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ABSTRACT

This paper discusses a novel method called ‘ ICA with OS’
(‘ Independent Component Analysis with Order Statistics’ )
to solve the vital problem of Blind Source Separation. The
key of the procedure is a new alternative Gaussianity
measure estimated by Order Statistics of the cdf (cumulative
density function) instead of the common pdf (probabilit y
density function) moments. The maximization of this
measure performs the extraction of one source in each of
the successive stages of a deflation procedure based on
Givens rotations.

I. INTRODUCTION

Blind Source Separation (BSS) is a problem whose solution
is vital in numerous applications in communications such as
in teleconferencing or in a mobile communications
environment where interferences and echoes have to be
cancelled.
The goal of BSS is to extract N unknown sources from a set
of N of their mixtures; only the independence condition
between the source signals is assumed, and the final
objective is to force the maximization of an independence
measure at the output signals to extract the original sources.
In this sense many methods share an analysis based on the
joint pdf and its related cumulants to obtain independence
properties [1,2,3]. Other methods use a non-linearity (based
on certain conditions over the pdf ) in order to minimize the
joint entropy (Infomax) [ 4].
 Other approaches like the ‘kurtosis method’ [5,7] are
interested in separating only one source from the mixture in
every stage of a deflation procedure [6]. This kind of
methods decreases the Gaussianity of the analyzed single
output to provide the separation according to the Central
Limit Theorem [7].
In our approach we propose a novel statistical Gaussianity
measure whose maximization drives the source extraction.
This measure is based on the cdf instead of the pdf (like in
[5,7]) and it is developed through the concept of order

statistics –OS-; consequently a novel cost function (CF)
using certain OS has been deduced (see [8,9,10]).

Some of the advantages of ‘ ICA with OS’ method are:
higher quality than cumulant based methods  (JADE[13])
with  small sample sizes; it improves the performance  for
mixtures of subGaussian sources; the implementation,
performed very eff iciently with search strategies, is based
on sample ordering.

 The multistage deflation procedure will be reviewed briefly
in the following section. The third section will concern with
the fundamentals of  ‘ ICA with OS’ driving to the new CF.
Afterwards we resume an eff icient iterative algorithm to
reach the extreme of the CF even for hybrid mixtures.
Finally some comparative results with other methods, an
several examples of sources separation conclude the paper.

II. MODEL AND  DEFLATION PROCEDURE

The processing model in a generic NxN scenario is shown in
figure 1, where linear instantaneous mixtures of N
independent unknown sources (with zero mean and unit
variance) are collected by the sensors. A first step performs
spatial decorrelation in order to decrease the number of
parameters to be found.
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Figure1: Model of the separation procedure in two steps

The global resultant mixture of the spatial decorrelation
preprocessing V=DH (see figure(1)) is an unknown
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orthogonal matrix . Therefore a second step is needed  to
perform BSS  in order to update the separation matrix B
until the separation is carried out when B=VH

Our method is based in the following fact: any orthonormal
real matrix V(NxN) can be  factored in the product of
p=N(N-1)/2  elementary rotation matrixes Rij(αij), where αij

are the unknown rotation angles :

∏
>

−=

=

ij
Ni
ji

ijij

1,..,1
),(

)(αRV (1)

where Rij(αij) express the  rotation of an angle  αij   from the
i axe towards the j axe, the (k,l) element of this  matrix is:
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Equation 3 shows the factorization of the matrix B at
different stages of the deflation procedure

B=BN-1 BN-2 ......B2 B1

At each t (t={1,....,N-1}) stage the matrix to be
update is:
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Let us call ββt=({ βtj } )j>t  the vector of parameters (or
rotation angles) involved in each  t stage (Eq.4) .

According to Eq. (3) the problem has been decomposed in
N-1 stages : In each tth stage of the deflation procedure the
tth output channel wt  is processed in order to obtain the
specific set of elementary rotation matrices in Eq.(4) with
the corresponding  extraction of one source in that t th

channel (for more detail see [9,6])

Consequently a Cost Function Jt (ββt )  is needed in each t
stage which presents a global maximum (or minimum) for
the correspondent set of parameters solution; when the
extreme is reached one of the original sources would be
estimated , let us call st this source estimation.

Figure (2) shows an scheme of the generic deflation
procedure in terms of  CF’s.
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Figure2: Scheme of the generic deflation procedure

In the following section we will deduce a novel CF from a
Gaussianity measure.

III. STATISTICAL MEASURE OF GAUSSIANITY
BASED ON THE CDF

A first approximation to our method was proposed in [8].
Let us focus the fundamentals from a more appropriate
perspective in this section.

III.I Previous ideas

1.Concept of  Order Statistics

Let (w(1)<w(2)< ...< w(n)) be an ordered list obtained from the
discrete signal w : w[1]....w[n].  The k-sample w(k) is labeled
as the O.S. of order k.  The main feature we want to extract
from the O.S. is that it is in fact an asymptotic non
parametric estimator of the cdf :

w F w k nk w k( ) ( ))/
�

( ) /= (5)

Around 500 ordered samples are enough  to estimate  very
robustly and easily any cdf, while with the same number of
samples the accuracy is much poorer with the pdf estimation
by means of the Gram-Charlier expansion (using cumulants
[1]); this fact was the original motivation to exploit the
properties of the cdf instead of the pdf to obtain the
separation.

2.- Central Limit Theorem (CLT)

The CLT states that the linear combination of independent
random variables always increases the Gaussianity of the
constrained distribution. Blind Source Separation must
simply decrease the Gaussianity of the output analysis
channel to extract one of the original non-Gaussian sources.
Figure (3) ill ustrates the CLT implication for an arbitrary
orthogonal mixture of two Laplacian sources. Dashed lines
represent the theoretical distributions (pdf’s top, cdf’s
bottom) of one output channel for an arbitrary matrix B.
The dotted line represents the equivalent Gaussian
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distribution with the same variance. The distribution of the
Laplacian source is represented as the solid line.

Figure 3, Top: theoretical pdf’s in one output channel for a
mixture of two laplacian sources. Bottom: Theoretical cdf’s for the

same signals

III.II Gaussianity Measure based on the cdf

From the previous section, we conclude that Gaussianity is
an appropriate distance between the analyzed signal and the
equivalent Gaussian distribution; several methods [5,7]
estimate Gaussianity based on cumulants. Our contribution
is to utili ze order statistics instead.

As it can be observed in figure 3-bottom ,there are certain
regions in the cdf’ s representation (marked with squares)
that show discriminabilit y between the signals involved.
We are able to exploit this property because OS provides a
practical way of estimating the cdf.

To ill ustrate the method let us take an example of a NxN
instantaneous mixture where at least one of the sources has
superGaussian distribution (a Laplacian distribution in this
case). However any kind of mixture offers similar behavior.

Let us call w the processed tth output channel in each tth

stage of the deflation procedure (section II ). Figure (4)
represents the estimation of the involved cdf’ s through the
OS (see Eq 5 ) for the interval  corresponding to the upper
right part in figure 3-bottom:  The dashed line is the
estimated cdf  (Fw(w)) of the signal   for an arbitrary value
of Bt(ββt) ; The dotted line is the estimation of the equivalent
Gaussian cdf of the same power (FG(w)) .  Also the cdf of
the unknown original Laplacian source (Fx(w)) is
represented as the solid line.

k/n

g(k)w(k)

1/ n

n/n
Estimated cdf's through OS

OS

Figure 4: Gaussianity measure through the k-OS

Let us observe that the cdf’ s of the w channel are always
above the cdf of the Gaussian distribution in this interval
and the distance between them is maximum when the
separation condition holds, that is when w = x (x is one
original source). In this sense the distance marked in the
figure 4 with the double arrow can be taken like a
Gaussianity measure Gm:

OSkcertainforgwGm kk −−= )()( )
�
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(6)

In Eq.(6) w(k) is the k-OS of  w, and g(k) is the k-OS of the
Gaussian distribution. For appropriate values of k, Gm
increases when the Gaussianity of w decreases; therefore the
source would be extracted at the maximum distance Gm.
Gm is maximum when w(k)  reaches its minimum value,
however, if the source is subGaussian the polarity changes
and w(k) would be maximum.
Therefore the following cost function could be deduced
from Gm:
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For  symmetric distributions we can define a cost function:
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Let us remark that Jt  presents a minimum when the
extracted source is superGaussian and a maximum when the
source is subGaussian for (k,l) in intervals around
(75%,25%).

Experimentally we verified that the values of (k,l)=
(75%,25%) can be chosen as the optimum range of the OS
if the involved distributions are unknown. This conclusion
has been reached after a detailed study over the variance of
the estimator in Eq(7) for several values of k.
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III.III  Improving the Gaussianity measure

As we have just seen, the previous cost function  (Eq.8) is
based on the estimation of the cdf of the r.v. w : Fw(w)
The improved measure is based on the estimation of the
new normalized r.v. y :
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The relationship between both distributions is a scale
transformation:

))(()( www maxFF wy =  (10)

Fy(y) presents the same properties in relation with its
equivalent Gaussian distribution FG(y) (see figure(4)). The
advantage is the increased curvature of Fy(y) because the
new scale limits the curves between  -1 and +1 at the
horizontal axis, so that the discrimination measure in
figure(4) is more noticeable.
Therefore the cost function in Eq(8) can be modified in
terms of y:

%)25%,75(),()()()( )()( =−= lkforyyJ lkt ttt ���  (11)

Let us recall that  max(w) is the OS of higher order k=n (n
is the number of processed samples); the improved cost
function has been deduced substituting y ( Eq(9)) in Eq(11):   
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We have compared the Amari’s performance index [11]
from both cost functions (Eq. 12, Eq. 8) and  the results are
better for the normalized case.

IV. AN ALGORITHM TO FIND THE EXTREME OF
THE COST FUNCTION

IV.I Iterative Algorithm

According to the previous section, separation requires the
optimization of the cost function presented in Equation (12)
at each t stage. The procedure to reach the extreme would
be the same for each t stage, only the dimension M (M=N-t)
of the set of involved parameters (ββt=({ βtj } )j>t ) changes.

The proposed iterative algorithm is based on an eff icient
searching strategy over a set S of discrete values of the
vector ββt . Let us suppose that S has enough number of
elements and accuracy in order to calculate the discrete

values of Jt for each S element and then to estimate their
extremes. This procedure is not practical because S too high
dimension when the number of parameters M increases.

Therefore let us propose an iterative procedure where a set
S i, with only a few elements, changes with each iteration i.
Discrete values for the cost function (Jt(ββt))i at the i iteration
are calculated for each ββt element of Si in the following
way:  we obtain the output channel w for each matrix Bt(ββt)
(Eq(4)) ; then the 25%,75% and n- OS are computed simply
by reordering the samples and extracting the samples at
those positions to calculate the value of Jt for this ββt through
Eq(12) .
In the ith iteration the extreme of  (Jt(ββt))i provides an
increment for the vector solution according to:
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� t

t

t =∆
(13)

Nevertheless the ‘ iterative algorithm’ still requires a
relatively high computational cost when the number of
sources increases, therefore we have proposed a descent
(ascent) gradient technique to reach the minimum
(maximum) of the cost function [10]. The gradient
expression in the TITO scenario has been deduced in [10].
The generalization to the MIMO scenario is under analysis,
and it is out of the scope of the present paper.

IV.II Hybrid Mixtures

There are many cases where the type of distributions of the
involved sources are unknown or different kind of
distributions are involved. In these situations an analysis of
the form of the Kurtosis Function [5] has been implemented
in order to find out the source characteristic (sub-super
Gaussian) and therefore the choice of the extreme
characteristic of Jt. The following point has been borrowed
from [5]:

“The kurtosis function as a function of the set of M
parameters in each stage, has non-negative maximum for
superGaussian components and non-positive minimum for
subGaussian components “ .

Therefore a pre-processing before each stage has been
implemented in order to estimate the shape of the kurtosis
function K(ββt)  where several  kurtosis values are estimated
for a small set of  discrete values of the vector ββt  according
to equation (14):
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In spite of the fact that the estimation of the kurtosis
function Eq(14) has not enough accuracy, the evolution of
this function follows the real kurtosis function, and this is
enough to know the kind of extreme. Recall that if the
estimation of the kurtosis function presents a positive
maximum our cost function presents a minimum for the
solution and vice versa.

V. RESULTS

In order to compare the performance of the ‘ ICA with OS’
methods with other representative methods (extended
INFOMAX[4] and JADE[13]) several kind of sources have
been mixed through the orthogonal matrix V=Rxy(45o) . We
have considered this mixture because it implies the
maximum and equivalent rotation for the involved two
sources. ‘ ICA with OS’ use the  improved cost function
from Eq(12) and it has been optimizaed by means of the full
algorithm in section  IV.

 In figure(6) we present the comparative results:    Amari’s
performance index in dB [11] (averaged for ten
realizations)  front to number of processed samples.

The following conclusions can be deduced from figure(6): -
1.- ‘ICA with OS’ (based on order statistics) works better
than  ‘JADE’ (based on cumulants) for small window size
(100,500) samples.
2.- When the involved sources are subGaussians, ‘ ICA with
OS’ improves the quality of the separation other traditional
methods, while the other methods show a better behavior
for the superGaussian cases.

Figure(6): Comparative performance index. Solid line: ‘I CA with
OS’ ,  Dashed line: ‘I NFOMAX’*, Dotted line: ‘JADE’*.

(L:Laplacian,  U:Uniform, G: Gaussian)

Figure(7) corroborates that ‘ ICA with OS’ presents a better
behavior for the subGassians cases; three image signals
have been mixed through an arbitrary H, and have been
separated successfully by our method, while Infomax
quality separation is not good enough. (100 pixels have
been processed by both procedures).

Figure(7): ‘I CA with OS’ and ‘I NFOMAX’  for an arbitrary
mixture of three images. Top: Original images; Second row:
mixtures, Third row: Separated images though ICA with OS (-11
dB); Four row: Estimated images though INFOMAX (-2 dB).

Bellow, an example of a mixture of two nPAM discrete
sources and a Laplacian noise source is presented in order
to show the capabilit y of the method in a communication
environment and for hybrid mixtures. In this case an
excellent performance index of -17.5 dB has been obtained
with 500 processed samples.

____________
*Simulations with “ext_ica.m” from www/cnl.salk.edu/-tewon and

” jade.m” from sig.enst.fr:80/-cardoso/guidesepson.html
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Figure   (8): Mixture of 4-PAM with 8-PAM and laplacian noise

VI CONCLUSIONS

The novel method ‘I CA with OS’ has been presented in this paper
under the perspective of an alternative measure of Gaussianity
based on the cdf instead of the pdf.
We have shown that our method separates any kind of mixtures
even hybrid ones with very few samples, presenting the best
quality in the subGaussian scenarios. Besides the implementation
is simply based on sample ordering applied in a deflation
procedure. Another advantage of this method is that it is very
eff icient against outliers because the contaminated samples will be
placed at the upper OS and therefore are filtered by our procedure.
Our present line of research is the generalization of the method to
convolutive mixtures. The separation in the frequency domain
[12] is the most attractive alternative: we have already extended
the procedure to the complex instantaneous mixtures in order to
apply the method to each of the frequency bins obtained through
the Short Time Fourier Transform  (STFT) of the observable
signals. Anyway this topic is still under study and the
principal inconvenient is the permutation problem.
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