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ABSTRACT

Motivation: As ArrayExpress and other repositories of genome-
wide experiments are reaching a mature size, it is becoming more
meaningful to search for related experiments, given a particular study.
We introduce methods that allow for the search to be based upon
measurement data, instead of the more customary annotation data.
The goal is to retrieve experiments in which the same biological
processes are activated. This can be due either to experiments
targeting the same biological question, or to as yet unknown
relationships.
Results: We use a combination of existing and new probabilistic
machine learning techniques to extract information about the
biological processes differentially activated in each experiment, to
retrieve earlier experiments where the same processes are activated
and to visualize and interpret the retrieval results. Case studies on
a subset of ArrayExpress show that, with a sufficient amount of
data, our method indeed finds experiments relevant to particular
biological questions. Results can be interpreted in terms of biological
processes using the visualization techniques.
Availability: The code is available from
http://www.cis.hut.fi/projects/mi/software/ismb09.
Contact: jose.caldas@tkk.fi

1 INTRODUCTION
The most common approach for searching in microarray databases
is based on metadata such as annotations and descriptions of the
arrays and genes (Zhu et al., 2008). Such searches are naturally
useful, given that the quality of annotations is good, the search task
is reasonably well focused to match the capabilities of the search
engine and, most importantly, known things are sought for. The
annotations can naturally only contain known things.

An alternative is to search with an interesting gene or gene set as
the query, resulting in datasets where the query genes are correlated
(Hibbs et al., 2007) or differentially expressed (Parkinson et al.,
2009).

In this work, we develop methods for performing searches having
an experiment as the query. The simplest method would be content-
based search, where the query would be one microarray and the set
of most similar microarrays would be retrieved (Fujibuchi et al.,
2007; Hunter et al., 2001). The obvious problem is how to choose
the distance measure, with which the similarity of the expression
profiles will be assessed.

∗To whom correspondence should be addressed.

The search problem is related to the natural suggestion that
analysis of a new dataset would benefit from putting it in the
context of all earlier datasets (Tanay et al., 2005). In that study,
the authors develop a method for extracting a set of biclusters
from earlier studies and evaluating the activity of those biclusters
in a new experiment. In another holistic analysis paper (Segal
et al., 2004), a ‘module map’ of gene modules versus clinical
conditions was formed by first finding differentially expressed gene
sets, then combining them into modules and finally identifying
modules differentially expressed over a set of arrays having the
same annotation. More recently, a tool called the Connectivity Map
was developed for relating diseases and chemicals via common gene
expression profiles (Lamb et al., 2006). These ideas can naturally
be extended by incorporating more biological knowledge into the
model, for instance in the form of regulatory networks, partly
assumed and partly learned from data. Of course, the computational
complexity will increase accordingly.

What we would like to do is to take the idea of extracting
information about biological processes from the gene expression
compendium, and to use it in the search process to focus the
search on biologically relevant things. This we would like to do
in an at least partly data-driven way, in order to be able to find
unexpected things in addition to the already known things available
for metadata searches. Moreover, out of all potentially biologically
relevant things, we would like to focus on the ones that were
differentially activated as a result of the experimental setup. Finally,
the models used for the compendium need to be reasonably simple
to keep the searches scalable, but they still need to be able to extract
relevant things.

We will need four elements to make the searches successful:
(i) a model for the activity of biological processes across the
compendium, which should be able to make the miscellaneous
experiments and data types stored in the database commensurable,
(ii) a way of performing searches given the model, having one
experiment as the query and (iii) ways of visualizing the search
results. As an additional insight we would like to ensure that (iv) the
retrieved experiments would be relevant in the sense that the same
biological processes were activated by the experimental treatment
in them, as in the query experiment.

For (i), we would like to specify the model such that it will
both incorporate some prior knowledge about biological processes
and learn new things from data. Both steps need to be simple to
keep the computational load manageable. We chose the simplest
form of prior biological knowledge available, used in some of the
earlier holistic analyses as well: gene sets extracted from earlier
analyses. The gene sets will be incorporated by using Gene Set
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Enrichment Analysis (GSEA) (Subramanian et al., 2005) in a
new way. Each experiment, both the query and the earlier ones
in the compendium, will be encoded as a vector containing the
number of differentially expressed genes in each set. This step
makes the different experiments commensurable. Moreover, when
the differential expression is measured for the main experimental
variable compared to control, the encoding focuses on the changes
each experiment targeted [item (iv) above].

We use the so-called topic models or discrete principal component
analysis (Blei et al., 2003; Buntine and Jakulin, 2004), which
have earlier been successfully used in textual information retrieval.
The topic models are suitable for finding latent components from
count data, such as texts assumed to be bags of words. Being
probabilistic models they can infer the underlying components
taking the uncertainty in the data properly into account. For gene
expression, we change the counts of words to counts of differentially
expressed genes in gene sets, one word type corresponding to
one gene set. Each experiment will then correspond to an activity
profile over the components, and each component will correspond
to a distribution over the gene sets. The differences from earlier
applications of topic models to discretized genomic data (Flaherty
et al., 2005; Gerber et al., 2007) are the use of gene sets to
bring in biological knowledge, focusing to effects elicited by the
experimental treatments and the application to retrieval.

Given a topic model, there are well-justified methods for doing
information retrieval (Buntine and Jakulin, 2004; Griffiths and
Steyvers, 2004) for texts, where the query is simply another
document. The same principles apply for querying with a new
experiment here, and we borrow them for item (ii).

Finally, we will need to visualize both the components to
interpreting the biological findings, and the retrieval results in order
to be able to browse the collection. We will both apply earlier
methods (Venna and Kaski, 2007) and develop new ones.

2 METHODS

2.1 Gene expression dataset
We obtained 288 pre-processed human gene expression microarray
experiments from the ArrayExpress database (Parkinson et al., 2009). By
an experiment, we mean a set of microarrays from a particular paper. Each
experiment is associated with a collection of experimental factors describing
the variables under study, e.g. ‘disease state’ or ‘gender’. Each microarray in
an experiment takes on a specific value for each of the experimental factors,
e.g. ‘disease state = normal’ and ‘gender = male’.

We have focused on experiments having the experimental factor ‘disease
state’, and decomposed them into sub-experiments, or comparisons, of
healthy tissue against a particular pathology. This yielded a total of 105
comparisons that included a wide range of pathologies such as several cancer
types, as well as neurological, respiratory, digestive, infectious and muscular
diseases (although the only significantly frequent broad category was cancer,
with 27 comparisons).

We also systematically transformed the remaining experiments in the
dataset into collections of simpler comparisons. For each experimental
factor in an experiment, we chose to compare either two values of that
experimental factor (e.g. disease A versus disease B), or one value versus
all others (e.g. control versus all treatments). In experiments with more than
one experimental factor, the factors whose values are not being compared
provide a context for the comparison. For example, when comparing two
values of ‘disease state’, e.g. ‘normal’ versus ‘cancer’, we can get different
comparisons for ‘gender = male’ and for ‘gender = female’.

For each comparison, we generated all possible combinations of
contextual factors. We kept all comparisons that had at least six microarrays
assigned to each phenotype, mapping probesets to HUGO gene symbols
(Eyre et al., 2006) and collapsing equivalent probesets by their median. The
total number of obtained comparisons, including the 105 ‘healthy versus
disease’ comparisons mentioned above, was 768.

2.2 Topic model
2.2.1 GSEA this tests if a set of genes is coordinately associated with the
difference between two phenotypes in a microarray experiment. Here we
give a very brief description; for more details and for software we used, see
the original papers (Mootha et al., 2003; Subramanian et al., 2005). GSEA
starts by computing a ranked list of the genes in the experiment, according
to how well each gene discriminates between the two phenotypes. This can
be achieved by using metrics such as fold change or signal-to-noise ratio.
Then, a weighted Kolmogorov–Smirnov (KS) running statistic, deemed the
enrichment score (ES), is computed over the list. The ES, after normalization,
is used to compute significance measures such as the family-wise error rate
and the false discovery rate (FDR) q-value. The computation of the statistic
also produces a subset of the genes in the set. That subset, called the leading
edge subset, constitutes a tentative core for the gene set.

We used GSEA to bring in biological knowledge in the form of the
pre-defined gene sets. In effect, we quantified the differential expression
within each set as a count. In brief, a sub-experiment essentially consists
of a collection of microarrays that is divided into two sample categories,
or phenotypes. Designate those phenotypes, respectively, by A and B. In
order to assess which gene sets were differentially expressed in either of
the phenotype switching directions A→B and B→A, we ran GSEA for both
switching directions. The gene sets whose enrichment was assessed were
taken from the Molecular Signatures Database (Subramanian et al., 2005);
in particular, we used a collection of canonical, manually compiled pathways
(collection C2-CP). We collapsed the results from both GSEA runs together,
sorting gene sets according to the magnitude of their normalized ES (NES).
We then collected the 50 gene sets with the highest absolute NES. This
choice was motivated by previous observations that several gene sets that
do not reach a standard FDR q-value of 0.25 are still effectively relevant
to the condition under study, and that these are overall consistent among
laboratories conducting similar microarray experiments (Subramanian et al.,
2005). Finally, we obtained the size of the leading edge subset of each of
those 50 gene sets.

For each comparison, running the above procedure generates a collection
of significant gene sets, each associated with an integer value (the size of
its leading edge subset for that particular comparison). This representation
can be seen as analogous to the so-called bag-of-words model for text
documents. In textual information retrieval, it is common to represent a
document by how many times each word in the vocabulary appears in that
document. The order of the words is therefore omitted, and hence the name
‘bag-of-words’. The procedure described above effectively generates a bag-
of-words representation for each comparison in the dataset. This allows
us to conceptually regard each comparison as a document having several
words from a vocabulary. In our context, the vocabulary is the collection of
canonical pathways, and each gene set found to be significant is a word.

In essence, the above procedure generates a representation of differential
expression that is amenable to probabilistic modeling with topic models, and
for topic model-based information retrieval tools.

2.2.2 Topic models These are probabilistic unsupervised models for
finding latent components in documents, alternatively called Latent Dirichlet
Allocation (LDA; Blei et al., 2003) or discrete Principal Component Analysis
(dPCA; Buntine and Jakulin, 2004). Provided a corpus in bag-of-words
representation, it models each document as a probability distribution over so-
called topics. A topic, the central concept, is itself a probability distribution,
but over words in the vocabulary. The model is a generative hierarchical
model, which can be specified by formulating the generative process from
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which the data are assumed to arise. More formally the generative process
goes as follows: the distribution over topics for each document d, and the
distribution over words for each topic t, are specified, respectively, by the
random variables (i.e. parameters of a hierarchical model) θd and φt ,

θd ∼ Dirichlet(α),

φt ∼ Dirichlet(β).

Here α and β are scalar hyperparameters for symmetric Dirichlet probability
distributions, and they regulate the sparsity of the model. Each word is
assumed to come from exactly one topic. For word i in document d, a topic
is chosen using the document’s topic probability distribution. This amounts
to sampling from a scalar variable zd,i,

zd,i|θd ∼ Multinomial(θd ).

After choosing a topic zd,i, the corresponding word wd,i is sampled from the
topic’s distribution over words,

wd,i|zd,i,φzd,i
∼ Multinomial(φzd,i

).

The above formulation corresponds to a variant by Griffiths and Steyvers
(2004). Topic models have been successfully used in several text modeling
applications; in bioinformatics, they have been used at least for finding
components of haploinsufficiency profiling data (Flaherty et al., 2005) and
of discretized gene expression data (Gerber et al., 2007).

We use topic models to model the experiments that have been pre-
processed by GSEA. The relationship to text document modeling is
that we are conceptualizing each experiment as a document. In this
conceptualization, each word is a gene set, and each topic is a probability
distribution over gene sets. A topic aims at representing a biological process.
It specifies an ordering on gene sets, the ordering meaning how likely
it is that a gene set is differentially expressed. By considering the top
gene sets in a topic, one can obtain a biological picture that is broader
and more holistic than the one described by a single gene set. Finally, by
having a probability distribution over topics, a comparison effectively assigns
different weights to biological processes. In the remainder of the article, we
will use the terms ‘experiment’ and ‘document’, as well as ‘gene set’ and
‘word’ interchangeably.

In the models we chose the hyperparameters to be at α=1 and β =0.01,
and fixed the number of topics at T =50. For computing the models we
used the same approach as Griffiths and Steyvers (2004). We used so-called
collapsed Gibbs sampling to find assignments of the words of each document
to the topics, by first analytically integrating out the parameters θ and φ to the
obtained joint probability of the corpus and the word-to-topic assignments,

P(w,z)=
∫

P(w,z,θ ,φ)dθ dφ.

The values of the z were then sampled by Gibbs sampling, from
the conditional probability distribution P(zd,i|z−(d,i),w), where z−(d,i) is
obtained by discarding zd,i from z. We sampled iteratively for a total
of 2000 scans. On an Intel 1.73 GHz Core 2 Duo CPU, this took about
23 min. Computations were performed using the Topic Modeling Toolbox
(http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm).

We repeat the procedure for a total of eight parallel samplers. Out of
the samples, we chose for interpretation the sample having the highest
probability, and estimated the parameter values θ and φ based on the
assignments of words to the topics.

The formulas for the conditional distribution, variable estimation and
estimate selection are omitted for brevity.

2.3 Probabilistic search
The topic model represents each experiment as a distribution over topics.
It is then natural to measure similarity of experiments in terms of
distances between their distributions over the topics. Suitable distance
measures for distributions include the (symmetrized) Kullback–Leibler

divergence, Jensen–Shannon divergence or Hellinger distance; unfortunately
all of these have problems with sparsity, which necessarily results when
the dimensionality is high. The most straightforward way of retrieving
experiments, given a new experiment as a query, would be to rank the
documents to be retrieved according to their distance from the query.

There is, however, a more natural and well-performing way of doing
information retrieval in a probabilistic model such as this one (Buntine and
Jakulin, 2004). Essentially, we compute the probability that the gene sets in
a query experiment were generated by another experiment. In more precise
terms, this amounts to computing

P(wq|θd )=
∏

w∈wq

T∑
t=1

θd,tφt,w,

where wq is the collection of words in a query experiment q and T is the
number of topics in the model. The above equation states that, for each word
in the query, we compute the overall probability that it was generated by any
topic, given the topic proportions in the potentially relevant experiment. By
repeating the same query for all experiments, we obtain a ranked list that is
ordered by the relevance of each experiment to that query. The computation
of all queries took <5 s.

2.4 Visualization
2.4.1 Relationship between comparisons, topics and gene sets
Visualization of the topic model is essential to understand the biological
findings of our analysis. We want to gain insight into the structure of our
gene expression compendium and the biological processes recorded in it. In
order to do so we need to examine the topic composition of the experiments
as well as the gene set composition of the topics.

The results obtained from GSEA and the topic model are essentially two
matrices Pt and Pg containing the topic probabilities across the experiments
and the gene set probabilities across the topics. The connection between Pt

and Pg are the topics. Accordingly, we can consider the matrices a disjoint
union of two complete bipartite graphs where the probabilities in the matrix
represent edge weights. We layout the resulting graph by placing the nodes
for experiments, topics and gene sets in three separate columns, where the
middle column contains the nodes for the topics and is shared by the two
subgraphs.

We have to select a subset of edges for the visualization since the two
bipartite graphs are complete. Rather than making a hard selection, we use a
reduced line width and color opacity of the edges based on the corresponding
weights. With this strategy we emphasize those edges representing a high
probability and virtually remove those standing for lower probabilities.

Each topic is assigned a distinct color and all edges connecting the topic
are drawn in this color. This makes it easier for the viewer to follow the
edges from the topic to the corresponding experiments or gene sets. At the
same time the links having a particular color are easily distinguishable and
provide an overview interpretation of that particular topic, in terms of both its
distribution over gene sets and over experiments where this topic plays a role.

Clutter is reduced by rearranging gene sets and topics so that the number
of intersecting edges is low. We found that a suitable heuristic for achieving
this is to compute a complete linkage hierarchical clustering of the gene sets
and of the experiments to obtain a partial ordering for both. As a distance
measure, we used the symmetrized Kullback–Leibler divergence between the
corresponding distributions. Further we sort the topics by the index of the
maximum value in the corresponding column of Pg. Additionally, we use
Bézier curves instead of straight lines to connect topics with experiments
and gene sets. The Bézier curves form edge bundles, which further reduces
clutter.

In order to increase the space available to plot experiment and gene set
names, we plot them circularly instead of along a straight line.

Figure 1 shows the resulting visualization. The complete visualization is
readable on an interactive display; to keep it readable also on paper, we
selected a subset of topics for which the sum of probabilities given the

i147

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm


[10:05 15/5/2009 Bioinformatics-btp215.tex] Page: i148 i145–i153

J.Caldas et al.

Fig. 1. Visualization of the topic model. A subset of 13 topics, 211 gene sets and 105 experiments is shown. For details and a discussion see the text.
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Fig. 2. The experiment collection visualized as glyphs on a plane. Topic colors in all glyphs match topic colors in Figure 1. (A) NeRV projection of the 105
experiments, each shown as a glyph. (B) The slices of each glyph show the distribution of topics in the experiment. The experiment labels are from left to
right: asthma, Barrett’s esophagus and high-stage neuroblastoma. (C) Enlarged region from (A) where glyphs have additionally been scaled according to their
relevance to the query with the ‘malignant melanoma’ experiment shown in the center. A detailed description of this experiment is included in Section 3.

documents is the highest. In detail, we selected the top 10 topics in the subset
of the 105 main experiments and top 10 topics in the completed dataset, and
took the union, resulting in a set of 13 topics. We additionally reduced the
number of gene sets on the visualization by choosing the most probable
25 for each topic, and taking the union over all topics. Based on a quick
inspection, the probabilities typically leveled off beyond the 25. This gave
in total 211 gene sets for the visualization of the 13 selected topics.

2.4.2 Visualizing retrieval results To complement the standard ranked
lists, retrieval results can be presented on a projection display showing
all the data items. Assuming that the projection is good, the display is
useful in putting the retrieval result into the context of the whole set
of experiments. Clusters and outliers in the retrieval results may become
obvious, results of different queries can be easily compared, and the whole
collection can be interactively browsed while simultaneously seeing the
retrieval results.

To visualize retrieval results, we project all experiments to a two-
dimensional display using a new projection method that has recently been
shown to outperform the alternative methods, in the task of retrieving similar
data points (here experiments) given the display. The method called Neighbor
Retrieval Visualizer (NeRV; Venna and Kaski, 2007) has been developed
specifically for visualizing data in retrieval tasks and for explorative
information visualization. NeRV needs to be given the relative cost of misses
and false positives of the true similarities between the data points. We chose
to penalize false positives, resulting in a display that is trustworthy in the
sense that if two points are similar in the visualization they can be trusted
to have been similar before the projection also. As other multidimensional
scaling methods, NeRV starts with a pairwise distance matrix between all
experiments. In this article, we used the symmetrized Kullback–Leibler
divergences between the topic distributions of the documents. The pure

projection of the experiments shows only their relative similarity, and for
further interpretation the display needs to be coupled with the topic content
of the documents. It is possible to include this important information by
including glyphs in the projections to represent the distribution of topics
(Yang et al., 2007). Including the glyphs has the additional advantage that
a non-linear projection of a large dataset to a two-dimensional space cannot
preserve all similarities, and the imperfectnesses will be detectable based on
the glyphs.

We designed glyphs to represent the probability distribution over the topics
of a document by dividing a square into vertical slices that each stand for a
topic. The width of the slice represents the probability of the topic. This is
illustrated in Figure 2B in the top row. While this is sufficient for comparing
the shape of the probability distributions of documents, we also color the
strips with a distinct color representing the topic, as shown in Figure 2B in
the bottom row. The coloring has the additional distinctive purpose that it
connects the topics of the glyphs visually with the same topics in the display
of Figure 1, which can be used for interpreting them.

3 RESULTS

3.1 Inferred topics
By analyzing the most probable gene sets for each topic, we can infer
its underlying biological theme. The most probable gene sets in most
of the topics learned by the model are coherent, and the topics taken
together describe a wide range of processes. We focus our analysis on
the same most prominent topics shown in the visualizations, based
on their sum of probabilities over documents being the highest. The
top five gene sets for each of the 13 topics are shown in Table 1.

i149



[10:05 15/5/2009 Bioinformatics-btp215.tex] Page: i150 i145–i153

J.Caldas et al.

Table 1. Top five gene sets for the 13 most probable topics

2 5 11
Cell cycle (BIOCARTA) Purine metabolism (KEGG) G protein signaling
Cell cycle (KEGG) Pyrimidine metabolism (KEGG) Biopeptides pathway
G1 to S cell cycle (REACTOME) Purine metabolism (GENMAPP) NFAT pathway
DNA replication (REACTOME) Pyrimidine metabolism (GENMAPP) CREB pathway
G2 pathway DNA replication (REACTOME) GPCR pathway

15 18 19

Gluconeogenesis Apoptosis (GENMAPP 1) Valine leucine and isoleucine degradation
Glycolysis Apoptosis (KEGG) Propanoate metabolism (KEGG)
Glycolysis and gluconeogenesis (KEGG) Apoptosis (GENMAPP 2) Fatty acid metabolism
Glycolysis and gluconeogenesis (GENMAPP) Apoptosis (GENMAPP 3) Propanoate metabolism (GENMAPP)
Fructose and mannose metabolism Death pathway Valine leucine and isoleucine degradation

24 26 27

IL2RB pathway mTOR pathway Hematopoietic cell lineage
PDGF pathway Sphingolipid metabolism Complement and coagulation cascades
EGF pathway eIF4 pathway Inflammation pathway
Gleevec pathway RAS pathway NKT pathway
IGF-1 pathway IGF-1 mTOR pathway Dendritic cell pathway

32 35 44

Epithelial cell signaling in H. pylori Infection Integrin pathway mRNA processing (REACTOME)
Cholera infection (KEGG) Met pathway RNA transcription (REACTOME)
Photosynthesis ERK pathway Translation factors
ATP synthesis AT1R pathway Folate biosynthesis
Flagellar assembly ECM pathway Basal transcription factors

50

Oxidative phosphorylation (KEGG)
Oxidative phosphorylation (GENMAPP)
Glycolysis and gluconeogenesis
IL-7 pathway
Gamma hexachlorocyclohexane degradation

An acronym for the source of the gene set was included either to distinguish between gene sets with similar names, or when the gene set’s name already includes a mention of that
source [KEGG (Kanehisa and Goto, 2000), GENMAPP (Salomonis et al., 2007), BIOCARTA (http://www.biocarta.com) or REACTOME (Vastrik et al., 2007)].

The topics are related to diverse themes such as cell cycle (topic 2),
DNA replication (topics 2 and 5), organic compound metabolism
(topics 5 and 19), G protein signaling (topic 11) glycolysis
(topic 15), apoptosis (topic 18), cell growth and proliferation
(topics 24 and 26), cell differentiation (topic 27), infection (topic 32),
cell communication (topic 35), DNA replication (topic 44) and
oxidative phosphorylation (topic 50). In some topics, some of the top
gene sets are almost identical. This stems from the fact that those
gene sets are highly overlapping, therefore being put into similar
topics with similar probabilities.

Although Table 1 is illustrative of the variety of topics found
by the model, understanding each topic may require looking beyond
the top five words. For instance, in topic number 2, gene sets until
the eighthposition are not deeply informative of the process the
topic is representing, beyond the fact that it is related to cell cycle
and DNA replication. However, the gene set at the ninth position,
‘ATR BRCA Pathway’, contains a signaling system involving genes
BRCA1 (breast cancer 1, early onset), and BRCA2 (breast cancer 2,
early onset). These genes are involved in the cellular response to
DNAdamage, and their mutations have been found to increase breast
cancer susceptibility (Tutt and Ashworth, 2002). We investigated

which experiments have the highest probability for this topic.
The top four results are for cancer-related comparisons: normal
tissue versus sporadic basal-like breast cancer, vulvar intraepithelial
neoplasia, breast carcinoma and esophageal carcinoma. As the only
two breast cancer experiments in the dataset appear among those
four top experiments, these results indicate that topic number 2 has
relevance not only simply for cell cycle and DNA replication, but
also for breast cancer.

As another interesting example, we analyzed the top gene sets
in topic number 44. One of the gene sets corresponds to genes
involved in folate biosynthesis. Folate has an important role in DNA
and RNA synthesis, and low folate levels are known to promote a
number of pathologies (Au et al., 2009; Glynn and Albanes, 1994;
Hoffbrand et al., 1968). We again computed which experiments had
the highest probability for this topic. The top four results pertained
to comparisons between normal tissue versus Crohn’s disease,
chronic lymphocytic leukemia, and chronic myelogenous leukemia,
as well as a comparison between patients with normal tissue and
cancer patients with acute radiation toxicity. Folate deficiency has
been observed both in patients with Crohn’s disease (Hoffbrand
et al., 1968) and in patients with leukemia (Au et al., 2009).
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Fig. 3. (A) Average Precision for cancer queries for the top 10 results. Queries are sorted by the average precision given by the topic model. Error bars
represent the 99% confidence interval of the random permutation results. (B) Interpolated average precision at 11 standard recall levels (given as percentages).
The solid line corresponds to our method; the dashed line corresponds to the baseline.

Once again, the model manages to assign experiments to meaningful
topics and, moreover, is able to relate experiments according to
the mechanisms shared between them. The assignment between
topics and experiments is not disjoint as in clustering, assumed to
underlie even smoothed clustering, but instead each experiment can
genuinely belong to several topics.

The previous two examples illustrate that the topic model is
in fact finding topics that correspond to meaningful biological
processes. By combining gene sets into topics, a holistic model
of the differential activation of biological processes is created.
Our approach also seems to be robust, as the topic model was
inferred from a collection of experiments from different sources,
and as the above examples show, similar comparisons from different
laboratories and samples do seem to match to the same biological
processes. We point out that the methods we combined are
themselves robust, GSEA against laboratory and sample variations,
and the topic model against noise in the input data.

3.2 Visualizing the model
A major strength of our topic model visualization in Figure 1 is that
it connects gene sets to experiments while making the connection by
compressing the relationships through the topics. This enables us to
interpret topic distributions of experiments—and thus experiments
themselves—efficiently. Furthermore, the visualization allows us to
begin the exploration of the model with an experiment, a topic or a
gene set.

The larger structure of the model becomes evident immediately
as well, namely that topics hardly ever share their top gene sets,
while topics are shared across experiments with similar probabilities
quite frequently. We can also observe that some experiments
have what we could call a ‘primary topic’ that is indicated by a
wider-than-average edge connecting the experiment to a topic. For
instance, in Figure 1 we can identify an instance of a ‘high-stage
neuroblastoma’ experiment where topic 19 seems to be the primary
topic. The glyph on the right in Figure 2B confirms this.

The visualization also reveals how gene sets are distributed across
topics and that there is a range of different distributions. We find that
for example topic 50 has very high probabilities for two gene sets
and much lower probabilities for the remaining gene sets, while topic
24 has rather uniformly distributed probabilities for a wide range of
gene sets.

Figure 2A shows a NeRV projection of the experiments including
glyphs describing the probability distribution over the top 13 topics.
While the visualization of the topic model in Figure 1 provides some
insight into the structure of the experiment space, the projection
immediately provides us with an overview of clusters and outliers.
We find only a few distinct clusters in our subset of 105 experiments,
but this is not surprising given the range of biological questions that
have been investigated in those experiments.

The glyphs reveal how topic usage is changing across documents
and explain for instance which topics are shared by experiments
forming a cluster. The change in topic usage is gradual in most parts
of the projection but seems abrupt in others. This could indicate
imperfectness in the projection where not all similarities have been
preserved by the dimensionality reduction.

3.3 Searching for experiments
We evaluated the performance of the method quantitatively in
retrieving relevant experiments, given a query experiment. For
that purpose, we queried with cancer experiments and considered
all other cancer experiments to be relevant, and all non-cancer
experiments to be irrelevant. We chose cancer because it had the
largest number of experiments in our corpus and, more importantly,
experiments from several laboratories and on different cancer types.
For other diseases, the number of experiments either was too small
or came from a single larger experiment, making retrieval too easy.

In total, we queried the system with each of the 27 experiments
comparing normal versus cancerous tissue. As a result we obtained
a ranked list of experiments, sorted by the probability of the query
given the experiment and the model, as discussed in Section 2.
We computed the average precision, a standard summary statistic
for evaluating retrieval performance, over the top 10 retrieved
experiments. To give a baseline, we additionally computed the
average precision over randomly ranked results. By randomizing
1000 times we get an estimate of the confidence intervals. We also
computed the average of the precision–recall curves for all queries,
for both our method and the random baseline.As shown in Figure 3A,
in more than half the queries, the average precision is above 0.8,
and in 20 of the 27 queries the topic model-based retrieval is above
the confidence interval of the random baseline. As seen in Figure
3B, the precision–recall curve shows that the trade-off between
precision and recall in our method is reasonable and well above the
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Fig. 4. NeRV projection of the 105 experiments, portraying the outcome
of querying the model with a melanoma experiment. Both glyph size and
color saturation encode the relevance of each experiment to the query. The
bigger the glyph and the more saturated the red the higher the relevance of
the experiment to the query. The query itself is represented by the biggest
glyph.

random baseline. We further studied the false positives in the top
10 ranked experiments, and on average 20% of those were found to
be cancer related (e.g. benign tumor), showing an advantage of our
method over standard annotation-based searches and suggesting that
the actual retrieval performance is actually better than the reported
quantitative figures suggest.

We will finally illustrate the potential of the probabilistic
relevance search with two case studies. We first queried with an
experiment comparing normal tissue against malignant melanoma.
The top two results were comparisons of normal tissue to bladder
carcinoma and vulvar intraepithelial neoplasia. The next two results
were hyperparathyroidism and a study of intra-pulmonary airway
epithelial cells from non-smokers versus current smokers. The
remaining top10 results were from comparisons of normal tissue
against bladder carcinoma (twice), infiltrating ductal carcinoma,
prostate cancer, breast carcinoma and esophageal adenocarcinoma.
It is clear that cancer experiments have a high preponderance
in the top results, given the melanoma query. Interestingly, a
study of intra-pulmonary airway epithelial cells from smokers was
included in the top results. Although the annotation is not fully
clear as to what the actual pathology is, it is plausible that it
might be a cancer-related one. This highlights the capability of
our method for hypothesis generation. Finally, it is known that
hyperparathyroidism is associated with a higher cancer incidence
(Nilsson et al., 2007), a relation that is highlighted by the melanoma
query.

Figure 2C visualizes the topic distributions for experiments
found relevant to the melanoma query. The visualization not only
highlights the most relevant experiments, but also the relation
between them. In particular, a subset of the carcinoma experiments
appears to become separate from the glandular-related pathologies
(esophageal adenocarcinoma, primary hyperparathyroidism and
prostate cancer). Alternatively, Figure 4, which is also a NeRV

projection with glyphs, distinguishes the relevance of each
experiment by changing the glyph size and color saturation
accordingly.

As another case study, we queried with an experiment on
myelogenous leukemia. The top result was Crohn’s disease.
Although it is a digestive system disease, it has some commonalities
with the query, as described in the previous section. The second
result was chronic lymphocytic leukemia. Finally, the remaining
results were on ischemic cardiomyopathy, post-traumatic stress
disorder, multiple invasive and transitional cell carcinomas and
chronic obstructive pulmonary disease. Although the top 10 results
span a large class of diseases, some of which are hard to connect
to the query pathology, this case study highlights the fact that the
method is capable of extracting meaningful top results, both by
ranking a disease that is very similar to the query above other
diseases that are broadly similar (chronic lymphocytic leukemia),
and by ranking highly a disease which, although not immediately
identifiable as similar to the query, effectively shares properties with
it (Crohn’s disease).

4 DISCUSSION
We have introduced methods for retrieval of relevant experiments,
given a sample experiment as a query. The retrieval is based
on methods for modeling and visualizing differential gene set
expression in a large body of gene expression microarray
experiments. The probabilistic model combines two recent
approaches that have been shown to be effective. The model was
able to cluster gene sets into components, called topics, that exhibit
a high biological coherence and that are meaningfully related to
particular experiments. The probabilistic nature of the model allows
for a precise formulation of retrieval, in which the model is queried
with the differential expression in gene sets of an experiment
and it returns a ranked list of relevant experiments. We showed
that, querying the model with cancer experiments, we obtain a
performance significantly better than random, measured by average
precision. More importantly, the average precisions were on average
at the good value of ∼82%. The random baseline is ∼40%.

We complemented the quantitative analysis with two case studies.
The model was able to associate melanoma with several cancer
types. We also demonstrated how the model finds hypothetical
connections between experiments, by selecting an experiment
of epithelial tissue in non-smokers versus current smokers as
being highly relevant to cancer experiments, which naturally
makes sense a posteriori. We also showed that the model finds
relations between Crohn’s disease and leukemia, and also between
hyperparathyroidism and cancer, which were confirmed in the
literature. Finally, given a query experiment on leukemia, the model
was able to extract, from a set of cancer experiments, precisely
another leukemia experiment as being the most relevant. The
result indicates that the model not only manages to partition the
experiments into general classes, but also allows going into finer-
grained distinctions. We also provide a concise visual description
of one of those case studies, highlighting the consistence in topic
distributions between similar experiments.

As for future work, there are two complementary directions. In the
current system, we intentionally kept the system simple and fast by
using a simple way of bringing in prior biological knowledge and a
reasonably simple probabilistic model. Since already such a simple
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system proved to be very useful in retrieving relevant experiments,
it could next be scaled up to large experiment collections. An
alternative direction is to include more detailed models, making
the retrieval results and analyses more accurate and informative
but increasing computational complexity. They should be useful
for smallish collections. Straightforward extensions are available by
including recent methods that attempt to improve on GSEA (such as
Oron et al., 2008). On the other hand, there have been a wide variety
of extensions of topic models over the recent years, for instance
allowing topics to be correlated (Blei and Lafferty, 2007) or form a
hierarchical structure (Blei et al., 2003).
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