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ABSTRACT

Convolutive decorrelation algorithms form a class of
powerful algorithms for blind source separation. In
contrast to ICA| they are based on vanishing second
order cross correlation functions between sources. We
provide an analyze an unifying approach for convolu-
tive decorrelation procedures. The convolutive decor-
relation procedures impose the problem of simultane-
ously diagonalizing a number of covariance matrices.
We examine different cost functions for simultaneous
diagonalization with respect to the demixing matrix.
It turns out, that best performance is achieved for a
cost function, that takes the squared sum of the off di-
agonal elements after the diagonal elements were nor-
malized to unity. We then provide criteria for convolu-
tion kernels, that are optimal for noise robustness and
which can guarantee positive definite covariance matri-
ces, which are important for reliable convergence.

1. INTRODUCTION

Blind Source Separation is an emerging signal process-
ing technique, which aims at recovering unobserved sig-
nals or “sources” from a set of observable linear mix-
tures of these sources. However, no direct information
about the sources or about the mixing process is avail-
able, giving rise to the adjective “blind”.

A class of powerful BSS algorithms is based on the
assumption of vanishing cross correlation functions be-
tween the sources. Different decorrelation algorithms
belonging to that class have been published [1, 2].
Molgedey and Schuster provide in [3] a analytic so-
lution for diagonalizing two time delayed covariance
matrices Cx(m) and Cx(72), based on the evaluation
of the eigensystem of Cx(ﬁ)_lcx(rz). They showed,
that for ideally uncorrelated sources, two covariance
matrices are sufficient to estimate the demixing matrix
W and proposed to choose 7 = 0, therefore this al-
gorithm is often referred to as single shift algorithm,
whereas multi shift algorithms attempt to diagonal-
ize more than two delayed covariance matrices [4, 2].
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Dynamic Component Analysis [5] contains decorrela-
tion algorithms as a special case when Gaussian model
distributions are used. There, the outputs of a short
time Fourier-transformation are attempted to have zero
cross correlation functions.

A general examination of decorrelation algorithms,
however, has not yet been done. In this work, we give
a unified approach to to convolutive decorrelation algo-
rithms and provide a systematic analysis of the prop-
erties of these algorithms.

For the task of blind source separation we have to
estimate an unknown mixture of also unknown sources
only by observing their mixtures. Usually the mixture
is supposed to be linear and noise may be added to the
mixed signals.

(1)

The bold letters x, s and n denote signal vectors of the
observations, the sources and the noise respectively. All
signals are assumed to have zero mean. To estimate the
mixing matrix A or its inverse W, the sources must
have certain properties, which allow them to be de-
tected in the mixture. In ICA algorithms this is the
assumption of independently distributed source ampli-
tudes [6].

Decorrelation procedures make use of temporall
correlations up to moments of second order. For uncor-
related sources, which 1s the model assumption for this
class of source separating algorithms, temporal corre-
lations occur in each source signal but not among dif-
ferent sources.

Xx=As+n

<8i(t)8k(t+7')> =0 (2)

for ¢ # k and any 7. For the correlations between
sources we introduce the matrix notation Cg(7)
<s(t)sT(t +T)>. We often refer to Cq(7) as delayed
covartance matriz, in contrast to the covariance ma-
trix in the statistical sense, which would be C4(0). As
well, we refer to signals as uncorrelated, if the cross
correlations vanish for all 7.

Lor spatial, for signals in a spatial domain



Figure 1: Amplitudes of two cosine signals with a fre-
quency ratio of 7:5. The signals have zero cross corre-

lation functions but are not independent.

The source property for decorrelation algorithms is
therefore diagonal covariance matrices Cg(7) for any
7. To obtain non zero diagonal elements of Cq(7) for
7 # 0, the sources must not have delta peaked auto-
correlation functions, which imposes smoothness in the
sources. Also, all sources must not have identical au-
tocorrelation functions, which would lead to linearly
dependent Cq(7) for all 7. This model is not equiv-
alent to the model assumption of ICA. As shown in
figure 1, 1t is easy to construct two signals which have
zero cross correlation functions but are not indepen-
dent. Similarly independent signals do not need to have
zero cross correlation functions, since no temporal in-
formation is involved to the model of ICA. Consider a
signal with temporarily i.i.d. amplitudes. This signal
and it’s by 7 # 0 delayed version are independent but
have correlations at 7.

2. GENERAL APPROACH

In this section we present a unifying approach to decor-
relation based blind source separation. For source sep-
aration we want to find a demixing matrix W, which
yields signals y with vanishing cross correlation func-
tions.

3)

Because of the linearity of the transformations, it holds

(4)

where Cx(7) and Cy(7) denote the shifted covariance
matrices of the mixtures and the recovered sources re-
spectively. Apart from trivial solutions, Cy(7) is only
diagonal for arbitrary 7 when WA is a permutation

y=Wx =WAs

Cy(r) = WCy(r)WT = WA C.(7) (WA)",
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and scaling matrix. From there, the task of source sep-
aration is as following:

e Observe a number of delayed covariance matrices
Cx(m) at different 7.

e Adjust W such that all Cy (7)) become diagonal.

As we shall see shortly, signals of finite length, in
general, have only approximately vanishing cross cor-
relation functions. Therefore, the choice of the shift
parameters 7 is crucial for the success of the algorithm.
Optimal 7 would yield minimal cross correlations com-
pared to the autocorrelations of the sources. Since the
sources and hence optimal 7 are unknown, one can
achieve a kind of averaging by using more then two
shifts, which leads to mult: shift algorithms [4].

A more general approach however, is to consider
filtered or convolved versions of the signals instead of
time delayed ones. For time discrete signals, the con-
volution of a signal z; with a kernel f is given by

(zi % [)(t) =Y xi(t — ) (7).

T

(5)

Tt is easy to see, that with f(r) = d(7 — 1), a shift is
a special case of a convolution. Our unified approach
to blind source separation based on decorrelation uses
correlation matrices of a set of convolved versions of
mixtures for diagonalization. Therefore, we introduce
the convolved covariance matriz

CL7 = ((xxf)(xx9)"), (6)

where (x * f) denotes the component wise convolution
of the signal vector x with f. For source separation,
a demixing matrix W has to be found that solves the
following set of equations

Cl9 = WCLIWT = A9 (7)
for all considered pairs of convolution kernels (f,g).
A9 is diagonal matrix, depending on f and g. The
convolved covariance matrix C£’9 is a linear combina-
tion of all time delayed covariance matrices, weighted
with the values of the convolution kernels f and g at
the corresponding delays

CH =33 f(r1)g(r2) Cy (2 — 72).

T1

(8)

T2

C§’9 can only be diagonal, independently from f and
g, if Cy(7) is diagonal for all 7. Hence, it follows, that
signals have zero cross correlation functions if),
and only if, arbitrary convolved or filtered ver-
sions of the signals are uncorrelated at zero time



delay. The single shift (and the zero shift) used in
[3] are special cases of convolutions with d-functions.
For Dynamic Component Analysis [5], a short time
Fourier-transformation can be considered as a convo-
lution with a finite piece of a sinusoidal signal. Thus,
this algorithm can be seen as a convolutive decorrela-
tion algorithm using symmetric pairs (f, f) of convolu-
tion kernels. In the following sections, we analyse some
properties of the presented unified approach.

2.1. Problems with short signals

The expectation in (2) is known as the cross corre-
lation function between signal s; and sg. Both, the
signals and their cross correlation function may be
transformed into the frequency domain using Fourier-
Transformation. In this work, we denote quantities
in the frequency domain with the corresponding up-
per case letters. For infinite, time discrete signals, the
Fourier-Transformation is

Zs(t)e(—jwt)’

t

S(jw) = (9)

where j is the imaginary unit. The transformation to
the frequency domain allows the cross correlation func-
tion to be easily computed by a conjugate complex mul-
tiplication. So, the property of uncorrelated sources (2)
is in the frequency domain

S (jw) Sk (jw)© =0 for i#k, and any w,

(10)
where (-)¢ denotes the conjugate complex of the argu-
ment. That is, the frequency components of uncorre-
lated signals are sparse, i.e. for any w no more than
one signal may be active.

A signal of finite length can be considered as a infi-
nite signal, multiplied with a window function, which is
different from zero only for a range of finite length. The
multiplication in the time domain becomes a convolu-
tion in the frequency domain. Hence, the spectra of
the signals get blurred with the spectrum of the win-
dow function. Hence, (10) holds only approximately
and the cross correlation functions dont vanish com-
pletely.

Another problem arises from the fact, that the co-
variance matrices Cq(7) and C{9 of finite signals are
not symmetric by construction. So, if they are not di-
agonal, they are not necessarily symmetric. Therefore,
the covariance matrices of any linearly transformed sig-
nals might be not symmetric either. This turns out to
be a problem for a number of algorithms, in particu-
lar for those making use of eigenvalues, which can be
complex for not symmetric matrices. Any matrix C

can be split however, into a sum of a symmetric and
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a antisymmetric matrix, using C¥™) = $(C + cT)
and Clesym) — 2(C —CT). To diagonalize C means to
diagonalize the symmetric part and make the antisym-
metric part vanish. However, it turns out, that for a
linear transformation with real W, the antisymmetric
part (WC(‘”ym)WT) = —wcClesym)wT stays anti-
symmetric and cannot vanish for nonsingular W. Be-
cause source estimates must be real, the antisymmetric
part of the covariance matrices can be regarded as a
finite-size effect of the signals. It must vanish in the
limit of infinite signal length. Thus, we drop the anti-
symmetric part of C and from now on, consider all
covariance matrices as symmetric.

3. COST FUNCTIONS

In this section, we investigate, which properties of cost
functions are advantageous for the efficient simultane-
ous diagonalization of the equations (7). For diago-
nalization of more than two covariance matrices, an
analytic solution like in [3] does not exist anymore.
Further, since the sources are usually only approxi-
mately uncorrelated, the best achievable solution would
still not completely diagonalize the covariance matri-
ces. Therefore, a measure is needed, which evaluates,
“how strongly diagonal” the covariance matrices of the
reconstructed signals C{,’g = WCLIWT are. This
measure is implemented by a cost function, which has
to be minimized with respect to W.

3.1. Simple cost function

One simple choice for a cost function penalizes the
squared sum over all off-diagonal elements of Cg’g.

3 (ch;gWT)

{9} @ J#

E= : (11)

2
ij

where the first sum runs over all pairs off convolution

kernels (f, g). The gradient off (11) has the form

VE=4 Y (Cy?— diag(C)7)) WCL9.
{(£.9)}

(12)

It can be easily seen, that the gradient vanishes if all
Cg’g are diagonal. Unfortunately, the gradient may
also vanish, when W decays completely to zero, which
would be the only fix point of the cost function in the
case of not 1deally uncorrelated sources.

Hence, it is necessary to either constrain W explic-
itly, to prevent it from growing to small, or to setup
a cost function, which is invariant on changes of the
variance of the outputs y.



3.2. Constraining the diagonal of W™!

Molgedey and Schuster propose in [3] also a cost func-
tion for the use with gradient based optimization. They
compare their algorithm with a recurrent network of
linear neurons, which have inhibitory connections be-
tween each other, but not among themselves. The ma-
trix T contains these connection and has a zero di-
agonal. The equivalent feed-forward network of this
architecture is W = (1 + T)_l. From the view of the
mixing process, this means that to each source, a linear
combination of all other sources is added. This leads
to the constraint

Wi =gey 1, (13)
and the cost function (11) is minimized with respect to
the elements of T. However, this constraint does not

prevent W from getting arbitrary small. Consider a
matrix

1 a a

. a 1 a
W™ = . .

a a 1

for which (13) is fulfilled. For large a, the correspond-
ing matrix W is

_N=2 1 1

N—1 N-1 N-1

1 _N=2 1

1 N—-1 ETE N-1

W = - . . . )

a : : :

1 1 _N=2

N-1 N-1 N-1

where N is the number of sources. Increasing the
value of a will decrease the row norm of W and
hence decrease the cost function without diagonaliz-
ing Cg’g. The following example shall illustrate the

presence of trivial minima. Consider two covariance

! 0) aundCﬁ:(2 O)be—

. -
matrices C; = 0 2 0 1

longing to two source signals, which are mixed with

1 0.7

07 1
the cost function with respect to the two off-diagonal
elements of W™, The hyperbolic ridge corresponds
to values at which W~! becomes singular. Solid lines
mark gradient descent trajectories for 5 different ini-
tializations. It can be seen, that depending on the ini-
tialization, the gradient descent procedure may succeed
(trajectories 1,3) or fail to converge to the wanted mini-
mum, but instead diverge, leading to arbitrary small W
and hence trivial minima (trajectories 2,4,5). There-
fore, we consider the constraint (13) as not suitable for
gradient based joint diagonalization.

A= Figure 2 shows a contour plot of
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W12
Figure 2: Surface of the cost function with the con-
straint Wi_i1 = 1 for two sources. The two hyperbolic
ridges are regions with singular W™ and have infinite
values of the cost function.

3.3. Normalized covariance matrices

The spurious minima of the simple cost function (11)
arise from vanishing variances of the output signals y.
To avoid this, we examined a modification of the cost
function, which normalizes the off-diagonal elements
of C£’9 by the diagonal elements. Thus, the gradient
of the cost function is zero for directions, which only
influence the row norm of W and hence the output
variances. The modified cost function is given by

pIp»

9)} . g#d

f,g)2

Cf 9 ( y,g)]]

(14)

Since the C£’9 are not necessarily positive definite,
the normalizing term must appear as absolute value in
the denominator of (14). The gradient can be obtained

from
D ID M r

{(£,9)} 7#k

Cp; abbreviates (C{,’g)lw
that this cost function performs well as long as all co-
variance matrices are positive definite. In two experi-
ments, 80 simultaneous diagonalizations of four 4 x 4
covariance matrices each, where performed, using pos-
itive definite CJ9 in one experiment and not positive
definite C{9 in the other. The four covariance matrices
where 1nitialized with uniformly distributed diagonal
elements (CL9) . € (0---1) rsp. (CL9).. € (=1---1)
and mixed with A, which was initialized with elements

Crj

( wc){’g)_ -2
jt

Ckk

(wet7),.)

(15)
Simulations have shown,

W
kil | ka]J
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Figure 3: Histogram of the reconstruction error of the
successful trials (finite reconstruction error) with pos.
def. CI9 (left) and not pos. def. C{9 (right). Posi-
tive definite covariance matrices perform considerably
better.

from a (0,1)-normal distribution. The results were eval-
uated, using the reconstruction error. This quantity
gives a measure of the ratio of the off-permutation el-
ements of WA to the permutation elements. The per-
mutation is determined by the largest elements in each
row. If WA cannot be interpreted as a permutation
matrix, the source separation is considered as failed and
the reconstruction error assigned the value infinity.

In the experiment with the positive definite C{9, a
finite reconstruction error could be achieved in 77 of 80
trials, whereas with the not positive definite C{9 only
15 of 80 separations where successful.

Figure 3 shows the histogram of the reconstruction
error of the successful trials. It is on average much
lower if all matrices C{9 are positive definite.

3.4. Cost function based eigenvalues

Another cost function that is independent from the out-
put variances can be found, if the diagonal elements of
C£’9 are compared with their eigenvalues.

E= Y D(diag (C}9) eig (CL?))
{(+.9)}

(16)

D is a distance measure between the vector of the eigen-
values and the vector of diagonal elements of Cg’g. For
diagonal C{9 these two vectors are, if properly as-
signed, identical. To obtain invariance on output vari-
ances, the diagonal elements need to be normalized to
unity

(é{/g) )ij ‘<C ). (C

Thus, the cost function has the form

p=y (Z\l—ufﬂ\”)a?, (18)
1\ i

{(1.9)

1.9

Ccla 5

y

=

1]

(17)
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Figure 4: Logarithmic plot of the values of the cost
functions F(14) and E(1g) for 2000 points near the
global minimum.

where the parameters a; and as control the distance
metric and )\{’g are the eigenvalues of é{,’g.

This cost function performs quite similar to (14) as
shown in figure 4, where for 2000 separating matrices
near the absolute minimum A ™! of the experiment of
figure 2, the values of both cost functions are plotted
against each other. The narrow shape of the cloud
corresponds to a strong correlation between the two
cost functions. However (18) is quite computationally
expensive, due to the need of numerically calculating
the gradient, which includes multiple evaluations the
eigensystems of C£’9.

In summary, we recommend the use of cost func-
tion (14), because it is fast to compute and for positive
C£’g avoids spurious minima corresponding to trivial
solutions.

4. CONVOLUTION KERNELS

For convolutive decorrelation algorithms we may freely
choose the set set of convolutions f and g, which we
want to use for source separation. In this section we
provide two criteria for good choices of convolution ker-
nels.

4.1. Noise robustness

In the presence of white noise, a noise vector is added
to the linear mixture x = As + n. The noise signals
are considered to have zero cross correlation functions
to each other and all other signals, i.e. (Cn(7));, =0
for all 7 and all ¢ # k. Thus, the best source separation
result for W = A~ yieldsy = Wx = s+ A~ 1n. That
is, in the best case, the sources are properly separated,
but the noise is still present. In the general case, the



covariance matrices of the outputs can be written as
T
C§79 =ClI+ WClIw". (19)

Optimal convolution kernels for noise robustness have
to suppress C{9, which is, equivalently to (8),

CLI =YY f(=t1)g(—t2)Cults —t1) =0

t1  ta2

(20)

The noise is assumed to be white, thus Cy (t2 —#1) =0
for t1 # t5. One can see, that the noise term in (19) is
zero when f and g are orthogonal.

> ftg(t) =0 (21)

4.2. Positive definite C£’9

For the use of cost function (14), it is important to
have positive definite covariance matrices. In this sec-
tion, we examine if one can generally find convolution
kernels, that guarantee positive definite C£’9 and CJ9.
Because only linear transformations are performed, for
positive definite C£’9 can be checked at the observable
CL9. A guarantee would give a symmetric pair of con-
volution kernels f = g. This, however, can never be
orthogonal and thus, is not able to suppress the noise
term. The goal is to achieve positive diagonal elements
of C{9. The i-th diagonal element is the correlation of
the two signals s; x f and s; * g. This quantity can be
calculated in the frequency domain

1

(

)i = o )

+ o0
Cl9

! F(jw)G(jw) Si(jw)S;i (jw)€ dw
(22)

Making use of the conjugate complex symmetry of the
spectrum of real signals, we obtain the desired condi-
tion

R (F(jw)G(jw)) >0  forall (23)
The equality must not hold for at least one w with
Si(jw) # 0, otherwise we would get a zero diagonal
element in C{9 (and also in C{9) which would lead to
a singularity in the normalization term of cost function
(14). Unfortunately, this is incompatible with (21),
what can be seen from

D Fg(t) = (Fx G)lymg = >R (F(jwr)G(jwr)) -
(24)

(24) can only be zero if all sum terms on the right hand
side are zero or negative terms are allowed. Thus, pos-

w.

itive definite covariance matrices cannot be generally
guaranteed with orthogonal (f,g). However, this does
not mean, that 1t is impossible to obtain positive def-
inite covariance matrices from orthogonal convolution
kernels.
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5. SUMMARY AND CONCLUSIONS

We formulated a unifying approach to blind source sep-
aration by second order decorrelation algorithms. It
has been shown, that the simultaneous diagonalization
of time delayed covariance matrices is a special case of
the more general case of convolutive covariance ma-
trices. The use of convolution instead of shifts can
provide an averaging for approximately uncorrelated
sources. We showed, that signals of finite length have
in general only approximately vanishing cross corre-
lation functions, the signal length is crucial for the
model assumption. For white source signals, 1.e. for
delta peaked auto correlation function, the algorithms
must fail. Also for all source autocorrelation functions
being identical, the algorithm cannot work. As one
can see from (8), all C{9 would be linearly dependent,
no more than a PCA could be performed. Different
cost functions were examined, and it turned out, that
cost function (14) performed best. A necessary con-
dition for reliable convergence of (14) is positive defi-
nite covariance matrices C>9. Without knowledge of
the sources, (24) can guarantee positive definiteness,
is however incompatible with orthogonal convolution
pairs (21), which is necessary for noise robustness. If
prior knowledge about the sources is available (e.g. if
they are restricted to a certain frequency band), this
knowledge can be used together with (22 for the con-
struction of convolution kernels, which fulfill (21) and
(24) simultaneously.

6. ACKNOWLEDGMENT

This work has been supported by German Science Foundation
(grants: DFG Ob 102/3-1, DFG Se 931/1-1)

7. REFERENCES

[1] J. C. Platt and F. Faggin, “Networks for separation of sources
that are superimposed and delayed,” in Advances in Neural
Information Processing Systems, S. J. Hanson J. E. Moody and
R. P. Lippmann, Eds., 1991, vol. 4, pp. 730-737.

M. Stetter, I. Schie3], T. Otto, F. Sengpiel, M. Hiibener, T. Bon-
hoeffer, and K. Obermayer, “Principal component analysis and
blind separation of sources for optical imaging of intrinsic sig-
nals.,” Neurolmage, p. in press., 2000.

L. Molgedey and H. G. Schuster, “Separation of a mixture of
independent signals using time delayed correlations,” Phys. Reuv.
Lett., vol. 72, pp. 3634-3637, 1994.

H. Schéner, M. Stetter, I. Schiefll, J. E. W. Mayhew, J. S. Lund,
N. McLoughlin, and K. Obermayer, “Networks for separation of
sources that are superimposed and delayed,” in Application of
blind separation of sources to optical recording of brain activity,
T. K. Leen S. A. Solla and K.-R. Mitller, Eds. 2000, pp. 949-955,
MIT Press.

H. Attias and C. E. Schreiner, “Blind source separation and de-
convolution: The dynamic component analysis algorithm,” Neu-
ral Comput., vol. 10, pp. 1373-1424, 1998.

A. J. Bell and T. J. Sejnowski, “An information-maximization
approach to blind separation and blind deconvolution.,” Neural
Comput., vol. 7, pp. 1129-1159, 1995.



