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ABSTRACT

In this paper we present an original modelling of the source separa-
tion problem that takes into account all the non-stationarities of the
underlying processes. The estimation of the sources then reduces
to that of a filtering/fixed-lag smoothing algorithm, for which we
propose an efficient numerical solution, relying on particle filter
techniques.

1 Introduction

The problem of separating convolutively mixed sources is ofin-
terest to many applications such as speech enhancement, crosstalk
removal in multichannel communications and multipath channel
identification. In this paper we consider the problem of separating
audio signals modelled as autoregressive processes. The desired
sources are clearly non-stationary as the vocal tract is continually
changing, sometimes slowly, sometimes rapidly and the coupling
filters may be time varying as the propagation conditions in the
medium or more simply the sources/sensors geometry change over
time. Here we explicitly model the non-stationarities of both the
sources and the propagation medium, allowing us to take intoac-
count different stationarity time scales: speech will typically be
stationary over periods of 20-40 milliseconds, whereas thetrans-
mission channel is expected to be stationary over longer periods.
Taking into account these non-stationarities clearly removes some
of the problems associated with framed based algorithms that as-
sume piecewise stationarity and result in a delayless algorithm.

The modelling we adopt for the system facilitates a state space
representation, and the problem of estimating the sources from ob-
served mixtures then reduces to that of a filtering/fixed-lagsmooth-
ing estimation problem. The filtering and smoothing problems,
that is the recursive estimation of the sources conditionalupon the
currently available data, require the evaluation of integrals that do
not admit closed-form analytic solutions and approximate methods
must be employed. Classical methods to obtain approximations to
the desired distributions include analytical approximations, such
as the extended Kalman filter [1] the Gaussian sum filter [3], and
deterministic numerical integration techniques (see� �� �. [5]). The
extended Kalman filter and Gaussian sum filter are computation-
ally cheap, but fail in difficult circumstances.

Instead of hand-crafting such algorithms, we propose here the
use of an adaptive stochastic grid approximation, which introduces
a so-called system of particles. These particles evolve randomly in
time in correlation with one another, and either give birth to off-
spring particles or die according to their ability to represent the
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different zones of interest of the state space dictated by the obser-
vation process and the dynamics of the underlying system. This
class of Monte Carlo methods was introduced in the late 60’s,but
were overlooked mostly because of their computational complex-
ity, see [9] for a review. The advantage of these methods is that
they get around the problems faced by classical methods: theadap-
tativity of the stochastic grid results in an accurate representation
of the density of interest at a rate independent of the dimension of
the problem [6].

Particle techniques are here applied to obtain filtered and fixed-
lag smoothed estimates of the non-stationary sources modelled as
time varying autoregressive processes, observed in additive white
Gaussian noise. The simulation-based algorithms developed here
are not just a straightforward application of the basic methods, but
are designed to make efficient use of the analytical structure of the
model. At each iteration the algorithm has a computational com-
plexity that is linear in the number of particles, and can easily be
implemented on parallel computers, thus facilitating nearreal-time
processing. It is also shown how an efficient fixed-lag smoothing
algorithm may be obtained by combining the filtering algorithm
with Markov chain Monte Carlo (MCMC) methods (see [12] for
an introduction to MCMC methods). Note that the power and flex-
ibility of these techniques can allow for far more complex models
than those considered here.

The remainder of the paper is organized as follows. The model
specification and estimation objectives are stated in Section 2. In
Section 3 sequential simulation-based methods are developed to
solve the filtering and fixed-lag smoothing problem and determine
the model adequacy. In this section we first introduce Monte Carlo
basics, secondly show how to take advantage of the structureof the
model and reduce dramatically the dimensionality of the problem,
thirdly explain why a selection scheme for the particles is required
and why diversity must be introduced, here using MCMC steps.
Section 4 presents and discusses simulation results.

2 Model of the data

The problem addressed is the problem of source separation, the� sources being modelled as autoregressive processes, from which
we have at each time�, � observations which are convolutive mix-
tures of the� sources.

2.1 Model for the sources

Source� can be modelled for� 	 
� � � � as:

�
 �� 	 ��
 �� �
 �������� � � �� �
 ��� �
 �� (1)
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and� 
 is the order of the��� AR model. We assume that�
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The 
� �� �
 ��� 
� ��


�� are the variances of the dynamic noise for
each source at time�.

We assume that the evolving autoregressive model follows a
linear Gaussian state-space representation,
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and �
 �� � � ���� ���� 	. A future version of the model will
include switching between different sets of matrices��
 � ��
 to
take into account silences, for example. Typically��
 	 �� � and��
 � �� � .
2.2 Model of the mixing system and noise

The mixing model is assumed to be a multidimensional time vary-
ing FIR filter. More precisely we assume that the sources are
mixed in the following manner, and corrupted by an additive Gaus-
sian i.i.d. noise sequence: at the �� sensor, and for 	 
� � � � � �

!" �� 	
�#


� � $ 
 �" �� �
 �� ���%� &' � � � �( �" ��)" �� (5)

where*
 �" is the length of the filter from source� to sensor . The
series�)" �� 	�� ��


 is a zero mean normalized i.i.d. Gaussian se-
quence,i.e. for  	 
� � � � � � and� 	 
� � � �
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The quantities
� �( �" �� �" � ��


�+ are the variances of the observa-
tion noise for each sensor at time�. The )" �� are assumed in-
dependent of the excitations of the AR models. We impose the
constraint,$ 
 �" �� - ��� 	 
 and ,$ 
 �" �� -. �% 	 � for  	 � /�0 �
and � 	 
� � � � � �. In the case� 	 � this constraint corresponds
to ,$ 
 �" �� - ��� 	 
 and ,$ 
 �" �� -. �% 	 � for  	 �. As for the model of
the sources, we assume that the observation system also follows a
state-space representation: writing

�( �" �� � ��� 
� �( �" �� �
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 �" ��� � 	 �1
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 �" �� � �1
 �" � 1
 �" ��� ��( �" ��� � 	 ��2" �( �" �� � ��2" � �2" ��� � (7)
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and$ 
 �" �� � � 
� 1� ��1� �.

2.3 State-space representations

2.3.1 State-space representation of the sources

For each of the source� the signal can be rewritten in the following
form: �
 �� ���5�� � 	 �6
 �� �
 �������5 � � �6
 �� � 6
 �� (9)

where7 
 � /89 :� 
 �/89" ;*
 �" <= and�6
 �� is a 7 
 > 7 
 matrix

defined as:

�6
 �� � ? ��
 �� � �@A5� �� � B�5� � � � A5 � � �B@� C � �6
 �� � 
�� �
 �� � � �@A5 � ��B ��
(10)

Then one can rewrite the dynamic system equations:D �� � 	 �E�� �D � � �E�� ��E�� �F � 	 GE� D � � HE� IE� (11)

with�E� � J �KL �� ��� � M M M ��+ �� 	 � �E� � J �KL �� ��� � M M M ��+ �� 	�E� 	 
� 6��� M M M � 6+ �� �� � D � � 
����� ���54� � M M M ��+ �� ���5N � ��� �,GE� - contains the mixing system
andIE� 	 �) ��� M M M ) � �� 	� � HE� � J �KL ��( �� M M M �( �� 	 �

(12)

2.3.2 State-space representation of the parameters

Defining the “stacked” parameter vectors

,�� -O �P4QR4 � Q �" �� � ,� 
 �� -" �� � 	 
� � � � � � S  	 
� � � � �� 

,$ � -O �P4TR4 O'� P4�R4 %T� �. �� � ,$ 
 �" �� - . �� � 	 
� � � � � � S 
 	 
� � � � � � SU 	 
� � � � � *
"

(13)
and *� � V +
� � � 
, *1 � V�" � � V+
� � *
" 	 V�" � � *1 �" it is pos-
sible to consider the following state space representations

$ �� � 	 �1�� �$ � � �1�� ��1�� �F � 	 G1� $ � � H1� I 1� (14)

where�1� ��1� W X %Y @%Y � � G1 W X� @+ %Y � H1� W X� @�
G1� � J �KL ZD ��� ��� %4 &�� � M M M D+ �� ��� %N &�� �[
� ��


�� (15)

and ��� � 	 ���� �� � � ���� ����� �D � 	 G�� � � � H�� I�� (16)

with ��� � ��� W X %\ @%\ � G�� W X+ @%\
whereG�� 	 J �KL ;D 
 ��� ����� � <
� ��


�� (17)

This is of practical interest as it allows us to integrate outthe mix-
ing filters and autoregressive filters, as conditional upon the vari-
ances and statesD � the systems (14) and (16) are linear Gaussian
state space models. Together with (11) they define a bilinearGaus-
sian process.

�
In fact one can be more general and this can be replaced by] %Y @^

for_1� .
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2.4 Objectives

Our aim is, given the number of sources� , � 
 and*
 �" to estimate
sequentially the sources�D � 	�� ��


 and their parameters� � �Z�� � $ � �� �� ���+ �� �� �� ���� �( [ from the observations!" ��. More pre-
cisely, in the framework of Bayesian estimation, one is interested
in the recursive, in time, estimation of posterior distributions of
the type� � J� � � JD � �F ����� 	: when� 	 � this corresponds to
the filtering distribution and when� � � this corresponds to the
fixed-lag smoothing distribution. This is a very complex prob-
lem that does not admit any analytical solution, and one has to re-
sort to numerical methods. In the next section we develop such
a numerical method based on Monte Carlo simulation. Subse-
quently we will use the following notation:� � � ;�� � $ � <, � � �Z� �� ���+ �� �� �� ���� �( [ and� � � ZD � �� �� ���+ �� �� �� ���� �( [.

3 A Simulation-Based Optimal Filter/Fixed-lag Smoother

This section develops a simulation-based optimal filter/fixed-lag
smoother to obtain filtered/fixed-lag smoothed estimates ofthe un-
observed sources and their parameters of the type	� �
� 	 � � 
� �� � �D � 	 � � J� � � JD � �F ����� 	 (18)

The standard Bayesian importance sampling method is first de-
scribed, and then we show how it is possible to take advantageof
the analytical structure of the model by integrating out theparame-
ters�� and$ � which can be high dimensional, using Kalman filter
related algorithms. This leads to an elegant and efficient algorithm
for which the only tracked parameters are the sources and thenoise
variances. Then a sequential version of Bayesian importance sam-
pling for optimal filtering is presented, and it is shown why it is
necessary to introduce selection as well as diversity in theprocess.
Finally, a Monte Carlo filter/fixed-lag smoother for our problem is
described.

3.1 Monte Carlo Simulation for Optimal Estimation

For any
� it will subsequently be assumed that�	� �
� 	 � � �
 .
Suppose that it is possible to sample� i.i.d. samples, called parti-

cles, �D A
B� ���� � � A
B� ����� according to� �D � ���� � � � ���� �F ����� 	.
Then an empirical estimate of this distribution is given by�� � � JD � ���� � J� � ���� �F ����� 	

	 �� V �
� � �E ���� ���� �� ���� ���� �JD� ���� � J� � ���� 	
(19)

so that a Monte Carlo approximation of the marginal distribution� � JD � � J� � �F ����� 	 follows as�� � � JD � � J� � �F ����� 	 	 �� V �
� � �E ���� �� ���� �JD � � J� � 	
(20)

Using this distribution, an estimate of
	� �
� 	 for any 
� may be

obtained as�	� �� �
� 	 	 � 
� �D � � � � 	 �� � � JD � � J� � �F ����� 	
	 �� V �
� � 
� �D A
B� � � A
B� � � (21)

This estimate is unbiased and from the strong law of large num-
bers,

�	� �� �
� 	 � 
� 
����� 	� �
� 	. Under additional assumptions

the estimates satisfy a central limit theorem. The advantage of the
Monte Carlo method is clear. It is easy to estimate

	� �
� 	 for any
�, and the rate of convergence of this estimate does not depend
on � or the dimension of the state space, but only on the number

of particles� and the characteristics of the function
�. Unfor-
tunately, it is not possible to sample directly from the distribution� � JD � ���� � J� � ���� �F ����� 	 at any �, and alternative strategies
need to be investigated.

One solution to estimate� � JD� ���� � J� � ���� �F ����� 	 and	� �
� 	 is the well-known Bayesian importance sampling method
[9]. This method assumes the existence of an arbitrary importance
distribution  � JD � ���� � J� � ���� �F ����� 	 which is easily simu-
lated from, and whose support contains that of� � JD � ���� � J� � ���� �F ����� 	 �Using this distribution

	� �
� 	 may
be expressed as

	� �
� 	 	 ! " � �E 4 ���� ��� 4 ���� �# 4 ���� 	$� AE � �� � B( �E � ���� ��� ���� 	
! " � �E 4 ���� ��� 4 ���� �# 4 ���� 	( �E � ���� ��� ���� 	 �

(22)
where the importance weight) �D� ���� � � � ���� 	 is given by) �D� ���� � � � ���� 	 � � � E � ���� �� � ���� �# 4 ���� 	

" � E � ���� ��� ���� �# 4 ���� 	 � (23)

The importance weight can normally only be evaluated up to a
constant of proportionality, since, following from Bayes’rule,� � JD� ���� � J� � ���� �F ����� 	

	 � � # 4 ���� �E � ���� ��� ���� 	� ��E � ���� ���� ���� 	� �# 4 ���� 	 �
(24)

where the normalizing constant� �F ����� 	 can typically not be
expressed in closed-form.

If � i.i.d. samples�D A
B� ���� � � A
B� ����� can be simulated ac-

cording to a distribution � JD� ���� � J� � ���� �F ����� 	, a Monte
Carlo estimate of

	� �
� 	 in (22) may be obtained as�	 �� �� �
� 	 	
O%�R4 $� &E ���� �� ���� '( &E ���� ���� �� ���� ���� 'O%�R4 ( &E ���� ���� �� ���� ���� '	 V �
� � ) A
B� ���� 
� �D A
B� � � A
B� � � (25)

where the normalized importance weights are given by) A
B� ���� 	 ( &E ���� ���� �� ���� ���� 'O%'R 4 ( &E �' �� ���� �� �' �� ����' � (26)

This method is equivalent to a point mass approximation of the
target distribution of the form�� � � JD � ���� � J� � ���� �F ����� 	

	 V �
� � ) A
B� �����E ���� ���� �� ���� ���� �JD � ���� � J� � ���� 	 �
(27)

The perfect simulation case, when � JD � ���� � J� � ���� �F ����� 	
	 � � JD� ���� � J� � ���� �F ����� 	, corresponds to) A
B� ���� 	 � ��

,� 	 
� � � � �� . In practice, the importance distribution will be cho-
sen to be as close as possible to the target distribution in a given
sense. For finite� ,

�	 �� �� �
� 	 is biased, since it involves a ratio of
estimates, but asymptotically, according to the strong lawof large
numbers,

�	 �� �� �
� 	 � 
� 
����� 	� �
� 	. Under additional assump-

tions a central limit theorem also holds [9].

3.2 Analytical integrations

It is possible to reduce the estimation of� � JD � � J� � �F ����� 	 and	� �
� 	 to one of sampling from� 
J� � ���� ((F ����� �, where we
recall that� � � ZD � �� �� ���+ �� �� �� ���� �( [. Indeed,� 
J� � � J� � ���� ((F ����� � 	 � 
J� � � � � ���� � F ����� �>� 
J� � ���� ((F ����� � (28)
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where� 
J� � � � � ���� �F ����� � is a Gaussian distribution whose
parameters may be computed using Kalman filter type techniques.
Thus, given an approximation of� 
J� � ���� ((F ����� �, an approx-
imation of� � JD � � J� � �F ����� 	 may straightforwardly be obtained.
Defining the marginal importance distribution and associated im-
portance weight as

 
J� � ���� ((F ����� � 	 �  
J� � ����J� � ���� ((F ����� �) 
� � ���� � � � � � � ���� �# 4 ���� 	
" � � � ���� �# 4 ���� 	 �

(29)
and assuming that a set of samples� A
B� ���� distributed according to 
J� � ���� ((F ����� � is available, an alternative Bayesian impor-
tance sampling estimate of

	� �
� 	 follows as

�	 �� �
� 	 	
O%4R4 � &� ���� ���� ���� ���� �# 4 ���� '$� &E ���� �� ���� '( &� ���� ����'O%�R4 ( &� ���� ����'	 V �
� � �) A
B� ����� �� A
B� (((�

A
B� ���� �F ������ 
� �D A
B� � � A
B� � �
(30)

provided that� 
� � � � � ���� � F ����� � 
� �D � � � � 	 can be evaluated
in a closed-form expression. In (30) the marginal normalized im-
portance weights are given by

�) A
B� ���� 	 ( &� ���� ���� 'O%'R 4 ( &� �' �� ���� ' � � 	 
� � � � �� � (31)

Intuitively, to reach a given precision,
�	 �� �� �
� 	 will need a re-

duced number of samples over
�	 �� �� �
� 	, since it only requires

samples from the marginal distribution �J� A
B� ���� (((F ������. It

can be proved that the variance of the estimates is subsequently
reduced [8]. In our case this is important as at each time instant
the number of parameters is (when assuming that all mixing filters
and AR processes have the same length),

� � �� � �� parameters for the mixing filters, where� can
be large.� � or 
 parameter(s) for the observation noise.� � * � � parameters for the autoregressive processes.� � parameters for the sources.

It is not clear which integration will allow for the best variance
reduction [8], but at least in terms of search in the parameters space
the integration of the mixing filters and autoregressive filters seems
preferable.

Given these results, the subsequent discussion will focus on
Bayesian importance sampling methods to obtain approximations

of � �J� A
B� ���� (((F ������ and
	� �
� 	 using an importance distri-

bution of the form �J� A
B� ���� (((F ������. The methods described

up to now are batch methods. The next section illustrates howa
sequential method may be obtained.

3.3 Sequential Bayesian Importance Sampling

The importance distribution at discrete time� may be factorized as

 
J� � ���� ((F ����� �
	  � J� � �F ����� 	 � ���.� �  
J� . � � � �.�� � F ����� � �

(32)
The aim is to obtain at any time� an estimate of the distribution� 
J� � ���� ((F ����� � and to be able to propagate this estimate in

time without modifying subsequently the past simulated trajecto-
ries� A
B� ���� . This means that 
J� � ���� ((F ����� � should admit 
J� � ��� ��� ((F ���� ��� � as marginal distribution. This is possi-
ble if the importance distribution is restricted to be of thegeneral
form

 
J� � ���� ((F ����� �
	  �J� � 	 � ���.� �  
J� . � � � �.�� � F ��. � � (33)

Such an importance distribution allows recursive evaluation of the
importance weights,i.e. ) 
� � ���� � 	 ) 
� � ��� ��� � ) ��� , and
in our particular case

� � � � ���� �# 4 ���� 	
" � � � ���� �# 4 ���� 	 � � � � � ����P4 �# 4 ����P4 	

" � � � ����P4 �# 4 ����P4 	> � � # ��� �� � ���� 	� � E ��� �E ���P4 �� ��� 	� �� ��� �� ���P4	
" � � ��� �� � ����P4 �# 4 ���� 	

(34)
The quantity� 
JD ��� �D ��� �� ��� � can be computed up to a
normalizing constant using a one step ahead Kalman filter forthe
system given by Eq. (16) and� 
F ��� �D� ���� �� ��� � can be
computed using a one step ahead Kalman filter of the system given
by Eq. (14).

3.3.1 Choice of the Importance Distribution

There is an unlimited number of choices for the importance distri-
bution 
J� � ���� ((F ����� �, the only restriction being that its sup-
port includes that of� 
J� � ���� ((F ����� �. Two possibilities are
considered next. A possible strategy is to choose at time� � � the
importance distribution that minimizes the variance of theimpor-
tance weights given� � ��� � andF ���. The importance distribution
that satisfies this condition is [9]� 
J� ��� ((� � ������ � F ����� �,
with the associated incremental importance weight given by) ��� � � 
F ��� �� � ��� ��� � F ��������

	 � � 
F ��� �� � ���� �F �������� � 
J� ��� ((� �� ��� � �
(35)

Direct sampling from the optimal importance distribution is diffi-
cult, and evaluating the importance weight is analyticallyintractable.
The aim is thus in general to mimic the optimal distribution by
means of tractable approximations, typically local linearization� 
J� � � � � ��� � � F ����. Instead, here we describe a mixed subop-
timal method. We propose to sample the particles at time� accord-
ing to two importance distributions � and � with proportions�
and
 � � such that the importance weights) �� A
B� ����� have now

the form (note that it would be possible to draw� � and� � ran-
domly according to a Bernoulli distribution with parameter� , but
this would increase the estimator variance)

	

�


�

� � &� ���� ���� ���# 4 ���� '" 4 &� ���� ���� ���# 4 ���� ' 
� " 4 ? � �� � ���� �# 4 ���� 	
" 4 � � � ���� �# 4 ���� 	 C�
 � � 	 � &� ���� ���� ���# 4 ���� '"� &� �

��� ���� ���# 4 ���� ' 
� "� ? � � � � ���� �# 4 ���� 	
"� � � � ���� �# 4 ���� 	 C

(36)
which in practice is estimated as) A
B� ����
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The importance distribution � 
JD ��� �D ������� �� ����� � F ����� �
will be taken to be a normal distribution centered around zero with
variance� �E , and � 
JD ��� �D ������� �� ����� � F ����� � is taken

to be� �JD A
B��� (((�� �1 A
B��� ���� ��� �1 A
B��� ���� �� A
B��� � F ������ which is

a Gaussian distribution obtained from a one step ahead Kalman
filter for the state space model described in (11) with�� A
B��� ����
and �1 A
B��� ���� as values for� A
B

and $ A
B
and initial variances����� ���� and�1��� ���� . The variances are sampled from their

prior distributions, and expression (34) is used to compute) A
B� ���� .
Note that other importance distributions are possible, butthis ap-
proach yields good results and seems to preserve diversity of the
samples.

3.3.2 Degeneracy of the Algorithm

For importance distributions of the form specified by (33) the vari-
ance of the importance weights can only increase (stochastically)
over time, see [9] and references therein. It is thus impossible to
avoid a degeneracy phenomenon. Practically, after a few iterations
of the algorithm, all but one of the normalized importance weights
are very close to zero, and a large computational effort is devoted
to updating trajectories whose contribution to the final estimate is
almost zero. For this reason it is of crucial importance to include
selection and diversity. This is discussed in more detail inthe fol-
lowing section.

3.4 Selection and diversity

The purpose of a selection (or resampling) procedure is to dis-
card particles with low normalized importance weights and multi-
ply those with high normalized importance weights, so as to avoid
the degeneracy of the algorithm. A selection procedure associates
with each particle, say

�� A
B� ��, a number of children� 
 W � , such
that V �
� � � 
 	 � , to obtain� new particles� A
B� ��. If � 
 	 �
then

�� A
B� �� is discarded, otherwise it has� 
 children at time� � 
.
After the selection step the normalized importance weightsfor all
the particles are reset to� ��

, thus discarding all information re-
garding the past importance weights. Thus, the normalized im-
portance weight prior to selection in the next time step is propor-
tional to (34). These will be denoted as

�) A
B� , since they do not
depend on any past values of the normalized importance weights.
If the selection procedure is performed at each time step, then the
approximating distribution before the selection step is given by�� � � J� � �� �F ���	 	 V �
� � �) A
B� � �� ���� �� �J� � �� 	, and the one after the

selection step follows as
�� % � J� � �� �F ���	 	 � �� V �
� � �� ���� �� �J� � �� 	.

We choose systematic sampling [8] for its good variance proper-
ties.

However selection poses another problem. During the resam-
pling stage any particular particle with a high importance weight
will be duplicated many times. In particular, when� � �, the
trajectories are resampled� times from time� � 
 to � � � so
that very few distinct trajectories remain at time� � � . This is the
classical problem of depletion of samples. As a result the cloud
of particles may eventually collapse to a single particle. This de-
generacy leads to poor approximations of the distributionsof in-
terest. Several suboptimal methods have been proposed to over-
come this problem and introduce diversity amongst the particles.
Most of these are based on kernel density methods [9, 10], which
approximate the probability distribution using a kernel density es-
timate based on the current set of particles, and sample a newset

of distinct particles from it. However, the choice and configura-
tion of a specific kernel are not always straightforward. Moreover,
these methods introduce additional Monte Carlo variation.In the
next subsection it is shown how MCMC methods may be com-
bined with sequential importance sampling to introduce diversity
amongst the samples without increasing the Monte Carlo variation.

An efficient way of limiting sample depletion consists of sim-
ply adding a MCMC step to the simulation-based filter/fixed-lag
smoother (see Berzuini and Gilks in [9], and [12] for an intro-
duction to MCMC methods). This introduces diversity amongst
the samples and thus drastically reduces the problem of deple-
tion of samples. Assume that, at time� � �, the particles� � A
B� ����
are marginally distributed according to� 
J� � ���� ((F ����� �. If a
transition kernel� 
� � ���� ((J� �� ���� � with invariant distribution� 
J� � ���� ((F ����� � is applied to each of the particles, then the

new particles� A
B� ���� are still distributed according to the distribu-
tion of interest. Any of the standard MCMC methods, such as the
Metropolis-Hastings (MH) algorithm or Gibbs sampler, may be
used. However, contrary to classical MCMC methods, the transi-
tion kernel does not need to be ergodic. Not only does this method
introduce no additional Monte Carlo variation, but it improves the
estimates in the sense that it can only reduce the total variation
norm [12] of the current distribution of the particles with respect
to the target distribution.

3.5 Implementation Issues

3.5.1 Algorithm

Given at time� � � � 
, � W � � particles� A
B� ������ distributed
approximately according to� 
J� � ������ ((F ��������, the Monte
Carlo fixed-lag smoother proceeds as follows at time� � � .

Monte Carlo filter/fixed-lag smoother

Sequential Importance Sampling Step

� For � 	 
� � � � �� ,
�� A
B��� �  �J� ��� ((D A
B� ������ �F ������

and set
�� A
B� ���� 	 �� A
B� ������ � �� A
B����.

� For � 	 
� � � � �� , compute the normalized importance
weights

�) A
B��� using (34) and (37).

Selection Step

� Multiply / discard particles
�� A
B� ���� w.r.t. high / low

normalized importance weights to obtain � particles� � A
B� ���� , � �� �using systematic sampling.

MCMC Step

� For � 	 
� � � � �� , apply to � � A
B� ���� a Markov transition

kernel � �� A
B� ���� (((J� � A
B� ����� with invariant distribution� 
J� � ���� ((F ����� � to obtain � particles � A
B� ���� .

�
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3.5.2 Implementation of the MCMC Steps

There is an unlimited number of choices for the MCMC transition
kernel. Here a one-at-a-time MH algorithm is adopted that updates
at time� � � the values of the Markov process from time� to � � � .
More specifically,� A
B. ,

U 	 � � � � � � � � �, � 	 
� � � � �� , is sam-

pled according to an MCMC with� �J� . � � A
B�. � F ������ as target

distribution, where� A
B�. � �� � A
B� ��� � �� A
B� � � � � �� A
B.�� �� � A
B.� � � � � �
�� � A
B����. Evaluation of� �J� . � � A
B�. �F ������ can be done ef-

ficiently via a backward-forward algorithm of� �� � 
	 com-
plexity [7]. The algorithm is fully described in [2]. The com-
putational complexity of the whole algorithm at each iteration is
clearly� �� 	. At first glance, it could appear necessary to keep
in memory the paths of all the trajectories� A
B� ��, so that the stor-
age requirements would increase linearly with time. In fact, the
importance distribution �,  
� � � � � ���� � F ���� and the associ-
ated importance weights, depend on� � ��� � only via a set of low-

dimensional sufficient statistics�� �1 A
B� �� ��� �1 A
B� �� , and only these
values need to be kept in memory. Thus, the storage requirements
are also� �� 	 and do not increase over time.

4 Simulations

To illustrate the efficiency of our method we have applied thepro-
cedure to two scenarios. In the first case we generated two sta-
tionary time invariant order� autoregressive processes, mixed by
two filters of length�. In the second case we made the phase
of the poles of the AR processes evolve from�
 to �� from � 	
� � � � � ��� and from�� to �
 for � 	 ��
� � � � � ���. The algorithm
was run with
�� particles with� 	 �, the parameters of the sys-
tem and the sources were initialized at random. The matrices��
and�1 were set to�� 
 > �. The results for the two cases are pre-
sented on Fig. (1) and Fig. (2), where the two original sources and
the sources estimated on-line using the particle filter are displayed.
Note that for the first scenario convergence really occurs from it-
eration 150 approximately, and that source 2 was apparentlymis-
taken with source 1 before. For the second scenario, as expected,
the problem is much harder, especially when the two poles are
close, or when zero/pole cancellation occurs. Applicationof the
algorithm to real speech signals is currently under investigation.
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Figure 1: True (two top) and estimated (two bottom) sources.
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Figure 2: True (two top) and estimated (two bottom) sources.
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