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ABSTRACT

A new algorithm for the blind separation of mixed non-
white signals is proposed. After removing the second
order cross-correlation between the signals for zero time
delays (sphering), the signals are linearly transformed
in order to reveal common components that are still
existent within the signals. The linear transform is
accomplished by filtering the sphered signals using a
non-recursive filter which is equivalent to the summa-
tion of weighted time delayed signal values. This leads
to a non-zero cross-correlation that is used to eventu-
ally separate the signals. In this paper it is shown how
the filter coefficients are determined and how this prin-
ciple is applied to blind source separation.

1. INTRODUCTION

Recently, independent component analysis (ICA) has
become an attractive tool for blind source separation
(BSS) [1,2,3,4,5,6, 7, 8,9]. To assume the source sig-
nals as statistically independent makes the blind source
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Figure 1: ICA model: The independent sources

§1...sn arelinearly mixed by the mixing matrix A and
unmixed by the separation matrix W. The set of out-
put signals uy ...un is ideally a scaled and permuted
version of the original source signals. The signals are
assumed to have zero mean.

separation problem mathematically tractable. Due to
their close relationship, in this paper independent com-
ponent analysis and blind source separation are consid-
ered as equivalent.
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The model of the blind source separation problem is
depicted in figure 1. Statistically independent sources
s are mixed in a mixing system A. The separation
system W is computed using the criterion of statisti-
cal independence between the output signals u. These
outputs are the estimates of the original sources s.

In the instantaneous mixing case the mixing and the
unmixing system are matrices with scalar elements. It
is then possible to formulate the blind source separation
problem as

x=A"s and u=W-x. (1)

Ideally, the separation system is the inverse of the mi-
xing system, that is W = A~1. However, by only using
the criterion of statistical independence it is impossible
to recover the correct scaling and the original order of
the sources [1, 2].

In general, there are two major strategies for the
development of ICA algorithms: using higher order
statistics (HOS), e.g. [1, 2, 3, 4, 5], or using the spec-
tral differences between the different source signals,
e.g [6, 7, 8, 9. Both strategies are complementary
in some sense. They differ in their pre-assumptions.
The HOS approach assumes non-gaussian probability
density functions. The spectral approach assumes non-
white source signals with different spectral characteris-
tics. For many natural signals the application of both
strategies is possible.

The proposed algorithm follows the second strate-
gy, i.e. the spectral differences between the source sig-
nals are exploited. Possible ways for the spectral ap-
proach are described in [6, 7, 8, 9]. In general these
algorithms pick up common signal parts by computing
the cross-correlation at several time delays or perform
an equivalent procedure in a transform domain. A cost
function depending on these cross-correlations is then
minimized. However, these algorithms suffer from cer-
tain disadvantages, such as no signal adaptivity [6, 7],
strong pre-assumptions [8] or the use of potentially un-
stable filters.



In this paper we propose a new separation method
for non-white signals based on the spectral differences
between the sources and non-recursive filtering. The
proposed method overcomes the aforementioned disad-
vantages of [6, 7, 8, 9]. The low computational load
and the possible parallel processing of the signals lead
to a fast separation and make real-time applications
feasible.

We have organized our paper as follows. In section
two we introduce our new method. In section three
simulation results are shown. They are discussed in
section four and conclusions are drawn in section five.

2. METHODS

2.1. Data Pre-Processing by Sphering

Sphering is a method for the removal of second order
cross-correlation between signals. Time delays are left
unconsidered. Sphering is accomplished by

x, = Mx = E[xxT]"'/?x, (2)
where M is the sphering matrix and E[-] denotes the
expected value. In [1] it is shown that the mixing sys-
tem A is factorizable into the inverse of the sphering
matrix M~! and an orthogonal rotation matrix O, i.e.

(3)

Having identified the sphering matrix M the rotation
matrix O must be estimated. To accomplish this the
sphered signals are linearly transformed. This trans-
formation is needed to create new equations and hence
new conditions for the computation of the rotation ma-
trix O. The linear transformation is a generalization
of simple time delays as described in [6].

A=M"'.0.

2.2. The Application of a Linear Transform for
Blind Source Separation

Mathematically, statistical independence of the sources
s = [s1,82,...,58N] is equivalent to the separability
of the multivariate probability density function of the
sources into the product of the marginal densities

N
= Hpsz' (si) (4)
i=1
As shown in [9, 10], a linear transform defined by
T(s) = [T1(s1), Ta(s2), . .., Tv(sn)] " (5)

leaves the property of statistical independence unaf-
fected. This is easy to prove since the Jacobian J of
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the transform T(s) is a diagonal matrix. Hence, the
transformed probability density function is still sepa-
rable, i.e.

5;)

Ds; (
H|d )/ dsi] sz, %)

where z = T(s) and 2z; = T;(s;). In contrast to the
impact of linear transforms on the statistical indepen-
dence between the signals, linear transforms influence
the spectral composition of the signals.

If the linear transform is defined as Th =T = ...
Tn = T, the transformation of the sphered signals x;
can be written as

) =157

T(xs) = T(O0-s) = O-T(s). (7)

Computing the covariance matrix of the transformed
and sphered data, one obtains

)] E[T(Os)T(0s)"]
OE[T(s)T(sT)]OT
oD;07.

E[T(xs)T(x;

(8)

According to equation 6 the covariance matrix of the
transformed source signals z is diagonal, i.e.

E[zz"] = E[T(s)T(s)'] = Dr, 9)

where
Dr = Eldiag(T(s1)?,T(s2)%, .., T(sn)?)]-

Hence, equation 8 describes an eigenvalue problem for
the matrix E[T(x,)T(x])] where the eigenvectors form
the orthogonal rotation matrix O.

(10)

2.3. Blind Source Separation Using Weighted
Time Delays

In order to obtain new equations for the computation
of the rotation matrix O the linear transform must be
chosen such that E[T(x,)T(x})] in equation 8 is non-
diagonal.

After the pre-processing by sphering the cross-cor-
relation between the signals is zero. That is, depen-
dencies between the signals are not visible to the cross-
correlation coefficient. Hence, it is reasonable to de-
sign linear transforms that reveal the remaining, i.e.
hidden dependencies between the signals in such a way
that the cross-correlation coefficient is non-zero after
the transformation. Considering that only second or-
der statistics is used the transforms have to make use
of the spectral properties of the signals which is equiva-
lent to processing the correlation function at several de-
lays. To achieve this objective the algorithms [6, 7] use



different time delays or wavelet scales as linear trans-
forms to solve this problem.These methods are not re-
ally adapted to the actual signals under consideration.
For that reason they are not suited to reveal an optimal
amount of hidden dependencies between the signals. A
step forward is the matched filter algorithm described
[8]. The disadvantage of the matched filter approach
is that signal patterns must be known a-priori. To
make full use of the spectral content of the signals it
is reasonable to employ spectral estimation methods.
Such an approach is described in [9] where the spec-
trum is estimated by autoregressive models and, using
the spectral estimate, the signals are transformed by re-
cursive filtering. The disadvantage of this approach is
that these filters can be potentially unstable, in partic-
ular if the coeflicients are estimated using higher order
statistics or in practical situations where, due to finite
word length effects, the poles may drift to locations
outside the unit circle of the z-plane. It is therefore
highly desirable to use filters with a finite impulse re-
sponse (FIR) that extract the spectral information that
is necessary for the computation of the rotation matrix
0.

The algorithm proposed in this paper is designed to
overcome the disadvantages of the older algorithms. It
is explained for two signals but can easily be expanded
to the general case of N signals.

As linear transform the algorithm uses the sum of
weighted time delayed signal values. This approach is
equivalent to the application of a non-recursive (FIR)
filter on the signals. The objective is to reveal common
components between the two sphered signals, i.e. to
get a non-zero crosscorrelation.

For the two-dimensional case the transformed sig-
nals may be written as

T[.Zsl]
T[Jisz]

T[01181] + [01282] and
T[iL‘s1] +

T[(021 — 011) + s1(022 — 012)52], (12)

(11)

+

where the o;; are the coeflicients from the rotation ma-
trix O. After a transformation the cross-correlation
coefficient will be at maximum if it is possible to find a
FIR filter (= linear transform) that maximizes T'[21]
in equation 12 and minimizes the error term T[(0y; —
011)81 + (022 — 012)82] in equation 12. In case of more
than N = 2 signals the error term varies between the
different signals. Hence, it is reasonable to find a FIR
filter that maximizes the term T'[xs] in equation 12.
This can be accomplished by a filter that maximizes
the power of T'[z,1] under the constrained that the fil-
ter coeflicients are normalized.
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The filtering operation can be parametrized by

P
yi(n) = Z ar - Tsi(n — k) = a(n) * z4(n), (13)
k=0

where the aj, are the coefficients of the FIR filter and
Z4; is one of the sphered signals. Writing equation 13
in matrix/vector notation one obtains

y = Xa, (14)

where matrix X contains the time delayed versions of
the used sphered signal zg;, i.e.

24i(0) 0 0 0
msi(l) .’I:si(O) 0 0
X = -, . ", 0
Tsi(P) wsi(P—1) zs(P —2) Z5:(0)
(15)
a = [ag,a1,as,...,ap]’ is the coefficient vector of the

FIR filter and y = [y:(1),4:(2),...
output signal.

Maximizing the power of the output signal and nor-
malizing the the filter coefficients to ||a|| = 1 leads to
the optimization problem

,yi(n),...]T is the

K =yl'y +Xa’a—-1) - max. (16)
Expanding the output signal y in equation 16 one ob-
tains

K =a"X"Xa+ A(aTa — 1) = max. (17
The gradient with respect to the filter coefficients is
given by

VoK =2XTXa + 2)a. (18)

Applying the necessary condition for a local maximum
VaK = 0 one obtains the eigenvalue problem

XTXa = \a. (19)
Note that X7X is proportional to the correlation ma-
trix of x4;. Disregarding a normalisation constant and
using ||a|| = aTa = 1 the power of the output is given
by

y'y =aT’XTXa =a’la = XaTa =)\ (20)
Hence, the eigenvector belonging to the greates eigen-
value is the wanted coefficient vector of the FIR filter.
After filtering common components are amplified and
components not present in both signals are (relatively)
attenuated. Hidden dependencies between both signals



are revealed. The rotation matrix O is eventually com-
puted by solving the eigenvalue problem in equation 8.

In the general case of N signals the coefficients of
the FIR filter are determined for one signal and af-
terwards all signals are filtered by the computed FIR
filter. Corresponding to equation 8 the correlation is
then measured by the covariance matrix. In order to
use all available information this procedure is repeated
for all N signals x4, Ts2,-..,Zsn, i.e. N FIR filters
need to be determined and after filtering N covariance
matrices need to be computed. In general these covari-
ance matrices do not have a diagonal structure. The
matrix O that diagonalizes all the matrices simultane-
ously is the wanted orthogonal rotation matrix of the
blind source separation problem.

2.4. Joint Diagonalisation

The application of more than one linear transform, i.e.
filter, gives more than one eigenvalue problem. A pos-
sible rotation matrix O must solve all these eigenvalue
problems at the same time.

There are several ways to jointly solve these eigen-
vue problems. One possible way is to combine the set of
different eigenvalue problems into only one eigenvalue
problem. For two different linear transformations, i.e.
FIR filters T and T one obtains according to equation
8 the eigenvalue problems

C

C

E[T(x,)T(x!)] = OD70T

. (21)
E[T(xs)T(x})] = 0D;07.

(22)

These two equations can be combined into one joint
eigenvalue problem by

CC = OD7D;07. (23)
The extension of equation 23 for more than two linear
transformations is simple. However, this method ac-
cumulates estimation errors and heavily increases the
condition number of the matrix product. In most cases
it provides only poor results.

Much more satisfying results can be achieved by
using the joint approximate diagonalisation algorithm
proposed in [5]. For that reason we use this latter di-
agonalisation method for our algorithm.

3. SIMULATION RESULTS

The general performance of blind source separation al-
gorithms using second order statistics was investigated
in [11]. In [11] it has been shown that the perfor-
mance of such algorithms heavily depends on the spec-
tral overlap of the source signals. In contrast to the
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spectral dependence the performance does not depend
on the shape of the probability density functions of
the sources. We have made extensive simulations on
artificially created signals and artificial mixtures that
confirmed these theoretical results [10]. Applications
to real EEG data are also shown in [10]. An example
of the performance of the algorithm is shown in fig-
ure 2. Due to the simple structure of the algorithm,
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Figure 2: Signals at the several stages of the algorithm

the computation time is very low compared to algo-
rithms using higher order statistics such as [2, 5, 3]
and slightly above the simple second order algorithms
such as [6, 7]. Similar to other algorithms, the perfor-
mance of the proposed method gracefully degrades if
noise is present.

4. DISCUSSION

The proposed algorithm can not overcome the limita-
tions of using second order statistics as described in



[11], i.e. the necessary spectral differences between the
source signals. However, it makes use of the spectral
differences in an optimal way. This leads to a per-
formance that is comparable to established algorithms,
e.g. [2, 5, 3]. In contrast to the algorithms [6, 7] it is sig-
nal adaptive. Furthermore, the number of matrices to
be diagonalized is limited to the number of signals. In
contrast to [6] the matrices are always symmetric, i.e.
real valued solutions are guaranteed. The advantage of
the proposed algorithm over the autoregressive model
algorithm [9] is that the filter is now non-recursive and
hence always stable.

5. CONCLUSIONS

A new method for blind source separation of non-white
signals was proposed. It was shown that the concept of
the linear transformation can be implemented using a
non-recursive filter, i.e. a summation of weighted time
delayed signal values. It is possible to compute an opti-
mal set of filter coefficients (weights), which makes the
algorithm, in contrast to former methods, signal adap-
tive and always stable. The performance of the algo-
rithm was shown by an example. Due to the relatively
low computational load the algorithm can potentially
be applied in real-time applications.

In this paper the proposed method is described as a
batch algorithm. However, the idea of maximizing the
power under the constraint of normalized coefficients
can probably be used in recursive algorithms which
potentially can be implemented as online algorithms.
This will be a topic of our future work.
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