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3.1 Introduction

Erkki Oja

What is Blind and Semi-blind Source Separation? Blind source separation (BSS)
is a class of computational data analysis techniques for revealing hidden factors, that
underlie sets of measurements or signals. BSS assumes a statistical model whereby the
observed multivariate data, typically given as a large database of samples, are assumed to
be linear or nonlinear mixtures of some unknown latent variables. The mixing coefficients
are also unknown.

By BSS, these latent variables, also called sources or factors, can be found. Thus BSS
can be seen as an extension to the classical methods of Principal Component Analysis and
Factor Analysis. BSS is a much richer class of techniques, however, capable of finding the
sources when the classical methods, implicitly or explicitly based on Gaussian models, fail
completely.

In many cases, the measurements are given as a set of parallel signals or time series.
Typical examples are mixtures of simultaneous sounds or human voices that have been
picked up by several microphones, brain signal measurements from multiple EEG sensors,
several radio signals arriving at a portable phone, or multiple parallel time series obtained
from some industrial process.

Perhaps the best known single methodology in BSS is Independent Component Analy-
sis (ICA), in which the latent variables are nongaussian and mutually independent. How-
ever, also other criteria than independence can be used for finding the sources. One such
simple criterion is the non-negativity of the sources. Sometimes more prior information
about the sources is available or is induced into the model, such as the form of their prob-
ability densities, their spectral contents, etc. Then the term “blind” is often replaced by
“semiblind”.

Our earlier contributions in ICA research. In our ICA research group, the
research stems from some early work on on-line PCA, nonlinear PCA, and separation,
that we were involved with in the 80’s and early 90’s. Since mid-90’s, our ICA group grew
considerably. This earlier work has been reported in the previous Triennial and Biennial
reports of our laboratory from 1994 to 2007 [1]. A notable achievement from that period
was the textbook “Independent Component Analysis” by A. Hyvärinen, J. Karhunen, and
E. Oja [2]. It has been very well received in the research community; according to the
latest publisher’s report, over 5200 copies had been sold by August, 2009. The book has
been extensively cited in the ICA literature and seems to have evolved into the standard
text on the subject worldwide. In 2005, the Japanese translation of the book appeared
(Tokyo Denki University Press), and in 2007, the Chinese translation (Publishing House
of Electronics Industry).

Another tangible contribution has been the public domain FastICA software package
[3]. This is one of the few most popular ICA algorithms used by the practitioners and a
standard benchmark in algorithmic comparisons in ICA literature.

In the reporting period 2008 - 2009, ICA/BSS research stayed as one of the core
projects in the laboratory, with the pure ICA theory waning and being replaced by several
new directions in blind and semiblind source separation. In this Chapter, we present two
such novel directions.

Chapter 3 starts by introducing some theoretical advances on Nonnegative Matrix
Factorization undertaken during the reporting period, especially the new Projective Non-
negative Matrix Factorization (PNMF) principle, which is a principled way to perform
approximate nonnegative Principal Component Analysis. Then the Gaussian-process fac-
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tor analysis (GPFA) method, a semi-blind source separation principle, is applied to climate
data analysis. Climate research is an interesting and potentially very useful application
for large-scale semiblind models, that will be under intensive research in our group in the
near future.

Another way to formulate the BSS problem is Bayesian analysis. This is covered in
the separate Chapter 2.
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3.2 Non-negative projections

Zhirong Yang, Zhijian Yuan, and Erkki Oja

Projecting high-dimensional input data into a lower-dimensional subspace is a fundamen-
tal research topic in signal processing, machine learning and pattern recognition. Non-
negative projections are desirable in many real-world applications where the original data
are non-negative, consisting for example of digital images or various spectra. It was pointed
out by Lee and Seung [3] that the positivity or non-negativity of a linear expansion is a
very powerful constraint, that seems to lead to sparse representations for the data. Their
method, non-negative matrix factorization (NMF), minimizes the difference between the
data matrix X and its non-negative decomposition WH. The difference can be measured
by the Frobenius matrix norm or the Kullback-Leibler divergence.

Yuan and Oja [7] proposed the projective non-negative matrix factorization (PNMF)
method which replaces H in NMF with WTX, thus the data matrix X is approximated
as

X ≈WWTX.

The nonnegative matrix W is assumed to have a much lower rank than the data matrix
itself. This actually combines the objective of principal component analysis (PCA) with
the non-negativity constraint. The PNMF algorithm has been applied e.g. to facial image
processing, and the empirical results indicate that PNMF is able to produce more spatially
localized, part-based representations of visual patterns.

Recently, we have extended and completed the preliminary work with the following
new contributions [5]: (1) formal convergence analysis of the original PNMF algorithms,
(2) PNMF with the orthonormality constraint, (3) nonlinear extension of PNMF, (4)
comparison of PNMF with two classical and two recent algorithms [6, 2] for clustering,
(5) a new application of PNMF for recovering the projection matrix in a nonnegative
mixture model, (6) comparison of PNMF with the approach of discretizing eigenvectors,
and (7) theoretical justification of moving a term in the generic multiplicative update
rule. Our in-depth analysis shows that the PNMF replacement has positive consequences
in sparseness of the approximation, orthogonality of the factorizing matrix, decreased
computational complexity in learning, close equivalence to clustering, generalization of
the approximation to new data without heavy re-computations, and easy extension to a
nonlinear kernel method with wide applications for optimization problems. Figure 3.1
demonstrates the advantage of PNMF over two other methods for the Nonnegative Kernel
Principal Component Analysis problem.

Furthermore, we have proposed a more general method called α-PNMF [4], using α-
divergence instead of Kullback-Leibler divergence as the error measure in PNMF. We have
derived the multiplicative update rules for the new learning objective. The convergence
of the iterative updates is proven using the Lagrangian approach. Experiments have been
conducted, in which the new algorithm outperforms α-NMF [1] for extracting sparse and
localized part-based representations of facial images.

Our method can also achieve better clustering results than α-NMF and ordinary PNMF
for a variety of datasets. Table 3.1 shows the resulting clustering purities on six datasets.

References
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Figure 3.1: Comparison of POD, KK-means, and PNMF with (a) linear and (b) RBF
kernels for the Nonnegative Kernel Principal Component Analysis problem. Smaller δ-
values are better objectives relative to the KPCA solution

Table 3.1: Clustering purities using α-NMF, PNMF and α-PNMF. The best result for
each dataset is highlighted with boldface font.

α-NMF PNMF α-PNMF
datasets α = 0.5 α = 1 α = 2 - α = 0.5 α = 1 α = 2

Iris 0.83 0.85 0.84 0.95 0.95 0.95 0.97
Ecoli5 0.62 0.65 0.67 0.72 0.72 0.72 0.73
WDBC 0.70 0.70 0.72 0.87 0.86 0.87 0.88
Pima 0.65 0.65 0.65 0.65 0.67 0.65 0.67

AMLALL 0.95 0.92 0.92 0.95 0.97 0.95 0.92
ORL 0.47 0.47 0.47 0.75 0.76 0.75 0.80

2008.
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3.3 Reconstruction of historical climate data by Gaussian-
process factor analysis

Alexander Ilin and Jaakko Luttinen

Studying natural variability of climate is a topic of intensive research in climatology. In
our earlier research, we have extended the classical technique of rotated Principal Com-
ponents, or Empirical Orthogonal Functions, by introducing the concept of “interesting
structure” for massive sets of spatio-temporal climate measurements. In our case, the goal
of exploratory analysis is to find signals with some specific structures of interest. They
may for example manifest themselves mostly in specific variables, which exhibit prominent
variability in a specific timescale etc. An example of such analysis can be extracting clear
trends or quasi-oscillations from climate records. The procedure for obtaining suitable
rotations of EOFs can be based on the general algorithmic structure of denoising source
separation (DSS) [1].

However, understanding long-term variability of climate faces the problem of the
scarcity of climate observations in the past. Thus, reconstruction of historical climate
becomes an important problem.

The standard methods of statistical reconstruction are ad hoc adjustments of PCA for
incomplete data making such additional assumptions as temporal and spatial smoothness
of the observed climate variables. These assumptions were used, for example, in [2] to
reconstruct the global sea surface temperatures (SST) in the 1856–1991 period from the
MOHSST5 data set (which is largely based on the measurements made from merchant
ships). The method presented there uses additional information about the quality of the
data and this uncertainty information is derived from the number of different sources
which were used to compute each data sample.

In our recent papers [3, 4], we use the Bayesian framework to perform statistical
reconstructions of spatio-temporal data. In [3], we adopt the basic variational Bayesian
PCA model and use additional uncertainty information to improve the reconstruction
performance.

In [4], we present a more advanced probabilistic model called Gaussian-process factor
analysis (GPFA). The method is based on standard matrix factorization:

Y = WX + noise =
D∑
d=1

w:dxT
d: + noise,

where Y is a data matrix in which each row contains measurements in one spatial location
and each column corresponds to one time instance. Each xTd: is a row vector representing
the time series of one of the D factors, whereas w:d is a column vector of loadings which
are spatially distributed. Matrix Y may contain missing values and the samples can be
unevenly distributed in space and time.

We assume that both factors xd: and corresponding loadings w:d have prominent struc-
tures that we model using the tool of Gaussian processes [5]. The model is identified in the
framework of variational Bayesian learning and high computational cost of GP modeling
is reduced by using sparse approximations derived in the variational methodology.

In the experiments reported in [4], we show that GPFA can provide better recon-
structions of global SST set compared to variational Bayesian PCA. Figure 3.2 shows the
spatial and temporal patterns of the four most dominant principal components found by
GPFA from the MOHSST5 data set. The obtained test reconstruction errors were 0.5714
for GPFA and 0.6180 for VBPCA, which can be seen as a significant improvement.
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Figure 3.2: The spatial and temporal patterns of the four most dominating principal
components estimated by GPFA from the MOHSST5 dataset. The solid lines and gray
color in the time series show the mean and two standard deviations of the posterior
distribution.
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