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ABSTRACT

In this paper a new approach for Blind Source Sep-
aration (BSS) is introduced. The Pearson system is
employed for modeling source distributions. The ma-
jor benefit of the Pearson system is that it also takes
into account the skewness of the distributions. We
briefly review the Pearson system and study how its
parameters may be estimated. A BSS method combin-
ing Pearson system based on the maximum likelihood
approach and fixed contrast functions is presented and
algorithms for its maximization are proposed. The sim-
ulation examples illustrate that the proposed method
reliably separates the sources in situations where some
widely used BSS methods may perform poorly.

1. INTRODUCTION

In this paper we introduce a new method for Blind
Source Separation (BSS). The method is applicable to
a wide class of source distributions that may also be
skewed and may even have zero kurtosis. Such sources
occur, for instance, in biomedical signals and communi-
cations. The underlying source distributions are mod-
eled using the Pearson system (see [10]).
We consider the classical ICA model with instanta-
neous mixing
x = As, (1)
where the sources s = [s1, 82, ... , 8,,]7 are mutually in-
dependent random variables and A, x,, iS an unknown
invertible mixing matrix. The goal is to find only from
the observations, x, a matrix W such that the output

(2)

is an estimate of the possibly scaled and permutated
source vector s.

y = Wx

* This work was funded by the Academy of Finland.
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The proposed method combines two well-known
techniques for Independent Component Analysis
(ICA): fixed non-linear contrast functions and maxi-
mum likelihood approach. In the maximum likelihood
approach we use Pearson system to model source distri-
butions. The Pearson system covers an extensive range
of different values of kurtosis and skewness and includes
many distributions with practical importance. The ra-
tional of Pearson system in BSS is that the model is
flexible enough to adapt to different source distribu-
tions that may also be asymmetric. The fixed contrast
functions improve the speed and stability of the Pear-
son system based method in the cases where sources
are easily separable.

This paper is organized as follows: in Section 2 the
Pearson system is reviewed. Estimation of its parame-
ters is considered as well. Section 3 introduces a new
BSS method where the Pearson system is employed. In
particular new objective function is derived and algo-
rithms for optimizing it are considered. Finally, simu-
lation examples are given in Section 4.

2. THE PEARSON SYSTEM

The Pearson system is a parametric family of distribu-
tions that may be used to model a wide class of source
distributions. The Pearson system has a great impor-
tance in statistics and it has been extensively studied;
see for instance [9] for references. The Pearson system
is defined by the differential equation

fa) = Eo @) &
o + bz + bax

where a, by, by and by are the parameters of the distri-

bution. In the maximum likelihood approach to ICA

the score function of hypothesized source distribution

is used as a contrast. The score function of the Pearson



system is easily solved from equation (3)

B (z —a)
bo + bix + box? )

!

f(z)
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The simplicity of score makes Pearson system particu-
larly appealing for ICA. For the derivative of the score
function we have

o(z) = (4)

’(x) _ _b0+ab1+2amb2—m2b2
L4 - (bo + b1z + bax?)?

(5)

The parameters a, by, by and b may be estimated by
the method of moments. The correspondence between
parameters a, bg, by and by and second ps, third us
and fourth ps central moment of distribution is the
following [10]

w3 (pa + 3p3)

bl =a = - C (6)
4 _ 2
b = _Hol uzlg 3p3) )
2 —3u2 —6u3
by = _( H2a[la U3 :u’Z) (8)

C )
where C' = 10p4u2 — 12u3 — 1843.

In the method of moments, theoretical moments are
estimated by sample moments

& = ;E:iw,-/n )
by = &Zzé(:ci—i“)z/n (10)
b = iﬁ;(mi—m(nﬁ) 1)
& = im—zr‘/(n&‘*) (12)

computed from data. When mean is zero and variance
is one the following formulas are obtained for estima-
tors of Pearson system parameters

_ Qs (d4 + 3)

bh=a = 5 (13)
A a2

= _7(40‘463“3) (14)
~ _ A2_

by = _M7 (15)

c

where C' = 1044 — 1242 — 18. It is seen that b, = a so
the number of parameters actually reduces to three.
When the denominator in (4) have two real roots
the Pearson system represent generalized beta distribu-
tion. Since the beta distribution is defined in a finite
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interval the method of moments estimator may lead to
the model where some observations are outside of the
definition interval. A viable solution to this problem is
to exploit sample minimum and maximum in estima-
tion.
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Figure 1: An illustration of the Pearson system in (a3,
a4)-plane. Limit for all distributions is line ay = a2+1.
The Latin numbers refer to the traditional classifica-
tion of Pearson distributions. Types I and II are beta
distributions of first kind. Notation I(J,U) refers to
J- and U-shaped distributions and I(M) to unimodal
distribution. The boundary between I(J,U) and I(M)
is curve 4(4day — 302)(5aq — 602 — 9)? = al(as +
3)2(8au — 9a3 — 12) Type III is Gamma distribution
for which ey = 302 — 3. Type VI is the beta distribu-
tion of second kind. Type V is characterized by curve
a?(as+3)? = 4(4a4 — 303) (204 — 303 — 6). Type IV is
the case where the equation by +b; +b22% = 0 has com-
plex roots. Type VII is the Student’s t-distribution.

Many widely used distributions, including normal,
Student’s t, gamma and beta distribution belong to the
Pearson family. This is illustrated in Figure 1.

3. PEARSON SYSTEM BASED ICA

It is shown [3] that if the source distributions are
known, the score functions are the optimal choice for
the contrast function. In the maximum likelihood ap-
proach source distributions are estimated by a para-
metric model. In the method we propose, the under-
lying source distributions are estimated through the
marginal distributions by fitting them to the Pearson
family using the method of moments as described in the
previous section. Fitting to the Pearson system is done
iteratively until the optimization algorithm converges.

The actual algorithm optimizing the derived crite-
rion could be any suitable ICA algorithm where maxi-
mum likelihood contrasts are utilized, such as natural



gradient [1] or relative gradient [3] algorithm
Wi = Wi +1 (I —o)y") Wi,

where 7 is the learning rate, or fixed point algorithm
[6, 7]

Wier = Wi +D (B{p(y)y"} - diag(E{p(y:)ui})) Wi,
(17)

(16)

where D = diag (1/(E{(yi)ys} — B{# (4)})-

Since the Pearson system excels in modeling distri-
butions that are close to normal distribution but does
not offer any remarkable advantages in modeling dis-
tributions that are far from normal distribution, we
employ widely used fixed non-linearities as a contrast
function when the kurtosis greatly differ from the kur-
tosis of the normal distribution. By this approach we
can speed up the computation and avoid the estima-
tion problems that might arise when a distribution is
strongly heavy tailed or J-shaped or U-shaped distribu-
tion on a finite interval. The fixed non-linearities can
be any suitably chosen non-linearities. For instance, we
may use cubic contrast when distribution is clearly sub-
Gaussian, the Pearson system when the distribution is
nearly Gaussian and hyperbolic tangent contrast when
distribution is clearly super-Gaussian. The benefit of
using Pearson system is that the method can separate
sources with a skewed distribution and the same kur-
tosis as the Gaussian distribution.

In our experiments we used fixed point algorithm
and hyperbolic tangent contrast ¢(y) = tanh(2y) for
both clearly sub-gaussian and clearly super-gaussian
sources. The boundaries between contrasts are pre-
sented in Figure 2. The procedure for the Pearson-ICA
may be given as follows:

Repeat until convergence !

1. Calculate the third and fourth sample moments
a3 and ay for current data yr = Wyix and se-
lect the Pearson system or fixed (tanh) contrast
according to Figure 2.

. If the Pearson system was selected estimate pa-
rameters of the distribution by method of mo-
ments.

Calculate scores ¢(yg) for the Pearson system or
fixed contrast.

Calculate the demixing matrix Wy, 1 using algo-
rithm (16) or (17).

1The convergence criterion can be any suitable for the gra-
dient algorithms and the fixed-point algorithm respectively. In
our experiments, we used a criterion similar to the symmetric
FastICA[5] with € = 0.0001 in order to make results comparable.
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Figure 2: The contrast functions used in the Pearson-
ICA are presented in (a3, a4)-plane. Limit for all dis-
tributions is line ay = a3 + 1. Clearly sub-gaussian
sources are defined to have kurtosis less than 2.6 and
the tanh-contrast is utilized. Clearly super-gaussian
sources are defined to have a4 = a% + 4 and the tanh-
contrast is again utilized. In area between these bound-
aries the Pearson system is used. The choice of bound-
aries is based on practical experience.

Since both moment estimators for parameters
and score function are simple rational functions, the
Pearson-ICA is computationally fast. If sources are
nearly Gaussian it appears to be faster than fixed non-
linearities, probably because maximum likelihood con-
trast provides faster convergence. We may even com-
bine parameter estimation (13) and score calculation
(4) to achieve the score directly as function of sample
moments. After some manipulations we obtain

o(z) = [a3 (3+ au) — & (12a3” — 5as + 18)] /B

and
!

¢ (z)
_ —45a3% — 36a3* + 84as’as + az’as® + 7204 — 4004’
= Bz

2’ (126as” + 36a3” — 54as® s + 20 — 96ca + 108)
_|._

B2

z (—6as® (3 + as) + 4as (—9 + as?))

+ B2 )

(18)

(19)
where B = 3a3?—4as—zas 3+ a4)+x2 (6 + 3a3? — 2a4).

4. SIMULATION EXAMPLES

In order to illustrate the performance of the proposed
algorithm, we consider first an example with a mix-
ture of three sources: a sine wave (sub-Gaussian),
a synthetic ECG signal (super-Gaussian), and a ran-
dom Gaussian sequence with zero mean and unit vari-
ance. This is an easy case: all common ICA methods
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(c) Separation by the Pearson-ICA

Figure 3: Separation of a sine wave, an ECG signal,
and a Gaussian noise signal with Pearson-ICA.

are expected to perform very well. The Pearson-ICA
is compared with three different non-linearity in Fas-
tICA package [5] and JADE-algorithm [2]. Three sig-
nal lengths, 2000, 5000 and 10000 are tried generating
1000 realizations from each. Non-singular mixing ma-
trix was randomly generated for each of 3000 simula-
tion. The Figure 3 illustrates source signals, mixture
and separation result by Pearson-ICA. It can be seen
that the sources are well separated. The comparison
of methods is done computing the Signal to Interfer-
ence Ratios (SIR(dB)= —10log;,(MSE)) between the
zero mean, the unit variance normalized signals. The
sources and the sign adjusted signals are matched by
taking the signal with the minimum SIR value to be the
separation estimate. The average SIR values for differ-
ent signal lengths are shown in Table 1. The conclusion
is that there are no significant differences in separation
performance between Pearson-ICA and the four other
algorithms used in the comparison.

In the second example we demonstrate that the
Pearson-ICA algorithm can separate signals with kur-
tosis equal to that of Gaussian distribution. Again
1000 realizations of seven different signal lengths 100,
200, 500, 1000, 2000, 5000 and 10000 are gener-
ated. The theoretical distributions of the signals
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Sample size

Source Method 2000 5000 10000
ECG Pearson 24.98 34.27 36.46
Pow3 22.75 29.32 31.17
Tanh 25.89 35.08 37.20
Gauss 26.63 36.52 38.81
JADE 23.54 29.01 30.77
Sine Pearson 13.03 40.51 44.92
Pow3 15.03 31.14 35.19
Tanh 14.18 39.56 43.60
Gauss 14.02 42.16 41.96
JADE 14.91 32.96 37.38
Gaussian  Pearson 28.19 33.11 36.15
Pow3 28.13 32.76 35.62
Tanh 30.37 34.57 37.75
Gauss 30.556 34.76 37.95
JADE 30.99 35.30 38.49
Table 1: The Signal to Interference Ratio
(SIR(dB)=-10log,,(MSE)) error performance of

Pearson-ICA, JADE and different contrast functions
of FastICA (symmetric approach). The sources and
separated signals were normalized to zero mean and
unit variance. The SIR values are averages over 1000
realizations.

are: Lognormal(0.1,0.15), Rayleigh(1), Normal(0,1),
and GLD(0.2370,0.1983,0.1672,0.1065). The acronym
GLD refers to Generalized Lambda Distribution [8, 4]
that is an extensive four parametric family of distribu-
tions defined by the inverse distribution function. The
GLD(0.2370,0.1983,0.1672,0.1065) distribution has the
theoretical moments a; = 0, az = 1, ag = 0.2, and
as = 3. Lognormal and Rayleigh distributions are
commonly used for modeling the fading communication
channels. The sources are mixed using the (randomly
generated) matrix

0.7396 0.9084 0.2994 0.3089

A= 0.4898 0.2980 0.5771 0.4108 (20)
0.1096 0.7808 0.8361 0.4669
0.4199 0.8799 0.2706 0.7467

The first hundred observations from one realization
of the Pearson-ICA and kurtosis separated signals are
plotted in Figure 4. The SIR averages are presented
in Figure 5. As it can be seen the Pearson-ICA per-
forms well for all the sources. The FastICA algorithm
with the fixed contrast functions is unable to separate
the normal signal from the GLD signal. This also re-
flects to the SIR values of the other two signals. JADE
algorithm perform slightly better than FastICA algo-
rithm but is outperformed by Pearson-ICA. The results



indicate that in this case about 1000 observations are
needed in order to achieve good separation by Pearson-
ICA. Naturally, this result depends on source distribu-
tions, and an estimators used for Pearson parameters.

5. CONCLUSION

We introduced a Pearson System based algorithm for
estimating ICA model. The proposed method com-
bines the best features of fixed non-linearities and max-
imum likelihood approach. Source distribution adap-
tive contrast function is derived using the Pearson sys-
tem as the model. We have presented the theoretical
background for the use of Pearson-ICA, and shown that
it can separate a wide class of source signals includ-
ing sub- and super-Gaussian, and even skewed distri-
butions with zero kurtosis.
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(c) Separation by the Pearson-ICA

Figure 4: Separation results of the Pearson-ICA and
the kurtosis criteria are compared in the case where
the sources are Lognormal(0.1,0.15), Rayleigh(1), Nor-
mal(0,1), and GLD(0.2370,0.1983,0.1672,0.1065). The
number of samples was 10000 but only the first 100 ob-
servations are shown. In order to visualize the quality
of separation a short sequence of zeros was added to
every source signal. It can be seen that the kurtosis
based method fails to separate the GLD and the nor-
mal signals, but the Pearson-ICA reliably separates all
the sources.
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Figure 5: The Signal to Interference Ratio (SIR(dB)=-10log;,(MSE)) error performance of Pearson-ICA and
FastICA contrasts Pow3, Tanh and Gauss and JADE algorithm as the function of the sample size for sources
generated from Lognormal(0.1,0.15), Rayleigh(1), Normal(0,1) and GLD(0.2370,0.1983,0.1672,0.1065). The sources
and separated signals were normalized to zero mean and unit variance. The SIR values are averages over 1000
realizations.
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