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ABSTRACT

In this paper we present an original modelling of the souepaga-
tion problem that takes into account all the non-statidiesbf the
underlying processes. The estimation of the sources tlukices
to that of a filtering/fixed-lag smoothing algorithm, for whiwe
propose an efficient numerical solution, relying on pagtifilter
techniques.

1

The problem of separating convolutively mixed sources igeof
terest to many applications such as speech enhancemesgtatko
removal in multichannel communications and multipath clen
identification. In this paper we consider the problem of saiag
audio signals modelled as autoregressive processes. Firedle
sources are clearly non-stationary as the vocal tract isragaly
changing, sometimes slowly, sometimes rapidly and the lewp
filters may be time varying as the propagation conditionshim t
medium or more simply the sources/sensors geometry chaege o
time. Here we explicitly model the non-stationarities oftbthe
sources and the propagation medium, allowing us to takeaoto
count different stationarity time scales: speech will ¢gily be
stationary over periods of 20-40 milliseconds, whereadridues-
mission channel is expected to be stationary over longeoqteer
Taking into account these non-stationarities clearly nesssome
of the problems associated with framed based algorithntsagia
sume piecewise stationarity and result in a delayless ithgor

The modelling we adopt for the system facilitates a stateespa
representation, and the problem of estimating the souroasdb-
served mixtures then reduces to that of a filtering/fixedstagoth-
ing estimation problem. The filtering and smoothing protdem
that is the recursive estimation of the sources conditiapah the
currently available data, require the evaluation of ireégjthat do
not admit closed-form analytic solutions and approximagghods
must be employed. Classical methods to obtain approximstio
the desired distributions include analytical approximas, such
as the extended Kalman filter [1] the Gaussian sum filter [33, a
deterministic numerical integration techniques (sge. [5]). The
extended Kalman filter and Gaussian sum filter are computatio
ally cheap, but fail in difficult circumstances.

Instead of hand-crafting such algorithms, we propose lnere t
use of an adaptive stochastic grid approximation, whialothices
a so-called system of particles. These particles evolveéoraty in
time in correlation with one another, and either give bidtoff-
spring particles or die according to their ability to remnetsthe
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different zones of interest of the state space dictated &phser-
vation process and the dynamics of the underlying systenis Th
class of Monte Carlo methods was introduced in the late &,
were overlooked mostly because of their computational dexap
ity, see [9] for a review. The advantage of these methodsais th
they get around the problems faced by classical methodsididye-
tativity of the stochastic grid results in an accurate regn¢ation

of the density of interest at a rate independent of the dimaraf
the problem [6].

Particle techniques are here applied to obtain filtered aedi
lag smoothed estimates of the non-stationary sources feddes
time varying autoregressive processes, observed in aeldithite
Gaussian noise. The simulation-based algorithms develbpee
are not just a straightforward application of the basic rodsh but
are designed to make efficient use of the analytical straatithe
model. At each iteration the algorithm has a computationatc
plexity that is linear in the number of particles, and carilgd®
implemented on parallel computers, thus facilitating meaf-time
processing. It is also shown how an efficient fixed-lag smiagth
algorithm may be obtained by combining the filtering alduorit
with Markov chain Monte Carlo (MCMC) methods (see [12] for
an introduction to MCMC methods). Note that the power and flex
ibility of these techniques can allow for far more complexdais
than those considered here.

The remainder of the paper is organized as follows. The model
specification and estimation objectives are stated in &e&i In
Section 3 sequential simulation-based methods are dectltp
solve the filtering and fixed-lag smoothing problem and aweiee
the model adequacy. In this section we first introduce MoratédC
basics, secondly show how to take advantage of the struaftine
model and reduce dramatically the dimensionality of thélem,
thirdly explain why a selection scheme for the particlegpuired
and why diversity must be introduced, here using MCMC steps.
Section 4 presents and discusses simulation results.

2 Model of the data

The problem addressed is the problem of source separakien, t
n sources being modelled as autoregressive processes, fimin w
we have at each timg m observations which are convolutive mix-
tures of then sources.

2.1 Model for the sources

Sourcei can be modelled for=1, ... as:
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andp; is the order of thé"” AR model. We assume tha{ —p, +1:0
~ N (mf,P§) fori =1,...,n. (Uit)tzl,..., is a zero mean
normalized i.i.d. Gaussian sequence, fori = 1,...,n and

t=1,...
v, "R N(0,1) @)

The (07 :¢),_, , are the variances of the dynamic noise for
each source at timge

2.3 State-space representations
2.3.1 State-space representation of the sources

For each of the souraghe signal can be rewritten in the following
form:

9)

s s S
Sijtit—n+1 = Aj Sit—1:0-2; + Bl v,

where); £ max {pi, max {lm-}} andA?, is a\; x \; matrix
J

We assume that the evolving autoregressive model follows a defined as:

linear Gaussian state-space representation,

a1 = Afai +Bivii
boiprr = Al¢yir+ BV 3)
With ¢y i ¢ 2 log (a%j,,-,t),
vi RN (0p, L) andvly SRE AN (0,1) (@)

anda;o ~ N (m§,P§). A future version of the model will
include switching between different sets of matrick$, B to

take into account silences, for example. Typical§ = I, and

B} xI,.

2.2 Model of the mixing system and noise

The mixing model is assumed to be a multidimensional timg-var

T
s A | A5y O1x(xi—pi) s A ) T
it = [ Lo 1 O, 1yx1 , Biy = (O’v,z,t,olx()\,-—l))
(10)
Then one can rewrite the dynamic system equations:
X1 = Afaxe +Biavig
yi = Cixy+Diw} (11)

with

2( £ dla’g (A1,t1 Ty Am,f) 3 B? £ dzag (Bl,ta T 3Bm1t) T

T A
vi = (Uit."' Ufn,t) ) Xt = (S.{,t:t—)\1+1
[C¥] contains the mixing system
A .
andwy = (w1, - Wny)", DY £ diag (w1 ---

T
Sm,t:t—)\m+1) )

Ow,n) -

(12)

2.3.2 State-space representation of the parameters

ing FIR filter. More precisely we assume that the sources are Defining the “stacked” parameter vectors

mixed in the following manner, and corrupted by an additieI&
sian i.i.d. noise sequence: at tff& sensor, and fof = 1,...,m

(5)

n
Yjt = E hi jtSitit—1; j+1 + Ow,jtWi,e

i=1

wherel; ; is the length of the filter from sourdeto sensorj. The

series(wj,t),—, . IS a zero mean normalized i.i.d. Gaussian se-

quencej.e.fory=1,...,nandt =1,...
i..d.
wje =N (0,1) (6)
The quantities(o?, ;:),_, , are the variances of the observa-

tion noise for each sensor at timke The w; . are assumed in-

dependent of the excitations of the AR models. We impose the

constrainth; ; ], , = 1 and[h;;], , = 0for j =i mod m
and: = 1,...,n. Inthe casen = n this constraint corresponds
to[hi,j¢], ; = 1andfh; ; ], , = 0for j = i. As for the model of
the sources, we assume that the observation system aleosd
state-space representation: writipg,;,« = log (o2, ; ;)

h h h
h; ;i1 A hige + BV
Puitr = AlU¢y i+ BV )
with
h  idd. o Gei-d.
Vijt ~ (Oli,jxulli,j)v vﬁt ~TN(0,1) ®)

andhw-,o ~N (m(})',P(})')
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[at]z;'c:1 S & [aiel;; i=1,....m; j=1,...,pi
t=1,...,m;
A .
[ht]Zi‘_ﬁ S5 k1 hijele, Ji=1....m
= = k=1,...,kj

(13)

andla £ Yici Pirln £ it ey by = 307 Inj itis pos-
sible to consider the following state space representstion

h h h
hit1 = Afphe + Biyviy

14
yi = CPh, + Dpw} )
whereAP BP ¢ RinXln 1 Cb ¢ RgPX™in Db ¢ grx»
Ch 2 diag {xl,t:t—ll,ﬁ-l xm,t:t—lm’;+1}i:1 _____ . (15)
and
ajy1 = Afa; + B v (16)
x; = Cia; + Diw}
with A2, B2 ¢ RlaXla €2 ¢ R™*!a where
C? =diag{Xit—1:t—p; }iq 17)

This is of practical interest as it allows us to integratetbetmix-

ing filters and autoregressive filters, as conditional upenvari-
ances and states the systems (14) and (16) are linear Gaussian
state space models. Together with (11) they define a bilGeas-
sian process.

LIn fact one can be more general and this can be replac@&it* for
Bh.



2.4 Objectives

Our aim is, given the number of sources p; andl; ; to estimate
sequentially the sourcef:),_, and their parameter8;
{at,ht,07 1.0, 0% 1.0, | from the observationg; .. More pre-
cisely, in the framework of Bayesian estimation, one isrigdgted

in the recursive, in time, estimation of posterior disttibos of

the typep (dO:, dx:| y1.++r): whenL = 0 this corresponds to
the filtering distribution and whe > 0 this corresponds to the
fixed-lag smoothing distribution. This is a very complex Ipro
lem that does not admit any analytical solution, and one das-t
sort to numerical methods. In the next section we develop suc
a numerical method based on Monte Carlo simulation. Subse
quently we will use the foIIowmg notatlorat 2 {a;,h}, B, 2

{at,l:m,va at,l:n,w} and7t {xiy Ut,l:m,v: o't,l:n,u) }
3 A Simulation-Based Optimal Filter/Fixed-lag Smoother

This section develops a simulation-based optimal filtextfilag
smoother to obtain filtered/fixed-lag smoothed estimat#iseniin-
observed sources and their parameters of the type

I (f) £ [ fe(8:,%¢) p(dOy, dxe| y1oe4L)

The standard Bayesian importance sampling method is first de
scribed, and then we show how it is possible to take advarihge
the analytical structure of the model by integrating outgheame-
tersa; andh; which can be high dimensional, using Kalman filter
related algorithms. This leads to an elegant and efficiguatrahm
for which the only tracked parameters are the sources ambibe
variances. Then a sequential version of Bayesian impcgtaam-
pling for optimal filtering is presented, and it is shown whysi
necessary to introduce selection as well as diversity iptheess.
Finally, a Monte Carlo filter/fixed-lag smoother for our plei is
described.

(18)

3.1 Monte Carlo Simulation for Optimal Estimation

For any f; it will subsequently be assumed that (f:)| < +oo.
Suppose that it is possible to sampVe .i.d. samples, called parti-

cles, (xg’QH,ogng) according top (Xo:¢+1,00:¢+L| Y1:4+L)-

Then an empirical estimate of this distribution is given by

N (dXO:H—L, d90 t+L| Yit+L)
=136 9

0:t+L°

(dxo0:¢+1,d60:t+L)

(19)
so that a Monte Carlo approximation of the marginal distidyu
p(dxy¢,dO¢| y1:441) follows as

N
% Ei:l

8(2:1):+L

P (dxe,dO:| y1.44L) = b, o) (dx¢, d6:)

t t (20)
Using this distribution, an estimate &f, (f;) for any f; may be
obtained as

fL,N (ft) = fft (xtaot)ﬁN (dxt;'d0t| y1:t+L) @1)
%Zi\;l fi ( (1) 051)) )

Xt s
This estimate is unbiased and from the strong law of large-num
bers, It v (f:) N“ I (f:). Under additional assumptions

2.5
—+0o0

the estimates satisfy a central limit theorem. The advantdighe

Monte Carlo method is clear. It is easy to estimaid f;) for any

f#, and the rate of convergence of this estimate does not depend p (dov, v,y p| Y1:t4+2) = p (doe| Vouqp, Yice+1)
ont or the dimension of the state space, but only on the number
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of particlesN and the characteristics of the functigh Unfor-
tunately, it is not possible to sample directly from the rilgttion

p (dx%0:4+1,d00:4+1| y1:4+1) at anyt, and alternative strategies

need to be investigated.

One solution to estimate( dxo:¢+1., d0o:¢+ 1| y1:¢+1) and
I (f:) is the well-known Bayesian importance sampling method
[9]. This method assumes the existence of an arbitrary itapoe
distribution 7 ( dxo.¢+1., d@o:¢+1| y1:¢+2) Which is easily simu-
lated from, and whose support contains that of

p (dxo:t+1,d00:t+1| y1:¢+1) - Using this distributiorl . (f;) may

be expressed as

IL(f) =

f7"(dxl:t+Lyd91:t+L|Y1:t+L)ft (xtagt)w(xO:t+L‘90:t+L)
fW(dx1:t+Lydel:t+L|Y1:i+L)w(xO:t+L160:t+L)

(22)
where the importance weight (xo.t+ 1., @o:t+1) IS given by

17( x0:¢+L,00:t+L |YI:t+L)

(23)

w (Xo:t+L, 90:t+L) & ﬂ(x0:i+L,90:i+L |Y1:t+L) ’

The importance weight can normally only be evaluated up to a
constant of proportionality, since, following from Bayesle,

p (dx0:t4+1,d00:4+L| Y1:¢+L)
_» YI:t+L|x0:i+L:90:i+L)p(dx0:t+L:deo:t+L)
- I

P(YI:t+L)

(24)
where the normalizing constapt(yi..+-2) can typically not be
expressed in closed-form.

If N iid. samples(xé’:iJrL,BéngL) can be simulated ac-
cording to a distributionr (dxo:t+1, d00:t+1| Y1:t+1), @ Monte

Carlo estimate of . (f:) in (22) may be obtained as
. ARG ICH
It n (fr) = SN w (<)

(%) (4)

N
=201 Woiqrfe (xt )
where the normalized importance weights are given by

E(l) w( 813+L’9813+L)
0:t L= .
+ >N, w( (():t)+L’e(()Jt)+L)

(4)
t+L’90 it+L

(i)
0: t+L’90:t+L)

o),

(25)

(26)

This method is equivalent to a point mass approximation ef th
target distribution of the form
pn (dxo:4+1, d00 t+1| y1:4+1)

= W, 5() 0)
=i 0t+L IS

(dxo:t+L, deO:t+L) s

(27)
The perfect simulation case, wher{dxo:t+r, d00:t+1| y1:¢+L)
= p(dxXo:t+1,d00.6+1| Yre4+1), COrrEsponds twy,, , = N1,
1=1,..., N. Inpractice, the importance distribution will be cho-
sen to be as close as possible to the target distribution inea g

sense. For finitév, ]’},N (f¢) is biased, since it involves a ratio of
estimates, but asymptotically, according to the strongdélarge

numbers, 7} v (f:) N“;j)r' I. (f;). Under additional assump-
— 400

tions a central limit theorem also holds [9].

3.2 Analytical integrations

It is possible to reduce the estimationpofdx;, d0:| y1:.+1) and
I (f:) to one of sampling fromp (d~o.;y 1| y1:t+1), Where we

recall thaty, £ {x¢, 07 1m0, O 7.1:n,0 } - INde€d,

28
Xp (d’)’o t+L| Yi:it+L (28)



wherep (dout| vo,4.1,y1:4+1) is @ Gaussian distribution whose
parameters may be computed using Kalman filter type techriqu
Thus, given an approximation pf( dYo.41L | y1:t+L), an approx-
imation ofp ( dx:, d@| y1:¢++1) may straightforwardly be obtained.
Defining the marginal importance distribution and assedam-
portance weight as

T (Vo] Yi4r) = [ ﬁda0=t+Ld'70:t+L| Yit+r)
P\ Y0:¢4+L |Y1:t+L
W (Youpr) X (Fousrlyinsr)’

(29)
and assuming that a set of sampk%%H distributed according to
7 (dygy4 1| y1:4+1) is available, an alternative Bayesian impor-
tance sampling estimate &f (f;) follows as

PO ( ol

”rgz;i+L,y1:t+L)'ft (xﬁ")ﬁﬁi))W('rEfLL

SN “’('75)1:3+L)
(agl) ’781:2+L7}’1:t+L> fe (Xgl) 9%”) )

(30)
provided thap (a¢|vo.qr: Y1:64L) ft (x¢,8:) can be evaluated
in a closed-form expression. In (30) the marginal normalima-
portance weights are given by

-/fzzv (fi)=
(i)

_ZN ~
= 22i=1 Wo:t4+LP

(i)
- “’(’70:t+L)
0:t+L —

25

=1 w("é{z)+L)

, i=1,...,N. (31)

Intuitively, to reach a given precisiori'E,N (f¢) will need a re-
duced number of samples OV&,N (ft), since it only requires

samples from the marginal distributien(d'yf)fiﬂ‘yl:t+L). It

can be proved that the variance of the estimates is subsiguen
reduced [8]. In our case this is important as at each timeumst
the number of parameters is (when assuming that all mixitegdil
and AR processes have the same length),

e m?L — mL parameters for the mixing filters, whefecan
be large.

e m or 1 parameter(s) for the observation noise.

e nl + n parameters for the autoregressive processes.

e n parameters for the sources.

It is not clear which integration will allow for the best varice
reduction [8], but at least in terms of search in the pararasfgace
the integration of the mixing filters and autoregressiverfiliseems
preferable.

Given these results, the subsequent discussion will foous o
Bayesian importance sampling methods to obtain approiomsat

of p (dﬁyg’;i+L| y1:t+L) and I, (f:) using an importance distri-

bution of the formm (d*y(()flﬂ ‘ y1=t+L). The methods described
up to now are batch methods. The next section illustratesdow
sequential method may be obtained.

3.3 Sequential Bayesian Importance Sampling

The importance distribution at discrete timmay be factorized as

T (Y041 |Y1041) L

=7 (dvo| y1:¢41) Hktl ™ (d7k| Yo:k—1s Y1:t+L) -(32)
The aim is to obtain at any timean estimate of the distribution
P (d'YO:H—L | y1:t+L) and to be able to propagate this estimate in

time without modifying subsequently the past simulategeti@-
riesvgfzﬂ. This means that (dv., | y1:¢++2) should admit
7 (dvo:4—141|y1:4—1+L) as marginal distribution. This is possi-
ble if the importance distribution is restricted to be of general
form

0 ( Youurr | Y1:t+L)

33
= m () [ E 7 (Al Yomorsyr) s )

Such an importance distribution allows recursive evatuadf the
importance weights,e. w (vo.14) = W (You_142) We+L, and
in our particular case

P(’Yo:i+L|)’1:t+L) p("YO:t+L—1|Y1:t+L—1)
7r('YO:t+L YI:t+L) 7"('70:t+L—1|Y1:t+L—1)
p(yegr|vorqr)P(*iqr|*esr—1.8B:41)P(Beyr|Bitr—1)

X

W('Yi+L|'YO:i+L—1aY1:t+L

(34)
The quantityp (dx¢+z|%:+z,8,,,) can be computed up to a
normalizing constant using a one step ahead Kalman filtethfor
system given by Eq. (16) anpl(y:+z|xo:t+1,B,,,) can be
computed using a one step ahead Kalman filter of the systean giv
by Eq. (14).

3.3.1 Choice of the Importance Distribution

There is an unlimited number of choices for the importanstridi
bution7 (dvo..4 1| y1:4+1), the only restriction being that its sup-
port includes that op (d70:t+L| y1:t+L). Two possibilities are
considered next. A possible strategy is to choose attimd. the
importance distribution that minimizes the variance of itheor-
tance weights givery,.,_, andyi.:. The importance distribution
that satisfies this condition is [ (d’7t+L|'Yo:t_1+L7y1:t+L).
with the associated incremental importance weight given by

Wt+L X p (yt+L| Yo:t—1+L> Y1:t+L—1)
= fp (yt+L| Yo:t+L> yl:t+L71) p (d’Yt+L| 7t—1+L) -

Direct sampling from the optimal importance distributiendiffi-
cult, and evaluating the importance weight is analyticatyactable.
The aim is thus in general to mimic the optimal distribution b
means of tractable approximations, typically local liregtion

p (dv,| Yo.t—1,¥1:t). Instead, here we describe a mixed subop-
timal method. We propose to sample the particles at tiaeeord-
ing to two importance distributions; andm, with proportionsa

andl — a such that the importance weights('y((]fZJrL) have now

the form (note that it would be possible to dravy and N> ran-
domly according to a Bernoulli distribution with parameterbut
this would increase the estimator variance)

p(v6 |y1:t+L)
@ @
1 (‘YO:t-#—'L ‘Y1:t+L)

(1-a)

P(’Yo:t+L|y1:t+L)

! 7"1('70:t+L|Y1:t+L)
P(‘Yo:t+L|Y1:t+L)
7"2('10:t+L |Y1:t+L)

P(Vouir [Yia+L

w2 (W) g rrese)

, (36)
which in practice is estimated ﬁ;lﬁ

o P(‘Y(()l:i+{l‘Y1:t+L)/7f1(‘18€3+P‘Y1:t+1,)
E;-V;‘l P(‘ng:'t)+L‘Y1:t+L)/7r1 (78{;+L‘YI:t+L)
(1 _ Ot) P "Ygl:,);_'_L‘Y1:t+L)/7"2(7(()2:3+L‘Y1:t+L
j\’:aN_H P(7g{t)+L‘YI:t+L)/7"2(7((){3+L‘Y1:t+L)
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The importance distributiom (dx¢4L|X1:t42-1, 81,41, Y1:6+L)
will be taken to be a normal distribution centered around »@th
varianceofc, and7r2 (dxt+L| X1:+L—1, ﬂl:t+L5 y1:t+L) is taken

h (i Jh (G i PR
e P o B 1 Y1) which is

a Gaussian distribution obtained from a one step ahead Kalma
filter for the state space model described in (11) wﬁ@i}f‘t“
andm® ) ., as values fom” andh( and initial variances
PSirji+r andP‘t‘+L|t+L. The variances are sampled from their

prior distributions, and expression (34) is used to comm@téﬂ.
Note that other importance distributions are possible thistap-
proach yields good results and seems to preserve diverfsibheo
samples.

to bep (dxH_L‘ m

3.3.2 Degeneracy of the Algorithm

For importance distributions of the form specified by (3% vari-
ance of the importance weights can only increase (stociadig)i
over time, see [9] and references therein. It is thus imptess$d
avoid a degeneracy phenomenon. Practically, after a featioms
of the algorithm, all but one of the normalized importancegles
are very close to zero, and a large computational effortvsteel
to updating trajectories whose contribution to the finalneste is
almost zero. For this reason it is of crucial importance tuide
selection and diversity. This is discussed in more detaihénfol-
lowing section.

3.4 Selection and diversity

The purpose of a selection (or resampling) procedure isde di
card particles with low normalized importance weights andtim
ply those with high normalized importance weights, so avtica
the degeneracy of the algorithm. A selection procedureciess

with each particle, sa%’)t, a number of childrenV; € N, such

thatzfV . Ni = N, to obtainN new partcheSy(” IfN; =0

thenv(” is discarded, otherwise it hd$; children at time + 1.
After the selection step the normalized importance weiggtsl|
the particles are reset v !, thus discarding all information re-
garding the past importance weights. Thus, the normalized i
portance weight prior to selection in the next time step @ppr-
tional to (34). These will be denoted é“é”, since they do not
depend on any past values of the normalized importance teeigh
If the selection procedure is performed at each time stem the
approximating distribution before the selection step iegiby

v (dygslyie) = SN, @4, 56 ) (dv,.,), and the one after the

i=1 Wt
selection step follows &8, (d'y0 tl yi) = NN 8 e (dvy.0)-

We choose systematic sampling [8] for its good varlance @rop
ties.

However selection poses another problem. During the resam-
pling stage any particular particle with a high importanceight
will be duplicated many times. In particular, whdén > 0, the
trajectories are resampldd times from timet + 1 to ¢ + L so
that very few distinct trajectories remain at time- L. This is the
classical problem of depletion of samples. As a result thedl
of particles may eventually collapse to a single particlbisTde-
generacy leads to poor approximations of the distributmiia-
terest. Several suboptimal methods have been proposectto ov
come this problem and introduce diversity amongst the gasti
Most of these are based on kernel density methods [9, 10¢hwhi
approximate the probability distribution using a kernatsigy es-
timate based on the current set of particles, and sample &eew
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of distinct particles from it. However, the choice and coufay
tion of a specific kernel are not always straightforward. &twmer,
these methods introduce additional Monte Carlo variatiarthe
next subsection it is shown how MCMC methods may be com-
bined with sequential importance sampling to introducesidiity
amongst the samples without increasing the Monte Carlatian.

An efficient way of limiting sample depletion consists of sim
ply adding a MCMC step to the simulation-based filter/fixad-|
smoother (see Berzuini and Gilks in [9], and [12] for an intro
duction to MCMC methods). This introduces diversity amangs
the samples and thus drastically reduces the problem okdepl
tion of samples. Assume that, at timea- L, the particlesyg(ft)ﬂ
are marginally distributed according #d( dvo.;; .| y1:4+1). Ifa
transition kernel (., 1, | dv6.¢4 1) With invariant distribution

p (dv,. t+L|y1 t+L) is applied to each of the particles, then the
new partlclew0 .+, are still distributed according to the distribu-
tion of interest. Any of the standard MCMC methods, such as th
Metropolis-Hastings (MH) algorithm or Gibbs sampler, may b
used. However, contrary to classical MCMC methods, thestran
tion kernel does not need to be ergodic. Not only does thikioaket
introduce no additional Monte Carlo variation, but it impes the
estimates in the sense that it can only reduce the totaltiaria
norm [12] of the current distribution of the particles witspect
to the target distribution.

3.5 Implementation Issues
3.5.1 Algorithm
Given at timet + L — 1, N € N* particles'y(()f%“_1 distributed

approximately according o (dvo.,, 1| ¥1:t42-1), the Monte
Carlo fixed-lag smoother proceeds as follows at timeL.

Monte Carlo filter/fixed-lag smoother

Sequential Importance Sampling Step

e Fori=1,...,N, 7§2LNW(d’yt+L|X(()2+L_1,}’1:t+L)
and set ’Y(()lquL = (’Y(()ll+L 17’7§2L)

e Fori=1,..., N, compute the normalized importance
weights ﬁt(QL using (34) and (37).

Selection Sep

e Multiply / discard particles 'T/fferL w.rt. high / low

normalized importance weights to obtain IV particles
%E?H, e.g.using systematic sampling.

MCMC Sep
e Fori=1,...,N, apply to 7(](:?+L a Markov transition
kernel K 7(()11+L|d'y:) ?+L) with invariant distribution

(@)

P (dVo.q 1| y1:041) to Obtain N particles vy, , ;.




3.5.2 Implementation of the MCMC Steps

There is an unlimited number of choices for the MCMC trapsiti
kernel. Here a one-at-a-time MH algorithm is adopted thdaigs
attimet+ L the values of the Markov process from titne ¢+ L.
More specifically;yg), k=t,...,t+Li=1,...,N,issam-
pled according to an MCMC with (d7k| fy(f;c, yl;H.L) as target

distribution, wherey ™), £ (75(:?_1, A A LD

,’71(&) Evaluation ofp (d'Ykl'Yg;g:yl:t-i-L) can be done ef-

ficiently via a backward-forward algorithm a® (L + 1) com-
plexity [7]. The algorithm is fully described in [2]. The cem
putational complexity of the whole algorithm at each itEnatis

clearly O (V). At first glance, it could appear necessary to keep

in memory the paths of all the trajectorieé’:i, so that the stor-
age requirements would increase linearly with time. In,féoe

importance distributionr:, 7 (v,|vo.._1,¥1:¢) and the associ-
ated importance weights, depend-gy,_, only via a set of low-

dimensional sufficient statistiosl;’th(i), P;"l’th("), and only these

values need to be kept in memory. Thus, the storage requitsme

are alsa0 (V) and do not increase over time.

4 Simulations

To illustrate the efficiency of our method we have appliedpiee

cedure to two scenarios. In the first case we generated two sta
tionary time invariant orde2 autoregressive processes, mixed by
two filters of length5. In the second case we made the phase

of the poles of the AR processes evolve frolto .4 from¢ =
1,...,250 and from.4 to .1 for ¢t = 251,...,500. The algorithm

was run with100 particles withL = 0, the parameters of the sys-

tem and the sources were initialized at random. The matR%es

andB" were set ta01 x I. The results for the two cases are pre-

sented on Fig. (1) and Fig. (2), where the two original scaiered
the sources estimated on-line using the particle filter ex@alyed.
Note that for the first scenario convergence really occuomnfit-
eration 150 approximately, and that source 2 was apparengly

taken with source 1 before. For the second scenario, astexbhec
the problem is much harder, especially when the two poles are

close, or when zero/pole cancellation occurs. Applicatbthe
algorithm to real speech signals is currently under ingesion.

50 150 200 250 300 350 200

Figure 1: True (two top) and estimated (two bottom) sources.
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Figure 2: True (two top) and estimated (two bottom) sources.
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