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Abstract—Independent component analysis (ICA) and blind
source separation (BSS) are usually applied to a single data
set. Both these techniques are nowadays well understood, and
several good methods based on somewhat varying assumptions
on the data are available. In this paper, we consider an
extension of ICA and BSS for separating mutually dependent
and independent components from two different but related
data sets. This problem is important in practice, because such
data sets are common in real-world applications. We propose
a new method which first uses canonical correlation analysis
(CCA) for detecting subspaces of independent and dependent
components. Standard ICA and BSS methods can after this be
used for final separation of these components. The proposed
method performs excellently for synthetic data sets for which
the assumed data model holds exactly, and provides meaningful
results for real-world robot grasping data. The method has a
sound theoretical basis, and it is straightforward to implement
and computationally not too demanding. Moreover, the pro-
posed method has a very important by-product: its improves
clearly the separation results provided by the FastICA and
UniBSS methods that we have used in our experiments. Not
only are the signal-to-noise ratios of the separated sources often
clearly higher, but CCA preprocessing also helps FastICA to
separate sources that it alone is not able to separate.

I. INTRODUCTION

A. Independent component analysis and blind source sepa-

ration

Independent component analysis (ICA) and related blind

source separation (BSS) methods [1], [3], [4], [6] are nowo-

days already well-known and understood techniques for blind

(unsupervised) extraction of useful information from vector-

valued data x. They have many applications (see for example

[1], [4]) in which they provide much more meaningful

results than standard linear techniques based on second-order

statistics such as principal component analysis (PCA). Even

though the basic data model in ICA is still linear, its proper

estimation requires using higher-order statistics, which are

taken into account by using appropriately nonlinearities in

the ICA estimation algorithms.

The data model used in standard linear ICA is simply

x(t) = As(t) =

n∑

i=1

si(t)ai (1)

Thus each data vector x(t) is expressed as a linear combina-

tion of scalar coefficients si(t), i = 1, 2, . . . , n, which multi-

ply the respective constant basis vectors ai, i = 1, 2, . . . , n.
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The scalar coefficients si(t), i = 1, 2, . . . , n, are different

for each data vector x(t), depending directly on it. They

can be collectively presented as the coefficient vector s(t)
= [s1(t), s2(t), . . . , sn(t)]T . The constant basis vectors ai,

i = 1, 2, . . . , n, are usually estimated by some criterion from

the entire data set X = [x(1), . . . ,x(Nx)], where Nx is the

total number of data vectors in X. Hence these basis vectors

also depend on the properties of the data, but once they have

been estimated, they are the same for all the data vectors

belonging to this data set. These basis vectors ai are in

general linearly independent but non-orthogonal. They can be

collectively presented in terms of the mixing (basis) matrix

A = [a1,a2, . . . ,an].
The scalar coefficients si(t) are called independent com-

ponents or source signals (in short sources) depending on the

context. The index t may denote time, position (especially in

digital images), or just the number of the sample vector. For

simplicity, we assume here that both the data vector x(t)
= [x1(t), x2(t), . . . , xn(t)]T and the source vector s(t) are

zero mean n-vectors, and that the mixing matrix A is a full-

rank constant n × n matrix. In ICA, the column vectors ai,

i = 1, 2, . . . , n of the matrix A comprise the basis vectors

of ICA, and the components si(t) of the source vector s(t)
are respectively independent components corresponding to

the data vector x(t).
In standard linear ICA, the index t can be dropped out,

because the order of the data vectors x(t) is not important

and can even be random. This assumption is valid if the

data vectors are samples from some multivariate statistical

distribution. However, the data vectors x(t) have often im-

portant underlying temporal structure, if they are subsequent

samples from a vector-valued time series which is temporally

correlated (non-white). Standard ICA can be applied to

such time series, too, but it is suboptimal because it does

not utilize this temporal information. Alternative methods

have been developed for extracting the source signals or

independent components in such cases. They usually utilize

either temporal autocorrelations directly or smoothly chang-

ing nonstationarity of variance; see for example [1], [3], [4],

[6].

The application domain and assumptions made in these

three major groups of BSS technique vary somewhat [1],

[6]. In standard ICA, it is assumed that all the indepen-

dent components except for possibly one have non-Gaussian

distributions and are mutually statistically independent [1],

[15]. Then standard ICA methods are able to separate their

waveforms, leaving however the order, sign, and scaling of

the separated components ambiquous. The scaling indeter-



minacy is usually fixed by normalizing the variances of the

separated independent components to unity. The most widely

used standard ICA method is currently FastICA [1], [9] due

to its efficient implementation and fast convergence which

makes it applicable to higher dimensional problems, too.

We have used in our experiments the freely downloadable

FastICA Matlab software package [22]. Another popular ICA

method is the adaptive neural natural gradient method [1],

[3], which however converges slowly and requires knowledge

of the type of the source signals or independent components;

they are either super-Gaussian or sub-Gaussian.

Methods based on temporal autocorrelations of the source

signals require that different sources have at least some

different non-zero autocorrelations. Contrary to standard

ICA, they can then separate even Gaussian sources, but

on the other hand they fail if such temporal correlations

do not exist, while standard ICA can even in this case

separate non-Gaussian sources. Examples of methods based

on temporal autocorrelations are the SOBI method [16] and

the TDSEP method [8]. A recent review of such methods is

[12], containing many more references.

In the third group of BSS methods, it is assumed that

the source signals have nonstationary smoothly changing

variances. Such methods have been introduced for example

in [17], [18]. If the assumptions made in them are valid, they

can separate even Gaussian temporally uncorrelated (white)

sources that ICA and temporal autocorrelation methods are

not able to handle appropriately. A fourth class of BSS meth-

ods employs time-frequency representations (see Chapter 11

in [4]), but we shall not discuss them in this paper.

Some attempts have been made to combine different types

of BSS methods so that they would be able to separate

wider classes of source signals. The JADETD method in-

troduced in [19] as well as the method in [29] combine non-

Gaussianity used in ICA and temporal information. In [10],

Hyvärinen developed an approximate method which tries to

utilize both higher-order statistics, temporal autocorrelations,

and nonstationarity of variances. Only the autocorrelation

coefficient corresponding to a single time lag equal to 1

is used there, but the method seems anyway to be able

to separate different types of sources. We have used this

method, called UniBSS in its Matlab code [23], in addition

to FastICA in our experiments.

The simple linear data model (1) used in basic ICA and

BSS methods can be generalized in many ways. For example

to include additive noise, for the cases of having more or less

sources than mixtures, for nonlinear mixtures, convolutive

mixtures, and so on. Such generalizations are discussed in

[1], [3], [4], [21]. In particular, up-to-date reviews of many

such techniques can be found in [4].

B. An overview of our method

In this paper, we consider a generalization in which

one tries to find out mutually dependent and independent

components from two different but related data sets X and

Y. Data vectors y(t) belonging to the second related data set

Y = [y(1), . . . ,y(Ny)] are assumed to obey a similar basic

linear ICA data model

y(t) = Br(t) =

n∑

i=1

ri(t)bi (2)

as the data vectors x(t) in (1). The assumptions that we make

on the basis vectors bi and source signals ri(t) are exactly

the same as those made on the basis vectors ai and source

signals si(t) in context with Eq. (1).

In our method, we first apply canonical correlation analysis

(CCA) [7], [11] to be discussed in more detail in the next

section to find the subspaces of dependent and independent

sources in the two related data sets. We perform this step by

first whitening the data sets and then computing the singular

value decomposition (SVD) of their cross-covariance matrix.

The data sets are then projected to the subspaces of singular

vectors corresponding to the dependent and independent

components. After this, any suitable ICA or BSS method

can be used for separating the sources. This method will be

described mathematically in detail in the next section.

C. Related work

The extension of ICA and BSS for separating dependent

and independent source signals from two related data sets

has not been studied as much as many other extensions of

ICA and BSS mentioned above, but some research on this

topic has been carried out.

Canonical correlation analysis (CCA), explained math-

ematically in the next section, is an old technique [30]

which uses second-order statistics only. However, it has been

recently applied by several authors to different real-world

data analysis problems. This is because CCA often performs

surprisingly well in practice, and using higher-order statistics

and nonlinear techniques does not necessarily improve the

results markedly.

In [14], Ylipaavalniemi et al. have carried out their analysis

of biomedical fMRI sources in reverse order compared with

our method. They first apply standard ICA to the two related

data sets separately. Then they connect dependent sources

(independent components) in these data sets using CCA. The

method performs pretty well for the analyzed real-world data

sets but it has a theoretical weakness: ICA assumes that the

sources are non-Gaussian except for possibly one source,

but CCA can be derived from a probabilistic latent variable

model where all the involved random variables (vectors) are

Gaussian [20]. Thus the assumptions made in ICA and CCA

are theoretically contradictory.

The authors of the paper [14] have themselves noticed

this theoretical weakness and improved their method in two

later papers. In [24], they apply to the results first provided

by ICA a nonparametric CCA type model where Gaussian

distributions are not assumed, getting improved results. In

another more theoretical paper [25] the authors show on a

general level how to apply a probabilistic CCA type model

without assuming Gaussian distributions, using instead of

them any noise model belonging to the exponential family

of probability distributions.



In [13], the authors use standard CCA and its extension to

multiple data sets for the analysis of medical imaging data,

discussing the advantages of such approaches and comparing

their performances to standard ICA that has been successfully

applied to this type of problems.

Koetsier et al. have presented in [26] an unsupervised

neural algorithm called Exploratory Correlation Analysis for

the extraction of common features in multiple data sources.

This method is closely related with canonical correlation

analysis.

Akaho and his co-authors [5] have considered an ICA style

generalization of canonical correlation analysis which they

call multimodal independent component analysis. In their

method, standard linear ICA is first applied to both data

sets x and y separately. Then the corresponding dependent

components of the two ICA expansions are identified using

a natural gradient type learning rule.

Furhermore, several authors have developed constrained

ICA methods for extracting source signals which are con-

trained to be similar to some reference signals. This requires,

however, some prior knowledge on the reference signals. In

[27], Van Hulle introduces three ways to perform constrained

ICA. In one of them he tries to find dependent components

between two data sets by generalizing CCA, with a small-

scale biomedical application. More references on constrained

ICA approaches can be found in [27].

Finally, the first author of this paper tried to generalize

cross-correlation analysis based on singular value decompo-

sition in ICA style to take into account higher-order statistics

in [2]. In this paper, we modify that method so that its

performance is clearly improved, and a theoretical weakness

of this earlier method vanishes.

II. THE NEW METHOD

A. Canonical correlation analysis and singular value decom-

position

Canonical correlation analysis (CCA) [7], [11] mea-

sures the linear relationships between two multidimensional

datasets X and Y using their second-order statistics, that is,

autocovariances and cross-covariances. It finds two bases,

one for both X and Y, that are optimal with respect to

correlations and it also finds the corresponding correlations.

In other words, CCA finds the two bases in which the cross-

correlation matrix between the data sets X and Y becomes

diagonal and the correlations of the diagonal are maximized.

An important property of canonical correlations is that they

are invariant to affine transformations of the variables, which

does not hold for ordinary correlation analysis [11].

Consider first the case where only one pair of basis vectors

is sought, namely the ones corresponding to the largest

canonical correlation. For this, consider the linear combi-

nations x = xTwx and y = yT wy of the random vectors

x ∈ X and y ∈ Y. The dimensions of the vectors x and y

can be different, but they are assumed to have zero means.

The function to be maximized in CCA is the normalized

correlation coefficient ρ between these two projections:

ρ =
E{xy}√

E{x2}E{y2}
=

wx
TCxywy√

wx
TCxxwxwy

TCyywy

(3)

where Cxy = E{xyT } is the cross-covariance matrix of x

and y, and Cxx = E{xxT } as well as Cxy = E{yyT } are

their autocovariance matrices. The maximum of ρ with re-

spect to the weight vectors wx and wy defines the maximum

canonical correlation.

The i:th canonical correlation is defined for x by the

weight vector wxi: xi = xT wxi, and for y by wyi: yi

= yT wyi. Different canonical correlations are uncorrelated:

E{xixj} = E{yiyj} = E{xiyj} = 0. These canonical correla-

tions can be computed solving the eigenvalue equations [7],

[11]

C−1
xx CxyC

−1
yy Cyxwx = ρ2wx

C−1
yyCyxC

−1
xx Cxywy = ρ2wy

(4)

where Cyx = E{yxT }. The eigenvalues ρ2 are squared

canonical correlations and the eigenvectors wx and wx are

normalized canonical correlation basis vectors. Only non-

zero solutions to these equations are usually of interest, and

their number is equal to the smaller of the dimensions of the

vectors x and y.

The solution (4) can be simplified if the data vectors x and

y are prewhitened [1], which is the usual practice in many

ICA algorithms, for example in FastICA. After prewhitening,

both Cxx and Cyy become unit matrices, and noting that

Cyx = CT
xy Eqs. (4) become

CxyC
T
xywx = ρ2wx

CyxC
T
yxwy = ρ2wy

(5)

But these are just the defining equations for the singular value

decomposition (SVD) [28] of the cross-covariance matrix

Cxy:

Cxy = UΣVT =

L∑

i=1

ρiuiv
T
i (6)

There U and V are orthogonal square matrices (UTU = I,

VT V = I) containing the singular vectors ui and vi. In our

case, these singular vectors are the basis vectors providing

canonical correlations. In general, the dimensionalities of the

matrices U and V and consequently the singular vectors ui

and vi are different corresponding to different dimensions of

the data vectors x and y. The pseudodiagonal matrix

Σ =

[
D 0

0 0

]
(7)

consists of a diagonal matrix D containing the non-zero

singular values appended with zero matrices so that the

matrix Σ is compatible with the different dimensions of

x and y. These non-zero singular values are just the non-

zero canonical correlations. If the cross-covariance matrix

Cxy has full rank, their number L is the smaller one of the

dimensions of the data vectors x and y.



B. The proposed method

We first separately preprocess the data vectors x ∈ X

and y ∈ Y by subtracting their mean vectors from them if

they are non-zero. After this, these data vectors are whitened

separately:

vx = Vxx, vy = Vyy (8)

Whitening can be carried out in many ways [1], [3], typically

standard principal component analysis (PCA) is used to that

end. That is, whitening is based on the eigendecompositions

of the autocovariance matrices Cxx and Cyy. The whitening

matrix for x is then

Vx = Λ−1/2E (9)

where the columns of the matrix E contain the eigenvectors

of Cxx, and the diagonal matrix Λ contains the respective

eigenvalues in the same order. The whitening matrix Vy

for y is computed similarly using the eigendecomposi-

tion of Cyy. After whitening, the cross-covariances (cross-

correlations) of different components of vx and vy are zero,

while their variances equal to 1. Thus whitening normalizes

the data with respect to its second-order statistics. When PCA

in (9) is used for whitening, it is also possible to compress

the dimensionality of the data and possibly filter out some

noise by retaining in Λ only the largest PCA eigenvalues and

in E the corresponding principal eigenvectors, but we don’t

use this option.

After whitening, we estimate the cross-covariance matrix

Cvxvy
of the whitened data vectors vx and vy in standard

manner:

Ĉvxvy
=

N∑

t=1

vx(t)vT
y (t) (10)

There N is the smaller of the numbers Nx and Ny of the

data vectors in the two data sets X and Y, respectively. In

practice and in principle, too, these numbers can be different,

but the cross-covariance matrix (10) can be estimated over

corresponding pairs of vectors vx(t) and vy(t) only.

We then perform singular value decomposition of the

estimated cross-covariance matrix Ĉvxvy
quite similarly as

for Cxy in (6). Inspecting the magnitude of the singular

values in the pseudodiagonal matrix Σ, we then divide the

matrices U and V of singular vectors into two submatrices:

U = [U1 U2], V = [V1 V2] (11)

There U1 and V1 correspond to dependent components for

which the respective singular values are large, and U2 and

V2 to the independent components for which the respective

singular values are small. The data are then projected us-

ing these submatrices into subspaces corresponding to the

dependent and independent components by computing

UT
1
X, UT

2
X, VT

1
Y, VT

2
Y (12)

where X = [x(1), . . . ,x(Nx)] and Y = [y(1), . . . ,y(Ny)].
Finally, we apply any suitable ICA or BSS method sep-

arately to each of these 4 projected data sets for separating

the source signals contained in these subspaces. It should be

noted that we include in the submatrices U2 and V2 also the

singular vectors corresponding to small or even zero singular

values for being able to separate all the sources in X and Y.

As mentioned in the introduction, we have thus far applied

for post-processing (final separation) FastICA [1], [9] and

the more general UniBSS method introduced in [10].

We have used the Matlab implementation UniBSS.m [23]

of this method and different types of random source sig-

nals defined in that code in our experiments. Running this

program revealed, however, some drawbacks of this method.

First, it requires at least of the order of 1000 samples to

perform appropriately, while for example FastICA needs

much less samples for providing pretty good estimates of the

sources if there are just a few of them. Second, the UniBSS

method requires many iterations and it does not converge

uniformly. It may already provide good estimates but then

still with more iterations move far away from a good solution,

giving then rather poor estimates of the source signals.

This can happen several times until the method eventually

permanently converges to a good solution. We have not

yet studied the scalability of this method and how many

different sources it can separate in practice. Still another

drawback of the UniBSS method is that just like the natural

gradient algorithm, it requires different types of nonlinearities

for super-Gaussian and sub-Gaussian source signals. Thus

one should know or somehow be able to estimate how

many super-Gaussian and sub-Gaussian sources the data set

contains. FastICA does not suffer from this limitation.

In the following, we present several somewhat intuitive

and heuristic justifications to the proposed method which

anyway in our opinion should largely explain its good

performance.

First, let us denote the separating matrices after the whiten-

ing step in (8) by WT
x for vx and respectively by WT

y for

vy. A basic result in the theory of ICA and BSS [1], [15]

is that after whitening the separating matrices Wx and Wy

become orthogonal: WT
x Wx = I, WT

yWy = I. Thus

vx = WT
x Vxx = WT

xVxAs = s (13)

where we have for simplicity assumed that the separated

sources appear in the same order as the original sources

s. Assuming that there are as many linearly independent

mixtures x and Wy as sources s, so that the mixing matrix

A is a full-rank square matrix, we get from (13)

A = (WT
x Vx)−1 = V−1

x Wx (14)

due to the orthogonality of the matrix Wx. Quite similarly,

we get for the another mixing matrix B in (2) similar result

B = V−1

y Wy.

Consider now the cross-covariance matrix after whitening.

It is

Cvxvy
= VxE{xy}VT

y = VxAQBTVT
y (15)

Here the matrix Q = E{srT } is a diagonal matrix, if the

sources signals in the source vectors s and r are pairwise

dependent but otherwise independent of each other. Inserting



A = (Vx)−1Wx and B = (Vy)−1Wy into (15) yields

finally

Cvxvy
= WxQWT

y (16)

But this is exactly the same type of expansion as the singular

value decomposition of the whitened cross-covariance matrix

Cvxvy
(cf. Eq. (6)), because the matrices Wx and Wy are

orthogonal matrices and Q is diagonal matrix. Thus on the

assumptions made above the SVD of the whitened cross-

covariance matrix provides a solution that has the same

structure as the separating solution. Even though we cannot

from this result directly deduce that the SVD of the whitened

cross-covariance matrix (that is, CCA) would provide a

separating solution, this seems to hold in simple cases at

least as shown by our experiments in the next section. At

least CCA when applied to the data sets X and Y using

(12) provides already partial separation, helping FastICA and

UniBSS to achieve clearly better results.

Another justification is that CCA, or SVD of whitened

data vectors, uses second-order statistics (cross-covariances)

only for separation, while standard ICA algorithms such as

FastICA use for separation higher-order statistics only after

the data has been normalized with respect to their second-

order statistics by whitening them. Combining both second-

order statistics and higher-order statistics by first performing

CCA and then post-processing the results using a suitable

ICA or BSS method can be expected to provide better results

than using solely second-order or higher-statistics only for

separation.

Our third justification is that dividing the separation prob-

lem into subproblems using the matrices in (12) may help.

Probably solving two lower dimensional subproblems is

easier than solving a higher dimensional separation problem.

We can somewhat heuristically modify the SVD based

method introduced above to include higher-order statis-

tics via nonlinearities by using instead of the plain cross-

covariance matrix Cvxvy
= E{vxv

T
y } the generalized cross-

covariance matrices

Gvxvy
= E{vxv

T
y + f(vx)vT

y + vxf(v
T
y )} (17)

where f(z) is a suitably chosen nonlinearity applied com-

ponentwise to its argument vector z; we have tried f(z) =

tanh(z) (suitably scaled). Similarly, we can include temporal

correlations into the computations by using

Gvxvy
= E{vx(t)vT

y (t)+vx(t−d)vT
y (t)+vx(t)vT

y (t−d)}
(18)

where d is the chosen time delay. In our experiments, the

tanh nonlinearity in (17) had hardly any effect on the results,

while a suitably chosen time delay d in (18) can improve the

separation results.

III. EXPERIMENTAL RESULTS

A. Simulated data

We first made some experiments with artificially generated

data in which there were 4 mixtures of 4 sources in both

the data sets X and Y. Such data is useful, because the

true source signals are known, allowing evaluation of the

performance of the methods studied. For real-world data, the

true sources are usually unknown.

The sources s(t) used to generate the mixtures (1) pro-

viding the data vectors x(t) ∈ X were all sub-Gaussian,

consisting of uniformly distributed white noise, a sinusoidal

signal, a ramp signal, and a fourth deterministic sub-Gaussian

source. This type of deterministic sources are often used in

ICA and BSS experiments because for them it is easy to

inspect visually the quality of achieved separation results.

Two of the sources r(t) used to generate the data vectors

(2) of the other data set Y were the same as in the first

data set Y and sub-Gaussian, namely uniformly distributed

white noise and a sinusoid and thus completely dependent

on the same sources in the data set X. The two remaining

sources in Y were deterministic super-Gaussian sources that

are completely independent of the other sources, like the

3rd and 4th source in the first data set X. The number

of samples was moderate, 400, and we used the standard

FastICA algorithm which is able to separate such sources.

For these sources, our method performed excellently. It is

able to separate the sources very well even in difficult cases

when the mixing matrix was almost singular and the power

of some of the sources was very small compared with the

power of the other source signals. This is possible because

the data models (1) and (2) now hold respectively for the data

vectors x(t) and y(t) exactly. If this were not true or there

were even a small amount of additive noise, blind separation

would not be possible in such pathological cases.

In another series of experiments which we describe in

more detail here, we use stochastic source signals which are

clearly more difficult to separate, defined in the Matlab code

UniBSS.m [23] and explained in [10]. There are a total of

6 source signals which are all stochastic, containing at least

some random component. Such sources are more appropriate

than the deterministic sources used in the first experiments,

but visual inspection of the quality of the separation results is

more difficult for them. The four first sources are generated

using a first-order autoregressive model so that the two first

of them are super-Gaussian and the third and fourth source

are Gaussian. Furthermore, the first and third source had

identical temporal autocovariances, and similarly the second

and fourth source. The fifth and sixth source have smoothly

changing variances.

These six sources have been purposedly designed so

that standard ICA methods such as FastICA or the natural

gradient method [1] based on non-Gaussianity and higher-

order statistics are able to separate the two first sources only.

Methods based on temporal statistics such as [8], [16] are not

able to separate any of them because there is no source with

a unique temporal autocovariance sequence. Method utilizing

smoothly changing variances such as [17], [18] are able to

separate only the fifth and sixth source. Methods combining

temporal correlations and non-Gaussianity [19], [29] would

be able to separate the 4 first sources. Only the approximative

method introduced in [10] could separate all these 6 sources.
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Fig. 1. 200 samples of the original source signals in first data set X. The
two first sources are non-Gaussian, the third one is temporally correlated
Gaussian, and the last source has smoothly changing nonstationary variance.
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Fig. 2. 200 samples of the original source signals in second data
set Y. The first one is non-Gaussian, the third and fourth sources are
temporally correlated Gaussians, and the last source has smoothly changing
nonstationary variance. The two first sources in Y are the same as the
second and third source in the first data set X.

We picked the first three sources and the fifth source from

the UniBSS.m code [23] to the first data set X. One statistical

realization of these sources is shown in Figure 1. We took

the second and third source to the second data set Y, added

with the fourth and sixth source in [23]. These sources are

shown similarly in Figure 2. Thus in the data sets X and

Y there are two completely dependent sources, while the

remaining two sources in them are statistically independent

of all the other sources.

In this series of experiments, we used 2000 data vectors

and source signal values (t = 1, 2, . . . , 2000) for providing
enough data1 to the UniBSS method [10]. Because the results

1In the original paper [10] the number of samples was even larger, 5000.

can vary a lot for different statistical realizations of these

sources and their mixtures, we computed the averages of

the signal-to-noise ratios of the separated sources over 100

random realizations of the sources and the data sets X and

Y. In each realization, the elements of the 4 × 4 mixing

matrices were Gaussian random numbers.

The signal-to-noise ratios (SNR’s) of the estimated source

signals were computed for each realization of the data sets

and each source from the formula

SNR(i) = 10 log
10

1

N

∑N
t=1

si(t)
2

1

N

∑N
t=1

[si(t) − ŝi(t)]2
(19)

where the numerator is the average power of the i:th source

si(t) over the N samples, and the denominator is the

respective power of the difference si(t) − ŝi(t) between the

source signal si(t) and its estimate ŝi(t). We computed the

averages of these SNR’s over the 100 realizations for each

source and its estimate, and quite similarly for the sources

ri(t) of the other data set Y.

TABLE I

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCE SIGNALS 1-4 IN THE FIRST DATA SET X.

Method Source 1 Source 2 Source 3 Source 4

CCA 10.8 10.4 10.8 10.9

FastICA 17.4 9.3 7.0 7.9

CCA + FastICA 25.8 16.4 16.8 25.5

CCA + UniBSS 29.4 44.9 34.7 29.2

UniBSS 28.6 36.8 22.6 23.6

TABLE II

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCE SIGNALS 5-8 IN THE SECOND DATA SET Y.

Method Source 5 Source 6 Source 7 Source 8

CCA 10.4 10.8 11.6 11.9

FastICA 6.3 3.5 3.0 4.0

CCA + FastICA 17.5 18.3 13.2 13.6

CCA + UniBSS 45.4 36.1 26.0 28.2

UniBSS 32.3 22.0 24.1 24.2

The separation results for the four sources 1-4 contained

in the first data set X are shown in Table I, and for the

4 sources in the other data set Y in Table II. For clarity,

we have numbered these sources from 5 to 8. Based on the

visual inspection of the results, we set (somewhat arbitrarily)

the threshold of successful separation to 10 dB. Inspecting

these results, one can see that plain canonical correlation

analysis (CCA) alone is in case able to marginally separate

all the 8 sources. It yields rather uniform separation results

for all the sources, ranging from 10.4 dB to 11.9 dB. Plain

FastICA provides clearly worse results. It can separate only

the first source, though by a clear margin. But for sources 2-

5, it makes already takes a long step towards separation. The

results for these sources are clearly superior over a random

guess, and less so also for the sources 6-8.



The combined CCA followed by FastICA method is

clearly superior compared with both plain CCA and plain

FastICA. It can separate all the 8 sources by a clear margin,

and improves the results for all these 8 sources quite signif-

icantly especially when compared with plain FastICA. The

UniBSS method [10] performs well for all these 8 sources,

with over 20 dB separation quality. Combining it with

CCA preprocessing gives in many cases even clearly better

separation results which are already of excellent quality, see

Tables I-II.

TABLE III

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCES 1,2, AND 3 IN THE FIRST DATA SET X.

Method Source 1 Source 2 Source 3

CCA 5.8 7.1 6.3

FastICA 12.7 11.1 5.5

CCA+FastICA 20.4 20.0 14.0

CCA+UniBSS 25.1 31.8 38.3

UniBSS 24.3 25.6 33.7

TABLE IV

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCES 4,5, AND 6 IN THE FIRST DATA SET X.

Method Source 4 Source 5 Source 6

CCA 7.1 7.1 7.3

FastICA 3.3 3.3 4.2

CCA+FastICA 14.0 11.1 11.5

CCA+UniBSS 28.7 22.4 23.9

UniBSS 13.6 14.2 21.3

To study the effect of the number of the sources signals and

the difficulty of the separation problem on the results and our

method, we designed another two data sets X and Y. This

time they both consisted of 6 random mixtures of 6 sources

which were selected among a total of 9 different sources. Six

of the sources were the same as in the previous experiment,

but we now generated three additional sources, one of each

type, namely one super-Gaussian, one temporally correlated

Gaussian, and one source having non-stationary variance.

They were generated in a similar manner as in [10], [23]. Due

to the design of these source signals, this separation problem

is very difficult, and almost all the methods introduced thus

far except for UniBSS fail to separate at least some of the

sources theoretically.

The first data set X consisted of 6 mixtures of 3 super-

Gaussian sources, two temporally correlated sources, and one

source with smoothly changing non-stationarity. The second

data set Y contained 6 mixtures of 2 super-Gaussian sources,

2 temporally correlated Gaussian sources, and two sources

having smoothly changing nonstationary variances. The two

super-Gaussian sources and the first temporally correlated

Gaussian source in this data set Y were the same as in the

first data set X. The remaining 3 sources in both these data

sets were statistically independent of all the other sources.

The number of samples was again 2000 and we computed

the average results over 100 different realizations of these

sources and their random mixtures.

For clarity, we have ordered the source signals in the first

data set X so that their numbers are 1, 2, . . . , 6, and the 6

sources in the related data set Y are numbered 7, 8, . . . , 12.
The results for different methods are presented in Tables III-

VI. Plain CCA is now not able to separate any of the sources

in this very difficult separation problem. But it again provides

rather similar results for all the sources ranging from 5.6

dB to 7.1 dB. This is anyway a big step towards separation

compared with a mere random guess. Looking next at the

results of FastICA, we see that it is able to separate only the

first two sources with a rather small margin only. For many

of the sources, plain FastICA gives poorer results than plain

CCA.

Combining CCA and FastICA improves again greatly the

performance. This combined method can separate 9 first of

these sources, though sources 5 and 6 marginally only. It

fails to separate the sources 10-12, and the results for these

sources are no better than for plain CCA. There are two

possible explanations to this phenomenon. The first one is

that plain FastICA performs for these sources so poorly that

it cannot help CCA at all in separation. The second one is

that for these sources these methods utilize same type of

information, and combining them does not help any more.

Finally, both the UniBSS method and the combination of

CCA and UniBSS are able to separate all the 12 sources.

However, in this very difficult BSS problem CCA preprocess-

ing improves the results for most sources, and quite markedly

for some of them. UniBSS alone achieves about the same

separation quality only for the first, sixth, and tenth sources.

TABLE V

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCES 7,8, AND 9 IN THE SECOND DATA SET Y.

Method Source 7 Source 8 Source 9

CCA 7.1 6.3 7.1

FastICA 6.7 2.9 1.9

CCA+FastICA 20.0 14.1 14.1

CCA+UniBSS 31.8 38.5 29.0

UniBSS 25.0 30.2 17.5

TABLE VI

SIGNAL-TO-NOISE RATIOS (DB) OF DIFFERENT METHODS FOR THE

SOURCES 10, 11, AND 12 IN THE SECOND DATA SET Y.

Method Source 10 Source 11 Source 12

CCA 5.8 5.6 6.6

FastICA 1.5 1.8 2.0

CCA+FastICA 6.8 5.9 5.8

CCA+UniBSS 23.8 23.5 23.1

UniBSS 23.2 20.0 20.2

To give an idea about the practical quality of separation

corresponding to different SNR’s, Figure 3 shows one orig-

inal source signal and its estimates provided by different



methods for a single realization of the data sets. This source

signal is a super-Gaussian source which is the third source

in the first set s(t) of sources and the second dependent

source in the second set r(t) of sources. Only 200 first

samples are shown to make the details of the estimates

better discernible. The signal-to-noise ratios of the estimates

provided by different methods are 1.92 dB for plain FastICA,

15.5 dB for the combination of CCA and FastICA, 37.9 dB

for the combination of CCA and UniBSS, 33.5 dB for plain

UniBSS, and 3.5 dB for plain CCA.

Inspecting Figure 3 visually shows that even though the

SNR of plain CCA is poor, 3.5 dB only, it is anyway able

to approximate some parts of the original source signal, for

example the last samples, but for the other parts it fails.

The combination of CCA and FastICA is clearly able to

separate the source adequately with the SNR of 15.5 dB. The

much better SNR’s of the UniBSS method and the method

in which CCA is combined with UniBSS do not show up

in the visual quality of separation results notably. Obviously

finding differences in the quality of these estimates would

require looking at fine details of the separation results.

B. Robot grasping data

Our real-world robot data consists of samples from a robot

arm that is used for picking off garbage from a conveyor

belt. In this experimental setting there are several sensors

in different parts of the robot arm. The sensor data used

in our experiments consist of two data sets. First, there is

the ”wrist” which guides the arm of the robot to turn so

that its grasping hand containing three “fingers” moves to a

right position. This force sensitive wrist data set X consists

of four attributes: three of them are used to represent the

status of movement in Euclidean three dimensional space.

The fourth attribute is used to represent the status of the

rotation in one direction. The other related data set Y consists

of 7-dimensional position information about the wrist using

Euclidean distance measure and standard quaternion repre-

sentation in computer graphics and robotics. A mathematical

model describing the relationship between these two data sets

is not known. Quite probably the data model of this paper

and its assumptions hold as an approximation only.

We can argue that there should be some dependent changes

in the force sensitive wrist data set X as well as independent

changes with respect to the position information data set

Y. For instance, when the wrist is sent to grab a rather

heavy object, the wrist sensor data set not only expresses

the position information, but also provides some feedback

on holding a heavy thing in the robot arm. Furthermore,

when the arm is moving into some direction, the wrist

sensor data should indicate the status of the wrist along

with the change in the position. Therefore, these robot data

sets should suit well for testing our methods. The goal is to

separate the wrist signals to the dependent parts, which have

strong relationships between the relative moments, and to

the independent parts, showing the impacts from the external

world, such as grabbing a heavy object.
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Fig. 3. First 200 samples of the original super-Gaussian 3rd source signal
in the data set X and its estimates given by different methods.

We first preprocessed both the data sets by making their

means zero and by whitening them. Furthermore, the second

originally 7-dimensional position data set Y was transformed

to a 4-dimensional data set, too, by converting the 4-

dimensional quaternion representation to Euler angles in

space. Furthermore, we found in our experiments that better

results are obtained by using first-order and second-order

differences of subsequent values of each component for the

latter data set Y. Because the original components represent

position information, these first-order differences approxi-

mate their first derivative with respect to time, which is local

velocity. Second-order differences approximate the second

derivative of position with respect to time, which is local

acceleration in the direction of the respective coordinate.

Using second-order differences can be justified by the

classical law of physics: The force F = ma, where m is

the mass of the object and a is its acceleration. Here F is

the external force applied to the objects handled by the robot,

and it is thus linearly proportional to the acceleration.

Figures 4 and 5 show the results for the experiment where



Fig. 4. Dependent signals in the robot data sets for the wrist data (2 top
subfigures) and for the instantaneous acceleration data (2 bottom subfigures.

we used second-order differences for the position data set

Y using then CCA followed by the UniBSS method. The 4

singular values in the diagonal matrix D in (6) were 0.580,

0.340, 0.132, and 0.035. Thus it is clear that the first two

singular values correspond to mutually dependent compo-

nents, and the last quite small one to independent components

in the two data sets X and Y. The third singular value

0.132 is relatively small, and it was deemed to correspond

another pair of independent components. Inspecting the first

and second dependent components of the data sets depicted

in Figure 4 shows clearly their dependence. Here one must

recall the sign ambiguity in ICA and BSS methods: if the

separated source has different sign than the original one,

peaks correspond to bumps and vice versa. On the other

hand, especially the second components in Figure 5 are quite

clearly independent.

IV. DISCUSSION AND CONCLUSIONS

This paper presents first results on a new technique for

independent component analysis (ICA) and blind source

separation (BSS) in which canonical correlation analysis

(CCA) is used for preprocessing two data sets that are related.

The final goal is to find both the dependent and independent

components in these data sets. We used for final separation

Fig. 5. Independent signals in the robot data sets for the wrist data (2 top
subfigures) and for the instantaneous acceleration data (2 bottom subfigures.

after CCA two ICA and BSS methods, the highly popular

FastICA method [1], [9], [22] and the general UniBSS

method [10], [23] which should be able to separate different

categories of source signals. Our experimental results with

synthetically generated data sets that consist of mixtures of

source signals that are quite difficult to separate show that

CCA preprocessing improves clearly the performance of both

FastICA and UniBSS methods. Especially the performance

of FastICA is improved for many sources dramatically:

not only is the separation quality measured using signal-

to-noise ratio much better, but with CCA preprocessing

FastICA can separate many sources for which it alone fails

in separation. Furthermore, we noticed in our experiments

that after CCA preprocessing FastICA often converges much

faster, requiring much less iterations than without it.

The simpler method combining CCA and FastICA is

often preferable in practice for several reasons, even though

the combination of CCA and UniBSS is more general and

yields better results in difficult problems. First, FastICA

requires much less samples to converge than the UniBSS

method. Second, in the UniBSS method different types of

nonlinearities must be used for separating sub-Gaussian and

super-Gaussian sources [10], and therefore one should know

in advance or be able to estimate how many sources belong

to these categories. Third, FastICA requires usually much



less iterations than the UniBSS method for convergence.

Fourth, the combined CCA followed by FastICA method

is computationally not demanding, and scales well with the

dimensionality of the problem.

Canonical correlation analysis is based on second-order

statistics, that is, autocovariances and cross-covariances of

the two related data sets. Furthermore, like PCA it can be

derived from a probabilistic model in which all the involved

random vectors are Gaussian [20]. In our method, this is

not so great limitation as one might expect, because all

the information including higher-order statistics and non-

Gaussianity contained in the two related data sets are retained

in mapping them to the subspaces corresponding to their

dependent and independent components in (12). The division

into these subspaces is now based on inspection of the

magnitudes of singular values of the cross-covariance matrix

of whitened data sets. One could argue that also higher-order

statistics should be taken into account in determining these

subspaces. However, even this is often not critical because

the final goal is to separate all the sources in the related two

data sets irrespective of how dependent or independent they

are from each other and in which way they are divided into

these subspaces.

In real-world there exist many data sets which are

related, and hence there should be many applications to

our method. Thus far we have studied robot grasping data

and presented some results for it at the end of this paper.

Our next application which is currently under study is

biomedical data consisting of magnetic and electric brain

signal measurements. However, for these real world data

sets the correct results are usually unknown, and one can

often mainly assess the meaningfulness of the results only.
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