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Abstract

In the ”Inferring Relevance from Eye Movements Challenge 2005”, con-
testants were asked to apply machine learning techniques for predicting
sentence relevancies based on eye movements of the readers.The two-
part competition consisted of a classification problem and atime series
analysis problem. In our winning solution to the time seriesanalysis
problem, we applied generic neural microcircuit as a nonlinear opera-
tor on time series with discriminative classifier as a readout. The results
suggest that the model used has some practical merits as a generic time
series analysis tool.

1 Introduction

The ”Inferring Relevance from Eye Movements Challenge 2005” [1] was organized in the
form of a two-part data analysis competition. The contestant were given two competition
data sets collected from the experimental setting where subjects were asked to identify
correct answers to each assignment presented. Each of theseassignments consisted of a
question and 10 sentences of which five were irrelevant to thequestion, and of the remain-
ing five relevant sentences one was the correct answer. In thetest setting, the sentences
were presented on a computer display and the eye movements and the pupil diameters of
the subjects were recorded and stored as a form of time series. The contestants were asked
to identify, on the basis of the eye movements, which sentences of each assignment were
irrelevant, relevant, and correct. In Competition 1 the time series data were preprocessed
into a form of traditional classification data. This preprocessing method segments the time
series data in a manner typical to psychological research ofreading. In contrast to this, in
Competition 2, only the raw time series data was presented tocontestants.

There were three main difficulties in the competition setting. Firstly, according to the de-
scription of the test setup, ”the subject was instructed to identify the correct answer” [1].
In particular, the subjects were not instructed to read through all sentences. In this sense,
there was a slight discrepancy between the experimental setting and the challenge. This
discrepancy creates the difficulty of how to classify unseensentences, since many subjects
read efficiently and completely skipped the remaining sentences after finding the correct
answer. These unseen sentences were ignored while computing the prediction accuracy in
Competition 1. However, in Competition 2 all sentences affected the accuracy score. Sec-
ondly, the irrelevant sentences may have contained some words which drew the attention of



the subject in spite of the sentence not being relevant in theassignment. Hence the baseline
methods applied by the organizers indicated that the separation of irrelevant and relevant
sentences was the most difficult part of the prediction task.Thirdly, the eye-movement data
is inherently noisy which in general makes data analysis always more challenging.

The winners of both competitions were selected based on prediction accuracy for the test
sets. In the following, we present the winning solution in Competition 2: the model, the
implementation and the results, and our conclusions based on the results.

2 The Model

The generic neural microcircuit model has been introduced recently as a realistic model
of cortical columns (see [2] for a comprehensive introduction). The model encapsulates
the generic and the stereotypical characteristics of cortical columns in a useful theoretical
and practical framework. The generic neural microcircuit implements a nonlinear operator
LM which transforms the input time series to the dynamic statexM (t) of the circuit at
time t. As detailed in [2], the essential property of this operatoris the pointwise separation
property which informally means that different input signals lead to robustly separated
dynamic states. The dynamic statexM (t) of the circuit is defined as the output of all the
neurons in the circuit at timet. The readout of the circuit implements a memoryless map
of the circuit state to the output time series. Putting all this together, we get the output of
the circuit, given inputx(·) at timet, to be

y(t) = fM ((LMx)(t)),

wherefM is the readout map. It has been shown in [2] that if the readoutmapfM has a
certain approximation property, and assuming the pointwise separation property forLM ,
then the whole circuit has ”universal power for computationwith fading memory on func-
tions of time”. More specifically, the proof technique usingthe Stone-Weierstrass theorem
also applied in [3] shows that any time-invariant operator having fading memory can be
approximated arbitrary closely by this circuit. Thus this model has the necessary flexibility
to many time series processing applications. Our experiments with the eye movement time
series data supports also the practical applicability of the model.

We implemented a generic neural microcircuit as a three-dimensional lattice of integrate-
and-fire type spiking neurons as in [2]. Each circuit comprises a neural column of 135
neurons (dimensions 3 x 3 x 15). The connectivity structure of the network is highly re-
current and it is governed by a distribution which, roughly,renders connections (excitatory
or inhibitatory) more likely between neurons close by than neurons far apart. The synaptic
connections are using dynamical synapses (see details of the model further on). As shown
in [2], the separation property is enhanced by combining parallel columns as a one circuit.
Hence as whole we applied four parallel circuits in Competition 2 instead of the one used
in Competition 1.

The neural column was constructed as follows. The membrane potentialui of each neuron
i is given by the standard integrate-and-fire model with the membrane time constantτm

and the total membrane resistanceR,
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where the postsynaptic input current was modeled using
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The parameter∆ax
j specifies axonal transmission delay,τs provides synaptic time con-

stant, andΘ is the Heaviside function (see [4] for details). Additionally, the model was



augmented by the standard firing threshold rule and the absolute refractory period. The
threshold criterion specifies the set of spikesFj and the firing timest(f) of Equation (1).

The synaptic efficacy functionwij was modeled according to the phenomenological model
of frequency-dependent synaptic dynamics given in [5]. This model formulates synaptic
facilitation and depression as a function of the absolute synaptic efficacy and the fraction
of available and unavailable synaptic efficacy. See [5] for details of this intricate model.
The parameter values of the whole model were selected for thecomputer simulation as in
Appendix B of [2]. These parameter values could be argued to be biologically reasonable
and the whole model is characterized by reasonable biological realism with the eye on
feasible computer simulation (see Section 3 for discussionon computational issues).

The dynamic state of the circuit was read out as a vector of spike trains from all neurons of
the circuit. Furthermore, this vector was transformed to time varying output currents with
the effect of each spike upon current decaying exponentially, and 20 ms time-window was
applied to discretize this output signal. Hence, we obtained for each input signal and for
each column a 135-dimensional discrete output time series.

It should be emphasized that no learning is involved in applying the generic neural mi-
crocircuit. The circuit could be the same for each time series given as an input. Only
the readout map is selected according to the task, for example, as a linear classifier. This
means that the learning task is easy compared to e.g. adjusting the parameters of a nonlin-
ear recurrent neural network with supervised learning. In terms of computational power of
the circuit, the readout map only needs to posses some weak capabilities mentioned above.
Moreover, the readout can be memoryless, that is, each discrete sample of the circuit output
could be classified independently of the past of the series. Hence the circuit provides a kind
of natural preprocessing of a time series data to a classification data.

However, instead of using a linear perceptron network as a readout map like in [2], we
applied discriminative classification to the circuit output. More specifically, our goal was
to directly estimate the parameters of a distributionP (Y |X) whereY is a binary variable
specifying if the gaze of the subject is on relevant sentenceor not given the output vectorX
(correct answers were considered as relevant, see the reasoning given in the next section).
We assumed thatP (Y |X) could be learned reasonably well using logistic regressionand
proceeded to maximize the conditional data log likelihood of the weight vectorW :

l(W ) = −
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t

(Y t(w0 +
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wiX
t
i ) − ln (1 + exp(w0 +

∑

i

wiX
t
i ))),

where the superscriptt denotes the variable at the time stept. We applied the standard
conjugate gradient descent to optimize the weight vector. Due to the simplicity of the op-
timization task, the convergence to the global maximum is guaranteed. However, to avoid
overfitting, we applied weight regularization to penalize weights too large and furthermore,
we proceeded with data specific cross-validation and used the validation set (see next sec-
tion) to ensure the generalization capability of our model.

Finally, we applied a Bayesian approach to compute, given the estimated distribution
P (Y |X), the probability that a sentence in an assignment is relevant. Due to nature of
the Competition 2 data, more information was available concerning the eye movements
of the subjects between fixations than in the Competition 1 data. The subjects may have
visited some relevant sentences very briefly, and especially they have not fixated on some
relevant sentences. Hence very little data was available ofsome sentences compared to
others. We applied parameter smoothing (as in them-estimate of probability, see e.g. [6])
with uniform prior to augment this weakness.

The reasoning behind the use of logistic regression as a readout processor is as follows.
Firstly, by nature of the generic neural microcircuit, the nonlinear transformation removes
the necessity of the readout to have memory. Hence we can classify the data as independent



samples from some unknown distribution. All information isavailable in the dynamic state
of the circuit at some specified moment of time to approximatethe output signal at that
time. The key issue is to assess whether this approximation can be learned easily and
reasonably well, and it was assumed that logistic regression performs in this respect at least
as well as the linear parallel perceptron applied in [2]. Secondly, informal testing with an
advanced naive Bayes classifier B-Course (available as an online service, see [7] for details)
seemed to indicate that the performance of the naive Bayes classifier was seriously hurt by
the obvious violation of the independence assumption of thevariables. Although, more
generally, the gaussian naive Bayes model and logistic regression are intimately related,
logistic regression is not as tightly constrained by the conditional independence assumption
as the gaussian naive Bayes model. It seems that our classification problem, where data is
in abundance, is an example of a case where logistic regression outperforms the gaussian
naive Bayes model [8]. Due to time limitations of the challenge, we did not analyze this
observation further.

3 Implementation and Results

The raw challenge data of Competition 2, consisting of the original horizontal and vertical
eye movements and pupil diameter data, was preprocessed to six time series. All time se-
ries were normalized and injected as an input current to randomly selected neurons of the
circuit. We applied very simple transformation in the spirit of feature extraction described
in [1]. At the level of words and sentences we recorded cumulative visits and revisits, local
movements inside a word relative to optimal viewing position [9], the relative movements
between the words inside a sentence, and finally, the relative movements between the sen-
tences of an assignment. Additionally, we registered the pupil diameter changes. Since
some pupil diameter readings were clearly anomalously large, we set all pupil diameter
readings above 6 mm to the maximum of 6 mm.

The simulation of the generic neural microcircuit involvednumerical integration. We ap-
plied the standard Runge-Kutta-Fehlberg method (4th order, 5th order error estimate) with
adaptive stepsize and a modification to detect firing condition to simulate the dynamics of
the generic neural microcircuit model. All simulation software were implemented using
C++ programming language in the Linux computing environment. Since we were able to
distribute the computation of separate columns and readouts to different computing nodes
and processors, this greatly enhanced the throughput of thedata processing. Typically a
two-way Intel Xeon processor node with hyperthreading support provided throughput as
high as 900 spikes per second and a two-way 64-bit AMD Opteronnode even higher. Most
of the preprocessing and postprocessing of the data and the results were run in the Matlab
environment.

Since our method is clearly oriented to time series processing and we had very limited time
for the competition, our emphasis was on Competition 2. However, a modest attempt was
also made in Competition 1 since we realized that we could estimate the original time series
from the classification data to some degree of accuracy. Obviously, in the training setting
we could have used the Competition 2 training set to train ourmodel, but this would have
created a problem with the test set since the Competition 2 test set was made available after
Competition 1 was closed. Instead we estimated the originaltime series based on only the
Competition 1 data with three main estimation methods. Firstly, we estimated the word
lengths of each assignment by averaging and using the knowledge of first and last fixations
to the word, and the optimal viewing position. Secondly, we added gaussian noise to fixa-
tion positions to simulate the measurement errors since theaverage accuracy of equipment
was given in [1]. Thirdly, we interpolated the eye movementsbetween fixations using the
facts known about eye movement speed function and the dimensions of the display and
positioning of the subject in front of the display [1].



Figure 1: The actual eye trajectory and an estimation

Figure 1 shows one assignment from the training data. The actual eye movements are
shown on the left and an estimation based on classification data is given on the right. As
can be seen, qualitatively the eye movement trajectories look quite the same. However,
some important trajectories are missing in the long gaps between some fixations. These
short visits seemed to be crucial in separating some relevant and irrelevant sentences.

In Competition 1 we preprocessed the estimated time series as described above. The re-
sulting six time series were given as an input to a single column of the generic neural
microcircuit. The parameters of the readout map were estimated as specified in the pre-
vious section using the training data. After training with leave-one-assignment-out and
leave-one-subject-out cross-validation, the model gave60.9% accuracy with the validation
data. Since the test data turned out to give the accuracy of60.7%, we can conclude that
this simplified method performed robustly, although poorlycompared to other competitors.
We argue that this is mainly due to methodological discrepancy between the time series
oriented model and the classification data.

In Competition 2 we applied the full model to predict the relevant sentences. After the time
series preprocessing performed as above, we used the four-column generic neural micro-
circuit model to predict the probabilities of the sentencesbeing relevant. The training with
conjugate gradient descent optimization and cross-validation was essentially the same as
described above. The most relevant sentence of the assignment was chosen to be the correct
answer. If, instead of binary classification, we did three class classification (correct, rele-
vant, irrelevant) we noticed a degrading performance in separating the relevant sentences
from irrelevant ones. We concluded that we should concentrate on solving this harder sep-
aration problem, since this was in the spirit of the challenge. The test results proved that
this approach was successful and overfitting of the noisy data was avoided.

Table 1: Confusion matrices of the Competition 2 validationand test sets

Validation I(68.3%) R(56.7%) C(75.2%)
I(68.3%) 509 226 10
R(56.7%) 231 338 27
C(75.2%) 5 32 112

Test I(68.7%) R(63.9%) C(77.8%)
I(68.7%) 618 276 6
R(56.4%) 282 406 32
C(78.9%) 0 38 142



Table 1 summarizes the results of the method we applied on theCompetition 2 validation
and test data sets. As can be seen in the confusion matrices, the strength of the method was
exactly in separating the irrelevant and relevant sentences. The accuracies were64.4% on
validation data and64.8% on test data. This indicates that the method is characterized by
robust prediction performance, even in the presence of the unseen sentences.

4 Conclusions

Our solution in the eye movement data analysis challenge wasbased on generic neural
microcircuit model with discriminative classification through logistic regression. Our solu-
tion won Competition 2 which involved predicting sentence relevancies using the raw time
series data. We conclude that the neural microcircuit used exhibited practical genericity in
time series analysis, since only very simple preprocessingwas needed for the task at hand.
We emphasize that the learning problem is easy with this model, since the microcircuit is
completely generic and a linear classifier is sufficient to extract useful predictions from the
model. Additionally, the test results indicate that the model is robust and does not overfit
easily although the time series data was noisy. Furthermore, the results suggest that future
work on at least three different areas would be interesting.Firstly, in the context of this
modeling problem, it would be important to find methods for improving the classification
of correct sentences without introducing overfitting. Secondly, this data analysis problem
seems to be a case where logistic regression outperforms gaussian naive Bayes model and it
might be of value to do more experimentation with the challenge data to compare the prac-
tical performances of the two models. Thirdly, the spatial structure of the generic neural
microcircuit might benefit from improvements in biologicalrealism.
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