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Abstract

In the "Inferring Relevance from Eye Movements Challengé3?Qcon-
testants were asked to apply machine learning techniquesédicting
sentence relevancies based on eye movements of the redtierswvo-
part competition consisted of a classification problem aticha series
analysis problem. In our winning solution to the time se@d@slysis
problem, we applied generic neural microcircuit as a n@aimopera-
tor on time series with discriminative classifier as a readdbe results
suggest that the model used has some practical merits asd@me
series analysis tool.

1 Introduction

The "Inferring Relevance from Eye Movements Challenge 2Q0pwas organized in the
form of a two-part data analysis competition. The contdstare given two competition
data sets collected from the experimental setting whergestsbwere asked to identify
correct answers to each assignment presented. Each ofabgsiggments consisted of a
guestion and 10 sentences of which five were irrelevant tgtiestion, and of the remain-
ing five relevant sentences one was the correct answer. ltesheetting, the sentences
were presented on a computer display and the eye movemeahth@pupil diameters of
the subjects were recorded and stored as a form of time s&hescontestants were asked
to identify, on the basis of the eye movements, which see®n€ each assignment were
irrelevant, relevant, and correct. In Competition 1 theetiseries data were preprocessed
into a form of traditional classification data. This pregssing method segments the time
series data in a manner typical to psychological researcbaafing. In contrast to this, in
Competition 2, only the raw time series data was presentedritestants.

There were three main difficulties in the competition settiRirstly, according to the de-
scription of the test setup, "the subject was instructedlémiify the correct answer” [1].
In particular, the subjects were not instructed to readutinoall sentences. In this sense,
there was a slight discrepancy between the experimentadgeind the challenge. This
discrepancy creates the difficulty of how to classify unssgmences, since many subjects
read efficiently and completely skipped the remaining serge after finding the correct
answer. These unseen sentences were ignored while cogpphiprediction accuracy in
Competition 1. However, in Competition 2 all sentencesciéfe the accuracy score. Sec-
ondly, the irrelevant sentences may have contained sonaswdrich drew the attention of



the subject in spite of the sentence not being relevant insbignment. Hence the baseline
methods applied by the organizers indicated that the separaf irrelevant and relevant
sentences was the most difficult part of the prediction takkdly, the eye-movement data
is inherently noisy which in general makes data analysiggdsmore challenging.

The winners of both competitions were selected based origti@daccuracy for the test
sets. In the following, we present the winning solution im@petition 2: the model, the
implementation and the results, and our conclusions bas#tearesults.

2 TheModd

The generic neural microcircuit model has been introdueegntly as a realistic model
of cortical columns (see [2] for a comprehensive introdutti The model encapsulates
the generic and the stereotypical characteristics of@drtiolumns in a useful theoretical
and practical framework. The generic neural microciraupliements a nonlinear operator
LM which transforms the input time series to the dynamic stdfét) of the circuit at
timet. As detailed in [2], the essential property of this oper&dhe pointwise separation
property which informally means that different input sitjéead to robustly separated
dynamic states. The dynamic stat¥ (¢) of the circuit is defined as the output of all the
neurons in the circuit at timé The readout of the circuit implements a memoryless map
of the circuit state to the output time series. Putting ai thgether, we get the output of
the circuit, given inputz(-) at timet, to be

y(t) = M((LM2)(1),
where fM is the readout map. It has been shown in [2] that if the read@p f* has a
certain approximation property, and assuming the poimtsisparation property fat?
then the whole circuit has "universal power for computatigth fading memory on func-
tions of time”. More specifically, the proof technique usthg Stone-Weierstrass theorem
also applied in [3] shows that any time-invariant operatavihg fading memory can be
approximated arbitrary closely by this circuit. Thus thisdrl has the necessary flexibility
to many time series processing applications. Our expetisnegith the eye movement time
series data supports also the practical applicability efnttodel.

We implemented a generic neural microcircuit as a threeedsional lattice of integrate-
and-fire type spiking neurons as in [2]. Each circuit congwia neural column of 135
neurons (dimensions 3 x 3 x 15). The connectivity structdrde network is highly re-
current and it is governed by a distribution which, roughéyyders connections (excitatory
or inhibitatory) more likely between neurons close by thaaonons far apart. The synaptic
connections are using dynamical synapses (see detaile afddel further on). As shown
in [2], the separation property is enhanced by combininglfgrcolumns as a one circuit.
Hence as whole we applied four parallel circuits in Cometi instead of the one used
in Competition 1.

The neural column was constructed as follows. The membrareapalu; of each neuron
1 is given by the standard integrate-and-fire model with thenbrane time constant,,
and the total membrane resistariée
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where the postsynaptic input current was modeled using
s~ A;lx S~ A?L azr
a;(s) = - exp(— . )O(s — AF").

The parameteA}” specifies axonal transmission delay, provides synaptic time con-
stant, ando is the Heaviside function (see [4] for details). Additidgathe model was



augmented by the standard firing threshold rule and the atescéfractory period. The
threshold criterion specifies the set of spikgsand the firing times(/) of Equation (1).

The synaptic efficacy functiomw;; was modeled according to the phenomenological model
of frequency-dependent synaptic dynamics given in [5].sThodel formulates synaptic
facilitation and depression as a function of the absoluteptic efficacy and the fraction
of available and unavailable synaptic efficacy. See [5] ftiads of this intricate model.
The parameter values of the whole model were selected fardhmputer simulation as in
Appendix B of [2]. These parameter values could be arguec toiddogically reasonable
and the whole model is characterized by reasonable biabgéalism with the eye on
feasible computer simulation (see Section 3 for discussibcomputational issues).

The dynamic state of the circuit was read out as a vector &édpains from all neurons of
the circuit. Furthermore, this vector was transformedrtetivarying output currents with
the effect of each spike upon current decaying exponeytealid 20 ms time-window was
applied to discretize this output signal. Hence, we obthioe each input signal and for
each column a 135-dimensional discrete output time series.

It should be emphasized that no learning is involved in applghe generic neural mi-
crocircuit. The circuit could be the same for each time segiwen as an input. Only
the readout map is selected according to the task, for exarapla linear classifier. This
means that the learning task is easy compared to e.g. amjubt parameters of a nonlin-
ear recurrent neural network with supervised learningetms of computational power of
the circuit, the readout map only needs to posses some wpakitiies mentioned above.
Moreover, the readout can be memoryless, that is, eachetissample of the circuit output
could be classified independently of the past of the serieacklthe circuit provides a kind
of natural preprocessing of a time series data to a cladsificdata.

However, instead of using a linear perceptron network asadagt map like in [2], we
applied discriminative classification to the circuit outpMore specifically, our goal was
to directly estimate the parameters of a distributiofY | X') whereY is a binary variable
specifying if the gaze of the subject is on relevant sentencet given the output vectof
(correct answers were considered as relevant, see thenneggiven in the next section).
We assumed tha?(Y'|X) could be learned reasonably well using logistic regresarh
proceeded to maximize the conditional data log likelihobthe weight vectoiV:

(W) == (Y'(wo+ > wiX}) —In(1+exp(wo+ »_wiX}))),

t i i
where the superscrigtdenotes the variable at the time stepWe applied the standard
conjugate gradient descent to optimize the weight vectae @ the simplicity of the op-
timization task, the convergence to the global maximum argnteed. However, to avoid
overfitting, we applied weight regularization to penalizeigits too large and furthermore,
we proceeded with data specific cross-validation and useddlidation set (see next sec-
tion) to ensure the generalization capability of our model.

(2

Finally, we applied a Bayesian approach to compute, givenetstimated distribution
P(Y]X), the probability that a sentence in an assignment is relev@oe to nature of
the Competition 2 data, more information was available eamiag the eye movements
of the subjects between fixations than in the Competitionta.d@he subjects may have
visited some relevant sentences very briefly, and espgtiadly have not fixated on some
relevant sentences. Hence very little data was availabkowfe sentences compared to
others. We applied parameter smoothing (as inthestimate of probability, see e.g. [6])
with uniform prior to augment this weakness.

The reasoning behind the use of logistic regression as aueadocessor is as follows.
Firstly, by nature of the generic neural microcircuit, ttenhinear transformation removes
the necessity of the readout to have memory. Hence we casifgldse data as independent



samples from some unknown distribution. All informatioraisilable in the dynamic state
of the circuit at some specified moment of time to approxinthéeoutput signal at that
time. The key issue is to assess whether this approximatianbe learned easily and
reasonably well, and it was assumed that logistic regrag@dorms in this respect at least
as well as the linear parallel perceptron applied in [2]. d®elty, informal testing with an
advanced naive Bayes classifier B-Course (available aslere@ervice, see [7] for details)
seemed to indicate that the performance of the naive Bagssifier was seriously hurt by
the obvious violation of the independence assumption ofvér@bles. Although, more
generally, the gaussian naive Bayes model and logistiessgin are intimately related,
logistic regression is not as tightly constrained by theditional independence assumption
as the gaussian naive Bayes model. It seems that our clatisifiproblem, where data is
in abundance, is an example of a case where logistic regresesitperforms the gaussian
naive Bayes model [8]. Due to time limitations of the chajlenwe did not analyze this
observation further.

3 Implementation and Results

The raw challenge data of Competition 2, consisting of thgital horizontal and vertical
eye movements and pupil diameter data, was preprocessedtima series. All time se-
ries were normalized and injected as an input current toaahgselected neurons of the
circuit. We applied very simple transformation in the dpififeature extraction described
in [1]. At the level of words and sentences we recorded cutivelaisits and revisits, local
movements inside a word relative to optimal viewing positi], the relative movements
between the words inside a sentence, and finally, the relatawvements between the sen-
tences of an assignment. Additionally, we registered thal pliameter changes. Since
some pupil diameter readings were clearly anomaloushelang set all pupil diameter
readings above 6 mm to the maximum of 6 mm.

The simulation of the generic neural microcircuit involuegimerical integration. We ap-
plied the standard Runge-Kutta-Fehlberg method (4th pEdlerorder error estimate) with
adaptive stepsize and a modification to detect firing comdlitd simulate the dynamics of
the generic neural microcircuit model. All simulation sedtre were implemented using
C++ programming language in the Linux computing environin&ince we were able to
distribute the computation of separate columns and readouwdifferent computing nodes
and processors, this greatly enhanced the throughput afateeprocessing. Typically a
two-way Intel Xeon processor node with hyperthreading supprovided throughput as
high as 900 spikes per second and a two-way 64-bit AMD Optecale even higher. Most
of the preprocessing and postprocessing of the data aneéshés were run in the Matlab
environment.

Since our method is clearly oriented to time series prongssnd we had very limited time
for the competition, our emphasis was on Competition 2. H@nea modest attempt was
also made in Competition 1 since we realized that we coulthagt the original time series
from the classification data to some degree of accuracy. ddbly, in the training setting
we could have used the Competition 2 training set to trainnoodel, but this would have
created a problem with the test set since the Competitioata&t was made available after
Competition 1 was closed. Instead we estimated the origjimal series based on only the
Competition 1 data with three main estimation methods. tligirere estimated the word
lengths of each assignment by averaging and using the kdge/lef first and last fixations
to the word, and the optimal viewing position. Secondly, wded gaussian noise to fixa-
tion positions to simulate the measurement errors sincawbeage accuracy of equipment
was given in [1]. Thirdly, we interpolated the eye movemdygsveen fixations using the
facts known about eye movement speed function and the diorensf the display and
positioning of the subject in front of the display [1].



Figure 1: The actual eye trajectory and an estimation

Figure 1 shows one assignment from the training data. Theabhelye movements are
shown on the left and an estimation based on classificatimig@iven on the right. As

can be seen, qualitatively the eye movement trajectorigls dpite the same. However,
some important trajectories are missing in the long gapadst some fixations. These
short visits seemed to be crucial in separating some relevahirrelevant sentences.

In Competition 1 we preprocessed the estimated time sesielescribed above. The re-
sulting six time series were given as an input to a single ralwf the generic neural
microcircuit. The parameters of the readout map were esttunas specified in the pre-
vious section using the training data. After training wigave-one-assignment-out and
leave-one-subject-out cross-validation, the model gavé’% accuracy with the validation
data. Since the test data turned out to give the accura69.@%, we can conclude that
this simplified method performed robustly, although poadynpared to other competitors.
We argue that this is mainly due to methodological discrepdretween the time series
oriented model and the classification data.

In Competition 2 we applied the full model to predict the valet sentences. After the time
series preprocessing performed as above, we used thedhwumt generic neural micro-
circuit model to predict the probabilities of the sentenoeimg relevant. The training with
conjugate gradient descent optimization and cross-u#idavas essentially the same as
described above. The most relevant sentence of the assigarag chosen to be the correct
answer. If, instead of binary classification, we did thressslclassification (correct, rele-
vant, irrelevant) we noticed a degrading performance irssmg the relevant sentences
from irrelevant ones. We concluded that we should concentna solving this harder sep-
aration problem, since this was in the spirit of the chalenghe test results proved that
this approach was successful and overfitting of the noisy @as avoided.

Table 1: Confusion matrices of the Competition 2 validatowl test sets

Validation | 1(68.3%) R(56.7%) C(75.2%)
T1(68.3%) 509 226 10
R(56.7%) 231 338 27
C(75.2%) 5 32 112
Test 1(68.7%) R(63.9%) C(77.8%)
1(68.7%) 618 276 6
R(56.4%) 282 406 32
C(78.9%) 0 38 142




Table 1 summarizes the results of the method we applied oG dingpetition 2 validation
and test data sets. As can be seen in the confusion mattieestréngth of the method was
exactly in separating the irrelevant and relevant senteriElee accuracies wefd.4% on
validation data an64.8% on test data. This indicates that the method is charactekbize
robust prediction performance, even in the presence ofrtean sentences.

4 Conclusions

Our solution in the eye movement data analysis challengebaasd on generic neural
microcircuit model with discriminative classification thugh logistic regression. Our solu-
tion won Competition 2 which involved predicting sentenelevancies using the raw time
series data. We conclude that the neural microcircuit ugkibied practical genericity in
time series analysis, since only very simple preprocessagjneeded for the task at hand.
We emphasize that the learning problem is easy with this insitee the microcircuit is
completely generic and a linear classifier is sufficient tmaet useful predictions from the
model. Additionally, the test results indicate that the eldd robust and does not overfit
easily although the time series data was noisy. Furtherntloegesults suggest that future
work on at least three different areas would be interestkigstly, in the context of this
modeling problem, it would be important to find methods fopmwing the classification
of correct sentences without introducing overfitting. Sellg, this data analysis problem
seems to be a case where logistic regression outperforrssigawnaive Bayes model and it
might be of value to do more experimentation with the chaléedata to compare the prac-
tical performances of the two models. Thirdly, the spatinicture of the generic neural
microcircuit might benefit from improvements in biologicehlism.
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