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ABSTRACT

We introduce a method that learns a class-discriminative
subspace ordiscriminative components of data. Such a sub-
space is useful for visualization, dimensionality reduction,
feature extraction, and for learning a regularized distance
metric. We learn the subspace by optimizing a probabilistic
semiparametric model, a mixture of Gaussians, of classes
in the subspace. The semiparametric modeling leads to fast
computation (O(N) for N samples) in each iteration of op-
timization, in contrast to recent nonparametric methods that
takeO(N2) time, but with equal accuracy. Moreover, we
learn the subspace in a semi-supervised manner from three
kinds of data: labeled and unlabeled samples, and unlabeled
samples with pairwise constraints, with a unified objective.

1. INTRODUCTION

Optimization of the distance metric for data analysis has
been intensively studied in recent years. We focus on classi-
fication tasks, where the metric is typically used to compare
samples to each other or to prototypes; then the criterion of
learning the metric is better discriminability of the classes.
This task can be calleddiscriminative component analysis.

For classification, methods have been introduced to learn
global ([1, 2, 3, 4, 5] and many others) and local (e.g. [6])
metrics. We concentrate on global metrics, corresponding
to linear transformations of the data. Nonlinear transforma-
tions correspond in some cases to local metrics but in gen-
eral they lose the original topology. Linear transformations
are also easier to interpret and more robust to overfitting.

Below we discuss three separate choices for learning
global metrics: (1) whether to use a parametric or non-
parametric model, (2) whether to use a generative model
of classes and features or a discriminative (or conditional)
model, and (3) whether to use semi-supervised information.

Linear Discriminant Analysis (LDA) and some exten-
sions (e.g. [7]) can be seen as joint generative models of
data and their classes. LDA is optimal if data are from
the assumed family (restricted Gaussian mixture) and the

projection has enough dimensions to contain all class vari-
ation. Otherwise joint generative modeling is suboptimal
since only the conditional class distribution is of interest.

Discriminative methods have been proposed, based on
approximations of Shannon entropy or some variant (see [5,
8]), conditional covariance operators [1], and others [2].

An especially intuitive probabilistic approach is to op-
timize a conditional model for the classes. This has been
done in Neighborhood Components Analysis (NCA; [3])
and Informative Discriminant Analysis (IDA; [4]), which
optimize a nonparametric class predictor and hence do not
require distributional assumptions. The downside is the com-
putational complexity; each iteration in the optimizationis
O(N2) whereN is the number of data points.

When only few labeled samples are available, super-
vised methods may overfit, yielding poor performance on
test data. Semi-supervised learning (e.g. [9]) can reduce
overfitting by using additional information, typically un-
labeled samples or samples with pairwise constraints. It
has been widely applied outside dimensionality reduction,
to e.g. mixture modeling [10, 11]. For dimensionality re-
duction, semi-supervised learning based on joint density es-
timation in the original space has been used in [12], and
based on discriminative modeling of pairwise constraints
but no labeled or unlabeled samples in [3]. Metrics have
been learned based on pairwise constraints in [13].

In this paper we introduce a fast method for linear di-
mensionality reduction. It finds a class-discriminative sub-
space by optimizing a semiparametric mixture of Gaussians
for density estimation within the subspace. Our method is
discriminative for the labeled data, in contrast to generative
methods like LDA.

Our method has two main contributions. Firstly, itre-
duces computational complexity: the semiparametric pre-
dictor improves speed toO(N) compared toO(N2) for
IDA and NCA, and adds robustness compared to nonpara-
metric prediction. Secondly, our method canlearn from
unlabeled data when it is available; when labeled data is
scarce, such semi-supervised learning can improve results.
More specifically, in addition to the labeled data, our method



is able to learn from pairwise constrained and fully unla-
beled data as well, if they are available.

We will use two abbreviations for our method: when
we use labeled data but not unlabeled data, we denote the
method DCA-GM (for “discriminative component analysis
by Gaussian mixtures”); when we also use unlabeled data,
we denote the method SDCA-GM (for “semi-supervised dis-
criminative component analysis by Gaussian mixtures”).

2. THE METHOD

2.1. Problem Setting

We are given a labeled data set consisting ofN real-valued
input vectorsxi in R

D and corresponding class labelsci (C
classes in total). We have additionally an unlabeled data set
where class labels are not given; our assumption is that each
unlabeled data point comes from one of theC classes.

The unlabeled data may be partly grouped: some of the
unlabeled input vectors are placed into groupsGi where
each group of input vectors is known to come from a single
unknown class as in [13]. If pairwise must-link constraints
are given instead of point groups, the groups can be identi-
fied by a transitive closure of the constraints as in [11].

The above kinds of data are available in many real-world
problems: in face recognition, labeled data are pictures of
known persons; unlabeled data are pictures of unknown per-
sons; pairwise constrained data are pictures from short video
sequences (so the same unknown person is in each picture).

The task is to find a low-dimensional linear transforma-
tion A : R

D → R
d that preserves as much information

required for classification as possible. The three kinds of
data (labeled data, grouped unlabeled data, and ungrouped
unlabeled data) all provide information for the task.

2.2. Our Method: Semiparametric Model

We want to somehow measure how well the low-dimensional
linear transformationA discriminates classes, and optimize
A to maximize this measure. The principle of our method
is that we can measure how class-discriminative any trans-
formationA is by simply building a class predictor for the
transformed datay = Ax and measuring its performance.
Rather than using a slow nonparametric predictor as in [3, 4]
we use a semiparametric predictor and optimize both the
transformation and the predictor simultaneously. Note that
finding the transformation is the main objective: optimizing
the predictor is simply a means to that end.

We derive our semiparametric class predictor from a
mixture of Gaussians representation for the transformed data
y = Ax and their classesc. Note that this representation is
of the transformed datay = Ax and their classes only; we
do not make a generative model of the original featuresx as
in, for instance, factor analysis.

We represent each class of the transformed data as a
mixture of K Gaussian densities with a single covariance
matrix for each class. The mixture generates the density

p(y, c; θ) =

K∑

k=1

αcβc,kN(y; µc,k,Σc) (1)

where theαc are overall class weights, theβc,k are weights
for the individual Gaussian components, andN(y; µc,k,Σc)
is the density of a Gaussian distribution with meanµc,k and
covariance matrixΣc, computed aty = Ax. Theαc, βc,k,
µc,k, andΣc are parameters of the mixture, together de-
noted byθ. Theαc andβc,k are required to be multinomial
probabilities: they must be nonnegative, theαc must sum to
one, and theβc,k must sum to one for eachc.

The model can be easily generalized to have different
numbers of Gaussians for the classes or different covariance
matrices for each Gaussian, with very similar equations.

2.3. Objective Function

We seek a class-discriminative subspace: if we have much
labeled data, the performance of the predictor (1) is natu-
rally measured as log probability of correct classification.
However, to increase the robustness of such a measure, we
do semi-supervised learning by also predicting propertiesof
the unlabeled data: for the grouped unlabeled data we can
naturally compute the log probability of the grouping infor-
mation. For all unlabeled data (grouped or not) we also add
a log probability of the transformed data. The interpretation
of these terms is discussed further in Section 2.4.

The full objective function is

∑

i∈labeled

log p(ci|Axi; θ)

+ λ1

∑

i∈groups

log p(Gi;A, θ)

+ λ2

∑

i∈unlabeled

log p(Axi; θ) (2)

where theλ1 andλ2 are weighting multipliers,p(Ax; θ) =∑
c p(Ax, c; θ) andp(c|Ax; θ) = p(Ax, c; θ)/p(Ax; θ) are

standard unlabeled and conditional probabilities computed
from (1) withAx in place ofy, andp(Gi;A, θ) is the prob-
ability that theith set of grouped transformed data comes
from a single class, that is,

p(Gi;A, θ) =

∑
c αc

∏
x∈Gi

p(Ax|c; θ)
∏

x∈Gi
p(Ax; θ)

(3)

wherep(Ax|c; θ) = p(Ax, c; θ)/αc.
We define two versions our method. In DCA-GM only

the first sum in (2) is used; that is, only labeled data are



used. In SDCA-GM all three sums are used; that is, any un-
labeled data are also used. For both versions of our method,
we maximize the objective function with respect to the lin-
ear transformationA (we also add a term that penalizes the
matrix norm). For the mixture parametersθ we use a hybrid
approach described in Section 3.

2.4. Interpretations for the objective function.

The first (‘labeled’) sum term in (2) is simply the log proba-
bility of correct classification of the labeled data. If all data
is labeled, only this term remains and the objective function
performs fully supervised conditional log-likelihood opti-
mization in the same way as NCA and IDA but faster.

The second (‘groups’) sum term only affects the semi-
supervised version SDCA-GM. It is a sum over groups, not
individual points; it is the log probability that each group
Gi is generated from a single unknown class. We assume
the class is one of theC classes and samples are indepen-
dent given the class. Note that information about grouping
is weaker than known class labels: for example, two dif-
ferent groups might have the same underlying class. In the
experiments we do not yet use grouping, but we provide the
details to show our model can easily use such information.

The third (‘unlabeled’) sum term only affects the semi-
supervised version SDCA-GM. It is the unlabeled likeli-
hood of all unlabeled transformed data (grouped or not). For
a fixed subspace, a sum of conditional and unlabeled likeli-
hoods would be a traditional way of doing semi-supervised
learning of the mixture parameters. Here the crucial task is
learning the subspace, so the term has a more subtle effect:
under certain conditions it prefers subspaces where the data
is clustered. Suppose the covariance matrix of the trans-
formed dataAx is fixed with respect toA (e.g., fix the norm
of A and whiten the data beforehand). A Gaussian has the
highest entropy of all distributions with the same covariance
matrix; the third sum term in (2) is an empirical estimate of
(negative) entropy, so maximizing it maximizesnongaus-
sianity of the transformed data. Intuitively, well clustered
data is more nongaussian than data that is mixed together.

A potential problem is that if the transformed data does
not have a fixed covariance matrix, the ‘unlabeled’ term will
also reward criteria unrelated to class discrimination: matri-
ces with small norm and subspaces where the data has small
scale along some directions. E.g. using orthogonality con-
straints forA as in [4] could potentially improve the ‘unla-
beled’ term. The simple version sufficed for good results in
experiments, though, and extensions are left to further work.

For SDCA-GM we use the scalar parametersλ1 andλ2

to control the relative scales of the three sum terms. They
could potentially be set e.g. by cross-validation. In the ex-
periments we did not optimizeλ2 but simply set it to a small
value. We would do the same forλ1 but we did not use
grouped data in the experiments of this paper.

3. OPTIMIZATION

We first discuss how to learn the linear transformation, and
then how to learn the mixture parameters.

Our main task is to optimize the linear transformation;
we use standard conjugate gradient optimization for that.
The gradient equations for each term in the objective func-
tion (2) are simple and are given in full in Appendix A.

We could in principle use conjugate gradients to learn
both the linear transformation and the mixture parameters
(reparameterization ofαc, βc,k, andΣc would be neces-
sary). Such very flexible discriminative learning might, how-
ever, be prone to overfitting, so we use the computationally
more convenient expectation maximization (EM) to learn
the centersµc,k, covariancesΣc, and weightsαc andβc,k

from the transformed data. See Appendix B for details.
We do a few steps of EM before each iteration of conju-

gate gradient that discriminatively optimizesA. Since EM
maximizes joint likelihood1, the learning ofA seeks a trans-
formationwhere a generative mixture model gives good dis-
criminative performance, which is a well-defined task.

This hybrid optimization is not a requirement of our
model but a convenient simplification; we then only need
to optimize the transformationA by conjugate gradients.

For both DCA-GM and SDCA-GM the computational
complexities of gradient computation and EM estimation
areO(NCKdD + NCd2 + Cd3 + CKd2) andO(NDd +
NCKd2 +Cd3 +CKd2) respectively; both are linear with
respect to the number of samplesN . The total running time
depends on the numbers of iterations and gradient compu-
tations and EM steps per iteration. In the experiments we
used fixed small numbers of iterations and EM steps; poten-
tial performance improvement with more iterations and EM
steps will be investigated in future work.

4. EXPERIMENTS

We evaluated our method on six data sets from the UC Irvine
repository: Wine, Balance, Housing, Ionosphere, Iris, and
Isolet.2 Each data set was split 30 times into training (20%)
and testing (80%) subsets. For each data set we sought lin-
ear projections to a two-dimensional subspace (except for
Isolet where we sought five-dimensional projections since
2D projection does not yield satisfactory results).

We compare our method to two linear supervised di-
mensionality reduction methods: a combined method
where Linear Discriminant Analysis (LDA) is followed by
Relevant Component Analysis (RCA; [13]), which is known

1We could have used recent discriminative EM versions but they are
much slower than normal joint EM.

2For the largest data set (Isolet), a subset of 3740 samples was used,
and dimensionality was reduced to 30 by a Principal Component Analysis
(PCA) projection, to reduce the computational load.



to be better than the standard LDA, and NeighborhoodCom-
ponents Analysis (NCA). As a baseline we use the unsuper-
vised Principal Component Analysis (PCA).

We ran both versions of our method. The supervised
DCA-GM was trained only on the labeled training subset.
The semi-supervised SDCA-GM was also given the unla-
beled test data during training; that is, a transductive setting
was used. (We stress that SDCA-GM is applicable outside
transductive tasks as well: it can learn in a semi-supervised
manner from any unlabeled data, not just test data.) For
SDCA-GM the weight of the ‘unlabeled’ term in (2) was
set toλ2 = 0.01. For both DCA-GM and SDCA-GM we
used a mixture of two Gaussians to model each class; we
used K-means and LDA+RCA to initialize the mixture and
the linear transformation, respectively. Standard improve-
ments like restarts from several initializations can of course
be used; here we did not use such.

To do a fair comparison between all the linear dimen-
sionality reduction methods, the performance of all the meth-
ods was evaluated by test accuracy of K nearest neighbor
(KNN) classification (we used K=1) in the found subspace.

Example results of the semi-supervised SDCA-GM ap-
plied to transductive learning on the Wine data are shown in
Figure 1. Notice how the bottomost Gaussian component of
class 2 is not centered on the few labeled data, but is closer
to the larger amount of unlabeled data; intuitively, relying
on unlabeled data can be robust assuming that nearby unla-
beled samples in reality come from the correct class. This
is not always true; the upper Gaussian of class 3 has three
nearby unlabeled samples that in reality come from class 1.

Class 1

Class 3

Class 2

samples from Class 1
Unlabeled outlier

Fig. 1. SDCA-GM result on Wine data (178 points from 3
classes). A two-dimensional subspace was sought for origi-
nally 13-dimensional data. The labels of 20% of the points
(denoted by ‘*’) were known in the training. The labels
of the rest of the points (denoted by ‘o’) were not revealed
during training. The points are shown in the found two-
dimensional space. Ellipses show the location and shape of
the Gaussian components used to model each class.

The classification results on the test subsets are presented

in Figure 2. SDCA-GM and DCA-GM are comparable with
NCA which is considered to be the state-of-the-art; in some
cases SDCA-GM is even slightly better. For these data sets
both NCA, DCA-GM and SDCA-GM run fast and there is
no significant difference in their running times; however, as
stated in the previous sections, DCA-GM and SDCA-GM
have a much smaller computational complexity than NCA.
We will run tests on larger data and investigate optimization
of the speed of our methods in future work.
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Fig. 2. Classification accuracy on UCI data sets Housing,
Wine, Balance, Ionosphere, Iris, and Isolet. Results are av-
erages of test data results over 30 realizations of splitting
each data set into training (20%) and testing (80%) sub-
sets. A linear dimensionality reduction down tod = 2 was
sought in all cases except the Isolet data whered = 5.

5. DISCUSSION

In the experiments we measured performance with a KNN
classifier for all methods. However, the natural classifier
derived from the semiparametric method SDCA-GM is the
(maximum) posterior probability of the class given the fea-
ture vector. Using this classifier yields a slight improvement
over the results in Figure 2; another advantage is that train-
ing data are not needed in the classification step which saves
memory and reduces computational complexity.

Initial investigation with smaller training set sizes (less
than 20% of data used for training) indicate that perfor-
mance of DCA-GM worsens when there is too little data,
and that performance of SDCA-GM is affected by the weight
λ2 for the unlabeled term in the objective function (results
not shown); too largeλ2 will incur poor performance. Po-
tentially we could use e.g. cross-validation to selectλ2; such
methods will be investigated in future work.

In the mixture modeling method of [11], class discovery
is considered through cannot-link constraints. Such ideas



could be used in our method, possibly allowing unlabeled
samples to come from new classes.

SDCA-GM finds a class-discriminative subspace. In
several applications such as visualization of class separabil-
ity the subspace is the main result; restricting to a subspace
is equivalent to regularizing the distance metric so changes
perpendicular to the subspace do not affect distances.

The linear transformationA is identifiable only with re-
spect to the subspace it finds; within the subspace, it can be
shown that changes inA can be exchanged with changes in
θ without affecting the first two terms of (2).

If desired, a distance metric in the subspace can be sought
by e.g. these possibilities: (1) If the topology is unimpor-
tant, compare points by their estimated class distributions.
(2) For a global metric, run NCA inside the projection space,
or (3) use the average covariance matrix of the classes. Here
we simply used the Euclidean metric after the linear trans-
formation; this sufficed to get good results.

We noticed only recently a related method that also op-
timizes a semiparametric conditional class predictor [14].
Compared to it, we use a more flexible parameterization and
a robust combination of generative and discriminative opti-
mization. Also, [14] does not use semi-supervised learning.

The objective (2) looks similar to the multi-conditional
loglikelihood in [15]; however, the model in [15] does (lo-
cal) factor analysis whereas we model data only within the
subspace. Moreover, the method in [15] would require non-
trivial extension to do global dimensionality reduction.

6. CONCLUSIONS

We have presented a fast semi-supervised method for find-
ing subspaces where classes of data can be well discrimi-
nated. The method optimizes a well-defined criterion: per-
formance of a semiparametric mixture of Gaussians predic-
tor for classes and pairwise-constrained data groups plus a
regularization term for unlabeled data. The method has lin-
ear complexity with respect to the number of samples, and it
performed as well as the state-of-the-art method Neighbor-
hood Component Analysis (NCA) on benchmark data sets.
Using unlabeled data was shown to improve results over
NCA. Finally, we described how to use pairwise constraints
in the method, and how to learn metrics for the found sub-
spaces. These directions will be explored in future work.

7. APPENDIX A: GRADIENT EQUATIONS

The objective function (2) has three terms: it can be shown
the gradient of the first (labeled) term with respect toA is

∑

i,c,k

(p(c, k|Axi; θ) − δc,ci
p(k|Axi, c; θ))

· Σ−1

c (Axi − µc,k)xT
i (4)

wherei goes over labeled points,δci,c is one ifci = c and
zero otherwise, and

p(c, k|Ax; θ) =
αcβc,kN(Ax; µc,k,Σc)∑

c′,l αc′βc′,lN(Ax; µc′,l,Σc′)
, (5)

p(k|Ax, c; θ) =
βc,kN(Ax; µc,k,Σc)∑

l βc,lN(Ax; µc,l,Σc)
. (6)

The gradient of the second (groups) term is

λ1

∑

i,x∈Gi,c,k

(p(c, k|Ax; θ)−p(c|Gi;A, θ)p(k|Ax, c; θ))

· Σ−1

c (Ax − µc,k)xT (7)

wherei goes over groups andp(c|Gi;A, θ) is given by (11).
The gradient of the third (unlabeled) term is

−λ2

∑

i,c,k

p(Axi, c; θ)Σ
−1

c (Axi − µc,k)xT
i (8)

wherei goes over all unlabeled points.

8. APPENDIX B: DETAILS OF THE EM
ALGORITHM

For DCA-GM the standard EM algorithm suffices. For
SDCA-GM, we must also learn from unlabeled data and
pairwise constrained data. To solve this subproblem, we ex-
tend the EM algorithm in [10] which learns a mixture model
from pairwise constrained data. We extend that method in
two ways. Firstly, our pairwise constraints (groupings) state
that two points come from the sameclass, not necessarily
the sameGaussian within the class. A similar extension
has been used in [11]. Secondly, we also allow samples
with known labels. We assume a fixed number of classes
and components, and hence get simpler (faster) update rules
than the considerably more complex ones of [11].

In the E step, for labeled pointsxi we compute weights

pi(c, k) = δc,ci
p(k|Axi, c; θ) (9)

whereci is the known class label, and for grouped unlabeled
pointsxi we compute the weights

pi(c, k) = p(c|Gi;A, θ)p(k|Axi, c; θ) . (10)

Here Gi denotes the group theith point belongs to, and
p(c|Gi;A, θ) is the probability thatGi comes from class
c given that it comes from a single class:

p(c|Gi;A, θ) =
αc

∏
x∈Gi

p(Ax|c; θ)
∑

c′ αc′
∏

x∈Gi
p(Ax|c′; θ)

. (11)

An unlabeled pointxi that is not grouped equals a group
wherexi is the only member; thenp(c|Gi;A, θ) reduces to
p(c|Axi, θ).



Givenpi(c, k), the maximization (M step) proceeds as
usual for EM-based optimization of a Gaussian mixture, us-
ing pi(c, k) as the weight of a particular point in the sums
for the Gaussiank of classc. For example, we set the cen-
ters toµc,k =

∑
i pi(c, k)Axi/

∑
i pi(c, k), wherei goes

over all labeled and unlabeled (grouped or not) data points.
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and Léon Bottou, Eds., pp. 513–520. MIT Press, Cam-
bridge, MA, 2005.

[4] Samuel Kaski and Jaakko Peltonen, “Informative dis-
criminant analysis,” inProceedings of the Twenti-
eth International Conference on Machine Learning
(ICML-2003), pp. 329–336. AAAI Press, Menlo Park,
CA, 2003.

[5] Kari Torkkola, “Feature extraction by non-parametric
mutual information maximization,” Journal of Ma-
chine Learning Research, vol. 3, pp. 1415–1438,
2003.

[6] Carlotta Domeniconi, Jing Peng, and Dimitrios
Gunopulos, “Locally adaptive metric nearest-neighbor
classification,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 24, no. 9, pp. 1281–
1285, 2002.

[7] Nagendra Kumar and Andreas G. Andreou, “Het-
eroscedastic discriminant analysis and reduced rank
HMMs for improved speech recognition,”Speech
Communication, vol. 26, pp. 283–297, 1998.
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