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Abstract 

Conditional Random Fields offer some advantages over traditional 
models for sequence labeling. These conditional models have 
mainly been introduced up to now in the information retrieval 
context for information extraction or POS-tagging tasks. This paper 
investigates the use of these models for signal processing and 
segmentation. In this context, the input we consider is a signal that 
is represented as a sequence of real-valued feature vectors and the 
training is performed using only partially labeled data. We propose 
a few models for dealing with such signals and provide 
experimental results on the data from the eye movement challenge.   

1  Introduct ion 

Hidden Markov models (HMM) have long been the most popular technique for 
sequence segmentation, e.g. identifying the sequence of phones that best matches a 
speech signal. Today HMM is still the core technique in most of speech engines or 
handwriting recognition systems. However, HMM suffer two major drawbacks. 
First, they rely on strong independence assumptions on the data being processed. 
Second, they are generative models that are most often learned in a non discriminant 
way. This comes from their generative nature, since HMM define a joint distribution 
P(X,Y) over the pair of the input sequence (observations) X and the output sequence 
(labels) Y. Recently, conditional models including Maximum Entropy Markov 
models [1] and Condition Random Fields [2] have been proposed for sequence 
labeling. These models aim at estimating the conditional distribution P(Y/X) and 
exhibit, at least in theory, strong advantages over HMMs. Being conditional models, 
they do not assume independence assumptions on the input data, and they are 
learned in a discriminant way. However, they rely on the manual and careful design 
of relevant features. 
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Conditional Random Fields (CRF) has been shown to overcome traditional 
Markovian models in a series of information retrieval tasks such as information 
extraction, named entity recognition… Yet, CRF have to be extended to more 
general signal classification tasks. Indeed, the information retrieval context is very 
specific, considering for instance the nature of the input and output data. Designing 
relevant features for such data is maybe easier than for many other data. Also, 
algorithms proposed for training CRF require a fully labeled training database. This 
labeling may be available in information retrieval tasks since there is a kind of 
equivalence between nodes and labels but it is generally not available in other signal 
processing tasks. Hence, the previous usages of CRF do not fit well with many 
sequence classification and segmentation tasks concerning signals such as speech, 
handwriting etc. Input data is rougher; it is a sequence of real-valued feature vectors 
without precise semantic interpretation. Defining relevant features is then difficult. 
Also, training databases are not fully labeled. In speech and handwriting recognition 
for instance, data are labeled, at best, at the unit (phoneme or letter) level while it is 
often desirable to use a number of states for each unit, or even a number of 
modalities for a same unit (e.g. allograph in handwriting recognition).  

This paper investigates the use of CRF models for such more general signal 
classification and segmentation tasks. We first introduce CRF and an extension 
called segmental CRF. Then we describe how to use CRF for dealing with 
multimodal classes and signal data and discuss corresponding inference and training 
algorithms. At last, we report experimental results concerning the eye movement 
challenge. 

2  Condit ional Random Fields for sequent ial data 

Sequence labeling consists in identifying the sequence of labels TyyY ,...,1=  that 
best matches a sequence of observations TxxX ...1= : )/(maxarg* XYPY Y= . CRF 
are a particular instance of random fields. Figure 1 illustrates the difference between 
traditional HMM models and CRF. HMM (Fig. 1-a) are directed models where 
independence assumptions between two variables are expressed by the absence of 
edges. CRF are undirected graphical models, Figure 1-b shows a CRF with a chain 
structure. One must notice that CRF being conditional models, node X is observed 
so that X has not to be modeled. Hence CRF do not require any assumption about 
the distribution of X. From the random field theory, on can show [2] that the 
likelihood ( )XYP /  may be parameterized as: 
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YXFWe is a normalization factor, ),( YXF  is a feature vector 

and W is a weight vector. Features F(X,Y) are computed on maximal cliques of the 
graph. In the case of a chain structure (Fig. 1-b), these cliques are edges and vertices 
(i.e. a vertice yt or an edge (yt-1 , yt)).  

In some cases there is a need to relax the Markovian hypothesis by allowing the 
process not to be Markovian within a state. [3] proposed for this semi-Markov CRF 
(SCRF). The main idea of these models is to use segmental features, computed on a 
segment of observations associated to a same label (i.e. node). Consider a 
segmentation of an input sequence TxxxX ,...,, 21= , this segmentation may be 
described as a sequence of segments JsssS ,...,, 21= , with TJ ≤ and ( )jjjj yles ,,=  



 

where je  ( jl ) stands for the entering (leaving) time in state (i.e. label) jy . 

Segmental features are computed over segments of observations 
jj le xx ,...,  

corresponding to a particular label jy . SCRF aims at computing )/( XSP  defined as 
in Eq. (1). To enable efficient dynamic programming, one assumes that the features 
can be expressed in terms of functions of X, sj and yj-1, these are segmental features: 
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Inference in CRF and SCRF is performed with dynamic programming like 
algorithm. Depending on the underlying structure (chain, tree, or anything else) one 
can use Viterbi, Belief Propagation [4] or Loopy Belief Propagation [5]. Training in 
CRF consists in maximizing the log-likelihood L(W) based on a fully labeled 
database of K samples, ( ){ }K

kkk YXBA 1, == , where kX  is a sequence of observations 
and Yk is the corresponding sequence of labels. 
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This convex criterion may be optimized using gradient ascent methods. Note that 
computing )(XZW  includes a summation over an exponential number of label 
sequences that may be computed efficiently using dynamic programming. Training 
SCRF is very similar to CRF training and also relies on a fully labeled database. 

  
(a) (b) 

Figure 1: Dynamic representation of HMM (a) and CRF (b) as graphical models, where 
grey nodes represent observed variables.  

3  Semi-Markov CRF for signal segmentat ion 

We investigate the use of segmental CRF for signal segmentation. When dealing 
with real signals, one has to consider the continuous nature of input data, the 
multimodality of the classes and one has to develop algorithms for learning models 
without a fully labeled dataset. Hence, in the following we will consider that, during 
training, the label Yk corresponding to input sequence Xk consists in the sequence of 
classes in Xk, whatever the length of the segments associated to these classes. 

To take into account multimodality (e.g. a letter may be written with different 
styles) we investigate the use of a few states in a Segmental CRF model for each 
class, each one corresponds to a modality of the class. We will note K the number of 
states sharing the same label. Since there are several states corresponding to the 
same label, there are a number of segmentations S that correspond to a particular 
label sequence Y. Following [6] we introduce hidden variables for multimodality 
and segmentation information and build upon their work to develop inference and 
training algorithms with incomplete data. Hence, when conditioned on an input X 
the likelihood of a label sequence Y is defined as: 
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Where S(Y) stands for the set of segmentations S (defined as in §2) corresponding to 
the sequence of labels Y, M denotes a sequence of hidden variables, 
with { }Kmi ,...,1∈ . The use of hidden variables (S,M) makes inference expensive: 
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Where Y, S and M have the same length, say T. This expression cannot be computed 
with a dynamic programming routine since the maximum and sum operators cannot 
be exchanged. However, if one uses a Viterbi approximation where summation is 
replaced with the maximum operator, and one assumes that ),,(. MSXFWe may be 
factorized in a product of T independent terms then the double maximization may be 
computed efficiently. Hence we use: 
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Training aims at maximizing the log-likelihood L(W). Using Eq. (4), the derivative 
of the likelihood of the kth training example is computed as: 
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This criterion is expressed in terms of expected values of the features under the 
current weight vector that are ),,(),,/,( MSXFE kvWkXkYMSP and 

),,(),/,( MSXFE kvWkXMSP . These terms may be calculated using a forward-backward 
like algorithm since the CRF is assumed to have a chain structure. Based on the 
chain structure of the models we used two types of features: local features 
(computed on vertices) ),,,(1

ttt mqyXF  and transition features computed on 

edges, ),,,,,,( 111
2

−−− tttttt mmqqyyXF .  

4  Eye movement challenge data 

Here is a quick description of the challenge and of the data for the competition 1 of 
the challenge, see [7] for more details. The eye movement challenge concerns 
implicit feedback for information retrieval. The experimental setup is as follows. A 
subject was first shown a question, and then a list of ten sentences (called titles), 
one of which contained the correct answer (C). Five of the sentences were known to 
be irrelevant (I), and four relevant for the question (R). The subject was instructed 
to identify the correct answer and then press ’enter’ (which ended the eye movement 
measurement) and then type in the associated number in the next screen. There are 
50 such assignments, shown to 11 subjects. The assignments were in Finnish, the 
mother tongue of the subjects. The objective of the challenge is, for a given 
assignment, to predict the correct classification labels (I, R, C) of the ten sentences 
(actually only those that have been viewed by the user) based on the eye movements 



 

alone. The database is divided in a training set of 336 assignments and a test set (the 
validation set according to challenge terminology) of 149 assignments. The data of 
an assignment is in the form of a time series of 22-dimensional eye movement 
features derived from the ones generally used in eye movement research (see [7]), 
such as fixation duration, pupils diameter etc. It must be noticed that there is a 23th 
feature that consists in the number of the title being viewed (between 1 and 10).  

5  Experiments  

We applied segmental CRF as those described in §3 to eye movement data. The aim 
is to label the ten titles with their correct labels (I, R, C). This may be done though 
segmenting an input sequence with a CRF whose states correspond to labels I, R and 
C. We investigated a number of models for this. All models have been trained with a 
regularized likelihood criterion in order to avoid over fitting [6]. These models work 
on vectors of segmental features computed over segments of observations. A simple 
way to define segmental feature vector would be the average feature vector over the 
observations of the segment. However, the average operator is not necessarily 
relevant. We used ideas in [7] to choose the most adequate aggregation operator 
(sum, mean or max) for each of the 22 features.  

The first model is a simple one. It is a SCRF model with three nodes, one for class 
R, one for class C and one for class I. It works on segmental features where 
segments correspond to sequences where the user visits one particular title. There is 
no transition features, corresponding to the change from one title to another one. 
This model is called 3NL for 3 Nodes CRF with Local features only (no transition 
features) and 3NLT if transitions features are added. It must be noticed that since a 
title may be visited more than on time in an assignment it is desirable that the 
labeling algorithm be consistent, i.e. finds a unique label for every title. This is 
ensured, whatever the model used, by adding constraints in the decoding algorithm.  

One can design more complicated models by distinguishing between the different 
visits of a same title. For example, one can imagine that a user who visits a title a 
second or a third time will not behave as he did the first time. Maybe he may take 
more time or quickly scan all the words in the title… Hence, we investigated the use 
of SCRF models with two or three states per class (I, R, C). In the two states 
models, a first state is dedicated to the first visit to a title of class R, C or I. The 
second state is dedicated to all other posterior visits to this title. When using 3 states 
per class, we distinguish among the first visit, the last visit and intermediate visits to 
a title. These models are named 6NL and 9NL depending on their number of states 
per class (2 or 3) if they make use of local features, and 6NLT and 9NLT if they 
make use of local and transition features.  

Finally, we investigate the use of multimodal models. Going back to the first model 
3NL, we consider the use of a few states per class, this time corresponding to 
different ways of visiting a title (there is no chronological constraints).  Models are 
named 3N2ML for 3 states, 2 Modes per class, and Local features.  

Table 1 reports experimental results for various SCRF-based models and for 4 
additional systems. The first one is a benchmark HMM system. It works on the same 
input representation (feature vectors) and has the same number of states as there are 
nodes in the 6NL model. The three other systems are combination systems combine 
three classifiers votes.  

A first comment about the results is that all SCRF models outperform the HMM 
system. Also, using more complex models is not systematically better useful. We 
investigated two ways for this, firstly by taking into account the number of the visit 
(increasing the number of states), secondly by taking into account multimodality 



 

(increasing the number of modes). Using a few states per class in order to take into 
account the number of a visit of a title allows reaching up to 73% (9NL) while 
allowing multimodality leads to poorer results. Also, we did not succeed in using 
efficiently transition features, this is still under investigation. At last, voting systems 
did not improve much over singles classifiers although HMM and SCRF systems 
tend to be complimentary. There is certainly some room for improvements here. 
Note however that we observed more stability in the results of voting systems when 
training and testing on various parts of the database. 

  Table 1 – Comparison of various systems on the eye movement challenge task.  

 
Technique System’s name #states- #modes Features Accuracy (%) 

SCRF 3NL 3 - 1 L 71 
- 3N2ML 3 - 2 L 71.5 
- 3NLT 3 - 1 L + T 68.9 
- 6NL 6 - 1 L 71.8 
- 9NL 9 - 1 L 73.2 
- 9N2ML 9 - 2 L 70.8 
- 9NLT 9 - 1 L + T 69.4 

HMM HMM 6 states  L 66.2 
Combination of  3NL, 6NL, 9NL L 72.1 

Combination of  HMM, 6NL, 9NL L 72.3 
Combination of  HMM, 3NL, 6NL L 71.9 

6  Conclusion 

We presented systems based on conditional random fields for signal classification 
and segmentation. In order to process signals such as eye movement, speech or 
handwriting, we investigated the use of segmental conditional random fields and 
introduced the use of hidden variables in order to handle partially labeled data and 
multimodal classes. Experimental results on the eye movement challenge data show 
that our CRF models outperform HMM, but all results are rather close showing the 
difficulty of the task.  
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