as live as the abstract net. For combating state explosion this ap-
proach is useless.

The proposition proven by Lewis has an interesting corollary. When the
refined net is at least as live as the abstract net, the next-operator free full
branching time logic CTL∗

−X is preserved.

Corollary 22 If the net N is a refinement of N ′ by the system morphism
φ : N → N ′ and N is at least as live as N ′, for all ϕ ∈ CTL∗

−X holds
N |= ϕ⇐⇒ N ′ |= ϕ.

The result follows directly from known properties of bisimulation. See e.g. [7]
for a discussion on the subject.

As corollary 22 suggests, it is possible still generalise Theorem 20 to en-
compass some branching time properties. We consider allowing the use of
the path quantifiers A (for all paths) and E (for some path) with stuttering
free safety formulas of Theorem 20. These form a restricted subset of the full
branching time logic CTL∗.

We first consider formulae containing the existential path quantifier E.
A simple analysis quickly concludes that formulae containing E are not pre-
served by refinement. A formula Eψ holds in the abstract net if one execution
is a model for ψ. As the refined net has less behaviour that the abstract net, it
is clear that formulae containing E are not preserved.

For formulae containing the universal path quantifier A the situation is
the same as for LTL. With a very similar proof as above we obtain the follow-
ing slight generalisation of Theorem 20.

Theorem 23 For any positive ACTL∗ formula ϕ containing only the tem-
poral operator V , if for the abstract net N ′ |= ψ then for all execution ξ of
the refined net φ(ξ) |= ϕ.

The results presented above are related to the results presented by Padberg
et al. [49]. They present an approach for stepwise refinement using a rule-
based approach based on invariant preserving morphisms. Our results are
more general in the sense that we preserve a larger fragment of the safety
properties.

5.4 An Example

Consider the order processing system presented previously. It can be seen as
a simple example on how incremental design could work. First an abstract
model, again see Figure 2, is created which only has the most basic features
of the system. Orders are received and processed. Cancelling an order is
already possible in the basic model. If an order is not cancelled it is eventu-
ally delivered to the customer. We could be interested in making sure that
an order is not delivered unless it has been processed. The property can be
formalised in the following way:

¬piW qi,

5 ABSTRACTION AND SAFETY PROPERTIES 25

where pi is a proposition meaning that “the order i has been delivered” and
qi is a proposition meaning that “the order i has been processed”. In the
abstract model this is easy to verify e.g. using model checking.

Next we start adding features to the model. As previously, we want to
make sure only payed orders are produced. This can be done by adding one
transition to the model. The result can be seen in Figure 3. Since this is a
legal subnet refinement we can by Theorem 20 conclude that the property
still holds.

There is no need to stop adding features. As previously, the place “ready
orders” can be refined to also model the final testing of the products. No
product is shipped without testing. The place refinement can be seen in
Figure 5. Again, we can by Theorem 20 conclude that the property still
holds.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
102

103

104

105

106

107

Order states
Order arcs
Refined states
Refined arcs

Figure 6: Statistics for the reachability graph of the order processing system.

The question which naturally arises is how much harder is it to apply
model checking directly on the refined system. One way of comparing this
is to compare the sizes of the reachability graphs, i.e. Kripke structures of
the models. In order for this to be possible, we must close the models and
add an environment which makes orders. The environment we modelled is
perhaps the simplest possible. It chooses non-deterministically from a pool
of N possible orders and makes the order. Each order can only be made
once. In the refined model it also pays the order when it is made. The mod-
els were analysed by the reachability analyser Maria [46]. For the abstract
model we computed the reachability graph for N = 2, 3, . . . , 7. As could
be expected, the reachability graph of the refined model grew so quickly, we
only computed it for N = 2, 3, 4, 5.

26 5 ABSTRACTION AND SAFETY PROPERTIES

Figure 6 shows the sizes of the reachability graphs. The x-axis gives the
value of the parameter N and the y-axis the number of states or arcs. Note
that the scale on the y-axis is logarithmic. As can be expected, in all cases the
growth is exponential. The models are in this case so simple that the curves
can be well described by a functional dependency of the form y = 10aN+b.
Table 1 contains the values for the parameters of the curves, which have
been computed using the least squares method. By examining the curves
and parameters, it is evident that the rate of growth for reachability graph of
the refined model is exponentially faster compared to the rate of growth for
the reachability graph of the abstract model. This translates to an exponen-
tial saving when model checking the abstract system instead of the refined
system.

Table 1: Parameter values for fitting the curve y = 10aN+b to sizes of the
reachability graphs.

Abstract Refined
a b a b

states 0.6990 0.6990 1 1
arcs 0.7829 1.0386 1.100 1.2433

We conjecture that a similar approach could be taken when a more com-
plex system is designed. For a realistic system the abstract model would not
be as trivial, as at least the fundamental properties of the system must be vis-
ible from its behaviour. The philosophy of this approach is quite similar to
the B-method [1] and other “correctness by design” methods.

5 ABSTRACTION AND SAFETY PROPERTIES 27

6 MODEL CHECKING SAFETY PROPERTIES

Model checking has gained wide recognition as a useful technique for en-
suring the correctness of designs. Despite the statespace explosion problem,
many impressively large designs have been proven correct or serious errors
in them have been found. The two perhaps most attractive features of model
checking are its very high level of automation and its ability to produce a
concrete error trace. The error trace is valuable when measures to correct
the design are taken.

The safety properties are of special interest in model checking. In the
previous section we showed that many interesting properties belong to the
safety fragment. Indeed, the name safety suggests that many critical proper-
ties belong to this fragment. A liveness property that demands that a request
will be eventually served is important but a safety property that demands that
railway control system never lets two trains collide is critical. There are also
other reasons why the safety fragment is interesting. Here we mention three
of them:

1. industrial specifications are mostly concerned with safety properties,

2. treating safety properties as a special case allows more efficient verifi-
cation, and

3. safety properties are closely related to specifications for testing and run-
time verification.

The second and third points merit some further explanation.
As previously defined, safety properties can be described by the bad pre-

fixes for a certain property. This means that when model checking a safety
property, it can be reduced to a search for bad prefixes where as full LTL
model checking requires searching for bad cycles. Searching for bad prefixes
can be considerably easier than searching for bad cycles in the system. Ver-
ifying liveness properties also usually requires that the issues of fairness are
taken into account. Almost all proofs of liveness properties require fairness
assumptions.

Safety properties are also related to testing and runtime verification. These
are techniques for gaining confidence that the system works as it should, as
opposed to proving that it works correctly. Testing and runtime verification
are falsification techniques, i.e. they are aimed at finding errors. Although the
bug-hunting aspect of model checking is often emphasised model checking
can also prove properties. There has been interest in integrating testing and
model checking in recent years and several papers combine model checking
techniques and testing [19, 28, 25, 21]. One possibility is let the property
guide the testing [28], or simply monitor a real system and check that the
system does not execute a bad prefix [25, 21]. Because testing and runtime
verification only observe finite executions, it is only possible to validate safety
properties. This is why safety properties are very interesting from the testing-
perspective.

Before proceeding to the details of model checking safety properties, let
us review how the traditional automata theoretic approach [34, 63] to model
checking works. The system under inspection is modelled as a Kripke model

28 6 MODEL CHECKING SAFETY PROPERTIES

M and the specification is given as an LTL formula ϕ. The Kripke model
M can be see as an automaton accepting the language L(M). It is also
possible to create an automaton on infinite words A which exactly accepts
L(ϕ) [48]. Clearly, a system M has the property ϕ if the languages have no
common words. This is equivalent to that L(M)∩L(¬ϕ) = ∅. The following
procedure can thus be applied to model check M against ϕ [34, 10].

1. Construct a Büchi automaton A¬ϕ with the language L(¬ϕ).

2. Construct the Kripke model M of the system, interpret it as a Büchi
automaton.

3. Compute the product Büchi automaton B = M × A¬ϕ which is an
automaton with the language L(M) ∩ L(¬ϕ).

4. Check if L(B) = ∅

If the the language of B is empty, the property holds. If the property does
not hold, it is possible to extract a violating execution. This is one of the most
attractive features of model checking, compared to other methods which only
inform you that there is an error in the model. Combining several of the steps
mentioned above and performing them in an interleaving manner is called
on-the-fly model checking.

There are several way of performing the emptiness check. In an explicit
state context, the most straight forward way is to compute the maximal strong-
ly connected components (SCC) of the product automaton, which can be
done in linear time [56]. We remind the reader that a SCC is non-trivial if it
contains more than one state or the single state has a self loop. The product
is empty if no non-trivial SCC contains a state belonging to the set of final
states. Another way is to use the nested depth-first algorithm of [10]. The
SCC based algorithm has been extended in many ways to take into account
different fairness constraints [43, 16, 39, 40].

Model checking safety properties does not differ much from the procedure
above. The steps are the same, but some of the procedures differ. In the first
step, instead of constructing a Büchi automaton we construct an automaton
on finite words which captures the bad prefixes of the formula. The two fol-
lowing steps, two and three, are essentially the same. The final step, perform-
ing the emptiness check is different. An automaton on finite words is empty,
if no state in the set of final states is reachable. Thus, there is no need to com-
pute the SCCs of the product automaton or something similar - reachability
of a final state is sufficient. Using on-the-fly methods, we can simultaneously
build the product automaton and check if the current state is a final state.
There is no need to build the whole product automaton if we reach a final
state. In some cases this can speed up model checking significantly. Usually
the product automaton is built in a depth-first or a breadth-first order. This is
not required. Heuristics can be applied to the construction, which can result
in shorter running times to find an error.

6.1 Detecting Bad Prefixes

To model check safety properties we would like to construct automata on
finite words which recognise all bad prefixes for a given LTL formula. Our

6 MODEL CHECKING SAFETY PROPERTIES 29

p&!q

!p&!q
T

Figure 7: Automaton for the bad prefixes of ψ = pW q

main motivation is that reasoning about automata on finite words is easier
than reasoning about infinite words. An LTL formula can be translated into
Büchi automaton which is exponential in the size of the formula. How well
can we do with safety formulae and automata on finite words?

In the following we introduce some concepts from [32]. Let L ⊆ Σω be
safety language. We denote by pref (L) the set of all bad prefixes of L. Just
as we defined a co-safety language as a language whose complement is safety
language, we define co-pref (L) = pref (L̄). A setX ⊆ pref (L) is a trap for L
iff every word w 6∈ L has at least one bad prefix inX . The difference between
pref (L) and a trap X for L is that X need not contain all the bad prefixes
of L, only enough to detect all words not in L. All traps of L are denoted
trap(L). For a formula ψ, instead of writing the cumbersome trap(L(ψ)) we
simply write trap(ψ).

Example 24 Consider the safety formula ψ = pW q. A sequence does not
satisfy the formula if it has a state where p does not hold and there is no pre-
vious state for which q holds. In this case we then have that pref (L(ψ)) =
{¬q, p}∗{¬p,¬q}>∗. Figure 7 shows a corresponding deterministic automa-
ton.

Constructing pref (L) is easy by hand for simple languages but in the gen-
eral case it is hard. The construction is similar to complementation because
we should detect prefixes for words not in the language. This is also evident
from the example above. Complementing a non-deterministic automaton is
of exponential complexity. Unfortunately, Kupferman and Vardi have proved
that the same holds for constructing an automaton for pref (L(A)), when the
language is specified by a non-deterministic Büchi automaton A.

Proposition 25 ([32]) Given a (co-)safety non-deterministic Büchi automa-
ton A, the size of the finite automaton that recognises (co−)pref (L(A)) is
2θ(|A|).

As can be seen from the proposition, it does not help even if the automaton
specifies the disallowed words. The requirement of detecting all bad prefixes
is simply too harsh. When the property is specified as an LTL formula the
situation is even bleaker. The complexity is doubly exponential.

Proposition 26 ([32]) Given a safety LTL formula ψ of size n, the size of an

automaton for pref (ψ) is 22O(n)
and 22Ω(

√
n)

.

In the light of the extreme lower bounds proven above, constructing an
automaton for pref (ψ) is not feasible. However, detecting all bad prefixes
may not be necessary. Potentially, all benefits gained from having pref (ψ)

30 6 MODEL CHECKING SAFETY PROPERTIES

could also be had from having an automaton for X ∈ trap(ψ). For model
checking purposes it is enough to detect one bad prefix of each computation
and not all of them. We define the following concepts.

Definition 27 ([32]) Given a safety formula ψ, a finite automaton A is tight
for ψ iff L(A) = pref (ψ). A finite automaton is fine for ψ iff L(A) = X for
some X ∈ trap(ψ).

An automaton which is fine for a safety formula ψ does not recognise all
bad prefixes, but it will still identify all bad computations. Almost all bene-
fits of a tight automaton can also be enjoyed with a fine automaton. Tight
automata have one distinct advantage: as they recognise all bad prefixes they
also recognise the minimal bad prefixes. Model checking using tight au-
tomata might result in shorter counterexamples.

It is currently an open problem if there are feasible constructions for fine
automata for safety LTL formulae. The proofs that Kupferman and Vardi
present for the exponential complexity of recognising co-pref (L), when L

is a safety language given by a co-safety non-deterministic Büchi automaton,
are not valid for the case where we only require that the finite automaton
is a trap for L. The same is true for their proof of the doubly exponential
complexity of recognising pref (ψ), where ψ is a safety formula.

6.2 Informativeness

While LTL safety formulae in general are difficult to deal with, clearly at
least some well behaved formulae can easily be translated. This is readily
seen by just observing the structure of the Büchi automata which efficient
translations tools produce. When they translate safety formulae, the resulting
Büchi automaton could be used as is in many cases as the automaton on
finite words. For example, given the negation of the formula pW q, the LTL
to Büchi automata tool [20] produces an automaton equivalent to the one in
Figure 7. The question is, for which kind of formulas is this possible.

Kupferman and Vardi [32] try to capture the notion of when formulas are
well-behaved and can be translated easily. For safety formulas, the key notion
is that do the bad prefixes for the formula “tell the whole story” of why the
formula is violated by a computation. A prefix which tells the whole story of
why a formula is violated is called informative.

We consider LTL formulae in positive normal form. Let ψ be an LTL
formula and π a finite computation π = σ0σ1 . . . σn. The computation π is
informative for ψ iff there exists a mapping L : {0, . . . , n+1} → 2cl(¬ψ) such
that the following conditions hold:

• ¬ψ ∈ L(0),

• L(n + 1) is empty, and

• for all 0 ≤ i ≤ n and ϕ ∈ L(i), the following hold.

– If ϕ is a propositional assertion, it is satisfied by σi.

– If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i).

6 MODEL CHECKING SAFETY PROPERTIES 31

– If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i).

– If ϕ = Xϕ1, then ϕ1 ∈ L(i + 1).

– If ϕ = ϕ1 U ϕ2 then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1 U ϕ2 ∈
L(i+ 1)].

– If ϕ = ϕ1 V ϕ2 then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1 V ϕ2 ∈
L(i+ 1)].

If π is informative for ψ, the mapping L is called the witness for ¬ψ in
π. Using the notion of informativeness, safety formulae can be classified into
three different categories [32].

• A safety formula ψ is intentionally safe iff all the bad prefixes for ψ are
informative.

• A safety formula ψ is accidentally safe iff every computation that vio-
lates ψ has an informative prefix. The formula ψ can in other words
have bad prefixes which are not informative. Every computation is,
however, guaranteed to have at least one informative prefix.

• A safety formula ψ is pathologically safe if there is a computation that
violates ψ and has no informative bad prefix.

We can illustrate the difference between the categories with a few exam-
ples.

Example 28 The formulas Xp and p V q are examples of intentionally safe
formulas. For Xp we have that pref (Xp) = >¬p>∗. We can construct a
mapping L which satisfies all possible bad prefixes. Let L(0) = X¬p, L(1) =
¬p and L(2 . . . n) = ∅. In a similar manner we can construct a mapping for
p V q.

Accidentally safe formulas usually contain some forms of redundancy.
Consider the accidentally safe formula ψ = G(p ∨ (Xq ∧X¬q)). The set of
bad prefixes is pref (ψ) = (>)∗¬p>∗. In this case it is impossible to construct
a mapping L for some prefixes. Consider the bad prefix {p}∅. We can set
L(0) = {¬ψ} and L(1) = {¬ψ,¬p,Xq ∨ X¬q}. The construction of L
cannot be finished because the informativeness requirements are in conflict.
On one hand the length of the witness is two and therefore L(2) should be
empty, while on the other hand the next state operator requires L(2) to be
non empty. The prefix {p}∅ is not informative for ψ. Any violating compu-
tation will however contain an informative bad prefix.

Pathologic formulae have even more redundancy than accidentally safe
formulae. Consider the formula ψ = [G(q ∨FGp)∧G(r ∨FG¬p)]∨Gq ∨
Gr. The formula is actually equivalent to Gq ∨ Gr. Thus the set of bad
prefixes is pref (ψ) = >∗(¬r>∗¬q ∪ ¬q>∗¬r ∪ ¬q ∧ ¬r)>∗. No violating
computation will have an informative prefix because it is impossible to fulfil
the requirement of informativeness. For instance, the formula FGp becomes
GF¬p when you negate it. Thus, informativeness requires that GF¬p is in
each L(i), 1 ≤ i ≤ n. This violates the requirement that L(n) should be
empty.

32 6 MODEL CHECKING SAFETY PROPERTIES

Consider the translation of LTL formulas to alternating Büchi automata
given in Section 4.2. It maps subformulas of the given formula to states, and
the transitions follow the semantics of LTL. Any finite run of the automaton
which which ends in true is accepted, and can actually be seen as inducing
a mapping L. Let ψ be a safety LTL formula and Atrue

ψ denote the corre-
sponding alternating automaton where the set of accepting states is empty.
Atrue

¬ψ will accept exactly the computations which have an informative bad
prefix for ψ. Let fin(Atrue

¬ψ) the automaton when regarded as an automaton
on finite words.

Proposition 29 ([32]) For a formula ψ, the automaton fin(Atrue
¬ψ) accepts

exactly the bad prefixes for ψ which are informative.

Proof:
Let π = σ0σ1 . . . σn be a word accepted by fin(Atrue

¬ψ). The word induces
a run 〈T, r〉 which maps positions of the prefix to sets subformulas (sets of
states of the automaton) of ¬ψ. At each level i of the tree, the nodes comprise
the set L(i). Because both the automaton and the witness L obey the same
semantics (easily verified by comparing the definition of L and the transition
relation of A¬ψ), this will induce a valid witness mapping L.

Now, let π = σ0σ1 . . . σn be an informative bad prefix for ψ. With ar-
guments symmetric to the ones above it easy to see that the π induces a an
accepting run. ut

The result above immediately implies that fin(Atrue
¬ψ) can be very use-

ful, and that we can model check most safety formulae without constructing
something which is doubly exponential in the length of the formula. We get
the following corollary.

Corollary 30 ([32]) Let ψ be a safety formula.

• If ψ is intentionally safe, then fin(Atrue
¬ψ) is tight for ψ.

• If ψ is accidentally safe, then fin(Atrue
¬ψ) is fine for ψ.

In practice, this means that as long as a safety formula is not pathologi-
cally safe we can use a singly exponential construction for the automata. If
the formula is pathologic, we might possibly miss a counterexample using
this construction. Any counterexample detected by fin(Atrue

¬ψ) is, however, a
valid counterexample. This raises the question how can we recognise patho-
logically safe formulas in order to avoid them. Pathologic formulas are not
needed as such, as they are always equivalent to non pathological formula.

The syntactically safe formulas introduced by Sistla are, perhaps as ex-
pected, well-behaved and they always have informative bad prefixes. For a
syntactically safe formula ψ, the negation of the formula can only contain
the temporal operators U and X . If π |= ¬ψ, then by the semantics of U
and X it is easy to see that for some i, πi must be an informative prefix for ψ.
Both U and X must be satisfied after a finite number of states. Thus we get
the following proposition.

Proposition 31 ([32]) If an LTL formula ψ is syntactically safe, then ψ is
intentionally or accidentally safe.

6 MODEL CHECKING SAFETY PROPERTIES 33

For the remaining safety formulas a general procedure must be applied.
Unfortunately, deciding if a formula is pathologic is hard in the general case.
We must decide if the formula has any violating computations which lack
informative bad prefixes. The problem can be reduced to the satisfiability
problem of LTL, which is a PSPACE-complete problem. The original result
is due to Kupferman and Vardi where they suggest (but do not present) a
reduction to the safety of an LTL formula, also a PSPACE-complete problem.

Proposition 32 ([32]) Deciding whether a given formula ψ is pathologically
safe is PSPACE-complete

Proof:
The automaton Atrue

ψ accepts exactly all computations which have informa-
tive prefixes. Pathologic formulas have violating computations which are not
informative. Thus, a formula is not pathologic if every computation that
satisfies ¬ψ is accepted by Atrue

¬ψ . This can be verified by checking the con-
tainment of L(A¬ψ) in L(Atrue

¬ψ). As we have noted before, containment of
alternating automata can be done in polynomial space [31]. Later in this
work, we will dwell in to the specific details of implementing this check.

Let ψ be an LTL formula and p an atomic proposition not appearing in ψ.
Consider the formula ϕ = ψ ∧ Fp. Now, ψ is satisfiable iff ϕ is pathologic.
If ψ is satisfiable, we must consider if there are computations that satisfy
¬ϕ = ¬ψ∨G¬p which do not have finite prefixes with a witness L. Let π be
computation such that π |= G¬p and π 6|= ¬ψ. Because ψ cannot be equiv-
alent to Fp such a model must exist. The model π has no informative prefix
because G cannot have a finite witness. Consequently, ϕ has computations
which have no informative bad prefix and is therefore pathologic. To prove
the other direction, we consider the negative case when ψ is unsatisfiable. In
this case ¬ϕ = ¬ψ ∨ G¬p is valid. Thus any prefix for any model will serve
as an informative witness. ut

6.3 Translation Algorithm

The construction given in the previous section gives us a way of constructing
an automaton for informative bad prefixes of a safety property ψ. In most
cases, however, we prefer to deal with normal finite automata rather than
alternating automata. Some research has focused on using alternating au-
tomata directly [19].

One way to get a finite automaton is to translate the alternating automaton
resulting from the construction. Another possibility is to define the transla-
tion directly to finite automata. Kupferman and Vardi [32] have presented
one direct translation from an LTL formula. The translation is based on the
reverse deterministic automaton defined in [48].

The automaton associates states to subsets S in cl(¬ψ). The set of formu-
las associated with a state represent the unfulfilled conditions of the formula.
Thus, a successful run will start in a initial state which contains ¬ψ and will
finish in the single accepting state which maps to ∅, signifying that there are
no obligations left to fulfil.

An accepting run of the automaton for a finite prefix π = σ0σ1 . . . σn
will induce a witness L, where states of the run r correspond to the witness,

34 6 MODEL CHECKING SAFETY PROPERTIES

showing that π is informative for ψ
The original construction of Kupferman and Vardi [32] is the following.

Let S ⊆ cl(¬ψ) be a state and σ ∈ 2AP a letter. The single predecessor S ′ in
δ−1(S, σ) contains exactly all the propositional assertions in cl(¬ψ) that are
satisfied by σ, and all formulas ϕ in cl(¬ψ) for which the following hold.

• If ϕ = ϕ1 ∨ ϕ2, then ϕ ∈ S ′ iff ϕ1 ∈ S ′ or ϕ2 ∈ S ′.

• If ϕ = ϕ1 ∧ ϕ2, then ϕ ∈ S ′ iff ϕ1 ∈ S ′ and ϕ2 ∈ S ′.

• If ϕ = Xϕ1, then ϕ ∈ S ′ iff ϕ1 ∈ S.

• If ϕ = ϕ1 U ϕ2, then ϕ ∈ S ′ iff ϕ2 ∈ S ′ or [ϕ1 ∈ S ′ and ϕ1 U ϕ2 ∈ S].

• If ϕ = ϕ1 V ϕ2, then ϕ ∈ S ′ iff ϕ2 ∈ S ′ and [ϕ1 ∈ S ′ or ϕ1 V ϕ2 ∈ S].

For efficiency reasons it usually also justified to implement the translations
for the derived operators G and F.

• If ϕ = Gϕ1, then ϕ ∈ S ′ iff ⊥

• If ϕ = Fϕ1, then ϕ ∈ S ′ iff ϕ1 ∈ S ′ or Fϕ1 ∈ S.

As can been seen above, translating G is impossible in the sense that no
finite witness can be given for G. Those familiar with bounded model check-
ing [5] will notice that the translation is very similar to what is called the
bounded semantics without a loop in [5].

The above implicit representation is suitable for use in tool which, e.g.
uses BDDs to manipulate boolean formulas. Using the above definition in an
explicit state tool requires that we compute the automaton first. An algorithm
which does this, starts from the empty set as the initial state, and then using
the rules above computes the predecessors for each state until no new states
are found. The algorithm given below computes an automaton. Note that
the algorithm will not work correctly if the iteration over the subformulas in
cl(ψ) is not done in some increasing subformula order.

Input: A safety formula ψ in positive normal form.
Output: A finite automaton A = 〈Σ, Q, δ, Q0, F 〉.
proc translate(ψ)
Σ = 2AP ;F := {∅};
Q := X := F ;
while(X 6= ∅) do

S :=”some element in X ′′; X := X \ {S};
for each σ ∈ 2AP do

for each ϕ ∈ cl(ψ) do

switch(ϕ) begin

case p = q or p = ¬q for q ∈ AP :
if (p is satisfied by σ) then S ′ := S ′ ∪ {p}
case ϕ = ψ1 ∨ ψ2:
if (ψ1 ∈ S ′ or ψ2 ∈ S ′) then S ′ := S ′ ∪ {ϕ};
case ϕ = ψ1 ∧ ψ2:
if (ψ1 ∈ S ′ and ψ2 ∈ S ′) then S ′ := S ′ ∪ {ϕ};

6 MODEL CHECKING SAFETY PROPERTIES 35

!p

p
p

!pp

p XpXp
p

p

!p

!p

Figure 8: A finite automaton for the bad prefixes of X¬p.

case ϕ = Xψ1:
if (ψ1 ∈ S) then S ′ := S ′ ∪ {ϕ};
case ϕ = ψ1 U ψ2:
if (ψ2 ∈ S ′ or (ψ1 ∈ S ′ and ϕ ∈ S)) then S ′ := S ′ ∪ {ϕ};
case ϕ = ψ1 V ψ2:
if (ψ2 ∈ S ′ and (ψ1 ∈ S ′ or ϕ ∈ S)) then S ′ := S ′ ∪ {ϕ};

end

od

if(ψ ∈ S ′) then Q0 := Q0 ∪ {S ′};
δ = δ ∪ {(S ′, σ, S)};
X := X ∪ {S ′}; Q := Q ∪ {S ′}

od

od

Example 33 Consider the safety formula X¬p. Lets construct the automa-
ton which accepts all bad prefixes of the formula (X¬p is intentionally safe).
The negation of the formula is Xp. In this case set of atomic propositions is
AP = {p}and the resulting power set, and thus the alphabet the automaton
will be Σ = 2AP = {∅, {p}}. The states are subsets of cl(Xp) = {p,Xp}.

We start going backwards using the definitions above from the state S = ∅,
and compute the unique predecessor S ′ = δ−1(S, σ) for each σ ∈ Σ.

• If σ = ∅, i.e. σ = ¬p, then S ′ = ∅ because no subformula is propo-
sitionally consistent with σ and Xp cannot be added because p 6∈ S.
Thus this will be a self loop.

• If σ = p, then S ′ = {p} because p is propositionally consistent with σ
and, as above, Xp cannot be added because p 6∈ S.

The only new state is S = {p}. The predecessor S ′ are the following.

• If σ = ¬p, then S ′ = {Xp} because no atomic proposition is proposi-
tionally consistent with σ but since p ∈ S, the next rule applies.

• If σ = p, then S ′ = {p,Xp} since σ is propositionally consistent with
p and, as above, the next rule applies since p ∈ S.

36 6 MODEL CHECKING SAFETY PROPERTIES

This resulted in two new states. First set S = {Xp}. The predecessors S ′ are
the following.

• If σ = ¬p, then S ′ = ∅ because p is not propositionally consistent with
σ and the next rule cannot be used as p 6∈ S.

• If σ = p, then S ′ = {p} as p is propositionally consistent with σ and,
as above, the next rule does not apply.

We did not get any new states so we continue with S = {p,Xp}. The prede-
cessors S ′ are the following.

• If σ = ¬p, then S ′ = {Xp} because p ∈ S but p is not propositionally
consistent with σ.

• If σ = p, then S ′ = {p,Xp} as p ∈ S and p is propositionally consis-
tent with σ.

No new states were added, so the generation of the automaton is complete.
The resulting automaton can be seen in Figure 8.

As can bee seen from the example, the algorithm is not optimal in any
sense. The automaton produced has nice properties such as being reverse
deterministic, which makes it an efficient choice for backwards symbolic
search, but clearly the automata produced are unnecessarily big. The size
of the automata is bounded by 2|cl(ψ)|. For this naive algorithm, the worst
case behaviour will be realised often.

By examining a few automata we quickly notice that states which only dif-
fer in the labelling of the atomic propositions can be easily joined, as long as
the transitions are relabelled. This is easily accomplished by allowing con-
junctions of propositions and their negations to appear on the labels. This
technique is also used by most translators from LTL to automata.

The optimisation above can lead to significant savings but it is still possible
to be even more aggressive. If we allow arbitrary boolean expressions on the
arcs we can simplify even further. All non temporal subformulas, i.e. the
subformulas which have a ’and’ or an ’or’ at the root of their parse tree, can be
handled by correct labelling of the arcs. Only temporal subformulas require
that we add states to the automaton. The reason for this can be seen from
original construction of Kupferman and Vardi. Only temporal formulas refer
to other states than the current state.

Another way to look at the optimisations above is that they prune the pos-
sible state space of the automaton. Instead of every subset of cl(¬ψ) being
a possible state of the automaton, only some subformulas need to be consid-
ered. We define the restricted closure rcl(ψ) of a formula ψ in the following
way:

• All temporal subformulas ϕ ∈ cl(ψ), i.e. formulas with a temporal
operator at the root of their parse tree, belong to rcl(ψ).

• If a formula Xϕ belongs to rcl(ψ) then ϕ ∈ rcl(ψ).

• If no other rule applies, then ψ belongs to rcl(ψ).

6 MODEL CHECKING SAFETY PROPERTIES 37

Temporal subformulas must belong to the restricted closure because they
refer to other than the current state. There are two special cases when other
formulas are also included. The first case is the immediate subformula of
a next-operator. In this case the subformula must be kept to ensure that it
will true in the next state. The second case is when ψ is a propositional
expression, when the reason is that rcl(ψ) cannot be empty, because this will
result in an automaton with no states.

The formulation of the optimised version looks quite similar to the normal
algorithm, but there a two important changes. The normal closure is replace
with the restricted closure. This of course results in much smaller automata
because, the potential statespace is smaller. However, because only some
formulas are allowed to label states having a simple inclusion test ψ ∈ S

will not work, because some of the subformulas of ψ may not be allowed to
label S. Instead we must evaluate if the formulas in S satisfy ψ. We define
sat(ψ, S) in the following way:

• sat(true, S) = true

• sat(false, S) = false

• sat(ψ, S) = true if ψ ∈ S.

• ψ = ψ1 ∨ ψ2: sat(ψ, S) = true if sat(ψ1, S) or sat(ψ2, S).

• ψ = ψ1 ∧ ψ2: sat(ψ, S) = true if sat(ψ1, S) and sat(ψ2, S).

• Otherwise sat(ψ, S) = false

This will work correctly since temporal formulas are not eliminated from the
restricted closure and the Boolean binary operators can always be evaluated
by the rules described above. The inclusion test does not need to be replaced
everywhere as in some cases we know that it is sufficient and there is no need
for the more complex test. To fully reap the benefits from using the restricted
closure, the way the atomic propositions label states is also changed. Only
atomic propositions required by the restricted closure are allowed to label
state. The algorithm as it is presented here will produce an automaton where
there are many transitions from one state to another state. In an implemen-
tation these arcs would of course be joined to conserve memory. Note also
the change in how the initial state is treated.

Input: A safety formula ψ in positive normal form.
Output: A finite automaton A = 〈Σ, Q, δ, Q0, F 〉.
proc opt-translate(ψ)
F := {∅}; Σ := 2AP ;
Q := X := F ;
while(X 6= ∅) do

S :=”some set in X ; X := X \ {S}
for each σ ∈ 2AP do

S ′ := σ;
for each ϕ ∈ rcl(ψ) do

switch(ϕ) begin

case ϕ = ψ1 ∨ ψ2:

38 6 MODEL CHECKING SAFETY PROPERTIES

if (sat(ψ1, S
′) or sat(ψ2, S

′)) then S ′ := S ′ ∪ {ϕ};
case ϕ = ψ1 ∧ ψ2:
if (sat(ψ1, S

′) and sat(ψ2, S
′)) then S ′ := S ′ ∪ {ϕ};

case ϕ = Xψ1:
if (ψ1 ∈ S) then S ′ := S ′ ∪ {ϕ};
case ϕ = ψ1 U ψ2:
if (sat(ψ2, S

′) or (sat(ψ1, S
′) and ϕ ∈ S)) then S ′ := S ′ ∪ {ϕ};

case ϕ = ψ1 V ψ2:
if (sat(ψ2, S

′) and (sat(ψ1, S
′) or ϕ ∈ S)) then S ′ := S ′ ∪ {ϕ};

end

if σ 6∈ rcl(ψ) then S ′ := S ′ \ {σ};
od

if(sat(ψ, S ′)) then Q0 := Q0 ∪ {S ′};
δ = δ ∪ {(S ′, σ, S)};
X := X ∪ {S ′}; Q := Q ∪ {S ′}

od

od

The correctness of the algorithm relies on that the automaton will accept all
informative prefixes and only them.

Theorem 34 Given a formula ¬ψ, the opt-translate algorithm produces an
automaton A¬ψ which accepts a prefix π iff π is informative for ψ.

Proof:
Let π = σ0σ1 . . . σn be an informative prefix for ψ and have a witness L :
{0, 1, . . . , n+1} → 2cl(¬ψ). The witness L induces a run r : {0, 1, . . . , n} →
Q of A¬ψ such that sat(L(i), r(i)) = true. This will also hold for L(n + 1),
which is empty, and thus A¬ψ accepts the run.

For the other direction, consider an accepting run r : {0, 1, . . . , n} → Q

of A¬ψ. The run induces a witness L such that L(i) = {ϕ | sat(ϕ, r(i))∧ϕ ∈
cl(¬ψ)}. ut

The theoretical worst case bound for the size complexity of the automata
produced by the optimised algorithm is somewhat better than for the basic
algorithm. Let tf (ψ) denote the temporal subformulas of ψ. It can be proven
that, when the next operator is excluded, the construction is exponential only
temporal formulas can cause exponential growth.

Theorem 35 The number of states of Aψ is bounded by 2|tf (ψ)| when the
next-free subset of LTL is considered.

Proof:
For a set with cardinality n, the possible number of subsets is 2n. All temporal
subformulas belong to rcl(ψ). When the next-operator is excluded, no other
formula can belong to rcl(ψ). Hence, the number of states is bounded by
2|tf (ψ)|. ut

In the unrestricted case, when the next-operator is included, the theoretical
bound is the same as for the unoptimised algorithm. In practice, the opti-
mised algorithm will perform better in most cases. The performance of the
algorithm in practice is studied experimentally in Section 8.

6 MODEL CHECKING SAFETY PROPERTIES 39

The algorithm above can produce fairly small automata in most cases. In
some cases it will, however, produce automata which are quite big and have
many initial states. The formulas which produce these usually have a binary
boolean operator at root of the parse tree and a few next state operators suit-
ably placed to minimise the pruning effect of the optimised algorithm. Many
initial states often indicate that the automata has many different runs for the
same words, presented in a redundant fashion. The most straightforward way
to deal with this is to produce a determinise the automaton. This works sur-
prisingly well in practice. Determinising the automaton usually makes it a
lot smaller. We speculate that this is because the non-determinism is usually
caused by boolean operator at the root of the parse tree, and as the arc expres-
sions can express these constraints succinctly, there is no need to create new
states to handle the non-deterministic runs. Determinising results in fewer
states with more complicated arcs. This is usually a good trade off, because
more states in the automaton can cause a multiplicative increase in time and
space complexity while more complex arc expressions only slightly increase
time complexity.

6.4 Finite Trace Semantics for LTL

Instead of dealing with LTL safety properties within the normal automata
theoretic framework it is possible to use different semantics altogether for
LTL. One possibility is to give semantics to the usual LTL operators over
finite traces, as has been done in [26, 24, 13]. Another possibility is to use a
past temporal logic [47] as has been done in [25].

Giving finite trace semantics to LTL can be seen as approximating the
infinite trace semantics with finite traces. This view is especially apparent
in the bounded semantics without a loop for bounded model checking [5].
The drawback of giving finite trace semantics to LTL is that some nice prop-
erties are lost, notably duality between some of the operators. E.g. in the
finite trace case the duality ¬(ψ1 U ψ2) ≡ ¬ψ1 V ¬ψ2 no longer holds. Both
Havelund and Rosu [26, 24] and Drusinsky [13] focus mostly on monitoring
execution traces in real time while actual model checking is left out. It is an
open problem what kind of complexity model checking for Kripke structures
has using finite trace semantics.

Another possibility for defining LTL over finite traces is to use some form
of past temporal logic. This approach is essentially taken by [25]. They
present a dynamic programming algorithm which computes the satisfaction
of a finite trace, given a past LTL formula. The procedure can both per-
form off-line monitoring and be implemented inline by instrumenting the
source code of the program to be monitored. Also this approach is geared for
monitoring single executions an not model checking Kripke structures. It is,
however, trivial to extend to model checking.

All of the approaches presented above are more geared towards monitoring
executions in real time rather than solving the traditional model checking
problem, while this is the focus of this work. All approaches are related, but
when focusing on a single execution, as is done in the monitoring case, some
of the complexity baggage can be dropped. LTL can be model checked in
linear time in the size of the formula and model, if the model is given as a

40 6 MODEL CHECKING SAFETY PROPERTIES

finite prefix and a loop. However, it is conceivable that one could construct
a translation from finite trace semantics to finite automata. Havelund and
Rosu [26] report that they have extended a normal LTL to Büchi automata
procedure to include finite trace semantics. No details are given however.

6 MODEL CHECKING SAFETY PROPERTIES 41

Output automaton

Determinise
(optional)Parsing

Create automaton

Figure 9: The different stages of the translation.

7 IMPLEMENTATION

We have implemented the optimised translation algorithm for safety LTL
formulae and also the check for determining if a formula is pathologic.

The implementation is BDD-based and uses a BDD-library [44] devel-
oped by Jørn Lind-Nielsen. BDDs are used to represent sets of formulas
efficiently. Especially the translation algorithm heavily employs manipula-
tion of sets, which can easily be implemented with BDDs. However, BDDs
can also incur a certain overhead making the algorithm slower in some cases
compared to algorithms using simpler set representations.

The tool, scheck , has been implemented using ANSI C++ and it should
compile on most platforms where a C++-compiler supporting templates is
available. The implementation is available online under the terms of the
GNU GPL from

�����������	��
	
	
�����	�����	������������������ �	�������"!#�%$
.

7.1 Translation

The implementation of the translation algorithm is split into four separate
stages. The first stage simply parses the input formula and transforms it into
positive normal form. Optionally it can also perform some simple checks
such as check for syntactic safety on the formula. The next stage builds a
symbolic transition relation characterising the given formula. After the opti-
misations presented in the last section have been performed on the transition
relation, the finite automaton is constructed. The third stage optionally per-
forms some automata theoretic transformations, such as determinisation of
the automaton. The fourth and the last stage outputs the automaton to the
desired file or stream. Figure 9 shows a flow chart of the different stages.

The basic idea of the second stage is to construct a symbolic transition
relation which adheres to the translation rules given in the previous section.
Next, symbolic reachability analysis is used to construct the automaton. We
now explain in detail the construction of the transition relation. The subfor-
mulas of the formula are enumerated in a preorder fashion (obtained from
the parse tree). To represent the states, 2 ∗ N BDD variables are reserved,
where N is the number of subformulas, i.e. |cl(ψ)| = N . One variable de-
scribes if the subformula belongs to the current state and one variable is for
the next state. Let var(ϕ) denote the variable of ϕ and var ′(ψ) the next state
variable for ϕ. The transition relation is the conjunction of the following

42 7 IMPLEMENTATION

rules over each subformula ϕ of ψ.

Input: A formula ψ in positive normal form.
Output: A symbolic transition relation R.
proc transition(ψ)
R := true;
for each ϕ ∈ cl(ψ) do

switch(ϕ) begin

case ϕ = ψ1 ∨ ψ2:
R = R ∧ (var(ϕ) ↔ (var(ψ1) ∧ var(ψ1)));

case ϕ = ψ1 ∧ ψ2:
R = R ∧ (var(ϕ) ↔ (var(ψ1) ∨ var(ψ1)));

case ϕ = p, p ∈ AP :
skip;

case ϕ = Xψ1:
R = R ∧ (var(ϕ) ↔ var ′(ψ1));

case ϕ = ψ1 U ψ2:
R = R ∧ (var(ϕ) ↔ (var(ψ2) ∨ (var(ψ1) ∧ var ′(ϕ)));

case ϕ = ψ1 V ψ2:
R = R ∧ var(ϕ) ↔ (var(ψ2) ∧ (var(ψ1) ∨ var ′(ϕ)));

end

od

The atomic propositions are handeled by quantification. Using this tran-
sition relation we will get an automaton which corresponds to the original
construction of Kupferman and Vardi. The optimisations mentioned in the
previous section are easy to implement in the BDD framework as they cor-
respond to variable quantification. Any non-temporal variable can be quan-
tified away from the transition relation if it is not the top most formula or it
does not have a next-operator as its parent formula. Using quantification will
result in significantly smaller automata. It is somewhat difficult to treat the
initial state as a special case in the BDD framework, which is the reason why
the top most formula is not treated as efficiently as presented in the previous
section.

The third stage of the translation is an optional determinisation of the au-
tomaton. Experiments show that in almost all cases determinisation makes
the automaton smaller. A deterministic automaton also has shorter model
checking times, because it causes less branching in the product automaton.
See the section on experiments for more details. If the automata are to be
used for monitoring executions of software, determinisation is mandatory.
Alternatively the determinisation can be performed on-the-fly while moni-
toring. For monitoring to work, the current state of the automaton must be
known at all times. Before the third stage, the automaton is converted to an
explicit representation. Determinisation is easier when the automaton is in
an explicit form. The arcs are still represented as BDDs since this allows easy
manipulation of the arcs. Because we allow boolean expression on the arcs
of the automaton, determinisation is somewhat more complicated than the
usual algorithms for determinising an automaton.

7 IMPLEMENTATION 43

The last stage of the translation outputs the automaton to a file or a stream.
Here, the only challenge is to output the arc labelling, represented as BDDs,
succinctly using only ∧ and ∨ and negation in front of the propositions. Cur-
rently the implementation uses a fairly simple algorithm which outputs a
BDD in disjunctive normal form.

7.2 Checking Pathologic Safety

Implementing, a check for if a formula is pathologic involves implementing
an emptiness check for the intersection of two automata. Recall that an LTL
formula ψ is pathologic iff L(A¬ψ) 6⊆ L(Atrue

¬ψ). This is equivalent to that

L(A¬ψ × Ātrue
¬ψ) 6= ∅.

In our implementation this will involve the following steps when we are
given an LTL formula ψ.

1. Construct a Büchi A¬ψ automaton corresponding to the negation of ψ.

2. Construct a deterministic finite automaton B¬ψ, which accepts all in-
formative bad prefixes of ψ.

3. Interpret B¬ψ as a Büchi automaton and construct the complement
B̄¬ψ.

4. Construct the product automaton C = A¬ψ × B̄¬ψ.

5. Check if L(C) = ∅.

The reason we require that B¬ψ is deterministic is that complementing a non-
deterministic Büchi automaton is complicated and has an exponential time
lower bound [52], while complementing a deterministic Büchi automaton
can be done in linear time [33]. The procedure outlined above is not opti-
mal in complexity theoretical sense but it works quite well while the size of
B¬ψ does not explode. An optimal approach would use alternating automata.

We have presented how all steps can be performed except the comple-
mentation of the deterministic Büchi automaton. The original formulation
of Kurshan [33] is slightly complicated so we prefer to follow the presen-
tation Vardi given in his lecture notes [61]. Let A = 〈Σ, Q, δ, s0, F 〉 be a
deterministic Büchi automaton. The complement Ā = 〈Σ, Q̄, δ̄, s̄0, F̄ 〉 can
be computed with the following operations.

• Q̄ = Q× {0} ∪ (Q− F) × {1},

• s̄0 = s0 × {0},

• F̄ = (S − F) × {1}, and

• for all states q ∈ Q and symbols a ∈ Σ:

δ̄((q, 0), a) =

{

{(δ(q, a), 0)}, if δ(q, a) ∈ F

{(δ(q, a), 0), (δ(q, a), 1)}, if δ(q, a) 6∈ F

δ̄((q, 1), a) = {(δ(q, a), 1)}, δ(q, a) 6∈ F

44 7 IMPLEMENTATION

Clearly the the size of the complement is at most twice the size of the orig-
inal automaton. It it an open question if there are more efficient ways to
complement a deterministic Büchi automaton.

In the implementation we first compute explicit state representations of
A¬ψ and B¬ψ. Next, the deterministic automaton B¬ψ is complemented us-
ing the procedure above. Finally the product is computed and an emptiness
check is performed using Tarjan’s algorithm for finding SCCs. Everything ex-
cept the complementation is standard model checking technology. Because
the implementation for constructing A¬ψ is simple, the tool has an interface
for using an external translator to construct the Büchi automaton A¬ψ.

7 IMPLEMENTATION 45

8 TRANSLATION EXPERIMENTS

In order to evaluate the ideas presented in this work we conducted some
experiments. There were three questions we were especially interested in.

1. How well does the size of the automata scale in the average case com-
pared to other translators?

2. How well does the implementation work in practical situations?

3. Is checking formulas for pathologic safety feasible?

Three different tests were used to investigate the tool. The two first tests
are based on random formulae and random state spaces and the third test
measures model checking performance on different system models.

Three translation tools were used as reference: a state of the art tool by
Paul Gastin and Dennis Oddoux [20], the translator packaged with the Spin
tool [29], version 3.4.16, and an efficient implementation of the algorithm
described in [22] by Mäkelä, Tauriainen and Rönkkö [45]. In the following
we refer to the tool of Gastin and Oddoux as ltl2ba, to the tool of Mäkelä et al.
as lbt and to the translator of Spin simply as spin. As earlier mentioned, our
tool is referred to as scheck. All of the reference tools are translators which
can translate any LTL formula to Büchi automaton.

For the two first tests which involve random formulae and random states-
paces we have used the LTL to Büchi translator test bench by Tauriainen
and Heljanko [57]. The tool includes facilities for randomly generating LTL
formulae and measuring different statistics such as the size of the generated
automaton and generation time. For the third, test we interfaced the tools
with the reachability analyser Maria [46].

The first test generates random syntactically safe formulae. Most safety
formula encountered in practice will probably be of this form. For instance,
all examples in Section 3 of this work are syntactically safe. The idea is to
measure how well the tools can cope with typical safety formulae. Statistics
measured are the number of states and transitions in the automata produced,
the time to generate the automata and the size of the product of a random
state space of twenty states and the automaton. The number states and tran-
sitions in the generated automaton and generation give an indication of the
general performance of the translator while the size of the product statespace
is depends on both the size of the generated automaton and the structure of
the automaton. Automata which have small product statespaces can at an
early stage ’decide’ if the current sequence under inspection cannot satisfy
the given formula.

The second test is in a sense a generalisation of the first. Now we ran-
domly generate any formula and use the implemented check for pathologic
formulae to see if its a safety formula which can be used in the tests. This
means that many generated formulae will be rejected but we will also test
formulae which are not covered by the syntactic fragment. The measures are
the same as in the first test. The main purpose of this test is to prove the
feasibility of identifying pathologic formulae. This test is only performed for
scheck, as none of the other tools can check if a formula is pathologic.

46 8 TRANSLATION EXPERIMENTS

The third test takes a more practical approach. We use the model checker
and reachability analyser Maria [46] to benchmark the translators. We have
modelled several well-known distributed algorithms with the Maria tool and
measure how fast some safety properties can be model checked using the dif-
ferent translators. Maria uses simple reachability analysis if the specification
is given as an finite automaton and it uses a Tarjan’s SCC algorithm based
model checking algorithm [40] for Büchi automata. We also measure the
size of the product state space. The idea of the test is to give us some insight
into how well the tools perform with ’real’ models and if we can gain anything
by treating safety properties as a special case in practice.

All tests were conducted on a with a machine with a 266 MHz Pentium II
processor with 128 MB of memory. The machine runs Debian GNU/Linux
3.0. All of the programs have been compiled using gcc version 2.95.4. In
all tests the scheck tool was set to generate deterministic automata, because
initial tests had shown that this produced the smallest automata. We have
collected the models used and other relevant files such as configuration files
to a webpage:

���	�	�����	�%
�
	
�����������	�������������%���&� �����	���'!#��$���(����%�	�"!#���	�
.

8.1 Random Formulae

For both tests based on random formulae we used the tool of Tauriainen and
Heljanko, presented in [57]. With the tool it is possible to generate random
formulae which contain only certain LTL operators, which is of course very
useful when we want to restrict ourselves to the syntactically safe fragment of
LTL. There are four parameters which control the generation of the random
formulae.

• The number of nodes in the parse tree of the formula.

• The number of different atomic propositions which can occur in a for-
mula.

• Priorities for boolean constants and atomic propositions.

• Priorities for temporal operators and logical connectives.

The generation algorithm is such that the priorities for the boolean constants
and atomic proposition does not affect the number of temporal and logical
connectives in the formula and vice versa. In other words, Boolean constants
compete with the atomic propositions for occurrences independently of tem-
poral and logical connectives.

The objective of the tests was to see how the tools scale when we increase
the length of the formulae. Three sets of formulas were generated for each
length, starting from five up to 22. The results for each length were averaged
over the three sets. In all tests the maximum number atomic propositions
was six. Atomic propositions were also preferred over boolean constants. The
priorities for true and false were set at three and at 15 for atomic propositions.

Syntactically Safe Formulae
To generate syntactically safe formulae the priorities were set to 25 for until,
15 for next, finally, ’and’, ’or’, and zero for all other temporal and logical
connectives. We generated three sets of 1000 formulas for each length.

8 TRANSLATION EXPERIMENTS 47

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

S
ta

te
 ra

tio

lbt
spin
ltl2ba

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

Tr
an

si
tio

n
ra

tio

lbt
spin
ltl2ba

5 10 15
0

1

2

3

4

5

6

7

Formula length

Ti
m

e
ra

tio

lbt
spin

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

P
ro

du
ct

st
at

e
ra

tio

lbt
spin
ltl2ba

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Formula length

P
ro

du
ct

tra
ns

iti
on

 ra
tio

lbt
spin
ltl2ba

5 10 15 20 25
0

50

100

150

200

250

Formula length

Ti
m

e
ra

tio

ltl2ba

Figure 10: Comparison of the tools with syntactically safe formulae.

48 8 TRANSLATION EXPERIMENTS

We measured the size of the generated automata, the time to generate the
automata and the size of the product statespace. To compare to the other
tools we computed the mean E(M(proc, L)) over the three runs for each
procedure proc, formula length L and measure M . The ratio of the means
E(M(scheck ,L))
E(M(proc,L))

have been computed in Figure 10.

When we compare the size of the automatons generated, i.e. number of
states and transitions, scheck seems to be very competitive. Especially the
procedures based on [22] cannot compete well. When the formulas are short
spin and ltl2ba are able to compete, but when the length of the formulas
grows, scheck clearly scales better than the other tools. At the time when the
measurements were made scheck did not check for a “sink state” in its de-
terministic automata. If the tests were rerun, scheck would probably narrow
down the small lead spin and ltl2ba has in short formulae. Long formulae
are not affected as much by the removal of one sink state. Note that in the
number of transitions scheck scales even better compared to the other tools.
One reason is probably that scheck generates deterministic automata.

Generation time gives a different picture of how well the tools perform.
The tools based on [22] have an advantage with short formulae but do not
scale as well. ltl2ba is however much faster than scheck in all cases. It scales
better and it is faster for short formulae. It is possible that the BDD imple-
mentation of scheck here gives the other tools an competitive advantage.
The statistical correlation between the number generated transitions in the
automata and the time used is almost one for the three other tools while it
is about 0.7 for scheck. In other words, for the other tools the number of
states produced directly affects the running time while for scheck the rela-
tion is not as straight-forward. Possibly, this is because BDDs can sometimes
be a suboptimal choice for set representation and give an overhead which the
compactness of BDDs do not compensate.

The tool in [57] generates a random statespace of twenty states for each
formula. We compute the product of this and the generated automaton.
Comparison of the size of the product statespaces gives an indication on
how well the automata “guide” the model checker and how well the au-
tomaton can determine when enough has been generated of the system to
decide the property. In essence it gives an evaluation of the structure of the
automata. Automata which generate small product statespaces have a good
structure and can quickly determine that a property is (un)satisfiable. Here
we expected scheck to do well, because the automata it generates are de-
terministic. The results also confirm this. scheck generates smaller product
statespaces than all three other tools.

General Formulae

To generate general formulae we set the priorities for all temporal connec-
tives to a non-zero value. The check for pathologic safety formulas in scheck
was enabled so that scheck would not try to translate liveness formulae or
pathologic safety formulae. The procedure is sound for liveness formulas,
but incomplete, so there is no need to check for safety first. We used ltl2ba
to generate the Büchi automata needed when checking if a formula is patho-
logic.

One hundred formulas and their negation were generated for each length

8 TRANSLATION EXPERIMENTS 49

5 10 15 20 25
50

60

70

80

90

100

Formula length

%
 p

at
ho

lo
gi

c
fo

rm
ul

as

5 10 15 20 25
3

4

5

6

7

Formula length

A
ve

ra
ge

 p
er

 fo
rm

ul
a

States
Arcs

5 10 15 20 25
45

50

55

60

65

70

75

80

Formula length

%
 o

f w
or

st
 c

as
e

Product states
Product arcs

5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Formula length
A

ve
ra

ge
 g

en
er

at
io

n
tim

e
[s

]

Figure 11: scheck performance for general formulae.

ranging from five to 22. The results for scheck are summarised in Figure 11.
As can been seen from the first plot, most of the generated pathologic or live-
ness formulas and the percentage grows when formula length increases. This
is of course not surprising as the temporal operators often describing liveness
properties are more likely to occur. As can be seen in the second plot, the size
of the automata grows very slowly with increasing formula length. Only the
non-pathological formulas are taken into account. As so many formulas has
been rejected we cannot conclude that general formulas are easier than syn-
tactically safe formula. There is not enough data for this. The figures for the
product statespace show how much of the potential product statespace was
generated when the automaton was synchronised with a random statespace.
Again scheck is able to keep the product statespace small but here again we
cannot conclude anything definite because so many of the formulas were re-
jected. The generation time shows the familiar exponential increase which
usually manifests itself sooner or later when solving PSPACE-complete prob-
lems. Our suspicion is that why scheck can require exponential time but not
generate exponential automata is due to inefficiencies when using BDDs in
scheck. One conclusion which is not affected by high rejection ratio of the
formulas is that scheck can clearly scale well when identifying pathologic
formulas.

8.2 Model Checking Case Studies

To compare the performance of the tools in a practical setting, the four tools
were connected to the Maria tool. We modelled three distributed algorithms
which all had a parameter, such as the number of processes, which could

50 8 TRANSLATION EXPERIMENTS

5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

Parameter

S
ta

te
 o

r a
rc

 ra
tio

5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Parameter

tim
e

ra
tio

2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

0.03

Parameter

S
ta

te
 o

r a
rc

 ra
tio

lbt−state
spin−state
ltl2ba−state
lbt−arc
spin−arc
ltl2ba−arc

2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Parameter

Ti
m

e
ra

tio

2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter

S
ta

te
 o

r a
rc

 ra
tio

2 2.5 3 3.5 4
0.74

0.76

0.78

0.8

0.82

0.84

Parameter

Ti
m

e
ra

tio

Figure 12: Comparison of the tools with practical models. Top: the echo
algorithm, middle: the alternating bit protocol and bottom: readers writers
problem.

8 TRANSLATION EXPERIMENTS 51

be increased. On each model we checked a safety property three times for
each parameter value. We report the average of the three runs. The statistics
compared are size of the product statespace, which gives an indication of the
memory use of the model checker, and the time used for model checking.

Because the model checking algorithm is different for scheck than the
other tools, this comparison more investigates the benefit of being able to use
simpler algorithms on safety properties rather than directly comparing the
tools themselves. If the model checking algorithm for the other tools would
e.g. be the nested depth-first search algorithm of [10], the results would be
slightly different.

The three models used were:

1. A model of the echo algorithm with a parameterised number of partic-
ipants.

2. A model of the alternating bit protocol with varying parameterised
channel sizes.

3. A model of the concurrent readers, exclusive writing problem with a
parameterised number of processes.

The parameter we modify in the echo algorithm is the number of nodes
participating in the network. For the alternating bit protocol the channel
buffer size is changed and for the readers writers problem we set the number
of readers, which has been fixed to be equal to the number of writers. For two
of the models, the echo algorithm and readers writers problem, a property
which is satisfied was model checked, while a failing property was model
checked for the alternating bit protocol.

In Figure 12 we have plotted the ratio of the averages for the different
measures, i.e. the average of the result for scheck divided by the average of
the result for the other tool. The first row shows the results for the echo
algorithm, the second row for the alternating bit protocol, and the third row
for the readers writers problem.

In all cases scheck produces smaller or equally big product statespaces.
Model checking using it is always faster than the other tools. For the echo
algorithm it is interesting to note that although the ratio of the product states-
pace shows that the other tools are catching up, the time ratio still continues
to decrease indicating the opposite. Holtzmann and Etessami observed [18]
that when the property fails, an algorithm which is not heavily optimised can
perform better than optimised algorithms. This can also been seen in these
experiments for the alternating bit protocol. Especially in these cases, scheck
is far superior to the other tools. This can probably be attributed to that model
checking can stop immediately after the final state has been entered in the
automaton, as there is no need to find a loop. For the readers writers problem
the performance of the other algorithms is almost on par with scheck. This
is the reason the first figure is a bit unclear. Both spin and ltl2ba produce
the same result as scheck, while lbt produces twice as many states and arcs.
This is probably due to that all algorithms are able to produce nearly optimal
automata for the simple property verified.

52 8 TRANSLATION EXPERIMENTS

9 DISCUSSION

One of the questions this work set out to answer was is it worth the effort to
treat safety as a special case when model checking systems. In light of the re-
sults presented in this work, the question can be answered affirmatively. The
implementation of the translation procedure presented in this work, scheck,
produces smaller automata than the state of the art of the LTL to Büchi au-
tomata translators. In some cases the difference is exponential other times
negligible. Clearly also the resulting product statespaces are smaller for
scheck. This is probably because scheck produces deterministic automata.
The fact that determinising would result in much smaller automata came as
a pleasant surprise. It is a well-known that determinising a non-deterministic
automaton can result in an exponentially larger automaton. Safety proper-
ties can be expressed using reverse deterministic automata. Apparently, the
expressiveness of non-determinism is not needed in the forward case either.
Automata generation time was the one area where the results for scheck were
disappointing. Although scheck generates the automaton for almost any for-
mula in a few seconds, this is quite slow compared ltl2ba which in most cases
would only use a few hundreths of a second. One of the reasons could be that
scheck uses BDDs to manage sets, which sometimes can cause overhead. A
non-BDD implementation would probably perform better.

One of the most important tests for any tool is how well it performs in
practical situations. In this category scheck was competitive. The resulting
product statespaces for scheck were always smaller or at least as small as for
the other tools. Especially if a counterexample existed, model checking us-
ing scheck was much faster. The comparisons were made against a model
checking algorithm based on Tarjan’s SCC algorithm, which means the re-
sults could be different if the comparison was done against a tool using the
nested depth-first algorithm [10]. As the number of different models used
in the experiment was small, more experiments are needed to confirm our
results. There are also model checking algorithms where checking Büchi
acceptance is more complex than simple reachability. One example is the
LTL−X model checker for net unfoldings presented in [17]. Using a special
algorithm for the safety subset has been proposed as a much simpler alterna-
tive [27].

The results presented for CPN abstractions in this work makes incremen-
tal development more feasible. Because many safety properties can be ver-
ified on the abstract designs, correctness of the refined designs is easier to
ensure. The results can also be seen to suggests how a design should be ab-
stracted in order to preserve safety properties. Unfortunately, fully automatic
abstraction is probably not feasible, so human intervention will be required
when abstraction is done. Correctness of each refinement/abstraction step
can however be ensured as demonstrated by the implementation described
in [42]. It could be interesting to see how well this kind of design and veri-
fication methodology would perform in practice. From our perspective the
most interesting question is, could safety properties for very large designs be
successfully verified in this way.

In order to be able to benefit from treating safety properties as a special
case we must be able to recognise safety formulae. There are two ways in

9 DISCUSSION 53

which this can be done. Either we only use the syntactically safe subset of
LTL, which is easy to recognise or we check if a formula is pathologic. The
feasibility of checking if a formula is pathologic mostly hinges on the feasi-
bility of producing deterministic finite automata from the properties which
then are interpreted as deterministic Büchi automata. If the automata are
not deterministic we must complement non-deterministic Büchi automata,
a non-trivial task. However, as this work has shown, producing deterministic
finite automata from LTL safety properties is feasible. The experiments also
confirm that checking if a formula is pathologic is feasible. This means that
both options for recognising safety properties are available and can be used.
Especially a tool which only supports the fundamental temporal operators
will benefit from being able to check if a formula is pathological because
there are some fairly obvious safety properties which are not syntactically
safe.

The worst case bound for the size of the automata in this work is still
2|cl(ψ)|, although it is simpler for the case where the next-operator is omitted.
For some algorithms, the bound O(2|tf (ψ)|) has been proven [11, 25]. We
conjecture that this is also possible for the automata construction for safety
properties. An optimisation of the treatment of the next-operator subformulas
could perhaps facilitate this change.

To produce even smaller automata faster than scheck, another approach
is probably required. It would be interesting to see if starting from alternating
automata as in [20] could facilitate an efficient translation.

ACKNOWLEDGEMENTS

The author thanks Keijo Heljanko for fruitful discussions and comments on
the paper. The financial support of Helsinki Graduate School in Computer
Science and Engineering, the Academy of Finland (project 47754), the Wi-
huri Foundation and Tekniikan Edistämissäätiö (Foundation for Technology)
is gratefully acknowledged.

54 9 DISCUSSION

References

[1] J.R. Abrail. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Dis-
tributed Computing, 2:117–126, 1987.

[3] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
Ph. Schnoebelen. Systems and Software Verication. Model-Checking
Techniques and Tools. Springer, 2001.

[4] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching time model checking. In Computer Aided Ver-
ification (CAV’97), volume 818 of LNCS, pages 142–155. Springer,
1994.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In Tools and Algorithms for the Constructions and
Analysis of Systems (TACAS’98), volume 1579 of LNCS, pages 193–
207. Springer, 1999.

[6] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal
of the Association for Computing Machinery, 28(1):114–133, 1981.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[8] E.M. Clarke and E.A. Emerson. Design and synthesis of syncronization
of skeletons using branching time temporal logic. In Proceedings of the
IBM Workshop on Logics of Programs, volume 131 of LNCS, pages
52–71. Springer, 1981.

[9] E.M Clarke and B-H. Schlingloff. Model checking. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, pages
1637–1790. Elsevier, 2001.

[10] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

[11] J-M. Couvreur. On-the-fly verification of linear temporal logic. In Pro-
ceeding of the World Congress on Formal Methods in the Develop-
ment of Computing Systems (FM’99), volume 1708 of LNCS, pages
253–271, Berlin, 1999. Springer.

[12] M. Daniele, F. Giunchiglia, and M.Y Vardi. Improved automata gen-
eration for linear temporal logic. In Proceedings of the International
Conference on Computer Aided Verification (CAV’99), volume 1633
of LNCS, pages 249–260, Berlin, 1999. Springer.

[13] D. Drusinsky. The temporal rover and the ATG rover. In SPIN, volume
1885 of LNCS, pages 323–330. Springer, 2000.

REFERENCES 55

[14] A.E. Emerson. Alternative semantics for temporal logics. Theoretical
Computer Science, 26:121–130, 1983.

[15] A.E. Emerson and Clarke E.M. Using branching time logic to syn-
thesize synchronization skeletons. Science of Computer Programming,
2:241–266, 1982.

[16] E.A. Emerson and C-L. Lei. Modalities for model checking: Branching
time logic strikes back. Science of Computer Programming, 8(3):275–
306, 1987.

[17] Javier Esparza and Keijo Heljanko. A new unfolding approach to LTL
model checking. In Proceedings of 27th International Colloquium on
Automata, Languages and Programming (ICALP’2000), volume 1853
of LNCS, pages 475–486. Springer, July 2000.

[18] K. Etessami and G. Holzmann. Optimizing Büchi automata. In
Concurrency Theory (CONCUR’2000), volume 1877 of LNCS, pages
153–167. Springer, 2000.

[19] B. Finkbeiner and H. Sipma. Checking finite traces using alternat-
ing automata. In Proceedings of the First International Workshop on
Runtime Verification, volume 55(2) of Electronic Notes in Theoretical
Computer Science. Elsevier, 2001.

[20] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation.
In Computer Aided Verification (CAV’2001), volume 2102 of LNCS,
pages 53–65. Springer, 2001.

[21] M.C.W. Geilen. On the construction of monitors for temporal logic
properties. In RV’01 - First Workshop on Runtime Verification, vol-
ume 55 of Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, 2001.

[22] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Proceedings of the 15th
Workshop Protocol Specification, Testing, and Verification, Warsaw,
June 1995. North-Holland.

[23] Richard Goering. Model checking expands verification’s scope. Elec-
tric Engineering Today, February 1997.

[24] K. Havelund and G. Rosu. Java pathexplorer — A runtime verification
tool. In Proceedings 6th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (ISAIRAS’01), 2001.

[25] K. Havelund and G. Rosu. Synthesizing monitors for safety properties.
In Tools and Algorithms for the Construction and Analysis of Systems,
volume 2280 of LNCS, pages 342–356. Springer, 2002.

[26] Klaus Havelund and Grigore Rosu. Testing linear temporal logic for-
mulae on finite execution traces. Technical Report TR 01-08, Research
Institute for Advanced Computer Science, May 2001.

56 REFERENCES

[27] Keijo Heljanko. Combining Symbolic and Partial Order Methods for
Model Checking 1-Safe Petri Nets. PhD thesis, Helsinki University
of Technology, Department of Computer Science and Engineering,
February 2002.

[28] J. Helovuo and S. Leppänen. Exploration testing. In Application of
Concurrency in System Design (ACSD’2001), pages 201–210. IEEE,
2001.

[29] G.J. Holzmann. The model checker Spin. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, May 1997.

[30] K. Jensen. Coloured Petri Nets, volume 1. Springer, Berlin, 1997.

[31] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that
weak. In Israeli Symposium on Theory of Computing and Systems,
pages 147–158. IEEE Computer Society Press, 1997.

[32] O. Kupferman and M.Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[33] R.P. Kurshan. Complementing deterministic Büchi automata in poly-
nomial time. Journal of Computer and System Science, 35:59–71,
1987.

[34] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeon University Press, Prince-
ton, New Jersey, 1994.

[35] Charles Lakos. On the abstraction of coloured Petri nets. In Application
and Theory of Petri Nets (ICATPN’97), volume 1248 of LNCS, pages
42–61. Springer, 1997.

[36] Charles Lakos. Composing abstractions of coloured Petri nets. In Ap-
plication and Theory of Petri Nets 2000, volume 1825 of LNCS, pages
323–345. Springer, 2000.

[37] L. Lamport. Sometimes is sometimes "not never" - on the temporal
logic of programs. In Proceedings of the 7th ACM Symposium on Prin-
ciples of Programming Languages, pages 174–185, January 1980.

[38] L Lamport. Logical foundations. In Distributed Systems - Methods and
Tools for Specification, volume 192 of LNCS. Springer, 1982.

[39] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta
Informaticae, 43(1–4):175–193, 2000.

[40] Timo Latvala. Model checking LTL properties of high-level Petri nets
with fairness constraints. In Applications and Theory of Petri Nets
(ICAPTN’2001), volume 2075 of LNCS, pages 242–262. Springer,
2001.

REFERENCES 57

[41] G.A. Lewis. Incremental Specification and Analysis in the Context of
Coloured Petri Nets. PhD thesis, Department of Computing, Univer-
sity of Tasmania, 2002.

[42] G.A. Lewis and C.A. Lakos. Incremental state space construction for
coloured petri nets. In Application and Theory of Petri Nets 2001, vol-
ume 2075 of LNCS, pages 263–282. Springer, 2001.

[43] O. Lichtenstein and A. Pnueli. Checking that finite state programs
satisfy their linear specifination. In Proceedings of the 12th ACM Sym-
posium on Principles of Programming Languages, pages 97–107, 1985.

[44] Jørn Lind-Nielsen. Buddy - A binary decision diagram package, 2000.�����������	��
	
	
�)��������*�$���+�!#�,!�-�+'�.����/	��*	*�0"�
.

[45] M. Mäkelä, H. Tauriainen, and M. Rönkkö. lbt: LTL to Büchi con-
version, 2001.

���	�����1�	�%
	
	
������	�����	�����������2����	��
#-�+#!#�.�'-�+���-������	�	(��	�
(�/��'�

.

[46] Marko Mäkelä. Maria: modular reachability analyser for algebraic sys-
tem nets. In Application and Theory of Petri Nets 2002, volume 2360
of LNCS, pages 434–444. Springer, 2002.

[47] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer, 1992.

[48] Vardi M.Y. and P. Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1–37, November 1994.

[49] J. Padberg, K. Hoffmann, and M. Gajewsky. Stepwise introduction
and preservation of safety properties in algebraic high-level net systems.
In Fundamental Approaches to Software Engineering (FASE), volume
1783 of LNCS, pages 249–265. Springer, 2000.

[50] A. Pnueli. The temporal logic of programs. In Proceedings of 18th
IEEE Symposium on Foundation of Computer Science, pages 46–57,
1977.

[51] J.P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
on Programming, pages 337–350, 1981.

[52] S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The
Weizmann Institute of Science, 1989.

[53] A.P. Sistla. Safety, liveness, and fairness in temporal logic. Formal
Aspects in Computing, 6:495–511, 1994.

[54] A.P. Sistla and E.M. Clarke. The complexity of propositional linear
temporal logic. Journal of the Association for Computing Machinery,
32(3):733–749, July 1985.

58 REFERENCES

[55] F. Somenzio and R. Bloem. Efficient Büchi automata from LTL for-
mulae. In Proceedings of the International Conference on Computer
Aided Verification (CAV2000), volume 1855 of LNCS, pages 248–263.
Springer, 2000.

[56] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

[57] Heikki Tauriainen and Keijo Heljanko. Testing LTL formula translation
into Büchi automata. STTT - International Journal on Software Tools
for Technology Transfer, 4(1):57–70, 2002.

[58] W. Thomas. A combinatorial approach to the theory of ω-automata.
Information and Computation, 48:261–283, 1981.

[59] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B, pages 133–191. Elsevier, 1990.

[60] A. Valmari. The state explosion problem. In Lectures on Petri Nets I:
Basic Models, volume 1491 of LNCS, pages 429–528. Springer, 1998.

[61] M. Vardi. Automata-theoretic approach to design verification. webpage,
1999.

���	�����1�	�%
	
	
���
����%*'�.�3��
#!'��4,�'-�5�5��6-"�7�)��(�����8#-�+�*�����-�8'��5����#!#�	�
(�!"�,9:�����

.

[62] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logic of programs. Journal of Computer and System Sciences, 32:183–
221, 1986.

[63] M.Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, pages 238–266.
Springer, 1996. LNCS 1043.

[64] M.Y. Vardi. Branching vs. linear time: Final showdown. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’2001), pages 1–22. Springer, 2001.

REFERENCES 59

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A63 Nisse Husberg, Tomi Janhunen, Ilkka Niemelä (Eds.)

Leksa Notes in Computer Science. October 2000.

HUT-TCS-A64 Tuomas Aura

Authorization and Availability - Aspects of Open Network Security. November 2000.

HUT-TCS-A65 Harri Haanpää

Computational Methods for Ramsey Numbers. November 2000.

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

HUT-TCS-A67 Timo Latvala

Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.

January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä

A Reachability Analyser for Algebraic System Nets. June 2001.

HUT-TCS-A70 Petteri Kaski

Isomorph-Free Exhaustive Generation of Combinatorial Designs. December 2001.

HUT-TCS-A71 Keijo Heljanko

Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets.

February 2002.

HUT-TCS-A72 Tommi Junttila

Symmetry Reduction Algorithms for Data Symmetries. May 2002.

HUT-TCS-A73 Toni Jussila

Bounded Model Checking for Verifying Concurrent Programs. August 2002.

HUT-TCS-A74 Sam Sandqvist

Aspects of Modelling and Simulation of Genetic Algorithms: A Formal Approach.

September 2002.

HUT-TCS-A75 Tommi Junttila

New Canonical Representative Marking Algorithms for Place/Transition-Nets. October 2002.

HUT-TCS-A76 Timo Latvala

On Model Checking Safety Properties. December 2002.

ISBN 951-22-6265-7

ISSN 1457-7615

