
Proceedings of the
NIPS 2005

Workshop on
Machine Learning for
Implicit Feedback and

User Modeling

Workshop at NIPS 2005, in Whistler, BC, Canada,
on December 10, 2005.

http://www.cis.hut.fi/inips2005/
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Preface

The workshop, organized in the NIPS Workshop programme on December
10, 2005, was arranged to gather together machine learning researchers in-
terested in a new promising and challenging research area. Some of the
papers introduced best-performing solutions of a PASCAL Eye Movement
Challenge, of inferring intent of users based on eye movement signals.1 The
rest broadened the scope towards other implicit feedback signals, and to-
wards more general problems of user modeling.

The tasks require advanced signal processing and feature extraction, and dy-
namic machine learning models. Several branches of machine learning are
applicable, and we expect eye movement data to become a new challenging
testbench for machine learning algorithms.

The Eye Movement Challenge was organized for the PASCAL network but
participation was open to all. We made eye movement data available, and
the objective was to predict from eye movement data whether a reader finds
a text relevant. The scientific goals of the Challenge were to advance ma-
chine learning methodology, to find the best eye movement features, and to
learn of the psychology underlying eye movements in search tasks. The set-
ting and the data have been described in more detail in the technical report2,
reproduced for convenience in this proceedings volume.

The challenge consisted of two different parts. In the first, the eye move-
ments had been preprocessed into a sequence of feature vectors, and the
task of the participants was to predict, for each sequence, whether the read
text was relevant or not. In machine learning terms, the task was binary
classification of multidimensional sequences.

Several kinds of machine learning methods were tried on the problem. An
ensemble of multilayer perceptrons of Pfeiffer et al. was the winner. They
re-computed a new set of features, which may account for part of the suc-
cess. Decision trees performed well too; no paper on them was presented
in the workshop, however. Conditional random fields of Do and Artières
were among the best, followed by a very different methodology, symbolic
approaches based on finite state machines of Largeron and Thollard. Sev-
eral additional, less well performing methods submitted to the competition
remain undocumented, since papers were not submitted to the workshop.

It is difficult to draw conclusions on the relative performance of the various

1The Challenge has a web site at http://www.cis.hut.fi/eyechallenge2005/.
2Jarkko Salojärvi, Kai Puolamäki, Jaana Simola, Lauri Kovanen, Ilpo Kojo, Samuel Kaski. In-

ferring Relevance from Eye Movements: Feature Extraction. Helsinki University of Technology,
Publications in Computer and Information Science, Report A82. 3 March 2005.
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methods since many of the applications were only quick feasibility stud-
ies. The difference in the performance of the best performing documented
methods was only about two percentage units, of which the new feature
extraction performed by the winners may account for a major share. The
winning entry obtained 72.3 % classification accuracy, while the dummy
model, used as a baseline, which assigned everything to the largest class
would have given 46.5 % accuracy in the test data set. The choice of the
machine learning methods is probably not as crucial as the choice of appro-
priate features, a lesson often learned in machine learning studies.

In the second part or subchallenge, the participants were given the raw eye
movement trajectory, but the task was still the same: Predict, based on the
trajectory, whether the read text was relevant. This competition was clearly
more laborious, and attracted only three participants. Of these, the clear
winner was Lepola, with an innovative methodology that mimics neural mi-
crocircuits.

In addition to reporting on competition results, the workshop was intended
to broaden the discussion to other applications of eye tracking, and other
related research on user modeling. This was achieved through the invited
talks, and the contributed papers by Dorr et al., where they predict eye move-
ments in order to guide them with suitable visual stimuli.

Finally, we wish to thank the programme committee for the refereeing work,
Dr. Greg Edwards for the enthusiastic PASCAL invited talk, Dr. Cristian
Sminchisescu and Dr. Wei Zhang for the two other invited talks, all other
speakers and participants of the challenge, Mr. Jarkko Salojärvi and Mr.
Lauri Kovanen for hard work in organizing the challenge, and PASCAL for
funding.

Samuel Kaski and Kai Puolamäki
Laboratory of Computer and Information Science
Helsinki University of Technology
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Workshop Programme

In Whistler, Canada, on December 10, 2005.

MORNING SESSION 7:30–10:30

7:30 Welcome and overview Samuel Kaski &
Kai Puolamäki

7:45 Why solving eyetracking analysis issues is valuable
and fun∗ (PASCAL Invited Talk) Greg Edwards

8:45 Discriminative Models and Learning for 3d Human
Motion Analysis∗ (Invited Talk) Cristian Sminchisescu

9:00 Coffee break

Presentations of best performing systems from the PASCAL Eye Movement Challenge:

9:20 Symbolic answers to an eye-tracking problem∗∗ Franck Thollard

9:40 Conditional Random Field for tracking user behaviour
based on his eye’s movements∗∗ Trinh Minh Tri Do

10:00 Predicting Text Relevance from Sequential Reading
Behavior∗∗ (Winner of Competition 1) Michael Pfeiffer

10:20 Wrap-up and discussion

10:30 End of morning session

AFTERNOON SESSION 15:30–18:30

15:30
Inferring Relevance from Eye Movements Using
Generic Neural Microcircuits∗∗ (Winner of Competi-
tion 2)

Tuomas Lepola

Other talks about implicit feedback and user modeling:

15:50 Learning the users interests using the search history Nesrine Zemirli

16:20 Predicting, analysing, and guiding eye movements∗∗ Martin Böhme

16:50 Coffee break

17:10 A user model of eye movements during visual search∗
(Invited Talk) Wei Zhang

17:40 Wrap-up and discussion

18:30 End of workshop

∗ Abstract is included in this proceedings volume.
∗∗ Extended abstract is included in this proceedings volume.
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Why solving eyetracking analysis issues is
valuable and fun∗

Greg Edwards
Eyetools Inc.

Abstract

Eyetools was born in 2000 out of the Stanford University Advanced Eye
Interpretation Project. After seeing the business value of eyetracking re-
sulting from the Stanford-Poynter Project, a collaborative study between
the Poynter Institute and Stanford University’s Department of Communi-
cations around the viewing of online news sites, founder Greg Edwards
spun out Eyetools. Since then, Eyetools’ pioneering work in inferring
mental state from eye movements and visualizing eyetracking data has
led to several key patents in the area, and has enabled eyetracking to be
put into use more easily by an ever expanding number of companies and
people. Eyetools’ roots in Human-Computer Interaction began in 1995

∗PASCAL Invited Talk
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Discriminative Models and Learning for 3d
Human Motion Analysis∗

Cristian Sminchisescu
TTI-C

University of Toronto
Rutgers University

Abstract

I will discuss discriminative learning algorithms for estimating 3D hu-
man motion in monocular video sequences. The complexity of the prob-
lem stems from the high-dimensionality of the human (joint angle) state
space and from the unknown and variable nature of human surface and
appearance parameters in many real scenes. Depth ambiguities, image
clutter and occlusion further complicate matters. While this problem has
been traditionally approached using the powerful machinery of genera-
tive models, the main emphasis of this talk will be on an emerging class
of complementary discriminative temporal estimation models. These can
be viewed as up-side down, mirrored versions of the classical temporal
chains used with Kalman filtering or Condensation. But rather than in-
verting a generative imaging model at runtime, we will learn to coopera-
tively predict complex local image-to-state mappings, using Conditional
Bayesian Mixtures of Experts. These are embedded in a probabilistic
temporal framework based on Discriminative Density Propagation in or-
der to enforce dynamic constraints and allow a principled propagation
of uncertainty. The models are trained using a human motion capture
database and a 3D computer graphics human model to synthesize pairs
of typical human configurations together with their realistically rendered
2D image silhouettes. To demonstrate the algorithms, I will present em-
pirical results on real and motion capture-based test sequences.
This is joint work with Atul Kanujia, Zhiguo Li and Dimitris Metaxas.

∗Invited Talk
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Symbolic answers to an eye-tracking problem

Christine Largeron
EURISE∗

largeron@univ-st-etienne.fr

Franck Thollard
EURISE∗

thollard@univ-st-etienne.fr

Abstract

We provide in this article experiments made on the eye-tracking chal-
lenge proposed by the PASCAL European network. We concentrate here
on symbolic approaches mainly based on finite states machines. Our ex-
perimental study opens many questions mentioned as a conclusion.

1 Introduction

We address in this paper some experiments made on a shared task proposed by the
PASCAL1 network and which concerns proactive information retrieval [4]. In this task a
reader is given a question and 10 sentences, one of them beingthe correct answer to the
question, 4 being relevant and 5 irrelevant. Some information such as the scheduling of the
reading or the pupil diameter of the eye of user are stored. During the learning process the
machine is given the reading features and the label of the sentences (2 for correct answer,
1 for relevant, and 0 for irrelevant). At evaluation time, the machine is asked to label the
sentences. More information on the task together with the data sets can be found at the
challenge web page:http://www.cis.hut.fi/eyechallenge2005/.

We analyzed the data using different approaches. We first built a graphical interface of
the data from which we get a visual rendering of the user behavior. We then used some
statistical approaches in order to find relevant features. We then applied decision trees (C5)
to handle numerical and categorical features. In order to take into account the behavior of
the user, we finally transformed the data in a symbolic form and used syntactic models.

2 Analysis of the data

2.1 Graphical Data Interface: GDI

We built a graphical interface of the data (GDI) – see figure 1 –in order to see what
words the user are reading and in which order. On the GDI, we can select a question (or
assignment) and a number that allows to tune the time unit. The words of each of the 10
answers are drawn in a color that corresponds to their labels. As the simulation starts, the
word being read is colored in a different color, showing the scheduling of the reading.

∗EURISE, Jean-Monet University, 42023 Saint-Etienne Cedex 2 France
1PASCAL stands for Pattern Analysis, Statistical Modelling and ComputationalLearning.
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Figure 1: Eye tracking Graphical Data Interface

Table 1: Correlation rates
Correlation rates above 0.7 Overall Label 0 Label 1 Label 2
PrevFixPos – FirstSaccLen 0.794 0.798 0.796 0.785

PupilDiamLag – PupilDiamMax 0.772 0.709 0.721 0.86
MeanFixDur – totalFixDur 0.696 0.711 0.696 0.681

fixcount – firstPassCnt 0.674 0.813 0.778 0.496

On the left hand side of the sentences, a circle is drawn in thecolor of the label of the word
being read; Its size changes according to the pupil diameter.

This GDI allows us to see that the users, almost always, finishthe parsing of the 10
answers on the correct one. Labeling the last read sentence as label 2 performs a precision
and recall around 92.5% on the validation set.

2.2 Statistical analysis of the data

When facing a new problem, a first natural step could consist inunderstanding the data.
We therefore made a computation of correlation rates and principal component analysis.

2.2.1 The correlation rate

We first computed the correlation rates between the numerical variables. As shown in
table 1, the rates were not very high: only very few correlation rates are above .7. The
highest value is obtained for prevFixPos and firstSaccLen. But, when we considered only
the records corresponding to each label, the rates did not stay constant. For instance the
correlation between fixcount and firstPassCnt is only equal to 0.496 for the label 2 when
is equal to 0.674 on the training set. It seems then not possible to reduce the number of
features by leaving out highly correlated features.

2.2.2 The principal component analysis

We continued our study with Principal Component Analysis (PCA) in order to find out
whether there were clusters in the data. We used centered data to preserve the distance
between the records instead of normalized data as usually.
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Table 2: PCA and C5
PCA C5 Comp. nb. Eigen val. % of var. cumul. var.
fixcount fixcount 1 3807987.65 85.249 85.249
firstpasscnt firstpasscnt 2 465286.091 10.416 95.665
prevfixdur P1stFixation 3 74205.070 1.661 97.326
firstfixdur P2stFixation 4 44286.255 .991 98.318
firstpassfixdur prevfixdur 5 26521.484 .594 98.911
nextfixdur firstfixdur 6 14507.983 .325 99.236
v11n firstpassfixdur 7 7774.952 .174 99.410
lastsacclen nextfixdur 8 7009.023 .157 99.567
prevfixpos firstSaccLen 9 5245.223 .117 99.685
landingpos lastsacclen 10 5107.055 .114 99.799
leavingpos prevfixpos 11 4116.011 9.214E-02 99.891
totalfixdur landingpos 12 3881.247 8.689E-02 99.978
meanfixdur leavingpos 13 984.843 2.205E-02 100.00
nregressfrom totalfixdur 14 .297 6.659E-06 100.00
regresslen meanfixdur 15 .281 6.283E-06 100.00
regressdur nregressfrom 16 4.971E-02 1.113E-06 100.00
puplidiammax regresslen 17 3.716E-02 8.320E-07 100.00
pupildiamlag nextWordRegress 18 1.602E-02 3.586E-07 100.00
timeprtctg regressdur 19 4.204E-04 9.411E-09 100.00

puplidiammax
pupildiamlag
timeprtctg

Table 3: Confusion Matrix for the C5 algorithm
True / Predicted 0 1 2

0 377 196 9
1 255 226 2
2 5 6 138

Table 2 (left, first column) gives the list of the variables used in the PCA. As we can see in
table 2, (right) factor 1 accounts for 85.25% of the variance, factor 2 for 10,42% , and so
on. The last column contains the cumulative variance extracted. According to the Cattell’s
criterion [1], we could retain two factors to summarize the data set. Judging from the
projection of the training set on the two principal axes, it was not possible to separate the
three clusters. The identification of each element by its label on the PCA plot (Figure 2)
confirmed this result.

These conclusions lead us to consider a large set of variables, numerical and categorical,
and to use C5 classifier designed by Quinlan2 to handle the features given in Table 2 column
2. Besides that, all the records corresponding to the last sentence read have been excluded.
Following the rule deduced from the GDI, the decision for these records is correct answer
(label = 2). Results over the evaluation set are reported in Table 3. As expected by the
preliminary analysis, results are not extremely high insofar as accuracy is 61.04% on the
evaluation and 60.57% on the test set. We thus decided to model the user’s behavior.

2Seehttp://www.rulequest.com/see5-info.html for more details on the C5 algo-
rithm.
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Figure 2: PCA Analysis
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3 Probabilistic finite state models

The idea of the approach consists in modeling the reading of the user as a path in a finite
states machine. We applied the following strategy:

1. discretizing the data,

2. splitting the training set in order to have a learning set for each target label,

3. building three models, one for each label,

4. guessing the label according to each model, and the fact that there is exactly 4
(respectively 5) relevant (respectively irrelevant) sentences in each assignment.

3.1 Discretizing the data

The aim of the discretization is to model the behavior of the user as a string.

We decided to describe an eye movement and its intensity by a pair of characters. We
built, by hand, a 9 words vocabulary: B0 B1 B2 E F0 F1 F2 Q0 Q1. Except for the letter E
which models the end of the reading, each symbol is composed by two components, a letter
indicating an eye movement and a number modeling how important the movement was. B
stands for Backward reading, F for Forward reading, and Q forQuitting the sentence.

3.2 Building the models

From this coding we built three multisets of strings (one foreach label) of the form:

F0 F0 F0 Q0
F0 F0 F0 Q1
F0 F0 F0 Q1
F0 Q1
F0 F0 Q1
F0 Q1 F0 F1 F1 B0 Q0 B0 E
F0 Q1
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Table 4:
Perplexity of the models (the lower, the better).
0 – 1 means ”learning on train 0 and testing on validation 1”

parameter 0–0 0–1 1–0 1–1
0.05 5.13839 6.6329 5.32001 6.4469
0.01 3.46395 4.69896 3.58998 4.55078
0.002 2.94324 4.68004 4.28921 8.33305
0.005 2.99874 4.64709 3.10137 4.3912
0.0005 8.67323 22.7453 8.94031 21.9032

Table 5: Confusion Matrix for the different approaches
Automaton model 3-gram model 3-gram - ad-hoc

True / Predicted 0 1 2 0 1 2 0 1 2
0 438 135 9 421 152 9 381 194 7
1 267 214 2 248 233 2 183 296 4
2 2 9 138 2 9 138 2 9 138

Overall Accuracy 65% 65% 67%

Since the sets are multisets, we decided to take into accountthis information by building
probabilistic models. We used two kind of models: smoothed trigram and probabilistic
automata. Each of these models provides a probability distribution overΣ?, Σ being the
vocabulary.

The algorithm for inferring probabilistic automata [3] hasa tuning parameter. We usually
get the value of the parameter by minimizing the perplexity [2] (or equivalently maximizing
the average of the probabilities the inferred automaton provides) on a held out set. Table 4
provides the perplexity obtained by the models on differentdata. Column 0–1 means: train
the model on irrelevant sentences and evaluate it on a held out set of relevant ones.

According to table 4, we decided to use the parameter 0.0005 in order to maximize the
margin between label 0 and 1.

3.3 Guessing the label

For we have a quite good rule for label 2 (extracted from the GDI), we decided to first
set the label 2 for the sentences on which the user finishes thereading (i.e. sentences that
contain E in their coding) and then consider a two class problem.

On table 4 we can see that the model built on relevant sentences is not good as it predicts
better irrelevant sentences than relevant ones. We thus decided to consider only the model
built on irrelevant sentences (i.e. sentences labelled 0) and accordingly set label 0 to the
5 more probable sentences according to the model 0 and label 1to the other ones. The
performances of this strategy is given in table 5, left, and performs a global accuracy of 65
% on the validation set. We did the same experiments using a 3-grams model which obtains
equivalent performances (65%, table 5, center).

Note that a specific method has been designed by hand by C. de laHiguera for guessing
the label given the models. This ad-hoc strategy raises the performances to 67% (table 5
right).
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4 Conclusion and further works

In this article, we proposed to use symbolic approaches in order to tackle the eye tracking
problem. We identified different steps: building a symboliccoding of the data, inferring
syntactic models and guessing the final labels.

We proposed different methods for each step: automaticvs hand-made building of the
coding, building probabilistic automatavs 3-grams, general method for guessing and ad-
hoc method. Even if the results are not as bad as compared to the other methods, we now
face more questions than answers:

Automatic building of the coding: building the coding automatically is a problem in
itself. We tried to build the coding automatically using therules provided by the C5 algo-
rithm but the preliminary results were very disappointing (i.e. ∼ 55% of accuracy on the
validation set). We thus built the coding by hand keeping in mind the following rules:

• the same string must belong to only one class,

• the vocabulary must be quite small in order to avoid the ”sparse data problem”,

• the sentences of the coding must be quite short,

• the vocabulary must model/select relevant features (e.g. the E symbol that model
the ”end of reading”).

In order to optimize the coding itself, it would be good to define an ”off line” quality
measure of a coding, that is, in some way, quantifying the above rules.

Quality measure for the inference: as seen before, the best value for the tuning parameter
for this task was not the one for which the better model – in term of prediction power– is
built. We thus think that a new quality measure is needed in such a case.

Final guess of the label: in the experiments presented, we noted that the results were
drastically improved when a consistent labelling is guaranteed (which means, in our case,
exactly one sentence is labelled correct, 4 relevant and 5 irrelevant). Moreover, the results
can be very different depending on the job done at that step. We think that some more
automated work is needed here.

Following one of the anonymous reviewers who ”guess that thestrengths of symbolic ap-
proach [...] might be simplicity, robustness and speed of implementation”, we would like
to continue this work in that direction.

Acknowledgements The authors wish to thank Colin de la Higuera, Thierry Murgueand
Jean-Christophe Janodet for fruitful discussions.
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Conditional Random Field for tracking 
user behavior based on his eye’s 

movements1  

 
 Trinh Minh Tri Do Thierry Artières 
 LIP6, Université Paris 6 LIP6, Université Paris 6 
 8 rue du capitaine Scott 8 rue du capitaine Scott 
 75015, Paris, France 75015, Paris, France 
 do@poleia.lip6.fr Thierry.artieres@lip6.fr 
 

Abstract 

Conditional Random Fields offer some advantages over traditional 
models for sequence labeling. These conditional models have 
mainly been introduced up to now in the information retrieval 
context for information extraction or POS-tagging tasks. This paper 
investigates the use of these models for signal processing and 
segmentation. In this context, the input we consider is a signal that 
is represented as a sequence of real-valued feature vectors and the 
training is performed using only partially labeled data. We propose 
a few models for dealing with such signals and provide 
experimental results on the data from the eye movement challenge.   

1  Introduct ion 

Hidden Markov models (HMM) have long been the most popular technique for 
sequence segmentation, e.g. identifying the sequence of phones that best matches a 
speech signal. Today HMM is still the core technique in most of speech engines or 
handwriting recognition systems. However, HMM suffer two major drawbacks. 
First, they rely on strong independence assumptions on the data being processed. 
Second, they are generative models that are most often learned in a non discriminant 
way. This comes from their generative nature, since HMM define a joint distribution 
P(X,Y) over the pair of the input sequence (observations) X and the output sequence 
(labels) Y. Recently, conditional models including Maximum Entropy Markov 
models [1] and Condition Random Fields [2] have been proposed for sequence 
labeling. These models aim at estimating the conditional distribution P(Y/X) and 
exhibit, at least in theory, strong advantages over HMMs. Being conditional models, 
they do not assume independence assumptions on the input data, and they are 
learned in a discriminant way. However, they rely on the manual and careful design 
of relevant features. 

                                                        
1 This work was supported in part by the IST Program of the European Community, under the 
PASCAL Network of Excellence, IST-2002-506778. 
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Conditional Random Fields (CRF) has been shown to overcome traditional 
Markovian models in a series of information retrieval tasks such as information 
extraction, named entity recognition… Yet, CRF have to be extended to more 
general signal classification tasks. Indeed, the information retrieval context is very 
specific, considering for instance the nature of the input and output data. Designing 
relevant features for such data is maybe easier than for many other data. Also, 
algorithms proposed for training CRF require a fully labeled training database. This 
labeling may be available in information retrieval tasks since there is a kind of 
equivalence between nodes and labels but it is generally not available in other signal 
processing tasks. Hence, the previous usages of CRF do not fit well with many 
sequence classification and segmentation tasks concerning signals such as speech, 
handwriting etc. Input data is rougher; it is a sequence of real-valued feature vectors 
without precise semantic interpretation. Defining relevant features is then difficult. 
Also, training databases are not fully labeled. In speech and handwriting recognition 
for instance, data are labeled, at best, at the unit (phoneme or letter) level while it is 
often desirable to use a number of states for each unit, or even a number of 
modalities for a same unit (e.g. allograph in handwriting recognition).  

This paper investigates the use of CRF models for such more general signal 
classification and segmentation tasks. We first introduce CRF and an extension 
called segmental CRF. Then we describe how to use CRF for dealing with 
multimodal classes and signal data and discuss corresponding inference and training 
algorithms. At last, we report experimental results concerning the eye movement 
challenge. 

2  Condit ional Random Fields for sequent ial data 

Sequence labeling consists in identifying the sequence of labels TyyY ,...,1=  that 
best matches a sequence of observations TxxX ...1= : )/(maxarg* XYPY Y= . CRF 
are a particular instance of random fields. Figure 1 illustrates the difference between 
traditional HMM models and CRF. HMM (Fig. 1-a) are directed models where 
independence assumptions between two variables are expressed by the absence of 
edges. CRF are undirected graphical models, Figure 1-b shows a CRF with a chain 
structure. One must notice that CRF being conditional models, node X is observed 
so that X has not to be modeled. Hence CRF do not require any assumption about 
the distribution of X. From the random field theory, on can show [2] that the 
likelihood ( )XYP /  may be parameterized as: 
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YXFWe is a normalization factor, ),( YXF  is a feature vector 

and W is a weight vector. Features F(X,Y) are computed on maximal cliques of the 
graph. In the case of a chain structure (Fig. 1-b), these cliques are edges and vertices 
(i.e. a vertice yt or an edge (yt-1 , yt)).  

In some cases there is a need to relax the Markovian hypothesis by allowing the 
process not to be Markovian within a state. [3] proposed for this semi-Markov CRF 
(SCRF). The main idea of these models is to use segmental features, computed on a 
segment of observations associated to a same label (i.e. node). Consider a 
segmentation of an input sequence TxxxX ,...,, 21= , this segmentation may be 
described as a sequence of segments JsssS ,...,, 21= , with TJ ≤ and ( )jjjj yles ,,=  
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where je  ( jl ) stands for the entering (leaving) time in state (i.e. label) jy . 

Segmental features are computed over segments of observations 
jj le xx ,...,  

corresponding to a particular label jy . SCRF aims at computing )/( XSP  defined as 
in Eq. (1). To enable efficient dynamic programming, one assumes that the features 
can be expressed in terms of functions of X, sj and yj-1, these are segmental features: 
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Inference in CRF and SCRF is performed with dynamic programming like 
algorithm. Depending on the underlying structure (chain, tree, or anything else) one 
can use Viterbi, Belief Propagation [4] or Loopy Belief Propagation [5]. Training in 
CRF consists in maximizing the log-likelihood L(W) based on a fully labeled 
database of K samples, ( ){ }K

kkk YXBA 1, == , where kX  is a sequence of observations 
and Yk is the corresponding sequence of labels. 
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This convex criterion may be optimized using gradient ascent methods. Note that 
computing )(XZW  includes a summation over an exponential number of label 
sequences that may be computed efficiently using dynamic programming. Training 
SCRF is very similar to CRF training and also relies on a fully labeled database. 

  
(a) (b) 

Figure 1: Dynamic representation of HMM (a) and CRF (b) as graphical models, where 
grey nodes represent observed variables.  

3  Semi-Markov CRF for signal segmentat ion 

We investigate the use of segmental CRF for signal segmentation. When dealing 
with real signals, one has to consider the continuous nature of input data, the 
multimodality of the classes and one has to develop algorithms for learning models 
without a fully labeled dataset. Hence, in the following we will consider that, during 
training, the label Yk corresponding to input sequence Xk consists in the sequence of 
classes in Xk, whatever the length of the segments associated to these classes. 

To take into account multimodality (e.g. a letter may be written with different 
styles) we investigate the use of a few states in a Segmental CRF model for each 
class, each one corresponds to a modality of the class. We will note K the number of 
states sharing the same label. Since there are several states corresponding to the 
same label, there are a number of segmentations S that correspond to a particular 
label sequence Y. Following [6] we introduce hidden variables for multimodality 
and segmentation information and build upon their work to develop inference and 
training algorithms with incomplete data. Hence, when conditioned on an input X 
the likelihood of a label sequence Y is defined as: 
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Where S(Y) stands for the set of segmentations S (defined as in §2) corresponding to 
the sequence of labels Y, M denotes a sequence of hidden variables, 
with { }Kmi ,...,1∈ . The use of hidden variables (S,M) makes inference expensive: 
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Where Y, S and M have the same length, say T. This expression cannot be computed 
with a dynamic programming routine since the maximum and sum operators cannot 
be exchanged. However, if one uses a Viterbi approximation where summation is 
replaced with the maximum operator, and one assumes that ),,(. MSXFWe may be 
factorized in a product of T independent terms then the double maximization may be 
computed efficiently. Hence we use: 
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Training aims at maximizing the log-likelihood L(W). Using Eq. (4), the derivative 
of the likelihood of the kth training example is computed as: 
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This criterion is expressed in terms of expected values of the features under the 
current weight vector that are ),,(),,/,( MSXFE kvWkXkYMSP and 

),,(),/,( MSXFE kvWkXMSP . These terms may be calculated using a forward-backward 
like algorithm since the CRF is assumed to have a chain structure. Based on the 
chain structure of the models we used two types of features: local features 
(computed on vertices) ),,,(1

ttt mqyXF  and transition features computed on 

edges, ),,,,,,( 111
2

−−− tttttt mmqqyyXF .  

4  Eye movement challenge data 

Here is a quick description of the challenge and of the data for the competition 1 of 
the challenge, see [7] for more details. The eye movement challenge concerns 
implicit feedback for information retrieval. The experimental setup is as follows. A 
subject was first shown a question, and then a list of ten sentences (called titles), 
one of which contained the correct answer (C). Five of the sentences were known to 
be irrelevant (I), and four relevant for the question (R). The subject was instructed 
to identify the correct answer and then press ’enter’ (which ended the eye movement 
measurement) and then type in the associated number in the next screen. There are 
50 such assignments, shown to 11 subjects. The assignments were in Finnish, the 
mother tongue of the subjects. The objective of the challenge is, for a given 
assignment, to predict the correct classification labels (I, R, C) of the ten sentences 
(actually only those that have been viewed by the user) based on the eye movements 
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alone. The database is divided in a training set of 336 assignments and a test set (the 
validation set according to challenge terminology) of 149 assignments. The data of 
an assignment is in the form of a time series of 22-dimensional eye movement 
features derived from the ones generally used in eye movement research (see [7]), 
such as fixation duration, pupils diameter etc. It must be noticed that there is a 23th 
feature that consists in the number of the title being viewed (between 1 and 10).  

5  Experiments  

We applied segmental CRF as those described in §3 to eye movement data. The aim 
is to label the ten titles with their correct labels (I, R, C). This may be done though 
segmenting an input sequence with a CRF whose states correspond to labels I, R and 
C. We investigated a number of models for this. All models have been trained with a 
regularized likelihood criterion in order to avoid over fitting [6]. These models work 
on vectors of segmental features computed over segments of observations. A simple 
way to define segmental feature vector would be the average feature vector over the 
observations of the segment. However, the average operator is not necessarily 
relevant. We used ideas in [7] to choose the most adequate aggregation operator 
(sum, mean or max) for each of the 22 features.  

The first model is a simple one. It is a SCRF model with three nodes, one for class 
R, one for class C and one for class I. It works on segmental features where 
segments correspond to sequences where the user visits one particular title. There is 
no transition features, corresponding to the change from one title to another one. 
This model is called 3NL for 3 Nodes CRF with Local features only (no transition 
features) and 3NLT if transitions features are added. It must be noticed that since a 
title may be visited more than on time in an assignment it is desirable that the 
labeling algorithm be consistent, i.e. finds a unique label for every title. This is 
ensured, whatever the model used, by adding constraints in the decoding algorithm.  

One can design more complicated models by distinguishing between the different 
visits of a same title. For example, one can imagine that a user who visits a title a 
second or a third time will not behave as he did the first time. Maybe he may take 
more time or quickly scan all the words in the title… Hence, we investigated the use 
of SCRF models with two or three states per class (I, R, C). In the two states 
models, a first state is dedicated to the first visit to a title of class R, C or I. The 
second state is dedicated to all other posterior visits to this title. When using 3 states 
per class, we distinguish among the first visit, the last visit and intermediate visits to 
a title. These models are named 6NL and 9NL depending on their number of states 
per class (2 or 3) if they make use of local features, and 6NLT and 9NLT if they 
make use of local and transition features.  

Finally, we investigate the use of multimodal models. Going back to the first model 
3NL, we consider the use of a few states per class, this time corresponding to 
different ways of visiting a title (there is no chronological constraints).  Models are 
named 3N2ML for 3 states, 2 Modes per class, and Local features.  

Table 1 reports experimental results for various SCRF-based models and for 4 
additional systems. The first one is a benchmark HMM system. It works on the same 
input representation (feature vectors) and has the same number of states as there are 
nodes in the 6NL model. The three other systems are combination systems combine 
three classifiers votes.  

A first comment about the results is that all SCRF models outperform the HMM 
system. Also, using more complex models is not systematically better useful. We 
investigated two ways for this, firstly by taking into account the number of the visit 
(increasing the number of states), secondly by taking into account multimodality 
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(increasing the number of modes). Using a few states per class in order to take into 
account the number of a visit of a title allows reaching up to 73% (9NL) while 
allowing multimodality leads to poorer results. Also, we did not succeed in using 
efficiently transition features, this is still under investigation. At last, voting systems 
did not improve much over singles classifiers although HMM and SCRF systems 
tend to be complimentary. There is certainly some room for improvements here. 
Note however that we observed more stability in the results of voting systems when 
training and testing on various parts of the database. 

  Table 1 – Comparison of various systems on the eye movement challenge task.  

 
Technique System’s name #states- #modes Features Accuracy (%) 

SCRF 3NL 3 - 1 L 71 
- 3N2ML 3 - 2 L 71.5 
- 3NLT 3 - 1 L + T 68.9 
- 6NL 6 - 1 L 71.8 
- 9NL 9 - 1 L 73.2 
- 9N2ML 9 - 2 L 70.8 
- 9NLT 9 - 1 L + T 69.4 

HMM HMM 6 states  L 66.2 
Combination of  3NL, 6NL, 9NL L 72.1 

Combination of  HMM, 6NL, 9NL L 72.3 
Combination of  HMM, 3NL, 6NL L 71.9 

6  Conclusion 

We presented systems based on conditional random fields for signal classification 
and segmentation. In order to process signals such as eye movement, speech or 
handwriting, we investigated the use of segmental conditional random fields and 
introduced the use of hidden variables in order to handle partially labeled data and 
multimodal classes. Experimental results on the eye movement challenge data show 
that our CRF models outperform HMM, but all results are rather close showing the 
difficulty of the task.  
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Abstract

In this paper we show that it is possible to make good predictions of
text relevance, from only features of conscious eye movements during
reading. We pay special attention to the order in which the lines of text
are read, and compute simple features of this sequence. Artificial neural
networks are applied to classify the relevance of the read lines. The use
of ensemble techniques creates stable predictions and good generaliza-
tion abilities. Using these methods we won the first competition of the
PASCAL Inferring Relevance from Eye Movement Challenge [1].

1 Introduction

The objective of the PASCAL Inferring Relevance from Eye Movement Challenge [1] was
to predict relevance of lines of text from eye movements of readers. The subjects were first
shown a question and then a list of ten possible answers on a computer screen. The subject
had to find the correct answer, then press ’Enter’ and finally type in the chosen line num-
ber. Among the non-correct lines, there were four sentences which were relevant for the
question, five were irrelevant. The task in the challenge is to identify not only the correct,
but also the relevant lines of text, being provided only measurements of the eye movements
of the subject. The gaze location on the screen and the pupil diameter were tracked dur-
ing each assignment. For the first competition, the organizers had already segmented the
trajectory data from the eye tracker and assigned fixations and saccades to the correspond-
ing words and lines. 22 features that are commonly used in psychological eye movement
studies were computed for every word. This made competition one a pure classification
problem. In the second competition only the raw eye movement data and word coordinates
were available. Thus preprocessing by segmentation and feature extraction was a main part
of the problem. Our work focuses on competition one.

Eye movements during reading have been extensively studied in the psychological literature
[2]. Different models pay more attention to either higher-level processes governing the
reading behavior, or unconscious eye movements. In our approach, however we more or
less neglected unconscious information, and computed features only from the sequence, in

∗All authors made the same contribution to this project.
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which the lines were read. Statistical analysis showed that for this task our simple features
contained enough information for standard classifiers to obtain good results.

2 Feature Extraction

2.1 Features for Competition One

The organizers already provided a dataset with pre-computed features which have shown
to be useful in other eye movement studies. Our approach, however, was quite different,
since we wanted to find out as much as possible about the relevance of the sentences, only
from the order in which the lines were read. This would imply that a much smaller fraction
of data, namely only the line number, would have to be measured in order to distinguish
between correct, relevant and irrelevant lines. Our features were computed for every seen
line in an assignment, and classification was then done on this reduced feature set.

We found out from analyzing individual assignments, that there are some reoccurring pat-
terns of sequential reading behavior. Due to the nature of the task, it was obvious that most
readers usually look at the line containing the correct answer before pressing ’Enter’ and
thereby finishing his task. A heuristic rule which assigns the label correct to the last read
line in each assignment, identifies 93.75% of all correct answers in the training set. This
rule is facilitated by the fact that all assignments with incorrect answers have been filtered
out by the organizers.

Additionally we noticed that the subjects spent significantly more time reading correct or
relevant sentences than irrelevant ones. So we simply counted the number of measurements
for each sentence, which turned out to be a very useful feature for classification. Secondly,
the subjects jumped between lines of text while they are thinking about the correct answer.
When they are deciding between different possibilities for a correct answer, it seems natural
that their focus jumps between the lines within their consideration. Another assumption is
that relevant sentences would rather be considered as a possible answer than an irrelevant
sentence. We therefore counted, how often the subjects returned to a sentence they had
already read before. This gave us a good estimation of the relevance that was attributed to
this sentence by the subject, since the number of returns is significantly higher for correct
or relevant lines. We also calculated jumps between the presumably correct line and all
other sentences as another feature, but this did not improve the performance.

Most subjects showed a stereotypical reading behavior, i.e. they started with line number
1 and continued to read subsequent sentences, eventually jumping back to known answers.
Therefore the position of a sentence within the list also plays a role, since some lines are
almost always seen (like line 1), and some are more often skipped.

A problem we had to deal with was that not all of the possible answers in an assignment
were read. Actually only in 40.8% of all assignments in the training set there was at least
one measurement for every sentence. The subject was only instructed to look for the correct
answer, but he was not told that the remaining lines contain either relevant or irrelevant
sentences. Therefore it happened that the subject found the correct answer very early and
did not even read a single relevant sentence. In this case it is of course almost impossible to
make a distinction between relevant and irrelevant sentences. So we included the number
of read lines as valuable context information, and also included a binary flag if all possible
answers were read.

Since subjects tended to stop reading after they found the correct answer, we calculated the
number of different sentences that the subjects read after or before having read that line. It
turned out that the subjects read significantly fewer lines after reading the correct answer.
In combination with the line number this feature thus provides evidence whether a sentence
is the correct answer or not. Table 1 summarizes the 8 features that were used:
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Table 1: Definition of features used for classification for every sentence in an assignment.
Features marked with * are constant for all sentences in an assignment.

# Feature Description
1 lineNr Line number within the 10 possible answers
2 isLastLine 1 if this sentence was the last one read during this

assignment
3 count Total number of measurements for this sentence
4 returns Number of jumps to this sentence after first reading
5 nrReadLines* Number of lines read during this assignment
6 readAllLines* 1 if all possible lines were read
7 newLinesBefore Number of different sentences that the subject

started to read before reading this line
8 newLinesAfter Number of different sentences that the subject

started to read after reading this line

2.2 Statistical Analysis

In this section we analyze the statistical properties of our extracted features on the training
set. We use mutual information (MI), a measure for arbitrary dependency between ran-
dom variables, and linear correlation (LC) to compare the calculated features against the
provided features for competition one. Mutual information has been used extensively in
the literature for feature selection [4] because mutual information is invariant under linear
transformations and takes into account the entire dependency structure of the random vari-
ables. On the other hand linear correlation is a natural measure for variable dependency.
These measures are therefore good estimators for the relevance of features, although they
do not take into account correlations among different features.

Firstly, we calculated the linear correlation and mutual information for each feature pro-
vided in the challenge with the class labels. We found that the original features are poorly
correlated, as can be seen in the left columns of Figures 1 (a) and (b) respectively. In
the first row of Figure 1(a) the LC and in 1(b) the MI, is shown for the correct vs. non-
correct labels. The second rows show relevant vs. non-relevant and the third rows irrele-
vant vs. non-irrelevant. The last rows display LC and MI for the relevant vs. irrelevant
problem, where correct lines have been removed. The provided features in general exhibit
small MI values, except for features 12 (lastSaccLen), 21 (regressDur), and 25
(nWordsInTitle). The higher information of feature 12 about the correct labels con-
firmed the earlier statement about jumps between the correct answer and other titles. The
high MI value for feature 21 is based on the same concept of going back for regression and
re-reading. The duration of a regression is therefore more significant for classification than
all other features.

Secondly, the mutual information and linear correlation for each of our extracted features
were computed (see Figure 1 - right columns). The results confirm that most of these
features are significantly more correlated with the class labels than the original features.
Note that feature 21 has the highest MI value with 0.072, which is four times smaller than
the maximum value for the new features (feature 2, with a MI value of 0.3042).

Some of the features exhibit neither high correlation nor high mutual information with
the class labels. Nevertheless their inclusion boosted the performance of the classifiers.
To explain this effect we calculated the MI of pairs of features with the class labels. We
discovered that all features except number 2 (isLastLine, which is a good predictor
on its own) show higher MI values in combination with each other than the sum of their
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(a) Linear Correlation
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(b) Mutual Information

Figure 1: Correlation and mutual information analysis of different feature sets.

individual MI values. This means that even though some features are weak individual
predictors, together they form a strong feature set.

We also calculated the MI and LC for our feature set after removing the correct titles to
identify the features which are most significant for the relevant vs. irrelevant problem (see
Figure 1 - last row). Feature 2 was almost constant for this dataset and therefore was not
used for identifying relevant or irrelevant lines. Including all remaining features, even if
their correlation and mutual information values were low, resulted in the best performance.
Combined MI analysis again explained this effect.

3 Classification and Results

In this section we present our strategies and methods for building proper classifiers for the
challenge datasets. Since the task is a 3-class classification problem, there exist two main
strategies to solve the problem: the first one is to build a multi-class classifier, which gets
the input pattern and assigns it to one of 3 classes. The second method, that we used in our
systems, is to use a hierarchical classifier that first checks if the input pattern is a member
of one of preselected classes (correct lines in this challenge) or not. If the result is negative,
it passes the pattern to another classifier that assigns it to one of the other two remaining
classes (relevant vs. irrelevant). In other words this technique decomposes a multi-class
problem to a series of two-class pattern recognition problems.

Table 2: Correct detection rate (in %) of different 3-class classifiers.

C4.5 AdaBoost SVM MLP
Train 68.17 68.62 63.85 66.71
Validation 69.19 65.24 66.23 71.09

We used the WEKA 3.4 package [3], which allowed us to quickly compare a variety of
pattern recognition algorithm for this task. After manual tuning of the hyperparameters
we calculated detection rates for different learning algorithms for training and validation
sets averaged over 10 runs. The results are summarized in Table 2, showing an advantage
for Multi-Layer Perceptrons (MLP) on the validation set. Note that these values are for 3-
class classifiers, but we tried the same experiments for the two stage classification strategy
mentioned above and the results were very similar.
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3.1 Correct Line Identification

As can be seen in Figure 1, linear correlation and mutual information analysis shows that
the features isLastLine, count, and returns are the most informative ones for iden-
tification of correct lines. Because of this we used only these features as input to our clas-
sifiers. We also changed the target labels to +1 for correct lines and -1 for the rest (relevant
and irrelevant).

For the rest of the project we switched to a more efficient and flexible tool for training
neural networks, namely the MATLAB Neural Networks Toolbox. A MLP with 3 hid-
den neurons and hyperbolic tangent activation functions was trained with scaled conjugate
gradient backpropagation. We tried different numbers of hidden neurons, but since the per-
formance did not change significantly with more neurons, we chose the simplest network
to avoid overfitting. In addition the error on the validation set was used as stopping crite-
rion for training. The overall performance on training, validation, and test sets are shown
in Table 3. Ensemble methods, as discussed in the next section, were also tried out for this
task, but since the recognition rate was almost constant for different MLPs, we decided to
use a single classifier instead.

3.2 Relevant vs. Irrelevant Lines Identification

For this task we first removed the predicted correct lines from the previous classifier for
training, validation, and test sets. Then the feature isLastLine was removed, since
correlation and mutual information analysis showed that it had no major contribution to
this task. We also changed the target labels to +1 for relevant and -1 for irrelevant lines. As
another preprocessing step, we normalized the feature values to have zero mean and unit
variance according to the combined training, validation and test sets.

Different MLPs were trained, and for each network the numbers of hidden neurons was
randomly selected between 4 and 10. The activation function was hyperbolic tangent for
all neurons and we trained our networks using the Levenberg-Marquardt backpropagation
algorithm of MATLAB’s Neural Networks Toolbox. As before we used the error on the
validation set as stopping criterion.

Table 3: Correct detection rate (in %) for two stage classifiers. Row 2 shows the aver-
age performance of single MLPs, rows 3 and 4 correspond to the two different ensemble
methods for relevant vs. irrelevant line classification. Overall accuracy for the 3-class
predictions is shown in parentheses.

Train Validation Test
Correct vs. Rest 98.54 98.52 98.72
Single MLP 63.01 (67.26) 66.57 (69.81) 67.91 (71.03)
Best-Of Ensemble 64.21 (68.02) 68.01 (71.25) 69.26 (72.31)
Outlier-Filtered Ensemble 64.25 (68.06) 67.73 (71.17) 69.09 (72.16)

The main difference compared to the previous setup for correct line identification was that
we used an ensemble averaging method to improve and stabilize our recognition rate and
avoid possible overfitting. It has been shown that in most cases ensemble averaging meth-
ods improve the generalization properties of classifiers [5, 6]. So we averaged the con-
fidence values (outputs of the networks) over all ensemble members and then used it as
a decision criterion. We used two different methods to select ensemble members: one
method, named Best-Of ensemble, selected the best 10 networks out of 15 different trained
networks. The other approach, named Outlier-Filtered ensemble, filtered out networks that
showed relatively high error rates. 5 networks were selected, and the selection threshold
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was set at an error rate of 38%. For both methods we used the error on the validation set as
our selection criterion.

The overall results are given in rows 2-4 of Table 3 for training, validation and test sets.
We first show the average performance of single MLPs, and then the accuracy for both
ensemble selection methods in the last two rows. The benefits of using ensemble methods
can be seen by comparing row 2 with rows 3 and 4, since the error on all sets was on average
reduced by more than 1% (for both methods). In addition the variance of the classification
error was also significantly reduced. In competition one, Best-Of ensemble finished first,
Outlier-Filtered ensemble finished second. The next best result was 0.9% lower than our
best performance.

Furthermore, we tried a post-processing step in which the main goal was to correct incon-
sistent decisions such as having more than 4 relevant or more than 5 irrelevant detections.
The confidence values of the ensemble were used as the basis for the post-processing deci-
sion. We tried to change the labels of less probable excessive detections to the other class.
The major problem was that in most cases the confidence value was not a good representa-
tive of being a member of a class when there were excessive detections. So we decided not
to use this post-processing method for our classifiers.

4 Conclusion

Our feature extraction and classification approaches were highly successful in this chal-
lenge. The ensemble methods proved to be very stable and exhibited very good general-
ization performance. In addition we showed that a lot of information about the relevance
of read lines can be extracted from features about sequential reading behavior. We do not
claim, however that unconscious eye movements during reading are not informative for this
task, but our results show that reasonable accuracy can be obtained without them.
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Abstract

In the ”Inferring Relevance from Eye Movements Challenge 2005”, con-
testants were asked to apply machine learning techniques for predicting
sentence relevancies based on eye movements of the readers.The two-
part competition consisted of a classification problem and atime series
analysis problem. In our winning solution to the time seriesanalysis
problem, we applied generic neural microcircuit as a nonlinear opera-
tor on time series with discriminative classifier as a readout. The results
suggest that the model used has some practical merits as a generic time
series analysis tool.

1 Introduction

The ”Inferring Relevance from Eye Movements Challenge 2005” [1] was organized in the
form of a two-part data analysis competition. The contestant were given two competition
data sets collected from the experimental setting where subjects were asked to identify
correct answers to each assignment presented. Each of theseassignments consisted of a
question and 10 sentences of which five were irrelevant to thequestion, and of the remain-
ing five relevant sentences one was the correct answer. In thetest setting, the sentences
were presented on a computer display and the eye movements and the pupil diameters of
the subjects were recorded and stored as a form of time series. The contestants were asked
to identify, on the basis of the eye movements, which sentences of each assignment were
irrelevant, relevant, and correct. In Competition 1 the time series data were preprocessed
into a form of traditional classification data. This preprocessing method segments the time
series data in a manner typical to psychological research ofreading. In contrast to this, in
Competition 2, only the raw time series data was presented tocontestants.

There were three main difficulties in the competition setting. Firstly, according to the de-
scription of the test setup, ”the subject was instructed to identify the correct answer” [1].
In particular, the subjects were not instructed to read through all sentences. In this sense,
there was a slight discrepancy between the experimental setting and the challenge. This
discrepancy creates the difficulty of how to classify unseensentences, since many subjects
read efficiently and completely skipped the remaining sentences after finding the correct
answer. These unseen sentences were ignored while computing the prediction accuracy in
Competition 1. However, in Competition 2 all sentences affected the accuracy score. Sec-
ondly, the irrelevant sentences may have contained some words which drew the attention of
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the subject in spite of the sentence not being relevant in theassignment. Hence the baseline
methods applied by the organizers indicated that the separation of irrelevant and relevant
sentences was the most difficult part of the prediction task.Thirdly, the eye-movement data
is inherently noisy which in general makes data analysis always more challenging.

The winners of both competitions were selected based on prediction accuracy for the test
sets. In the following, we present the winning solution in Competition 2: the model, the
implementation and the results, and our conclusions based on the results.

2 The Model

The generic neural microcircuit model has been introduced recently as a realistic model
of cortical columns (see [2] for a comprehensive introduction). The model encapsulates
the generic and the stereotypical characteristics of cortical columns in a useful theoretical
and practical framework. The generic neural microcircuit implements a nonlinear operator
LM which transforms the input time series to the dynamic statexM (t) of the circuit at
time t. As detailed in [2], the essential property of this operatoris the pointwise separation
property which informally means that different input signals lead to robustly separated
dynamic states. The dynamic statexM (t) of the circuit is defined as the output of all the
neurons in the circuit at timet. The readout of the circuit implements a memoryless map
of the circuit state to the output time series. Putting all this together, we get the output of
the circuit, given inputx(·) at timet, to be

y(t) = fM ((LMx)(t)),

wherefM is the readout map. It has been shown in [2] that if the readoutmapfM has a
certain approximation property, and assuming the pointwise separation property forLM ,
then the whole circuit has ”universal power for computationwith fading memory on func-
tions of time”. More specifically, the proof technique usingthe Stone-Weierstrass theorem
also applied in [3] shows that any time-invariant operator having fading memory can be
approximated arbitrary closely by this circuit. Thus this model has the necessary flexibility
to many time series processing applications. Our experiments with the eye movement time
series data supports also the practical applicability of the model.

We implemented a generic neural microcircuit as a three-dimensional lattice of integrate-
and-fire type spiking neurons as in [2]. Each circuit comprises a neural column of 135
neurons (dimensions 3 x 3 x 15). The connectivity structure of the network is highly re-
current and it is governed by a distribution which, roughly,renders connections (excitatory
or inhibitatory) more likely between neurons close by than neurons far apart. The synaptic
connections are using dynamical synapses (see details of the model further on). As shown
in [2], the separation property is enhanced by combining parallel columns as a one circuit.
Hence as whole we applied four parallel circuits in Competition 2 instead of the one used
in Competition 1.

The neural column was constructed as follows. The membrane potentialui of each neuron
i is given by the standard integrate-and-fire model with the membrane time constantτm

and the total membrane resistanceR,

τm

dui

dt
= −ui(t) + R

∑

j

wij(t)
∑

f∈Fj

αj(t − t
(f)
j ), (1)

where the postsynaptic input current was modeled using

αj(s) =
s − ∆ax

j

τ2
s

exp(−
s − ∆ax

j

τs

)Θ(s − ∆ax
j ).

The parameter∆ax
j specifies axonal transmission delay,τs provides synaptic time con-

stant, andΘ is the Heaviside function (see [4] for details). Additionally, the model was
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augmented by the standard firing threshold rule and the absolute refractory period. The
threshold criterion specifies the set of spikesFj and the firing timest(f) of Equation (1).

The synaptic efficacy functionwij was modeled according to the phenomenological model
of frequency-dependent synaptic dynamics given in [5]. This model formulates synaptic
facilitation and depression as a function of the absolute synaptic efficacy and the fraction
of available and unavailable synaptic efficacy. See [5] for details of this intricate model.
The parameter values of the whole model were selected for thecomputer simulation as in
Appendix B of [2]. These parameter values could be argued to be biologically reasonable
and the whole model is characterized by reasonable biological realism with the eye on
feasible computer simulation (see Section 3 for discussionon computational issues).

The dynamic state of the circuit was read out as a vector of spike trains from all neurons of
the circuit. Furthermore, this vector was transformed to time varying output currents with
the effect of each spike upon current decaying exponentially, and 20 ms time-window was
applied to discretize this output signal. Hence, we obtained for each input signal and for
each column a 135-dimensional discrete output time series.

It should be emphasized that no learning is involved in applying the generic neural mi-
crocircuit. The circuit could be the same for each time series given as an input. Only
the readout map is selected according to the task, for example, as a linear classifier. This
means that the learning task is easy compared to e.g. adjusting the parameters of a nonlin-
ear recurrent neural network with supervised learning. In terms of computational power of
the circuit, the readout map only needs to posses some weak capabilities mentioned above.
Moreover, the readout can be memoryless, that is, each discrete sample of the circuit output
could be classified independently of the past of the series. Hence the circuit provides a kind
of natural preprocessing of a time series data to a classification data.

However, instead of using a linear perceptron network as a readout map like in [2], we
applied discriminative classification to the circuit output. More specifically, our goal was
to directly estimate the parameters of a distributionP (Y |X) whereY is a binary variable
specifying if the gaze of the subject is on relevant sentenceor not given the output vectorX
(correct answers were considered as relevant, see the reasoning given in the next section).
We assumed thatP (Y |X) could be learned reasonably well using logistic regressionand
proceeded to maximize the conditional data log likelihood of the weight vectorW :

l(W ) = −
∑

t

(Y t(w0 +
∑

i

wiX
t
i ) − ln (1 + exp(w0 +

∑

i

wiX
t
i ))),

where the superscriptt denotes the variable at the time stept. We applied the standard
conjugate gradient descent to optimize the weight vector. Due to the simplicity of the op-
timization task, the convergence to the global maximum is guaranteed. However, to avoid
overfitting, we applied weight regularization to penalize weights too large and furthermore,
we proceeded with data specific cross-validation and used the validation set (see next sec-
tion) to ensure the generalization capability of our model.

Finally, we applied a Bayesian approach to compute, given the estimated distribution
P (Y |X), the probability that a sentence in an assignment is relevant. Due to nature of
the Competition 2 data, more information was available concerning the eye movements
of the subjects between fixations than in the Competition 1 data. The subjects may have
visited some relevant sentences very briefly, and especially they have not fixated on some
relevant sentences. Hence very little data was available ofsome sentences compared to
others. We applied parameter smoothing (as in them-estimate of probability, see e.g. [6])
with uniform prior to augment this weakness.

The reasoning behind the use of logistic regression as a readout processor is as follows.
Firstly, by nature of the generic neural microcircuit, the nonlinear transformation removes
the necessity of the readout to have memory. Hence we can classify the data as independent
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samples from some unknown distribution. All information isavailable in the dynamic state
of the circuit at some specified moment of time to approximatethe output signal at that
time. The key issue is to assess whether this approximation can be learned easily and
reasonably well, and it was assumed that logistic regression performs in this respect at least
as well as the linear parallel perceptron applied in [2]. Secondly, informal testing with an
advanced naive Bayes classifier B-Course (available as an online service, see [7] for details)
seemed to indicate that the performance of the naive Bayes classifier was seriously hurt by
the obvious violation of the independence assumption of thevariables. Although, more
generally, the gaussian naive Bayes model and logistic regression are intimately related,
logistic regression is not as tightly constrained by the conditional independence assumption
as the gaussian naive Bayes model. It seems that our classification problem, where data is
in abundance, is an example of a case where logistic regression outperforms the gaussian
naive Bayes model [8]. Due to time limitations of the challenge, we did not analyze this
observation further.

3 Implementation and Results

The raw challenge data of Competition 2, consisting of the original horizontal and vertical
eye movements and pupil diameter data, was preprocessed to six time series. All time se-
ries were normalized and injected as an input current to randomly selected neurons of the
circuit. We applied very simple transformation in the spirit of feature extraction described
in [1]. At the level of words and sentences we recorded cumulative visits and revisits, local
movements inside a word relative to optimal viewing position [9], the relative movements
between the words inside a sentence, and finally, the relative movements between the sen-
tences of an assignment. Additionally, we registered the pupil diameter changes. Since
some pupil diameter readings were clearly anomalously large, we set all pupil diameter
readings above 6 mm to the maximum of 6 mm.

The simulation of the generic neural microcircuit involvednumerical integration. We ap-
plied the standard Runge-Kutta-Fehlberg method (4th order, 5th order error estimate) with
adaptive stepsize and a modification to detect firing condition to simulate the dynamics of
the generic neural microcircuit model. All simulation software were implemented using
C++ programming language in the Linux computing environment. Since we were able to
distribute the computation of separate columns and readouts to different computing nodes
and processors, this greatly enhanced the throughput of thedata processing. Typically a
two-way Intel Xeon processor node with hyperthreading support provided throughput as
high as 900 spikes per second and a two-way 64-bit AMD Opteronnode even higher. Most
of the preprocessing and postprocessing of the data and the results were run in the Matlab
environment.

Since our method is clearly oriented to time series processing and we had very limited time
for the competition, our emphasis was on Competition 2. However, a modest attempt was
also made in Competition 1 since we realized that we could estimate the original time series
from the classification data to some degree of accuracy. Obviously, in the training setting
we could have used the Competition 2 training set to train ourmodel, but this would have
created a problem with the test set since the Competition 2 test set was made available after
Competition 1 was closed. Instead we estimated the originaltime series based on only the
Competition 1 data with three main estimation methods. Firstly, we estimated the word
lengths of each assignment by averaging and using the knowledge of first and last fixations
to the word, and the optimal viewing position. Secondly, we added gaussian noise to fixa-
tion positions to simulate the measurement errors since theaverage accuracy of equipment
was given in [1]. Thirdly, we interpolated the eye movementsbetween fixations using the
facts known about eye movement speed function and the dimensions of the display and
positioning of the subject in front of the display [1].
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Figure 1: The actual eye trajectory and an estimation

Figure 1 shows one assignment from the training data. The actual eye movements are
shown on the left and an estimation based on classification data is given on the right. As
can be seen, qualitatively the eye movement trajectories look quite the same. However,
some important trajectories are missing in the long gaps between some fixations. These
short visits seemed to be crucial in separating some relevant and irrelevant sentences.

In Competition 1 we preprocessed the estimated time series as described above. The re-
sulting six time series were given as an input to a single column of the generic neural
microcircuit. The parameters of the readout map were estimated as specified in the pre-
vious section using the training data. After training with leave-one-assignment-out and
leave-one-subject-out cross-validation, the model gave60.9% accuracy with the validation
data. Since the test data turned out to give the accuracy of60.7%, we can conclude that
this simplified method performed robustly, although poorlycompared to other competitors.
We argue that this is mainly due to methodological discrepancy between the time series
oriented model and the classification data.

In Competition 2 we applied the full model to predict the relevant sentences. After the time
series preprocessing performed as above, we used the four-column generic neural micro-
circuit model to predict the probabilities of the sentencesbeing relevant. The training with
conjugate gradient descent optimization and cross-validation was essentially the same as
described above. The most relevant sentence of the assignment was chosen to be the correct
answer. If, instead of binary classification, we did three class classification (correct, rele-
vant, irrelevant) we noticed a degrading performance in separating the relevant sentences
from irrelevant ones. We concluded that we should concentrate on solving this harder sep-
aration problem, since this was in the spirit of the challenge. The test results proved that
this approach was successful and overfitting of the noisy data was avoided.

Table 1: Confusion matrices of the Competition 2 validationand test sets

Validation I(68.3%) R(56.7%) C(75.2%)
I(68.3%) 509 226 10
R(56.7%) 231 338 27
C(75.2%) 5 32 112

Test I(68.7%) R(63.9%) C(77.8%)
I(68.7%) 618 276 6
R(56.4%) 282 406 32
C(78.9%) 0 38 142
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Table 1 summarizes the results of the method we applied on theCompetition 2 validation
and test data sets. As can be seen in the confusion matrices, the strength of the method was
exactly in separating the irrelevant and relevant sentences. The accuracies were64.4% on
validation data and64.8% on test data. This indicates that the method is characterized by
robust prediction performance, even in the presence of the unseen sentences.

4 Conclusions

Our solution in the eye movement data analysis challenge wasbased on generic neural
microcircuit model with discriminative classification through logistic regression. Our solu-
tion won Competition 2 which involved predicting sentence relevancies using the raw time
series data. We conclude that the neural microcircuit used exhibited practical genericity in
time series analysis, since only very simple preprocessingwas needed for the task at hand.
We emphasize that the learning problem is easy with this model, since the microcircuit is
completely generic and a linear classifier is sufficient to extract useful predictions from the
model. Additionally, the test results indicate that the model is robust and does not overfit
easily although the time series data was noisy. Furthermore, the results suggest that future
work on at least three different areas would be interesting.Firstly, in the context of this
modeling problem, it would be important to find methods for improving the classification
of correct sentences without introducing overfitting. Secondly, this data analysis problem
seems to be a case where logistic regression outperforms gaussian naive Bayes model and it
might be of value to do more experimentation with the challenge data to compare the prac-
tical performances of the two models. Thirdly, the spatial structure of the generic neural
microcircuit might benefit from improvements in biologicalrealism.
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Institute for Neuro- and Bioinformatics

University of Lübeck
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Abstract

In this paper, we will present an overview of our work that is aimed at
integrating gaze into visual communication systems by measuring and
guiding eye movements [1]. This requires investigating andmodelling
how eye movements are determined by the visual input, modelling what
is relevant to the user, and new technological developmentsfor better
eye tracking and fast gaze-contingent graphics. A number ofchallenges
remain, some of which may be solved by machine-learning techniques,
e.g. predicting eye movements and inferring a person’s intent.

1 Background

Vision is the dominant perceptual channel through which we interact with information and
communication systems, but one major limitation of our visual communication capabilities
is that we can attend to only a very limited number of featuresand events at any one time
(e.g., [2]). This fact has severe consequences for visual communication, because what is
effectively communicated depends to a large degree on thosemechanisms in the brain that
deploy our attentional resources and determine where we direct our eye movements, i.e. our
gaze.

Therefore, future information and communication systems should use gaze guidance to
help the users deploy their limited attentional resources more effectively. Gaze guidance
here means that the user follows a prescribed pattern with their gaze, thus taking in infor-
mation in a specific, potentially more efficient way.

When dealing with the problem of guiding a user’s gaze, we faceseveral challenges. In
this paper, we will give an overview of the issues that we havebegun to address so far, but
there remain a number of open problems.

∗http://www.inb.uni-luebeck.de
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The first challenge is that we need to analyse in more detail how humans watch dynamic
scenes. The majority of previous research on eye movements has dealt with static scenes
only, mainly because of the technical problems inherent in recording eye movements on
movies. However, we believe that it is more practicable to determine what drives eye move-
ments in dynamic scenes. Bottom-up features, that is features that are directly computable
from an image sequence such as brightness, colour, or motion, should have a greater influ-
ence on directing gaze here than in static scenes. Accordingly, attempts have recently been
made at modelling what low-level features determine eye movements in moving scenes as
well [3]. Based on these findings, we have been able, at least to some extent, to predict
where observers will direct their gaze from a number of previously attended locations [4].

A further requirement is a quality function that estimates how well-suited an observer’s
gaze pattern is for a given image sequence. There are basically two approaches to obtain
an optimal gaze pattern. It is well known that experts, for example experienced car drivers,
employ viewing strategies different from those of novices.Thus, the gaze pattern of an
expert could be recorded and “replayed” to the user. The moregeneric approach uses an
image-processing algorithm that could identify the most informative regions in a scene.
Of course, we also need a model of both the task at hand and the observer’s intentions to
decide which information might be relevant to the observer.

Finally, the eye movements actually need to be guided to follow the intended gaze pattern.
In a strict sense, this will be impossible to achieve, as an observer might consciously choose
to only focus on one specific aspect of a scene. Nevertheless,we believe that for most
purposes, it will suffice to significantly increase the likelihood that certain locations will
be fixated, while suppressing other potential saccade targets. Indeed, we have developed a
number of spatio-temporal transformations that, as we wereable to show, change the eye
movements of observers, although the guidance still needs to become more specific.

When all these challenges have been met, we furthermore not only want to change the
observer’s eye movements, but also achieve a change in behaviour, i.e. an improvement
in actual task performance. In the next section, we will givean overview of potential
applications.

2 Applications

An important potential application of gaze-guidance systems is augmented vision.
Augmented-vision systems can be designed to integrate human vision and computer vi-
sion. For example, in a car, the driver’s attention can be directed towards a pedestrian who
has been detected by sensors looking out of the car.

A further application is the use in training systems. It is known that experts, for example
experienced pilots, scan their environment in a way that substantially differs from how
inexperienced viewers would. We believe that by recording the gaze pattern of experts and
applying it to novices, we can evoke a sub-conscious learning effect.

Finally, current technical visual communication systems are based on the physical proper-
ties of images and cannot improve the communication processas such, because they do not
address the question of what message is conveyed by an image or a video. Future com-
munication systems’ images and movies can be defined not onlyby brightness and colour,
but will also be augmented with a recommendation of where to look, of how to view the
images. For this to succeed, such systems will also have to take into account the user’s
intentions.
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3 The machine-learning perspective

The human visual system is highly complex. This complexity is increased even further
when we extend our view to include the higher cognitive functions that also play a role in
controlling the direction of gaze, such as alertness, emotional state, or intent. Therefore,
we believe that it will be impossible to distill a set of fixed parameters that will allow gaze
guidance to work in all situations, for all users. Rather, webelieve that the gaze-guidance
display will have to continuously adapt to the user and the task at hand.

In the gaze-guidance display, what is displayed is a function of the user’s gaze, while at
the same time the display influences the user’s gaze. In this closed loop, there exists a
multitude of parameters that need to be adjusted in an on-line fashion. Different users may
have different physiological characteristics, such as saccadic latency, or different cognitive
strategies, attentional states, or expectations. Lastly,the search space of spatio-temporal
transformations that might possibly be used to guide gaze istoo vast to be explored system-
atically. We have implemented some basic transformations (see section 4), but fine-tuning
will have to be done in an unsupervised, continuously evolving manner.

The following sections will outline some of the issues we have addressed so far with
machine-learning techniques and other methods.

3.1 Analysis of eye movements

We have investigated the variability of eye movements on dynamic natural scenes [5]. To
this end, we collected a large data set of gaze samples from 54subjects watching a variety of
short video clips (20 s duration each). For each movie frame,clusters of gaze samples were
extracted by an unsupervised machine-learning algorithm.First, a fixation map was created
by a superposition of Gaussians centered at each gaze sample. From the resulting map, up
to n = 20 maxima were extracted by iteratively applying a lateral inhibition scheme. Then,
clusters were formed using a simple distance threshold. Results show that there exist “hot
spots” which contain a high number of fixation locations. On average, 5-15 clusters (2-5%
of the viewing area) account for 60% of all fixations (see Fig.1 for an example).

3.2 Eye movement predictions

The model we use to predict where an observer is going to look is composed of two distinct
parts. This separation is motivated by the two fundamental types of eye movements that
are relevant to our purposes. First, saccades are ballistichigh-velocity eye movements that
serve to move the fovea from one fixation location to another;during a saccade, most of the
visual input is suppressed so that, for example, we do not perceive the blur induced by the
motion of the visual scenery across the retina. We define the task of saccade prediction as
predicting the target of the saccade, not the complete saccade trajectory, because the latter
is irrelevant for our purposes. The second type of eye movements comprises all movements
that are made between saccades. These movements can be further classified into a variety
of types, but for the present purpose, they share the common characteristic that velocity is
relatively low. To model such intersaccadic eye movements,we use a supervised-learning
technique that, from a history of previous gaze samples, predicts the gaze position in the
next time step.

For the prediction of saccade targets, one ideally would be able to predict a single location
that has a high probability of being the next saccade target.To achieve this, however, a
complete understanding of the higher decision processes involved in saccadic programming
would be required. For example, an observer might choose to fixate one part of a scene over
another for purely semantic reasons. Therefore, we restrict ourselves to predicting only a
certain number of locations that are likely to be fixated as the next saccade target. We have
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Figure 1: Rate of fixations that fall into the firstn extracted clusters, for one example
movie. These rates were computed on a per-frame basis and averaged across the whole
movie.

attempted to use machine learning techniques to predict which of the candidate locations
will be chosen, but with only limited results so far.

To extract candidate locations for saccade targets from a video, we use a saliency map that
assigns a certain degree of saliency to every location in every frame of the video sequence.
Various techniques exist for computing saliency maps, mostof which are intended to model
the processes in the human visual system that generate potential saccade targets [3].

The saliency map used here is based on the spatio-temporal curvature of the image se-
quence. The curvature is computed here using the determinant of the structure tensor,
which is defined as the locally averaged outer product of the(x, y, t) intensity gradient. To
avoid all candidate locations being extracted from only a single small high-curvature region
in an image, we extract locations by iteratively applying a lateral inhibition algorithm, so
that locations with a high saliency close to a local maximum become suppressed.

Fig. 2 compares the performance of our predictor with that ofa predictor that uses an
empirical saliency map, which is derived from the recorded eye movement data as described
in section 3.1: Clusters with a high density of fixations are assigned a high saliency. This
empirical saliency map gives an upper bound of what we can expect to achieve with a
purely bottom-up approach, without modelling the user’s top-down influences.

The results show that, currently, the performance of our predictor is about halfway between
the results one would obtain by guessing locations at randomand that of the ideal predictor
based on the empirical saliency map. For a detailed discussion of our predictor, see [4].

4 Current state of the art

The final goal of our gaze guidance system is to direct the user’s attention to a specific
part of a scene without the user noticing this guidance. Apart from our work on modelling
which image features attract gaze, we have therefore also conducted experiments with sev-
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Figure 2: Error distributions for different predictors. The error is the distance of the
recorded saccade target to the closest ofL = 10 predicted candidate locations.

eral different spatio-temporal transformations designedto alter eye movement characteris-
tics. These transformations were based on observations made with synthetic stimuli, which
are commonly used in experiments that investigate attentional effects. The first set of trans-
formations was motivated by the well-known fact that suddenobject onsets in the visual
periphery can attract attention. We chose to briefly superimpose small bright red dots on the
movie. In about 50% of trials, saccades were initiated towards the location of the flashed
red dot. Because the typical saccadic latency of about 200 msexceeds the presentation
time of the dot, which was set to 120 ms, the red dot was alreadyswitched off by the time
the saccade was finished, so that in about 65% of cases, this stimulation remained invisi-
ble. Similar results were obtained in an experiment where the red dot was replaced by a
looming stimulus. Nevertheless, the exact parameters for an optimal guidance effect, such
as size, contrast, duration, or the timing with regard to previous saccades, still need to be
determined, ideally by an automated learning process.

For a second, more complex set of transformations, we have developed a gaze-contingent
display that can in real time change the spatio-temporal content of an image sequence as a
function of where the observer is looking [6], based on earlier work that manipulated only
spatial resolution [7]. For example, we can selectively blur high temporal frequencies in
the visual periphery, which are known to evoke saccades. Because of the limited percep-
tual capabilities of the human visual system in the periphery, this blur remains unnoticed.
Nonetheless, we were able to show that such peripheral temporal blur suppresses saccades
towards the periphery. Next, we plan to specifically change the spatio-temporal content
only at certain locations in an image.

5 Conclusion

We have here described the efforts we have made to not only infer and predict human
behaviour (eye movements) but also change it such as to improve human performance.
Preliminary results indicate that it should be possible to guide the gaze of a person [8].
A number of problems that need to be solved can be addressed bymachine-learning tech-
niques. The ultimate goal would be to find the optimal way to display information such as to
minimize the error between the actual and the desired performance of a person performing
certain actions in a particular environment, e.g. to avoid traffic accidents, or the difference
between the information that is intended to be received and the one that is actually received,
e.g. by a person watching a movie or a news programme.
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and human data in multiple eye movement measures, including number
of fixations, cumulative probability of fixating the target, and scanpath
distance.
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Abstract

We organize a PASCAL EU Network of Excellence challenge for in-
ferring relevance from eye movements, beginning 1 March 2005. The aim
of this paper is to provide background material for the competitors: give
references to related articles on eye movement modelling, describe the
methods used for extracting the features used in the challenge, provide
results of basic reference methods and to discuss open questions in the
field.

1 Introduction

This technical report is written to complement the Inferring Relevance from Eye
Movements challenge1, one of the challenges partly funded by the EU network
of excellence PASCAL. The challenge is organized in the form of a competition,
where the contestants try to infer the relevance of a read document from the
associated eye movement trajectory. We expect that the challenge will bring
contributions to four different areas:

• Advances in machine learning methodology

• Establishing common practices for feature extraction in eye movements
1The Challenge has a web site at http://www.cis.hut.fi/eyechallenge2005/.
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• Further the development of proactive user interfaces

• To learn of the psychology underlying eye movements in search tasks

The eye movement data is promising for advancing machine learning meth-
ods since it is very rich but noisy, and it is rather easy to collect in large quan-
tities. The data is in the form of a time series which will pose challenges for
optimal selection of features. For a simple case (Competition number 1), we will
provide a comprehensive 22-dimensional set of eye movement features derived
from the ones generally used in eye movement research (previously analysed
in [31, 32]).

In psychological research of reading, it is common to segment the eye move-
ment trajectory into fixations and saccades, and then compute summary mea-
sures of these modalities. The features used in Competition 1 are such summary
measures. The controlled experimental setup used in the challenge makes it pos-
sible to test whether the established common practice is optimal for inferring
relevance. In Competition 2 we give the full eye movement trajectory and the
competitors can model it in any unorthodox way.

In information retrieval, relevance generally depends on the context, task,
and individual competence and preferences of the user. Therefore relevance
of articles suggested by a search engine could be improved by filtering them
through an algorithm which models the interests of the user. This algorithm
would be proactive [41]; it predicts the needs of the user and adapts its own be-
havior accordingly. Individual relevance can be learned from feedback given by
the user. The usual way would be to ask after every document whether the user
found it relevant, and to learn the user’s preferences from the answers. However,
giving this kind of explicit feedback is laborious, and people outside of research
laboratories rarely bother. Alternatively, relevance can be inferred from implicit
feedback derived traditionally from document reading time, or by monitoring
other behavior of the user (such as saving, printing, or selecting of documents).
The problem with the traditional sources is that the number of feedback events
is relatively small. One of the motivations of the PASCAL challenge is to ex-
plore whether the traditional sources of implicit relevance information could be
complemented with eye movements, and to find best methods for doing it.

In a typical information retrieval setup the user types in keywords to a search
engine and is then given a list of titles of documents that possibly contain the
information the user is looking for. Some of the documents suggested by the
search engine will be totally irrelevant, some will handle the correct topic, and
only few will be links to documents that the user actually will bother to read.
Our experimental setting for collecting eye movement data was designed to sim-
ulate this natural situation, with the difference that in our case the relevance
is known. By gathering data in a controlled setup we ensure that we know the
ground truth, that is, the relevance associated with each eye movement trajec-
tory. Machine learning methods can then be used for selecting a good set of
features of eye movements, and for learning time series models to predict rel-
evance of new measurements. If the eye movements contain any information
about the relevance of a text, prediction should be possible. The modeling as-
sumption behind our analysis is that attention patterns correlate with relevance;
at the simplest, people tend to pay more attention to objects they find relevant
or interesting.
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2 Physiology of the Eye

Gaze direction is a good indicator of the focus of attention, since accurate view-
ing is possible only in the central fovea area (only 1–2 degrees of visual angle)
where the density of photoreceptive cells is highly concentrated. For this reason,
detailed inspection of a scene is carried out in a sequence of saccades (rapid eye
movements) and fixations (the eye is fairly motionless). The trajectory is often
referred to as a scanpath.

Information on the environment is mostly gathered during fixations, and
the duration of a fixation is correlated with the complexity of the object under
inspection. A simple physiological reason for this is that the amount of infor-
mation the visual system is capable of processing is limited. During reading this
complexity is associated with the frequency of occurrence of the words in gen-
eral, and with how predictable the word is based on its context [29]. Naturally
there are other factors affecting the reading pattern as well, such as different
reading strategies and the mental state of the reader.

2.1 Eye movement details

Actually the eye does not lie completely still during fixations. In general we
expect that the small movements during fixations will not play an important
role in this challenge, since with the sampling rate of 50 Hz the average amount
of samples from a fixation is around twelve. However, some basic knowledge on
the fixations and saccades will be required if the competitors want to construct
algorithms for fixation identification for Competition 2.

Clinical physiology text books [17] report that during fixation, the eye moves
in an area which usually is less than 0.25 degrees of visual angle, meaning of the
order of ten pixels in our experiment2 (one should however also remember to take
into account the measurement noise). During fixation, three different modes of
movement can be separated: tremor, which is small amplitude (5–30 sec arc)
and high frequency (30–100 Hz) oscillations, drift, which is slow velocity move-
ment (1–8 min arc per second) and low frequency (<0.5 Hz), and microsaccades,
low frequency (1–2 Hz) and small amplitude (1–8 min arc), saccade-like move-
ments. Tremor and drift are commonly associated with the physiology of the
eye, microsaccades on the other hand seem to have some cognitive basis [5, 19].

The saccades are ballistic, meaning that the target of the saccade will be
decided before its initiation. The speed during a saccade depends on its length;
for example during 5◦ saccade the peak velocity is around 260◦ per second, while
during 20◦ saccade the peak velocity is around 660◦ per second. These charac-
teristics are common to all people to the extent that one can use quantitative
measurements of saccades to assess the function of the oculomotor system, to
investigate the effects of drugs or lesions, and in some cases to aid diagnosis of
disease or locating of lesions (see [10], for example).

The computation of a saccade requires some (latency) time in the fixation,
meaning that fixations under 60 ms are not generally possible. However, it is
possible to pre-program a sequence of saccades where the fixation duration will
be shorter.

2with a subject distance of 60 cm from the 17” screen with a resolution of 1024x1280.
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2.2 Pupillometry

In addition to eye movement features, the challenge also contains features com-
puted from the pupil. There was some evidence in our experiments that the
features correlated with relevance of the text [31]; the effect was very small at
best, but it led us to discover the works reported in [16] or [2], where pupil
diameter has been reported to increase as a sign of increased cognitive load.

The main function of pupil is to control the amount of light falling onto
the retina. However, in addition to reflexive control of pupillary size there
also seem to be tiny, cognitively related fluctuations of pupillary diameter ([2]
reports interesting results that are discussed below). The so called task-evoked
pupillary response (TERP) amplitudes appear to provide a good measure of the
cognitive demands [2] for a wide variety of tasks (see Appendix for a brief note
on TERPs).

Besides being a measure of cognitive demands of the task, the pupil width
is also reported to vary due to different emotions. In [25], affective stimuli has
been reported to cause systematical effects in subjects’ physiological reactions
and subjective experiences. The pupil size variation could therefore be used as
implicit feedback signal for example in an affective computing interface [25].

3 Some literature

In this Section we give a brief introduction to literature on eye movements. The
emphasis is on the areas which are relevant to the challenge: eye movements
during reading and eye movements used as an implicit feedback channel.

3.1 Eye movements and reading

In a typical reading situation, the reader fixates on each word sequentially.
Some of the words are skipped, some fixated twice and some trigger a regression
to preceding words (approx. 15 % of the saccades). The reader is often not
conscious of these regressions. The typical duration of fixations varies between
60–500 ms, being 250 ms on the average [21].

Research on eye movements during reading is a well-established field (see [29]
for a good overview). In psychological literature, several models for reading have
been proposed (most recent [6, 20, 30]). Models of eye movement control during
reading differ mainly by the extent to which eye movements are assumed to be
governed by lexical (high-level) processes over a simple default (low-level) con-
trol system assuming certain mean saccade lengths and fixation durations [39].

Currently the most popular model, so called E-Z Reader [30], concentrates
on modeling reading at the basic level, as a series of sequential fixations occur-
ring from left to right without regressions which are assumed to be associated
with higher order cognitive processes. The durations of the fixations are corre-
lated with word occurrence frequency, that is, the access time for the concepts
concerning more rarely occurring words is longer than the access time for more
frequently occurring words (however, similar correlations with word predictabil-
ity and word length have also been reported). In a more recent publication [6]
this correlation is extended to explain also regressions as occurring to those
words which did not receive enough processing time during the first pass read-
ing.
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3.2 Eye movements and implicit feedback

Eye movements have earlier been utilized as alternative input devices for either
pointing at icons or typing text in human-computer interfaces (see [15, 44]).

Use of eye movements as a source of implicit feedback is a relatively new
concept. The first application where user interest was inferred from eye move-
ments was an interactive story teller [38]. The story told by the application
concentrated more on items that the user was gazing at on a display. Rudimen-
tary relevance determination is needed also in [13], where a proactive translator
is activated if the reader encounters a word which she has difficulties (these are
inferred from eye movements) in understanding. A prototype attentive agent
application (Simple User Interest Tracker, Suitor) is introduced in [22, 23]. The
application monitors eye movements during browsing of web pages in order to
determine whether the user is reading or just browsing. If reading is detected,
the document is defined relevant, and more information on the topic is sought
and displayed. Regretfully the performance of the application was not evalu-
ated in the papers in any way. The (heuristic) rules for inferring whether the
user is reading are presented in [4]. The eye movements have also been used
as one feedback channel to identify critical driving events in intelligent driver
assistance systems [24, 42].

The first analysis of eye movements in an information retrieval situation was
published in [31, 32], where the experimental setup is quite similar to the Chal-
lenge. In [8] the goal was different: to investigate with quantitative measures
how users behave in a real, less-controlled information retrieval task.

Implicit feedback information is also evaluated in usability studies[14, 7],
where it is common to compute summary measures of eye movements on large
areas of interest, such as images or captions of text (see [27] for an example
study). The eye movements have also been used to give feedback of the subjec-
tive image quality [43].

4 Measurements

4.1 Experimental setup

(1) (2) (3)

Figure 1: An example of stimuli used in the experiments.

The structure of an assignment is as follows: a subject was first shown a
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question (image 1 in Figure 1), and then a list of ten sentences (image 2 in
Figure 1), one of which contained the correct answer (C). Five of the sentences
were known to be irrelevant (I), and four relevant for the question (R). The
subject was instructed to identify the correct answer and then press ’enter’
(which ended the eye movement measurement) and then type in the associated
number in the next screen (image 3 in Figure 1). The assignments were in
Finnish, the mother tongue of the subjects.

The measurements were made for 11 subjects.
The full training set consists of 50 assignments, shown to all subjects. The

lists were presented to the subjects in a randomized order. The measurements
were carried out in sets of ten assignments, followed by a short break and re-
calibration. Some of the assignments were excluded for technical reasons (e.g.
the subject gave a wrong answer), resulting in less than 50 assignments per
subject. In the challenge, the full training set is divided into a training and
validation data set. The distribution of the correct answers in the full training
data set is balanced, so that the correct answer appeared five times in the place
of the first sentence, and so on.

Of the 11 subjects, seven were randomly chosen to take part in test data
measurements. The test set consists of 180 assignments. To make cheating
harder, all assignments within the test set are unique, and each assignment was
shown to only one of the subjects. The locations of the relevant lines and correct
answers in the test stimuli was randomly chosen, without balancing. The test
data is constructed to be more real life-like, with less controlled questions and
candidate sentences. It can therefore be expected that the classification rate is
lower with the test data than with the training data.

4.2 Equipment

The device used for measuring eye movements was Tobii 1750 eye tracker3,
shown in Figure 2. The eye tracker is integrated into a 17” TFT monitor. The
tracker illuminates the user with two near infrared diodes (they can be seen
in Figure 2) to generate reflection patterns on the corneas of the user. A video
camera then gathers these reflection patters as well as the stance of the user.
Digital image processing is then carried out for extracting the pupils from the
video signal. The systems tracks pupil location and pupil width at the rate
of 50 Hz. The pupil locations can be mapped to gaze locations on the screen
by calibrating the system; during the process the user needs to gaze at sixteen
pre-defined locations on the screen.

The manufacturer reports the spatial resolution (frame-to-frame variation
of the measured gaze point) to be 0.25 degrees and the average accuracy (bias
error, deviation between the measured and actual gaze point of the user) of
approximately 0.5 degrees. Additionally, the calibration deteriorates over time
due to changes in the pupil size or if the eyes become dry. The associated drift
of calibration is less than 0.5 degrees. The system allows free head motion in
a cube of 30x15x20 cm at 60 cm from tracker. The resolution of the tracker is
1280x1024, and the recommended distance of the user from the display is 60
cm.

3Web pages at http://www.tobii.com. On 24 February 2005 a product description of the
Tobii 1750 was available at http://www.tobii.com/downloads/Tobii 50series PD Aug04.pdf
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Figure 2: Eye movements of the subjects were measured with a Tobii 1750 eye
tracker.

5 Feature Extraction

There are not many publications on the initial preprocessing of eye movement
data (see [37] for an example). To our knowledge, the Tobii eyetracker does not
preprocess the data4.

5.1 Fixation Identification

Identifying fixations is still very much an open question within the eye track-
ing research, as there is no consensus of the method that best segments the
eye movement trajectory (see [35] for discussion on the subject). Most of the
eye movement measuring equipment manufacturers provide a window-based seg-
mentation algorithm as a standard software. Hidden Markov Model-based algo-
rithms have only recently gained some attention in the research area [33, 45].

5.1.1 Window-based Algorithms

In a window-based algorithm, a fixation is identified by drawing a square of x
pixels around the currently measured gaze location. If the next measured gaze
location falls within the block, it will be counted as a possible fixation. If in
n consecutive gaze locations each falls within the block drawn around the gaze
point preceding it, the n points will be counted as a fixation with a duration
of n times the sampling interval (in our case 20 ms). In a Tobii eye tracker
the standard setting is a 50-pixel window, with a time frame of 100 ms. For
reading studies the manual recommends smaller window sizes. For the PASCAL
challenge Competition 1, the fixations were computed using a 20 pixel window
with a 80 ms time frame.

5.1.2 HMM-based Algorithms

The first application of Hidden Markov models (HMMs) to segment eye move-
ment trajectories was [33], where a two-state HMM was applied. The model
parameters were set manually, and the model was merely used for finding the
most probable (Viterbi) path through the model for a given sequence in order to

4The Tobii however computes a validity code for each measurement, describing whether it
tracks reliably both eyes or only one eye.



52

segment the trajectory. A more realistic application of the HMMs was presented
in [45], where the parameters of a two-state HMM were learned from data.

Competitors taking part in the PASCAL Challenge Competition 2 may try
to find the optimal segmentation method giving the best classification accuracy.
Alternatively, they can of course decide to skip the segmentation part altogether.

5.2 Features for Competition 1

After segmenting the eye movement trajectory into fixations and saccades, they
were assigned to the nearest word. After that, features for each word can be
computed. All the features for the Competition 1 are listed in Table 1. We will
next discuss the psychological justification behind the features.

The eye movement features used in psychological studies are often catego-
rized into first-pass and second-pass measures, according to the order the region
of text is encountered during reading. First-pass reading features are generally
used as the primary measure of interest or as the measures of initial processing,
whereas second-pass measures reflect the processes associated with re-analysis
or “late processing” of the text region [29]. We expect the latter measures to
play an important role in the challenge setup, for example in a case when the
subject is choosing between two candidates of correct answers.

The eye movement features used in the challenge can additionally be divided
into measures that are obtained from eye fixations, regressions, saccades, or
pupil dilation data. In addition to the 22 features provided in the Competition 1,
we will also briefly list some measures used in psychological studies for analysing
the time series nature of the data, such as re-fixations and word skipping. These
measures can be easily computed from the Competition 1 data.

Any single measure of processing would be an inadequate reflection of the
reality of cognitive processing. To obtain a good description about the cognitive
processes occurring during our task, a large number of different features need to
be analysed. Features used in this paper and the challenge are listed in Table 1.

5.2.1 Fixation features

Typical measures of initial processing are first fixation duration (firstFixDur)
and first-pass reading time or gaze duration (firstPassFixDur), which is the sum
of all fixation durations on a region prior to moving to another region [3]. Ad-
ditional measures for exploring early processes are the probability of fixating
the target word (P1stFixation) when the region is initially encountered and
the number of fixations received during first pass reading (FirstPassCnt). The
duration of the fixation preceding the first fixation onto the current word (pre-
vFixDur) and the duration of the next fixation after which the eyes moved to
the next word (nextFixDur) were included in our analysis. In this paper, one
measure of re-analysis or “late processing” was the probability that the word
was fixated during second-pass reading (P2ndFixation). Measures covering all
the fixations that landed on each word were also analysed. Mean fixation dura-
tions (meanFixDur), sums of all fixation durations on a word (totalFixDur) and
the total number of fixations per word (fixCount) were computed, as well as the
ratio between the total fixation duration and the total duration of fixations on
the display (timePrctg).
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5.2.2 Fixation position features

Landing position of first fixation on the word is used for exploring the early
processing, whereas the launch site or the last location of the eyes before landing
on the target word is used as a “control” for “parafoveal” preprocessing of the
target word [3]. There is variability in where the eyes land on a word, but usually
people tend to make their first fixation on a word about halfway between the
beginning and the middle of a word [29]. This prototypical location is labelled
as the optimal viewing position, where the word recognition time is minimized.
Extensive research effort has been made to examine the consequences of making
fixations at locations other than the optimal viewing position. It has been shown
that the further the eyes land from the optimal position on a word the more
likely there will be a refixation onto that word. We computed three measures
that take the fixation position into account. The distance (in pixels) between
the fixation preceding the first fixation on a word and the beginning of the word
(prevFixPos), the distance of the first fixation on a word from the beginning of
the word, and the launch site of the last fixation on the word from the beginning
of the word (leavingPosition) were included.

5.2.3 Regressions

Approximately 10–15 % of fixations are regressions to previously read words. A
common hypothesis is that eye movements during reading are mainly controlled
by reasonably low-level processes in the brain, and higher level processes only
interfere when something needs to be clarified. The second-pass measures such
as regressions are therefore commonly accepted as indicators of higher-order
cognitive processes. This may occur with a delay, since the transmission and
processing of neural signals takes time.

In studies of reading it has been noted that the text difficulty has a strong
influence on the number of regressions the readers make. Studies have also
demonstrated that a regression was triggered when readers encountered a word
indicating that their prior interpretation of a sentence was in error. Therefore
it is likely that some of the regressions are due to comprehension failures [29].

Four regression measures were included in our set of features. We computed
the number of regressions leaving from a word (nRegressionsFrom), the sum of
durations of all regressions leaving from a word (regressDurFrom) and the sum
of the fixation durations on a word during a regression (regressDurOn). It has
been noted that sometimes the processing of a word “spills” on to reading the
next word. Data analysis in [28] showed that most regressions originated from
positions that were relatively close to a target word. In their dataset, of all the
regressive saccades made within one line of text, 26 % came from within the
same word (regressive refixations), 49.4 % came from the immediately following
word, and 24.6 % came from more distant locations. We therefore included a
binary feature (nextWordRegress) indicating whether the regression initiated
from the following word.

5.2.4 Saccade features

Two saccade measures were included in the present paper. We computed the
distance (in pixels) between the launch site of a saccade and its landing position,
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when the fixation following the saccade was the first fixation onto a word (first-
SaccLen) and when the fixation was the last fixation on a word (lastSaccLen).

5.2.5 Pupil features

There is evidence that the processing of complex sentences not only takes longer
but it also produces a larger change in pupil diameter [2, 16]. Therefore two
measures of pupil diameter were included in our analysis.

The mean horizontal pupil diameter during fixations on the current word
was computed (pupilDiam1), as well as the maximum of pupil dilation within
0.5 – 1.5 seconds after encountering the word (pupilDiam2). The latter was the
measure used in [16]. The measures were calibrated by subtracting the mean
pupil diameter of the subject during the measurement.

5.2.6 Refixations

Refixation is a fixation to the currently processed word or text region. Some
refixations occur because the gaze falls initially in a suboptimal place for pro-
cessing the word, and a refixation takes the eyes to a more optimal viewing
location [29]. The most frequent pattern is to first fixate near the beginning
of the word followed by a fixation near the end of the word. Also contextual
variables and incomplete lexical processing have been shown to have an effect
on whether readers refixate on a current word. In [11] refixations were mea-
sured with sentences as the units of analysis. They computed the frequency and
duration of reinspective fixations during the first reading of a sentence (rein-
spections). Hyönä [11] measured also the frequency and duration of looks back
to a sentence that had already been read (look backs), and the frequency and
duration of looks from a sentence back to an already read sentence (look froms).
Reinspective and look-back fixations presented in [11] differ from regressions in
that the saccadic direction is not decisive; rather, fixations that land on a pre-
viously fixated text region are defined either as reinspections (when reading
parts of the currently fixated sentence) or look backs (when reading parts of a
previously read sentence). All measures in [11] were computed as a ratio per
character to provide adjustment for differences in length across sentences.

5.2.7 Skipping

There is experimental evidence that context has a strong effect on word skip-
ping [29]. When the following words can be easily predicted from the context,
they are more frequently skipped. Also high-frequency and short words are
more easily skipped.

Note on the selected units of measures In psychology the most common
unit of saccade lengths has been visual angle, which has the benefit of being
independent of distance from stimuli. In studies of reading, saccade lengths
have also been reported to scale with respect to font size. Both of these mea-
sures naturally demand that the subject’s head is kept fixed throughout the
measurements. Since the subject is allowed to move quite freely in our exper-
iment (without losing too much accuracy), we will report saccade lengths in
pixels, because converting them to angles or letter sizes would only add noise
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to the measures due to movement of the subjects. The pixel measures with
respect to each subject are comparable, since the stimuli were the same for all
subjects, as was the the average distance of the subject to the display. Finally,
the fixation identification algorithms provided by manufacturers of measuring
equipment use the same units.

5.3 Features for Competition 2

In the challenge Competition 2, the raw eye movement data will be provided.
The competitors are free to compute their own features from the x- and y-
coordinates of gaze location and the pupil diameter. The given values are aver-
ages of the left and right eye.

6 Baseline Methods

6.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is one of the simplest means of classifica-
tion, and it is discussed in most textbooks on applied statistics or multivariate
techniques. The presentation here follows the one in [36].

The idea in LDA is to find new variables which are linear combinations of the
original ones, such that different classes are discriminated as well as possible.
Discrimination is measured by SSbetween/SSwithin, where SSbetween is the sum
of squares between classes and SSwithin the sum of squares inside a single class,
defined by

SSwithin =
G∑

g=1

ng∑
i=1

x2
gi , (1)

SSbetween =
G∑

g=1

ng(x̄g − x̄)2 , (2)

where xgi is the observation number i in class g, ng is the number of observations
in class g = 1, · · · , G, x̄g the mean of the observables in class g, and x̄ the mean
over all observations. In [36], the calculations needed to find optimal new axes
are covered. We will next discuss how new observations are classified.

Let pj be the prior probability and fj(x) the density function for class πj .
The observation x is allocated to the class πj for which the probability of mis-
classification,

G∑
i=1,i 6=j

pifi(x) , (3)

is minimal. Clearly, this is the same as maximizing

ln[pjfj(x)] . (4)

Assuming that x comes from a normal distribution, we get the classification rule
(ignoring constants)

argmaxj [ln pj − 1/2 ln |Σj | − 1/2(x − µj)Σ−1
j (x − µj)], (5)
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where Σj is the covariance matrix and µj the mean vector for class πj in the
training set.

6.2 Hidden Markov Models

In order to explain user behavior, the sequential nature of the reading process
has to be modelled. Hidden Markov models are the most common methods for
modeling sequential data. In eye movement research, hidden Markov models
have earlier been used for segmenting the low-level eye movement signal to detect
focus of attention (see [45]) and for implementing (fixed) models of cognitive
processing [34], such as pilot attention patterns [9].

Hidden Markov models optimize the log-likelihood of the data Y given the
model and its parameters Θ, that is, log p(Y |Θ). The goal is to optimize the
parameters of the model so that the distribution of the data is expressed as
accurately as possible. HMMs are generative models; they attempt to describe
the process of how the data is being generated. Therefore they can be said to
emit (produce) observations.

Long-range time dependencies within the data are taken into account by
adding hidden states to the model. The changes in the distributions of the
emitted observations are associated with transitions between hidden states. The
transitions (as well as the observation distributions) are modelled probabilisti-
cally. There exists a well-known algorithm for learning the HMMs, namely the
Baum-Welch (BW) algorithm, if all the probabilities within the model are ex-
pressed using distributions which are within the exponential family [1]. Baum-
Welch is a special case of Expectation-Maximization (EM) algorithm, and it
can be proven to converge to a local optimum.

6.2.1 Simple Hidden Markov Model for Each Class

The simplest model that takes the sequential nature of data into account is a
two-state HMM. We optimized one model individually for each class. In a pre-
diction task the likelihood of each model is multiplied by the prior information
on the proportions of the different classes in the data. As an output we get the
maximum a posteriori prediction.

6.2.2 Discriminative Hidden Markov Models

In speech recognition, where HMMs have been extensively used for decades, the
current state-of-the-art HMMs are discriminative. Discriminative models aim
to predict the relevance B = {I, R,C} of a sentence, given the observed eye
movements Y . Formally, we optimize log p(B|Y, Θ). In discriminative HMMs,
a set of states or a certain sequence of states is associated with each class. This
specific state sequence then gives the probability of the class, and the likelihood
is maximized for the teaching data, versus all the other possible state sequences
in the model [26]. The parameters of the discriminative HMM can be optimized
with an extended Baum-Welch (EBW) algorithm, which is a modification of the
original BW algorithm.
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6.2.3 Discriminative Chain of Hidden Markov Models

A main difficulty in the information retrieval setup is that relevance is associated
with titles, not with words in a title. For example, there are words in titles which
are not needed in making the decision on whether the title is relevant or not.
There could be many such non-relevant words in a sentence, and possibly only
one word which is highly relevant. The situation thus resembles the setup in
reinforcement learning: the reward (classification result) is only known in the
end, and there are several ways to end in the correct classification.

In order to take into account the whole eye movement trajectory during
a task, we model eye movements with a two-level discriminative HMM (see
Figure 3). The first level models transitions between sentences, and the second
level transitions between words within a sentence. Viterbi approximation is
used to find the most likely path through the second level model (transitions
between words in a sentence), and then the discriminative Extended Baum-
Welch optimizes the full model (cf. [18, 40] for similar approaches).

R

C I

Figure 3: The topology of the discriminative chain of hidden Markov models.

In our implementation, the first level Markov model has three states, each
state corresponding to one class of titles. Each of the three states in the first
level have the following exponential family distributions:

1. A multinomial distribution emitting the relevance of the line, B. The
parameters of this distribution were fixed, resulting in a discriminative
Markov chain model in which each state corresponds to a known classifi-
cation.

2. A Viterbi distribution emitting the probability of the sequence of words in
a title.

The Viterbi distribution is defined by the probability of a Viterbi path trough a
two-state Markov model forming the second level in our model. The two states
of the second level model emit the observed word-specific distributions. The
second level Viterbi distributions are further parameterized by the probabili-
ties of beginning the sequence from that state (for example ΠR = πR

1 , πR
2 ), and

transition probabilities between states (e.g., aR
ij , i, j = 1, 2). The second level

Markov model is called a Viterbi distribution because when evaluating the emis-
sion probability only the most likely path over the two-state model is taken into
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account (the Viterbi path). After fixing the path the resulting Viterbi distri-
bution is (a fairly complex) exponential family distribution that can be trained
with the EBW algorithm.

6.2.4 Voting

The Markov models produce probabilities for the relevance classes (I, R, C) for
each viewed sentence. However, the users may look at a sentence several times,
and the resulting probabilities need be combined in a process we call voting.

We constructed a log-linear model for combining the predictions. Assume
that the sentence-specific probability distribution, p(B|Y1...K), can be constructed
from the probability distributions of the kth viewings of the sentence, P (B|Yk),
(obtained as an output from a Markov model) as a weighted geometric average,
p(B|Y1...K , α) = Z−1

∏
k p(B|Yk)αBk , where Z is a sentence-specific normaliza-

tion factor and the parameters αBk are non-negative real numbers, found by
optimizing the prediction for the training data. The predicted relevance of a
sentence is then the largest of p(I), p(R), and p(C).

It is also possible to derive a simple heuristic rule for classification by assum-
ing that the decision of relevance is made only once while reading the sentence.
We will call this rule maxClass, since for each sequence we will select the maxi-
mum of the predicted relevance classes. A simple baseline for the voting schemes
is provided by classifying all the sequences separately (i.e., no voting).

7 Data analysis

Below we will carry out an example analysis of the challenge data. We apply
Linear Discriminant Analysis to the eye movement data to obtain a first classi-
fication result, to get first visualizations of the data, and to select features that
will be used in time series modeling, with HMMs and discriminative HMMs.

7.1 Linear Discriminant Analysis

Linear Discriminant Analysis is a simple linear method for analyzing data. Be-
sides classification, the method can be used for visualization and feature set
selection. It has not been developed for time series, however, and we apply it
on feature vectors averaged over each sentence.

Averaged Features

Simple averaging of features presented in Table 1 would be against their spirit.
The probabilities {3,4,18} are obtained by diving the sum of the features by the
number of words in the sentence. Features {1,2,14,16,17,19,22} are commonly
used as summary measures for larger areas of interest, and hence were merely
added up. Features {5, 6, 7, 8, 9, 10, 11, 12, 13, 15} were computed as means,
and for the pupil measures {20, 21} a maximum was taken (since in [16] the
best effect was reported in the maximum of pupil dilation). Before analysing
the data with LDA, the data was standardized.
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Visualizing the Data with LDA

The data can be visualized by projecting them to the eigenvectors of the LDA
(see Figure 4). The two eigenvectors define a hyperplane in the original feature
space that best discriminates the classes. The visualization makes it possible
to evaluate which classes will be harder to separate. Judging from the plot in
Figure 4, it seems that relevant and irrelevant sentences will be hard to separate.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.05

0

0.05

0.1

0.15
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0.25

0.3
non−relevant
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Figure 4: A visualization of the data using LDA.

Feature Set Selection with LDA

We may also plot the eigenvectors of the LDA in order to evaluate which compo-
nents contribute most to the discriminating plane. Notice that if classification is
not possible with LDA5, the eigenvectors will be arbitrary. In our case, however,
classification is possible as reported in Table 2. Judging from the eigenvectors
plotted in Figure 5, it seems that less than ten features are sufficient.

7.2 Features for Time Series Analysis

Feature selection for the HMMs was carried out with the methods that use
averaged data (LDA). In other words, we chose to model a representative set
of features which can be used to construct the best discriminating averaged
measures.

The resulting set of features were modeled with the following exponential
family distributions: (1) One or many fixations within the word (binomial).
(2) Logarithm of total fixation duration on the word (assumed Gaussian). (3)

5that is, the classification rate does not differ from a dumb classifier classifying all to the
largest class
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Figure 5: Eigenvectors of LDA. The histogram bars are loadings of the features,
ordered according to Table 1.

Reading behavior (multinomial): skip next word, go back to already read words,
read next word, jump to an unread line, or last fixation in an assignment.

7.3 Classification results

The prediction accuracy was assessed with 50-fold cross validation, in which
each of the assignments was in turn used as a test data set. In order to test
how the method would generalize to new subjects, we also ran an 11-fold cross
validation where each of the subjects was in turn left out. The ultimate baseline
is given by the “dumb model,” which classifies all sentences to the largest class
I. Table 2 lists the classification accuracies, that is, the fraction of the viewed
sentences in the test data sets for which the prediction was correct. The methods
generalize roughly equally well both to new assignments and to new subjects.
The performance of the two different voting methods (log-linear and maxClass)
seems to be nearly equal, with log-linear voting having a slight advantage.

Table 3 shows the confusion matrix of the discriminative HMMs. Correct
answers (C) are separated rather efficiently. Most errors result from misclas-
sifying relevant sentences (R) as irrelevant (I). It is also possible to compute
precision and recall measures common in IR, if the correct answers are treated
as the relevant documents. The resulting precision rate is 90.1 % and recall rate
92.2 %.

8 Discussion

The physiology and psychology of eye movements has been studied quite exten-
sively. However, the improved multimodal interfaces, combined with proactive
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information retrieval, provide us with a whole new setup. The eye movements
are a rich, complex, and potentially very useful time series signal. Efficient
extraction of relevance information from it is not trivial, however, and requires
development and application of advanced machine learning methods.

The features used in eye movement research have been based mostly on the
segmentation of the eye movement trajectory to fixations and saccades. This
segmentation, though useful, is neither unique nor always optimal. The optimal
set of features is likely to depend on the task at hand. One of the goals of
Competition 2 of this Challenge is to find and propose a new set eye movement
features, not necessarily based on the division to fixations and saccades, for use
in eye movement studies and proactive applications.

In the study of eye movements in psychology the basic goal is to understand
the underlying psychological processes. Our objective is different and more
application-oriented: we want to extract maximal amount of useful information
from the real-world eye movement signal, to be used in proactive information
retrieval. Our approach also differs from usability studies, another common
application of eye movement analysis, where the objective has been to analyze
qualitatively and quantitatively the behavior of a user when she for instance
visits a web site. The quantitative measures have been mostly based on fixation
durations and eye scan patterns. This Challenge differs from much of the prior
work in its application and experimental setup (information retrieval task where
the ground truth is known) and in the use of advanced probabilistic methods
optimized for the task at hand (relevance extraction).

The Challenge will hopefully result in a toolbox of new machine learning
methods and a set of features, optimal for extracting relevance information
from the real world eye movement signals.

We are looking forward to an interesting competition and wish all partici-
pants the best of success!
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Hyrskykari and Päivi Majaranta from Tampere Unit for Computer-Human In-
teraction for useful discussions and measurement time.

References

[1] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maxi-
mization technique occurring in the statistical analysis of probabilistic func-



62

tions of Markov chains. The Annals of Mathematical Statistics, 41(1):164–
171, February 1970.

[2] Jackson Beatty and Brennis Lucero-Wagoner. The pupillary system. In
John T. Cacioppo, Louis G. Tassinary, and Gary G. Berntson, editors,
Handbook of Psychophysiology, chapter 6. Cambridge University Press,
Cambridge, UK, 2000.

[3] Manuel G. Calvo and Enrique Meseguer. Eye movements and processing
stages in reading: Relative contribution of visual, lexical and contextual
factors. The Spanish Journal of Psychology, 5(1):66–77, 2002.

[4] Christopher Campbell and Paul Maglio. A robust algorithm for reading
detection. In Workshop on Perceptive User Interfaces (PUI ’01). ACM
Digital Library, November 2001. ISBN 1-58113-448-7.

[5] Ralf Engbert and Reinhold Kliegl. Microsaccades uncover the orientation
of covert attention. Vision Research, 43:1035–1045, 2003.
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A Notes on TERP

Because TERP amplitudes appear to be independent of baseline pupillary di-
ameter, it is possible to compare the amplitude of TERPs obtained in different
laboratories. Analysis of pupillometric data in memory storage and recall tasks
have shown that there is variation in peak pupillary dilation as a function of
the length of the target string to be stored or recalled. The item difficulty in
memory tasks has also been associated with greater pupillary dilations.

There is evidence of response and movement-related pupillary responses.
Results from experiments where immediate or delayed response selection and
preparation were studied indicated that the rate of pupil dilation was inversely
proportional to the length of the foreperiod preceding the imperative stimulus.
It was shown that the pupil dilations were greater in Go-trials than dilations to
No-Go stimuli in both immediate- and delayed-response conditions. Addition-
ally, both peak pupil diameter and peak latency have been found to vary with
the complexity of movements in motor tasks.

It has been reported that pupil dilations are elicited not only by external
stimuli but also by a stimulus mismatch or by an orientation to a task important
stimuli. An inverse relationship has been found between pupil amplitude and
probability. Pupil dilations were found to be larger in amplitude and longer in
latency for stimuli with low probability of occurrence.

TERP amplitude is also a sensitive and reliable reporter of differences in the
structure of cortical language processing and decision. In a letter matching task,
physically identical letter pairs evoked smaller TERPs than did pairs identical
only at the level of naming. [16] found that more complex sentence types
produced larger changes in pupil diameter. [12] reported, that increases in
semantic demands of sentence processing resulted in increases of the TERP.
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Table 1: Features
Feature Description

1 fixCount Total number of fixations to the word

2 FirstPassCnt Number of fixations to the word when the word is first encountered

3 P1stFixation
Did a fixation to a word occur when the sentence that the word was
in was read for the first time (’1’ or ’0’)

4 P2ndFixation
Did a fixation to a word occur when the sentence that the word was
in was read for the second time (’1’ or ’0’)

5 prevFixDur Duration of the previous fixation when the word is first encountered

6 firstFixDur Duration of the first fixation when the word is first encountered

7 firstPassFixDur Sum of durations of fixations to a word when it is first encountered

8 nextFixDur
Duration of the next fixation when the gaze initially moves on from
the word

9 firstSaccLen
Distance (in pixels) between the launching position of the previous
fixation and the landing position of the first fixation

10 lastSaccLen
Distance (in pixels) between the launching position of the last
fixation on the word and the landing point of the next fixation

11 prevFixPos
Distance (in pixels) between the fixation preceding the first fixation
on a word and the beginning of the word

12 landingPosition
Distance (in pixels) of the first fixation on the word from the
beginning of the word

13 leavingPosition
Distance (in pixels) between the last fixation before leaving the word
and the beginning of the word

14 totalFixDur Sum of all durations of fixations to the word

15 meanFixDur Mean duration of the fixations to the word

16 nRegressionsFrom Number of regressions leaving from the word

17 regressDurFrom
Sum of durations of fixations during regressions initiating from the
word

18 nextWordRegress Did a regression initiate from the following word (’1’ or ’0’)

19 regressDurOn Sum of the durations of the fixations on the word during a regression

20 pupilDiam1
Mean of pupil diameter during fixations on the word (minus mean
pupil diameter of the subject during the measurement)

21 pupilDiam2

Maximum of pupil dilation within 0.5 – 1.5 seconds after encounter-
ing the word (minus mean pupil diameter of the subject during the
measurement)

22 timePrctg
Total fixation duration on a word divided by the total duration of
fixations on the display



67

Table 2: Performance of the different models in predicting relevance of the
sentences. Differences between LDA and dumb classifier, and HMM and LDA
tested significant (McNemar’s test), as well as difference between discriminative
HMM and simple HMMs (with leave-one-assignment-out cross validation) Left
column: obtained by 50-fold cross-validation where each of the assignments was
left out in turn as test data. Right column: Obtained by 11-fold cross-validation
where each of the subjects was left out in turn to be used as test data.

Method
Accuracy (%)
(leave-one-

assignment-out)

Accuracy (%)
(leave-one-subject-

out)

Dumb 47.8 47.8
LDA 59.8 57.9

simple HMMs(no vote) 55.6 55.7
simple HMMs(maxClass) 63.5 63.3

simple HMMs(loglin) 64.0 63.4
discriminative HMM(loglin) 65.8 64.1

Table 3: Confusion matrix showing the number of sentences classified by the dis-
criminative HMM, using loglinear voting, into the three classes (columns) versus
their true relevance (rows). Cross-validation was carried out over assignments.
The percentages (in parentheses) denote row- and column-wise classification
accuracies.

Prediction
I (62.4 %) R (61.8 %) C (90.1 %)

I (77.3 %) 1432 395 25
R (43.6 %) 845 672 24
C (92.2 %) 17 21 447


