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Abstract. We consider an extension of ICA and BSS for separating
mutually dependent and independent components from two related data
sets. We propose a new method which first uses canonical correlation
analysis for detecting subspaces of independent and dependent compo-
nents. Different ICA and BSS methods can after this be used for final
separation of these components. Our method has a sound theoretical
basis, and it is straightforward to implement and computationally not
demanding. Experimental results on synthetic and real-world fMRI data
sets demonstrate its good performance.

1 Introduction

Various independent component analysis (ICA) and blind source separation
(BSS) methods [1, 2] are nowadays well-known techniques for blind extraction
of useful information from single vector-valued data X = [x(1), . . . ,x(Nx)] with
many applications. The data model used in the basic linear ICA is simply

x(t) = As(t) =

n∑

i=1

si(t)ai (1)

Thus each data vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T is expressed as a linear

combination of independent components or source signals si(t), collected re-
spectively to the source vector s(t) = [s1(t), s2(t), . . . , sn(t)]

T . For simplicity,
we first assume that both x(t) and s(t) are zero mean n-vectors, and that the
mixing matrix A is a full-rank constant n × n matrix with column vectors ai,
i = 1, 2, . . . , n.

In standard linear ICA, the index t which usually denotes time or sample in-
dex is not important, because the order of the data vectors x(t) can be arbitrary.
This holds if they are samples from some multivariate statistical distribution.
However, the data vectors x(t) have often important underlying temporal struc-
ture. Alternative BSS methods have been developed for utilizing such temporal
information. They usually utilize either temporal autocorrelations directly or
smoothly changing nonstationarity of variances. The assumptions and applica-
tions domains of these three major categories of methods based on the simple
model (1) vary somewhat [1, 2].



The most widely used standard ICA method is currently FastICA [1, 3] due
to its efficient implementation and fast convergence which makes it applicable
to higher dimensional problems, too. From the many methods using temporal
autocorrelations, we have used the TDSEP method [4] which performs usually
well. Some attempts have been made to combine different types of BSS methods
so that they would be able to separate wider classes of source signals. In [5], an
approximate method called UbiBSS is developed which tries to utilize higher-
order statistics, temporal autocorrelations, and nonstationarity of variances. We
have used its Matlab code [6] in our experiments.

ICA and BSS have been generalized into many directions from the simple
linear noiseless model (1) [1, 2]. We consider a generalization in which one tries
to find out mutually dependent and independent components from two different
but related data sets X and Y = [y(1), . . . ,y(Ny)]. Data vectors y(t) have
dimension m which can be different from dimension n of the data vectors x(t)
in X, but they obey a similar basic linear model

y(t) = Br(t) =

m∑

i=1

ri(t)bi (2)

in which r(t) is m-vector and B m×m matrix.

This generalization of ICA and BSS has not been studied as much as several
others, but some related work can be found in [7–9, 11–13]. In most of these
methods the data model is more rectrictive than ours, assuming that in the data
sets X and Y there exist pairs of sources which are mutually dependent, but
these sources are independent of all the other sources in X and Y. In particular,
canonical correlation analysis (CCA) or its extension to multiple data sets is
applied in [11, 13], but in a different way than we do. Due to space limitations,
we do not discuss these related works in more detail here.

2 Our method

We apply canonical correlation analysis (CCA) to find the subspaces of depen-
dent and independent sources in the two related data sets. CCA [14] is an old
statistical technique which measures the linear relationships between two multi-
dimensional datasetsX andY using their autocovariances and cross-covariances.
CCA finds two bases, one for both X and Y, in which the cross-correlation ma-
trix between the data sets X and Y becomes diagonal and the correlations of
the diagonal are maximized.

In CCA, the dimensions of the data vectors x ∈ X and y ∈ Y can be different,
but they are assumed to have zero means. The canonical correlations and the
respective basis vectors can be computed by solving a generalized eigenvalue
problem as discussed in [14]. This solution simplifies considerably if the data
vectors x and y are prewhitened [1]. It turns out that the basis vectors of CCA
can then be determined from the singular value decomposition (SVD) of the



cross-covariance matrix Cxy = E{xyT } of x and y:

Cxy = UΣVT =
L∑

i=1

ρiuiv
T
i (3)

Note that the SVD of Cyx = E{yxT } = CT
xy is quite similar and is obtained

by transposing both sides of Eq. (3). There U and V are two orthogonal square
matrices (UTU = I, VTV = I) containing as their column vectors the singular
vectors ui and vj . In our case, these singular vectors are the basis vectors provid-
ing canonical correlations. In general, the dimensionalities of the matrices U and
V and consequently the singular vectors ui and vi are different corresponding
to different dimensions of the data vectors x and y. The pseudodiagonal matrix

Σ =

[
D 0

0 0

]
(4)

consists of a diagonal matrixD containing the non-zero singular values appended
with zero matrices so that the matrix Σ is compatible with the different dimen-
sions of x and y. These non-zero singular values are just the non-zero canonical
correlations. If the cross-covariance matrix Cxy has full rank, their number L is
the smaller one of the dimensions of the data vectors x and y.

We first make the data vectors x ∈ X zero mean if necessary. These data
vectors are whitened separately:

vx = Vxx, vy = Vyy (5)

We use standard principal component analysis (PCA) for whitening as discussed
in [1]. After this we estimate the cross-covariance matrix Cvxvy

of the whitened
data vectors vx and vy in standard manner:

Ĉvxvy
=

1

N

N∑

t=1

vx(t)v
T
y (t) (6)

There N is the smaller of the numbers Nx and Ny of the data vectors in the two
data sets X and Y, respectively.

We then perform the SVD of the estimated cross-covariance matrix Ĉvxvy

quite similarly as for Cxy in (3). After inspecting the magnitudes of the singular
values in the pseudodiagonal matrix Σ, we divide the matrices U and V of
singular vectors into two submatrices:

U = [U1 U2], V = [V1 V2] (7)

There U1 and V1 correspond to dependent components for which the respective
singular values are larger than 0.5, and U2 and V2 to the independent com-
ponents for which the respective singular values are small. The data are then
mapped using these submatrices onto subspaces corresponding to the dependent
and independent components by computing

UT
1
X, UT

2
X, VT

1
Y, VT

2
Y (8)



where X = [x(1), . . . ,x(Nx)] and Y = [y(1), . . . ,y(Ny)]. It should be noted that
contrary to the customary use of SVD we include in the submatrices U2 and V2

also the singular vectors corresponding to small or even zero singular values for
being able to separate all the sources in X and Y. We are not aware that CCA
would have used in this way in ICA and BSS previously.

Sometimes CCA alone used in this way is sufficient for coarse separation of
sources, but in most cases CCA at least makes clear progress towards separation,
providing signal-to-noise ratios of a few decibels. The preliminary separation
results of CCA can often be improved by applying to the four mapped data
sets defined in (8) some suitable ICA or BSS method. In principle at least it is
possible to apply any kind of postprocessing here.

The somewhat surprising result than CCA alone can provide coarse separa-
tion can be justfied heuristically as follows. First, let us denote the separating
matrices after the whitening step in (5) by WT

x for vx and respectively by WT
y

for vy. A basic result in the theory of ICA and BSS [1] is that after whitening
the separating matrices Wx and Wy become orthogonal: WT

xWx = I, WT
yWy

= I. Thus
ŝ = WT

xVxx = WT
xVxAs = s (9)

where we have for simplicity assumed that the estimated sources ŝ appear in the
same order as the original sources s. Assuming that there are as many linearly
independent mixtures x and Wy as sources s, so that the mixing matrix A is a
full-rank square matrix, we get from (9) by setting ŝ = s

A = (WT
xVx)

−1 = V−1

x Wx (10)

due to the orthogonality of the matrixWx. Quite similarly, we get for the another
mixing matrix B in (2) the equivalent result B = V−1

y Wy.
Consider now the cross-covariance matrix after whitening. It is

Cvxvy
= E{vxv

T
y } = VxE{xy}V

T
y = VxAQBTVT

y (11)

Here the matrix Q = E{srT } is a diagonal matrix, if the sources signals in the
source vectors s and r are pairwise dependent but otherwise independent of each
other. Inserting A = V−1

x Wx and B = V−1
x Wy into (11) yields finally

Cvxvy
= WxQWT

y (12)

But this is exactly the same type of expansion as the SVD of the whitened
cross-covariance matrix Cvxvy

in (3), because the matrices Wx and Wy are
orthogonal matrices and Q is a diagonal matrix. Thus on the assumptions made
above the SVD of the whitened cross-covariance matrix provides a solution that
has the same structure as the separating solution. Even though we cannot from
this result directly deduce that the SVD of the whitened cross-covariance matrix
(that is, CCA) would provide a separating solution, this seems to hold in simple
cases at least as shown by our experiments in the next section.

Another justification is that CCA, or SVD of whitened data vectors, uses
second-order statistics (cross-covariances) only for separation, while standard



ICA algorithms such as FastICA use for separation higher-order statistics only
after the data has been normalized with respect to their second-order statistics
by whitening them. Our method combines both types of statistics. Our exper-
imental results demonstrate that this often provide better results than using
solely second-order or higher-statistics for separation. Dividing the separation
problem into subproblems using the matrices in (8) may also help. Probably
solving two lower dimensional subproblems is easier than solving a higher di-
mensional separation problem.

3 Experimental results

We have successfully tested our method with synthetical data sets, with data sets
in which real-world sources have been mixed synthetically, and with real-world
robot and fMRI (functional magnetic resonance imaging) data. Due to space
limitations, we can show some quite selected results only here. More experimental
results can be found in [16].

Consider first a set of 6 synthetical stochastic sources which have been pur-
posedly designed so that they are very difficult to separate for most ICA and
BSS methods. They are defined in the Matlab code [6] of the UniBSS method
and explained in the respective paper [5]. Standard ICA methods based on non-
Gaussianity should be able to separate only the two first sources. Methods based
on temporal statistics should not able to separate any of them. Method utilizing
smoothly changing variances are able to separate only the fifth and sixth source.
Only the approximative UniBSS method [5] which utilizes all these properties is
able to separate all these 6 sources.

Method Source 1 Source 2 Source 3 Source 4

CCA 10.3 9.9 10.1 10.3

FastICA 22.5 14.1 9.4 10.6

TDSEP 10.0 30.5 10.0 27.5

UniBSS 33.9 40.7 27.6 28.5

CCA + FastICA 29.3 20.0 21.0 29.4

CCA + TDSEP 30.7 37.9 34.8 30.2

CCA + UniBSS 33.7 48.4 39.2 32.7

Method in [9] 25.7 9.8 9.4 23.1

Method in [13] 12.5 11.4 11.3 13.2

Table 1. Signal-to-noise ratios (dB) of different methods for the source signals 1-4 in
the first data set X.

We mixed the first three sources and the fifth one to form the first data
set X, and the second, third, fourth and sixth source to the second data set
Y. Thus in these data sets there are two completely dependent sources, while



Method Source 5 Source 6 Source 7 Source 8

CCA 9.9 10.1 10.5 10.5

FastICA 9.5 4.6 4.2 5.2

TDSEP 9.7 26.4 9.8 28.8

UniBSS 37.1 27.0 28.6 29.0

CCA + FastICA 21.1 21.9 13.1 13.2

CCA + TDSEP 37.9 34.8 31.6 33.1

CCA + UniBSS 49.4 39.2 31.0 33.0

Method in [9] 9.8 9.4 9.5 9.5

Method in [13] 11.4 11.3 3.6 3.9

Table 2. Signal-to-noise ratios (dB) of different methods for the source signals 5-8 in
the second data set Y.

the remaining two sources in them are statistically independent of all the other
sources. We used 5000 data vectors and source signal values (t = 1, 2, . . . , 5000)
for providing enough data to the UniBSS method [5]. The other tested methods,
CCA, FastICA, TDSEP and their combinations require less samples, especially
CCA. We computed the average signal-to-noise ratios of the estimated sources
over 100 random realizations of the sources and the data sets X and Y because
the results vary for single realizations. In each realization, the elements of the
4× 4 mixing matrices were Gaussian random numbers.

We not only tried our CCA based method and its combinations applying
either FastICA, TDSEP, or UniBSS for post-processing to achieve better sep-
aration, but also compared it with two methods introduced by other authors
for the same problem. The first compared method introduced in [9] assumes
that the dependent sources in the two data sets are active simultaneously. The
second compared method [13] uses multiset canonical correlation analysis. The-
oretically its results should coincide with plain CCA for two data sets but in
practice this may not hold due to problems such as deflationary nature of the
algorithm mentioned in a later paper [12].

The separation results for the four sources 1-4 contained in the first data
set X are shown in Table 1, and for the 4 sources in the other data set Y in
Table 2. For clarity, we have numbered these sources from 5 to 8. We set (some-
what arbitrarily) the threshold of successful separation to 10 dB based on visual
inspection. Tables 1 and 2 show that CCA alone yields fairly similar separa-
tion results for all the 8 sources which already lie at our separation threshold.
FastICA can separate clearly the two first sources but fails for the three last
sources. The TDSEP method separates well four sources, the other sources lie
at the separation threshold. The UniBSS method separates well all the sources.
The results are qualitatively similar if the dependent and independent sources
are selected otherwise from the 6 original sources.

Combining CCA with post-processing with FastICA, TDSEP, or UniBSS
methods improves the results for all these methods, so that also FastICA and



TDSEP can now separate well all the sources in this difficult separation problem.
The methods introduced in [9] and [13] provide clearly lower signal-to-noise
ratios, failing for some sources. Using CCA combined with FastICA or TDESP
methods is in practice often preferable over using the UniBSS method. The
UniBSS method requires much more samples for reliable results. It may already
converge to a separating solution but then deviates again farther away, and this
can happen several times. The UniBSS method also requires different types of
nonlinearities for sub-Gaussian and super-Gaussian sources. The FastICA and
TDSEP methods don’t suffer from this limitation.
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Fig. 1. Experimental results with fMRI data. Each row shows one of the 11 sepa-
rated components. The activation time-course with the stimulation blocks for reference,
shown on the left, and the corresponding spatial pattern on three coincident slices, on
the right. Components from (a) the first and (b) the second dataset.

The usefulness of the method was tested with data from a functional magnetic
resonance imaging (fMRI) study [10], where it is described in more detail. We
used the measurements of two healthy adults while they were listening to spoken
safety instructions in 30 s intervals, interleaved with 30 s resting periods. In
these experiments we used slow feature analysis (SFA) [15] for post-processing
the results given by CCA, because it gave better results than FastICA.

Fig. 1 shows the results of applying our method to the two datasets and
separating 11 components from the dependent subspaces U1 and V1. The con-
sistency of the components across the subjects is quite good. The first component
shows a global hemodynamic contrast, that may also be related to artifacts orig-
inating from smoothing the data in the standard preprocessing. The activity



of the second component is focused on the primary auditory cortices. The third
and fourth components show both positively and negatively task-related activity
around the anterior and posterior cingulate gyrus. These first results are promis-
ing and in good agreement with the the ones reported in [10]. Future tasks are
extension of the method to multiple datasets for interpreting the found compo-
nents more thoroughly, and a more extensive comparison with existing ICA and
BSS methods using real-world data.
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