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ABSTRACT

This paper discusses a nhovel method cdled ‘ICA with OS
(‘Independent Component Analysis with Order Statistics')
to solve the vital problem of Blind Source Separation. The
key of the procedure is a new aternative Gaussanity
measure estimated by Order Statistics of the cdf (cumulative
density function) instead of the common pdf (probability
density function) moments. The maximizaion of this
measure performs the extradion of one source in ead of
the successve stages of a deflation procedure based on
Givensrotations.

[.INTRODUCTION

Blind Source Separation (BSS is a problem whose solution
isvital in numerous applicaions in communicaions uch as
in teleconferencing or in a mobile mmunicaions
environment where interferences and edioes have to be
cancdled.

The goal of BSSisto extrad N unknown sources from a set
of N of their mixtures; only the independence ®ndition
between the source signals is asumed, and the final
objedive is to force the maximizaion of an independence
measure & the output signals to extrad the original sources.
In this ense many methods dare an analysis based on the
joint pdf and its related cumulants to oltain independence
properties [1,2,3]. Other methods use anon-lineaity (based
on certain conditions over the pdf ) in order to minimize the
joint entropy (Infomax) [ 4].

Other approaches like the ‘kurtosis method [5,7] are
interested in separating only one source from the mixture in
every stage of a deflation procedure [6]. This kind of
methods deaeases the Gausdanity of the analyzed singe
output to provide the separation acwrding to the Central
Limit Theorem [7].

In our approach we propose anovel statisticd Gaussanity
measure whose maximization drives the source etradion.
This measure is based on the cdf instead of the pdf (like in
[5,7]) and it is developed through the concept of order
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statistics -OS-; consequently a novel cost function (CF)
using certain OS has been deduced (see[8,9,10)).

Some of the alvantages of ‘ICA with OS method are:
higher quality than cumulant based methods (JADE[13])
with small sample sizes; it improves the performance for
mixtures of subGaussan sources; the implementation,
performed very efficiently with seach strategies, is based
on sample ordering.

The multi stage deflation procedure will be reviewed briefly
in the following sedion. The third sedion will concern with
the fundamentals of ‘ICA with OS' driving to the new CF.
Afterwards we resume an efficient iterative dgorithm to
read the extreme of the CF even for hybrid mixtures.
Finaly some cmparative results with other methods, an
several examples of sources separation conclude the paper.

[I.MODEL AND DEFLATION PROCEDURE

The processng model in ageneric NxXN scenario is siown in
figure 1, where linea instantaneous mixtures of N
independent unknown sources (with zero meean and unit
variance) are olleded by the sensors. A first step performs
gpatial deaorrelation in order to deaease the number of
parameters to be found.
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Figurel: Model of the separation procedure in two steps

The global resultant mixture of the spatial decorrelation
preprocessng V=DH (see figure(1l)) is an unkrown



orthogona matrix . Therefore asecond step is neaded to
perform BSS in order to update the separation matrix B
until the separation is carried out when B=V"

Our method is based in the following fad: any orthonormal
red matrix V(NxN) can be fadored in the product of
p=N(N-1)/2 elementary rotation matrixes R;(a;), where a;
are the unkrown rotation angles :

v Ry (ay) D

()
i=1,.., N-1

j>i

where R;(a;) expressthe rotation of an angle a; from the
i axetowardsthe | axe, the (k,I) element of this matrix is:

O cos@;) if k=I=i or k=I=jC
E sie,) if k=i and |=] E(Z)
Ri'()=0 -sin(@;) if k=j or I=i C
O ; — ; — ; C
0 1 if k=l#i or k=l#]j C
= 0 rest E

Equation 3 shows the fadorizaion of the matrix B at
different stages of the deflation procedure

B=Bn.1 Bn-2 -.-..B2 B3 3)
At eah t (t={1,....N-1}) stage the matrix to be
updateis: ) ]
B = ([;| R, (By)) @
Let us cdl B=({B; })j»x the vedor of parameters (or

rotation angles) involved in ead t stage (Eq.4) .

According to Eq. (3) the problem has been decompaosed in
N-1 stages : In ead t" stage of the deflation procedure the
th output channel w; is processed in order to oktain the
spedfic set of elementary rotation matrices in Eq.(4) with
the mrresponding extraction of one source in that t
channel (for more detail see[9,6])

Consequently a Cost Function J; (B; ) is needed in ead t
stage which presents a global maximum (or minimum) for
the rrespondent set of parameters lution; when the
extreme is readied one of the original sources would be
estimated , let us cdl s this urce estimation.

Figure (2) shows an scheme of the generic deflation
procedureintermsof CF's.
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Figure2: Scheme of the generic deflation procedure

In the following sedion we will deduce anovel CF from a
Gausdanity measure.

[11. STATISTICAL MEASURE OF GAUSSIANITY
BASED ON THE CDF

A first approximation to our method was proposed in [8].
Let us focus the fundamentals from a more gpropriate
perspedivein this edion.

I11.] Previousideas

1.Concept of Order Statistics

Let (Way<wp<...< W) be an ordered list obtained from the
discrete signal w : w{1]...w[n]. The k-sample w is labeled
asthe O.S. of order k. The main feaure we want to extrad
from the O.S. is that it is in fad an asymptotic non
parametric estimator of the cdf :

®)

Wyy | Fy(Wyey) =K/

Around 500 adered samples are enough to estimate very
robustly and easily any cdf, while with the same number of
samples the acarragy is much poarer with the pdf estimation
by means of the Gram-Charlier expansion (using cumulants
[1]); this fadt was the original motivation to exploit the
properties of the cdf instead of the pdf to oltain the
separation.

2.- Central Limit Theorem (CLT)

The CLT dtates that the linea combination of independent
random variables always increases the Gausdanity of the
constrained dstribution. Blind Source Separation must
simply deaease the Gausdanity of the output analysis
channel to extrad one of the original non-Gausdan sources.
Figure (3) illustrates the CLT implication for an arbitrary
orthogona mixture of two Lapladan sources. Dashed lines
represent the theoreticad distributions (pdf's top, cdf's
bottom) of one output channel for an arbitrary matrix B.
The dotted line represents the eguivaent Gausdan



distribution with the same variance. The distribution of the
Lapladan sourceis represented as the solid line.

[sX:)

0.6

04

o2

0.8

0.6

0.4

o2k

L
3

Figure 3, Top: theoreticd pdf’sin ore output channel for a
mixture of two lapladan sources. Bottom: Theoreticd cdf’ s for the
same signals

I11.11 Gaussianity M easur e based on the cdf

From the previous sdion, we @nclude that Gausdanity is
an appropriate distance between the analyzed signal and the
equivalent Gausdan distribution; several methods [5,7]
estimate Gausdanity based on cumulants. Our contribution
isto utilize order statistics instead.

As it can be observed in figure 3-bottom ,there ae cetain
regions in the cdf’'s representation (marked with squares)
that show discriminability between the signals involved.
We ae ale to exploit this property becaise OS provides a
pradicd way of estimating the cdf.

To illustrate the method let us take an example of a NxN
instantaneous mixture where & least one of the sources has
superGausdan distribution (a Lapladan distribution in this
case). However any kind of mixture offers smilar behavior.

Let us cdl w the procesed t" output channel in ead t"
stage of the deflation procedure (sedion Il). Figure (4)
represents the estimation of the involved cdf’ s through the
OS (seeEq 5) for the interval corresponding to the upper
right part in figure 3-bottom: The dashed line is the
estimated cdf (F,(w)) of the signal for an arbitrary value
of By, ; The dotted line is the estimation of the equivalent
Gausgan cdf of the same power (Fg(w)) . Also the cdf of
the unkmown origina Lapladan source (Fy(w)) is
represented asthe solid line.
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Estimated cdf's through OS

Figure 4: Gaussanity measure through the k-OS

Let us observe that the cdf' s of the w channel are dways
above the cdf of the Gausdan distribution in this interval
and the distance between them is maximum when the
separation condition holds, that is when w = x (X is one
origina source). In this ense the distance marked in the
figure 4 with the double arow can be taken like a
Gausdanity measure G,

Gm=|wy, B ,) - 9| for certaink-0S (6)

In Eq.(6) wy is the k-OS of w, and gy is the k-OS of the
Gausdan distribution. For appropriate values of k, Gm
increases when the Gausdanity of w deaeases; therefore the
sourcewould be extraded at the maximum distance Gm
Gm is maximum when wgy, readies its minimum value,
however, if the source is subGausdan the polarity changes
and wyy would be maximum.

Therefore the following cost function could be deduced
from Gm

max: subGaussia

()

max/ min |W(k) ® t)|

. min ; superGausisin

For symmetric distributions we can define a ost function:
3.6 )= Wy @ ) =wi, @ )| for (k,1) with k+1=:(8)

Let us remark that J, presents a minimum when the
extraded sourceis superGaussan and a maximum when the
source is subGausdan for (kl) in intervals around
(75%,25%).

Experimentally we verified that the values of (k)=
(75%,25%) can be dhosen as the optimum range of the OS
if the involved distributions are unkrnown. This conclusion
has been readed after a detail ed study over the variance of
the estimator in Eq(7) for several values of k.



1.1 Improving the Gaussianity measure

As we have just seen, the previous cost function (Eq.8) is
based on the estimation of the cdf of ther.v. w: F(w)

The improved measure is based on the estimation of the
new normalizedr.v.y:

w
max(w)

F,(y) with y= ©)

The relationship between both distributions is a scde
transformation:

F,(w) =F, (w maxw)) (20
Fy(y) presents the same properties in relation with its
equivalent Gaussan distribution Fg(y) (seefigure(4)). The
advantage is the increased curvature of F(y) because the
new scde limits the airves between -1 and +1 at the
horizontal axis, so that the discrimination measure in
figure(4) is more noticedle.
Therefore the st function in Eq(8) can be modified in
terms of y:

J@)= |Y(k) ©)- Yy (¢ t)| for (k, 1) = (75%,25%) 11
Let usrecdl that max(w) is the OS of higher order k=n (n

is the number of procesed samples); the improved cost
function has been deduced substitutingy ( EQ(9)) in Eq(11):

_ |W(k)(8t)_w(l)c8t)|
J =
1(51) | W(n)(ﬁt) |

for (k,1) = (75%,25%) (12)

We have compared the Amari’s performance index [11]
from both cost functions (Eq. 12, Eq. 8) and the results are
better for the normali zed case.

IV.AN ALGORITHM TO FIND THE EXTREME OF
THE COST FUNCTION

IV.I Iterative Algorithm

According to the previous sdion, separation requires the
optimization of the st function presented in Equation (12)
at ead t stage. The procedure to read the extreme would
be the same for ead t stage, only the dimension M (M=N-t)
of the set of involved parameters (&t:({ b })jst) changes.

The proposed iterative dgorithm is based on an efficient
seaching strategy over a set S of discrete values of the
vedor 3 . Let us appcse that S has enough number of
elements and acaracy in order to cdculate the discrete
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values of J; for ead S element and then to estimate their
extremes. This procedure is not pradica because Stoo high
dimension when the number of parameters M increases.

Therefore let us propose an iterative procedure where aset
S;, with only a few elements, changes with ead iteration i.
Discrete values for the st function (Jy(By)); at thei iteration
are cdculated for eat (3 element of 'S in the following
way: we obtain the output channel w for ead matrix By(f3)
(Eq(4)) ; then the 25%,75% and n- OS are computed simply
by reordering the samples and extrading the samples at
those positions to cdculate the value of J; for this @t through
Eq(12) .
In the ith iteration the extreme of (J(f;)); provides an
increment for the vedor solution acordingto:

gii+1=08,[i]+3[]
max (13
where £8[]="min (3,6,)),
B
Nevertheless the ‘iterative dgorithm’ ill  requires a

relatively high computational cost when the number of
sources increases, therefore we have proposed a descent
(ascent) gradient technique to read the minimum
(maximum) of the st function [10]. The gradient
expresson in the TITO scenario has been deduced in [10].
The generali zaion to the MIMO scenario is under analysis,
and it is out of the scope of the present paper.

IV.Il Hybrid Mixtures

There ae many cases where the type of distributions of the
involved sources are unkrown or different kind of
distributions are involved. In these situations an analysis of
the form of the Kurtosis Function [5] has been implemented
in order to find out the source daraderistic (sub-super
Gausdan) and therefore the doice of the etreme
charaderistic of J,. The following point has been borrowed
from [5]:

“The kurtosis function as a function of the set of M
parameters in eat stage, has non-negative maximum for
superGaussan components and non-paositive minimum for
subGausgan components “.

Therefore a pre-processng before eab stage has been
implemented in order to estimate the shape of the kurtosis
function K(;) where severa kurtosis values are estimated
for asmall set of discrete values of the vedor [, acwording
to equation (14):



Efw* @)}

K@,)=———— 2
6o (Ew*@ )N °

(14

In spite of the fad that the estimation of the kurtosis
function Eq(14) has not enough acairacy, the evolution of
this function follows the red kurtosis function, and this is
enough to know the kind of extreme. Recdl that if the
estimation of the kurtosis function presents a positive
maximum our cost function presents a minimum for the
solution and viceversa.

V.RESULTS

In order to compare the performance of the ‘ICA with OS
methods with other representative methods (extended
INFOMAX]4] and JADE[13]) several kind of sources have
been mixed through the orthogonal matrix V=R,,(45°) . We
have nsidered this mixture because it implies the
maximum and equivalent rotation for the involved two
sources. ‘ICA with OS use the improved cost function
from Eq(12) and it has been optimizaed by means of the full
algorithm in sedion V.

In figure(6) we present the comparative results:  Amari’s
performance index in dB [11] (averaged for ten
redizations) front to number of processed samples.

The following conclusions can be deduced from figure(6): -
1.- ‘'ICA with OS' (based on order statistics) works better
than ‘JADE’ (based on cumulants) for small window size
(100500 samples.

2.- When the involved sources are subGaussans, ‘|CA with
OS' improves the quality of the separation other traditi onal
methods, while the other methods show a better behavior
for the superGausdan cases.

U+l U+G

o 1000 2000 3000 0 1000 2000 3000

L+U L+L

[¢] 1000 2000 2000 - 0 1000 2000 2000
Figure(6): Comparative performanceindex. Solid line: ‘I CA with
0OS', Dashed line: ‘I NFOMAX'*, Dotted line: ‘ JADE'*.
(L:Lapladan, U:Uniform, G: Gausdan)

Figure(7) corrobarates that ‘1CA with OS' presents a better
behavior for the subGasdans cases; three image signals
have been mixed through an arbitrary H, and have been
separated succesully by our method, while Infomax
quality separation is not good enough (100 pxels have
been processed by both procedures).

Figure(7): ‘ICA with OS and ‘INFOMAX’ for an arbitrary
mixture of three images. Top: Origina images, Sewmnd row:
mixtures, Third row: Separated images though ICA with OS (-11
dB); Four row: Estimated images though INFOMAX (-2 dB).

Bellow, an example of a mixture of two nPAM discrete
sources and a Lapladan noise source is presented in order
to show the cgability of the method in a cmmunication
environment and for hybrid mixtures. In this case a
excdlent performance index of -17.5 dB has been obtained
with 500 processed samples.

*Simulations with “ext_icam” from www/cnl.salk.edu/-tewon and
"jade.m” from sig.enst.fr:80/-cardoso/guidesepson.html
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Figure (8): Mixture of 4-PAM with 8 PAM andlapladan ndse

VI CONCLUSIONS

The novel method 'l CA with OS' has been presented in this paper
uncer the perspedive of an aternative measure of Gaussanity
based onthe cdf instead of the pdf.

We have shown that our method separates any kind o mixtures
even hybrid ores with very few samples, presenting the best
quality in the subGausgan scenarios. Besides the implementation
is smply based on sample ordering applied in a deflation
procedure. Ancther advantage of this method is that it is very
efficient against outli ers because the cntaminated samples will be
placal at the upper OS and therefore ae filtered by our procedure.
Our present line of reseach is the generdizaion o the method to
convolutive mixtures. The separation in the frequency domain
[12] is the most attradive dternative: we have drealy extended
the procedure to the mwmplex instantaneous mixtures in order to
apply the method to ead of the frequency bins obtained through
the Short Time Fourier Transform (STFT) of the ohbservable
signas. Anyway this topic is gill under study and the
principal inconvenient is the permutation problem.
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