
509

STEP-SIZE CONTROL IN BLIND SOURCE SEPARATION

Thomas P. von Hoff
�
, Allen G. Lindgren

�
, and August N. Kaelin

�
�

Swiss Federal Institute of Technology,
�

University of Rhode Island,
Laboratory for Signal and Information Processing, Departement of ElectricalEngineering,

Zurich, Switzerland Kingston, RI 02881, USA�
vonhoff, kaelin�@isi.ee.ethz.ch lindgren@ele.uri.edu

ABSTRACT

The behavior of the classic algorithm for blind source sep-
aration (BSS) is detailed for a fixed step size. To improve
the algorithm in speed and exactness, essential in tracking a
time-varying mixing environment, a variable step size must
be employed. The ideal step size should decrease or in-
crease as the overall system error decreases or increases. It
is shown analytically that the coefficients of the estimating
function provide a "measure of error" that is available to
automatically control the algorithm step size. This paper
proposes a self-adjusting, time-varying step size that is built
from the square of the running average of the coefficients of
the estimating function. Error free convergence is achieved
for a time-invariant environment. The ability of the algo-
rithm to improve the convergence in a time-invariant mixing
environment and to track a changing mixing environment is
demonstrated by extensive simulation results.

1. INTRODUCTION

Blind Source Separation (BSS) is the problem of extracting
independent components from an observed mixture. The
model considered in this paper is described by

� � �� � (1)

where� is the vector of source signals,� the mixing ma-
trix, and� the vector containing the observed signals. The

	
��

Figure 1: Model for BSS.

matrix� is to be adjusted such that� recovers the source
signals up to ambiguities of permutation and scaling. This
problem has been well studied for the recent years result-
ing in the approaches of Entropy Maximization [1], ML
Estimation [2], and Independent Component Analysis [3].
Using the relative gradient [4] or the natural gradient [5],

all approaches lead to the same update equation for� ���,
namely

� ��� � � � � ��� �� �� � � ��� ���� � � � � (2)

where�� the step size and
�

the block size. The so-called
score function

�
is defined by

 ! �" ! � � �# $% �" ! �&# $% �" ! � ' (3)

Unless(! is Gaussian, the score function
 ! �" ! � is a nonlin-

earity. A separating solution yields

) � �� � *+ � (4)

where* is a permutation that results from not ordering the
sources correctly and+ is a diagonal scaling matrix. Since
the solution can be arbitrarily arranged and rescaled, for
convenience it is assumed in this paper*+ � �

. If the
score functions are replaced by other nonlinearities,! �" ! �,
the separation of the-th and the. th source is still possible
as long as following conditions [6] are fulfilled:

/ 0"1! , &! �" ! � 2 � 3 4 5 (5)/ 6,&! �" ! �7 4 5 (6)/ 0"1! 2 / 0"18 2 / 6,&! �" ! �7 / 0,&8 �"8 �2 4 3 (7)

In case of instability, where the condition in Eq. (7) are not
met, procedures exist to stabilize the algorithm [6, 7]. The
step size� defines the dynamic behavior and final error lev-
els achieved by the algorithm.

2. BEHAVIOR OF THE BSS ALGORITHM

We define the estimating function

9� � 3� �� �� � : ��� ���� � (8)
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with � in the � th block. Using the estimating function
9�

the update equation for the overall matrix
)� � � �� can

be formulated as) ��� � ) � � ��9 �) � ' (9)

The error performance is expressed by the Interchannel In-
terference (ICI� )

ICI� � 3� �! �8 �� !
/ ��� 1!8� 	/ 0� 1!!� 2 � (10)

where
�

the number of sources,
� !!� the -th diagonal ele-

ment of the overall matrix
)� � � �� , and

�� !8� the -. th
element of the error matrix

�) � ) � �
. For a constant step

size� and same probability distributions, the final ICI is [7]

ICI � �� � 3� �
� �� �
� � � ��
�
 (11)

with


� � / 6,&! �" ! �7 / 0"1! 2 � 3 � (12)


� � / 6,&! �" ! �7 / 0"1! 2 � 3 � (13)

�� � / 0,1! �" ! � 2 / 0"1! 2 � 3 � (14)

� � � / 0,1! �" ! � 2 / 0"1! 2 � 3 ' (15)

Both the convergence speed and the steady-state error per-
formance are influenced by the ratio� �� . A small� �� re-
sults in a slow convergence and a small error performance.
Thus, for a fixed step size, there is a trade-off between con-
vergence time and error performance.

Considering the behavior of the ICI during the adapta-
tion with a constant step size one notes that the ICI improves
very slowly in the beginning and faster as the error matrix
gets smaller. Fig. 2 demonstrates this for a separation prob-
lem with 10 Laplacian sources. Obviously, the convergence
behavior far from equilibrium is different than that in the
vicinity of the separating solution. The convergence near
an equilibrium for a fixed step size is well studied [6, 7].
There, it is characteristic, that the ICI decreases exponen-
tially down to the steady-state level.

3. THE CONCEPT OF A SELF-ADJUSTING STEP
SIZE

With a time-varying step size one can take into account the
dependence of the convergence behavior on whether

)� is
close to an equilibrium or not. Such an algorithm could also
respond to a change in the mixing environment. The princi-
ple of adaptive algorithms asks that the step size should be
chosen big if the distance between the estimated parameter
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Figure 2: Separation of 10 Laplacian sources with,! �" ! � ��

sign

�" ! �, � � 5 '5 3, and
� � 355.

and its optimal value is big and smaller if the distance de-
creases. In the BSS, while the actual distance is not directly
available to control the step size, a representative measure is
required. While Cichocki et al [8] use the low-pass filtered
gradient and Murata et al [9] the averaged flow,

9�� � , we
propose to utilize a squared norm of the estimating func-
tion,

9� , as an appropriate measure. To demonstrate that9� is a measure of the distance between
) � � � �� and)

eq
� � eq

� , the estimating function is examined when� is in the neighborhood of� eq. The estimating function
in Eq. (8) is then described to first order by [7]9� � � � : ������ � � : ����� � + �� �)���� � : ����� �) �� � (16)

where + �� � diag
��,&� �(� � � ' ' ' � , &� �(� ��� '

and, for simplicity, the block size
�

is 1. Now, if
�)� is held

fixed, the expected value of
9� is given by/ 69 � 7 � �/ �+ �� �)�+ �� 	 � + �� / � �) �� 	 � (17)

where + �� � diag
��(1� � ' ' ' � (1� ��+ �� � / 0: ����� 2

or, in terms of the elements of
/69 � 7, Eq. (17) can be writ-

ten as/ 6� !8 � 7 � � / 6,&! �(! �7 / 0(18 2 �� !8�� / 6,! �(! �(! 7 ��8 !� � - �� . (18)/ 6� !!� 7 � � / 0,&! �(! �(1! � ,! �(! �(! 2 �� !!� (19)
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and
/69 � 7 is seen to be a measure of the error matrix,�)� � ) � � )

eq. An algorithm that utilizes a step size de-
pendent on the error,

�)� , now becomes available. That con-
cept uses the square of a norm of matrix

/69 � 7 to control
the step size of the BSS algorithm. To implement this con-
cept of a self-adjusting step size, a smoothed version (run-
ning average) of the estimating function, denoted by�9� , is
used to approximate

/69 � 7. It works with a step size equal
to the step size in Eq. (9) and given by the recursion

�9� � �3 � ���� � �9��� � ����9 � ' (20)

A squared norm of�9� then serves as the measure of error
to control the step size,�� , in Eqs. (9) and (20). Many pos-
sible squared norms can serve as an appropriate measure:
the normalized squared Frobenius norm, tr

6 �9� �9�� 7�� 1
,

the maximum eigenvalue of�9� �9�� , etc. After many sim-
ulations the measure chosen for the control of the step size
was the maximum of the squared values of the elements of�9� , emphasizing the error of the worst adjusted coefficient
in
)

. That is, �� � ���! �8 �� 1!8� ' (21)

The step size,�� , is now made proportional to
��

� � � ��� � (22)

where� is a constant. As the algorithm adjusts� � toward� eq, the error,
�) � , in

9� decreases. From Eq. (20),�9�
reflects this change and

�� decreases and, in turn, decreases

�� . Since the error level decreases with decreasing�� , see
for example Eq. (11) and [7] for details, the error in

9� de-
creases further. This process continues and the error, for a
time-invariant mixing matrix� , decreases toward zero. For
a changing environment, as� changes, the overall matrix)� � � �� , in general, moves further from

)
eq and the

increased error is reflected in
9� . The change in

9� im-
pacts �9� increasing�� . Increased�� allows the algorithm
to adjust� � more quickly to move

)� toward
)

eq. This
behavior is illustrated quite dramatically in the simulations
of Section 5. Hence, a self-adjusting step size results that
allows� � to track a changing environment.

4. THE SELF-ADJUSTING STEP-SIZE
ALGORITHM

In the final algorithm an upper bound on the step size�� is
necessary. A bad match of the demixing matrix� � with
the mixing matrix� adversely impacts the error

�)� and,
in turn, generates an estimating matrix

9� via Eqs. (20) to
(22) that results in a large step size. If�� is sufficiently
large, algorithm stability becomes an issue. To prevent this

a time-variable upper bound

�up
� � 3
 3��� ! �	 
� !	� 
 (23)

is used to limit�� . An intuitive argument for this bound is
given in Appendix A. Extensive simulation studies demon-
strate that use of this bound provides a stable algorithm.
Limiting the step size�� can be implemented by a clipping
function

�� �� � � 
� � � � �up
�

�up
� � � 4 �up

� ' (24)

Second, additional smoothing of�� in Eq. (22) was found
by simulations to be helpful. This is achieved by the recur-
sion

�� � ����� � �3 � � ���� � (25)

where simulations show that good results are achieved for
an� � 5 '���.

Third, a block-wise processing with block size
� 4 3

is computationally less burdensome. Choosing
� 4 3 im-

plies a multiplication of the measure in Eq. (21) with
�

and
replacing� by �� in Eq. (25). That is�� � � ���! �8 �� 1!8� (26)

�� � �� ���� � �3 � �� ���� ' (27)

The self-adjusting step-size algorithm is depicted in Fig. 3
and summarized in Eqs. (28) to (32).

9� � 3� �� �� � : ��� ���� � (28)

�9� � �3 � ���� � �9��� � ����9 � (29)�� � � ���! �8 �� 1!8� (30)

�� � �� ��� ���� � �3 � �� ���� � (31)� ��� � � � � ��9 �� � ' (32)

5. SIMULATIONS

In case of a time-invariant mixing environment, simulations
show the step size is controlled such that the ICI� approaches
the lower bound given by Pham and Garat [10] for large�. A simulation of a separation problem with 10 Laplacian
sources is depicted in Fig. 4. Fig. 5 shows the long-term
behavior of the same situation as in Fig. 4. The log-log plot
demonstrates that the ICI exhibits approximately a3�� be-
havior for large�.
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Figure 3: Concept of the step-size control, where for clear-
ity the block size

�
is 1.
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Figure 4: Separation of 10 Laplacian sources with a self-
adjusting step size and nonlinearity, �'� � �


sign
�'�. The

mixing matrix is time-invariant. Processing was sample-
wise (

� � 3), � � 5 '���, and� � 5 '
#. ICI� (solid),

�� dashed, and the lower bound by Pham and Garat [10]
(dotted).
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Figure 5: Separation of 10 Laplacian sources with a self-
adjusting step size and nonlinearity, �'� � �


sign
�'�.

The mixing matrix is time-invariant and the step size was
smoothed with� � 5 '���. � � 5 '
#. Processing is block-
wise (

� � 35). Both the time vs. ICI plot (solid) and the
time vs. lower bound by Pham and Garat [10] (dashed) are
depicted logarithmically.

Next, simulations were done for a separation problem of
10 Laplacian sources where the mixing environment changes
abruptly. The new mixing matrix� is generated by� � $�� 1 � (33)

where the coefficients%& !8 are Gaussian distributed, i.e.,

%& !8 ' ( �5 � 3� (34)

and the scalar factor� is uniformly distributed between 0
and 1. This can produce large differences in the level of
the coefficients. The step size is seen to respond immedi-
ately, rapidly increasing to allow the algorithm to adjust the
demixing matrix� to reduce error levels. The step size
then continues to decrease until the next abrupt change as
depicted in Fig. 6. Simulation results for the separation of
2 Laplacian sources and a mixing environment that behaves
in the same way as described above are depicted in Fig. 7.

If the environment suddenly experiences small continu-
ing changes in the mixing matrix, the step size also responds
appropriately. This is simulated by defining the mixing ma-
trix recursively by

���� �

�� � �)� � 
5555 * � * +5555� � � elsewhere,

(35)

where
&)!8� ' ( �5 � 5 '55 3� '
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Figure 6: Separation of 10 Laplacian sources with a self-
adjusting step size and nonlinearity, �'� � �


sign
�'�. The

mixing matrix changes abruptly every 20000 samples. The
step size was smoothed� � 5 '���. Processing was block-
wise with

� � 35 and� � 5 '
#. ICI� (solid),�� dashed.
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Figure 7: Separation of 2 Laplacian sources with a self-
adjusting step size and nonlinearity, �'� � �


sign
�'�. The

mixing matrix changes abruptly every 20000 samples. The
step size was smoothed� � 5 '���. Processing was block-
wise (

� � 35). ICI� (solid),�� dashed.

During the period,

5555 * � * +5555, the mixing en-

vironment is changing, otherwise, it is time-invariant. The
overall behavior is depicted in Fig. 8. When the mixing
matrix is time-invariant the step size decreases as before,
then as� starts to drift the error increases and, in response,
the step size increases allowing the algorithm to adjust the
demixing matrix,� � . For this environment, a steady er-
ror level is reached and the step size maintains an increased
level. After 60000 samples the drift stops and the error level
and step size again decrease.
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Figure 8: Separation of 10 uniform sources with a self-
adjusting step size and nonlinearity, �" ! � � " �!

. Sample-
wise processing (

� � 3) and� � 5 '���. ICI� (solid), ��dashed. The mixing matrix drifts for

5555 * � * +5555.

6. CONCLUSIONS

This paper has presented a self-adjusting step size that al-
lows error-free convergence of the classic BSS algorithm in
a time-invariant mixing environment and that has the abil-
ity to track a changing mixing environment. The step size
is controlled with the help of a squared norm of the es-
timating function. Not all design parameters were opti-
mized in the current effort. In addition to the simulation
results presented, extensive trials were conducted on many
time-varying scenarios. The algorithm performed well in
all cases. While the studies of this paper assume constant
source power, future research is required for the case of
power-varying signals.
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APPENDIX A. UPPER BOUND FOR THE STEP
SIZE

The step size must be upper bounded to prevent� � , 9� ,
and �� in the algorithm given by Eqs. (28) to (32) from

“pumping up”. An approach that has been shown by simu-
lations to be effective requires that the update term for the-. th element in

)� , �� !8 � � � !8 ��� � � !8� must be smaller
than the biggest magnitude of the coefficients in

) � . Math-
ematically, this is
�� !8� 
 � ���

� �� 
�� �� 
 (A-1)

for each3 � - � . � �
. Dividing (A-1) by ���� �� 
�� �� 


yields 
�� !8 � 
� ��� �� 
�� �� 
 � 3 (A-2)

From Eq. (9),
�� !8� 
 � �� �	 
� !	� 

� 	8� 
 � �� �	 
� !	� 
 � ��
� �� 
���� 


(A-3)

and the left-hand side of (A-2) can be replaced by a bigger

�� -dependent term

�� �	 
� !	� 
� ��� �� 
�� �� 
� ��� �� 
�� �� 
 � 3 ' (A-4)

Setting the term on the left-hand side of (A-4) equal to a
value� * 3 yields an upper bound for��

�up
� � ���� ! �	 
� !	� 
 ' (A-5)

With �� bounded by�up
� , the left-hand side in (A-2) is at

most�. Applied to the nonlinear function given by (24) the
parameter� was chosen to be 0.5 yielding

�up
� � 3
 3��� ! �	 
� !	� 
 ' (A-6)


