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ABSTRACT

In this paper we develop a new blind signal separation
(BSS) algorithm using conjugate gradient optimization over
the Stiefel manifold. We express the BSS problem mathe-
matically as an optimization problem with an orthonormal
constraint. This can be expressed as an unconstrained op-
timization over the Stiefel manifold [1]. To derive the algo-
rithm, we only use second order statistics of the observed
signals a criterion which has been shown to be sufficient for
separation providing that sources have linearly independent
temporal correlations. The new optimization method dis-
plays a quadratic convergence property. Simulation results
corresponding to two different optimization strategies are
presented that verify the performance of the new algorithm
and also it’s convergence behaviour.

1. INTRODUCTION

In a blind source separation (BSS) problem, the objective
is to separate independent sources that are mixed through
an unknown mixing environment where no information is
available about the sources or the environment. A simple
BSS scenario is when the mixing environment modelled as
a matrix of scalars, referred to as instantaneous mixing.
So far, many methods have been proposed to solve the BSS
problem for instantaneous mixture case. Some methods use
information measures or higher order statistics as a crite-
rion for separation (e.g., [2], [3], [4]) while few others rely
only on second order statistics by exploiting the temporal
information of signals (e.g.,[5], [6], [7]) No matter what kind
of criterion is used, a blind source separation problem most
often ends up with an optimization task where one needs to
minimize (or maximize) a cost function in order to achieve
separation. As proposed by some methods (see e.g., [3] and
[2]) the BSS problem can be reduced to a simpler form by
performing a spatial pre-whitening. In this case the prob-
lem is simplified to finding a unitary matrix V that sepa-
rates the outputs. In order to find the separating network
(V') we need to maximize (or minimize) a cost function sub-
ject to an orthogonality constraint (VIV = I). So far the
methods that have been proposed in literature consider V'
as a multiplication of Jacobian matrices and solve the prob-
lem by optimizing the cost function with respect to rotation

This work was supported by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Centre for Informa-
tion Technology Ontario (CITO)

375

angles of each Jacobian matrix. In general orthogonal con-
straints can be represented geometrically by Grassman and
Stiefel manifolds. In [1] new algorithms for optimization on
the these manifold have been discussed. In this paper we
have developed two new BSS algorithms which minimize
the second order cross moments between outputs subject
to the above-mentioned unitary constraint. We have devel-
oped unconstrained gradient descent and conjugate gradi-
ent methods over the Stiefel manifold as in [1] to achieve the
separation. The results for the two algorithms are compared
on the basis of simulations. Good separation performance
is achieved for both algorithms, with quadratic convergence
displayed for the conjugate gradient-based method.

2. PROBLEM FORMULATION AND
SEPARATION CRITERION

2.1. Preliminary

Assume that we have source signal vector s(m) consists of
n sources s(m) = (s1(m),s2(m),--- ,s,(m))” where the
source signals are real, zero mean, stationary processes.
Also we make the further assumptions that the sources
si(m) are mutually uncorrelated and they have different
spectral contents. Consider the observation x(m) as the
linear, instantaneous mixture of source signals given by:

x(m) = As(m). (2.1)

The BSS problem is: given only x(m), find a demixing
matrix B such that the output vector given by

y(m) = Bx(m), (2.2)

is within a scaled and permuted version of the original
source vector. Since the exchange of a fixed scalar factor
between a given source and corresponding column of A does
not change the observation, without any loss of generality
we can assume that the sources have unit power. Based on
this assumption the covariance matrix of observed signal
z(m) can be written as:

R, = E[x(m)x" (m)] = AE[s(m)s” (m)]A" = AA". (2.3)

Here we have used the assumption that E[s(m)s™(m)] =
I. Replacing A with its singular value decomposition: A =
UXV7 in equation (2.3) we have:

R, =UZ’U". (2.4)



From the eigendecomposition of matrix R, we notice that
the mixing matrix A can be identified up to a unitary ma-
trix. To see this more clearly we define a whitening matrix
W as:

w=x"'u". (2.5)
By applying W to the input observation we obtain:
z(m) = Wx(m) = V s(m). (2.6)

As can be seen from (2.6) the BSS problem has been
simplified to finding the unitary matrix V. To identify V'
based on the assumptions already made on the sources we
can use a second order statistics (SOS) approach.

2.2. Cost Function

As is shown in [8] V can be identified by diagonalizing the
spatial whitened covariance matrix R, (l) defined as:

R.(l) = E[z(m)z” (m — 1)] = VE[s(m)s(m — )]VT,
(2.7)

given that for any sources s;(m) and s;(m) thereisal > 0
such that:

E(si(m)si(m — 1)) # E(s; (m)s;(m — ).

The problem with the above approach is that we need to
find a priori a time lag [ such that the above condition is sat-
isfied. This becomes especially important when the sources
have close spectrums. Another approach as suggested by [5]
is to simultaneously (jointly) diagonalize a set of L whitened
covariance matrices S = {R.({)|l = 1,---,L}. In their
method they use an extension of the Jacobi technique [9] for
the joint approximate diagonalization of the set of covari-
ance matrices mentioned above. Notice that joint diagonal-
izing of the set of covariance matrices S can be interpreted
as minimizing the norm of off-diagonal elements of R, (k)
given as:

(2.8)

Ry() = V" R.()V, (2.9)

for all 1 < k < L. In other words, joint diagonalization
is equivalent to the solution of the following optimization
problem

L
min (V) = ZZr?j(l) (2.10)
=1 i#j
subject to viv = 1

where V' is a n-by-n orthonormal matrix and r;; are the
off-diagonal elements of Ry (l) and are given by

rij (1) = Blyi(m)y;(m — )],

and y;(m) is the ith element of the output vector y given
as:

(2.11)

y(m) = Vz(m).

Since the Frobenius norm of the covariance matrix R, (k)
is invariant with respect to V', minimizing the norm of off-
diagonal terms of Ry (k) is equivalent to maximizing the

(2.12)
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norm of diagonal terms. In other words instead of (2.11)
we can write:

L
mazx T2(V) = er?i(l)’ (2.13)
k=1 1
subject to V'V = I
Notice that
1

(Tr(Ry(1)))” + > _(ras()) — r55(1)?),

i#]

T2

Z T?i(l)
l (2.14)

and Tr(Ry(l)) is invariant with respect to V. Hence for
maximizing (2.14), we only need to maximize the second
term (or minimizing it’s negative) of equation (2.14) with
respect to V or :

DD ra(t) —ry(1))%2.15)

1=1 i#j

min T'(V)

N =

subject to vTv 1.

As it can be seen from (2.16) we have an optimization prob-
lem with an orthonormal constraint. In [1] the writers pro-
vide a framework for solving problems that involve such
constraints. Based on their work in next section we discuss
the optimization methods to solve (2.16).

3. OPTIMIZATION METHODS

In this section we introduce optimization methods for solv-
ing (2.16). As mentioned before the orthonormal constraint
VTV = I can be represented by a nonlinear space known
as Stiefel manifold. Using differential geometry ideas, the
constrained optimization problem on given by (2.16) can be
considered as an unconstrained one on the Stiefel manifold.

3.1. Gradient descent on Stiefel manifold

In linear Euclidean space we have the following update rule
for smooth unconstrained optimization of a objective func-
tion f(X) given as:

Xp = Xg—1 +tHg_1, (3.16)
where H is the search direction calculated based on the
knowledge of gradient or Hessian of the objective function
and t is the step size parameter typically chosen using line
search methods. Similar concepts can be carried over to
optimization on a manifold, by translating the operations
mentioned above to the suitable ones on the manifold. No-
tice that the update rule in equation (3.16) is done on a
line while on a manifold this update should be done on a
geodesic, where by it’s definition is the curve of shortest
length between two points on a manifold. As is shown in
[1], on the Stiefel manifold the equation for the geodesic
emanating from Vj_; in direction of Hj_; ,where V;,_1 and
Hj,_; are n-by-p matrices such that ViZ Vi1 = I, and
A=VI |Hy , is skew-symmetric, is given by:

Vi = Vi1 E(t) + QF(t). (3.17)



Here E(t) and F(t) are p-by-p matrices given by matrix

exponential:
(£0)=emli(d 2 ) (%) o9

Where I, is a p-by-p identity matrix and @ and R are the
QR decomposition of:
QR=(I-Vi1Vi 1)H. (3.19)
For gradient descent we set H, = —Gj, where Gy, is the
gradient of cost function I'(V%) on the Stiefel manifold and
is given by

Gr =Ty, — Vil'y, Vi, (3.20)

where I'y, is the n-by-p matrix of partial derivatives of
I'(Vi) with respect to elements of Vj

or (Vi)

(Tvi)ij = BT,’@-’ (3.21)

where vf; is the (4, j)th element of the V4. For steepest
descent, equations (3.17) and (3.20) are all we need to min-
imize the cost function I'(Vi) on the Stiefel manifold. At
each iteration k we first find G} using equation (3.20), then
we set Hy = —G} and using equation (3.17) we find the
update value for Vi41. To choose the step size t we have
different options: either we can choose a constant value for
t or we can use a successive step size reduction method such
as Armijo Rule described in [10].

3.2. Conjugate Gradient on the Stiefel Manifold

In optimization over a linear space, another method that
is faster than steepest descent but still only needs gradi-
ent information of the objective function is the conjugate
gradient method [10]. The search direction (Hy) in the con-
jugate gradient method at each step is calculated using a
linear combination of the gradient of the cost function (G%)
at current step and the search direction at the previous step.

Hy = —Gr + BeHi—1, (3.22)
Where Sy, is given by:
GEaGy,
= 2
Bk G G (3.23)

As is shown in [10], by using the conjugate gradient
for quadratic problems, a solution can be attained after
finite number of steps. For non quadratic functions the
convergence may not happen after certain number of steps
but the method still provides good convergence properties.
To perform conjugate gradient on a manifold we need to
know how to parallel transport a tangent vector from one
point of the manifold to another point. Notice that on the
Stiefel manifold both G} and Hj_1 are tangent vectors and
the new search direction is found by adding the gradient
vector to the parallel transported version of previous search
direction vector. In Euclidean space, we move vectors in
parallel by moving the base of the arrow. On an embedded
manifold in Euclidean space, if we use the same concept
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to move a tangent vector the result won’t necessarily be a
tangent vector. For parallel transport of tangent vectors on
a manifold we parallel transport the vector in infinitesimal
steps as we do in Euclidean space and then in each step we
remove the normal component of the transferred vector such
that the remaining is still tangent to the manifold. On the
Stiefel manifold we can find the parallel transported tangent
vector Hy from point V to Vg4 from

THy = HyE(t) — Vi R F(t), (3.24)
where E(t) and F(t) are obtained using equation (3.18)
and R is obtained form (3.19). The equation for updating
the search direction in conjugate gradient method over the
Stiefel manifold is given as:

Hy41 = —Grt1 + Br7Hy, (3.25)

where

(Grt1, Gry1)

ﬂk = (Gk,Gk) )

(3.26)
and (Ay, As) represents the inner product between two tan-
gent vectors on the Stiefel manifold and is defined as:

(Ar, Ag) = Tr(AF(I - %VkaT)Az). (3.27)
The equation above is commonly known as Fletcher-

Reeves formula. Another equation for 3 is the Polak-Ribiere
formula given as:

B = (Gr+1 — Gi, Grt1)
(G, Gg)

(3.28)

4. ALGORITHM

In this section we derive a new algorithm for blind source
separation of instantaneous mixtures based on the crite-
rion introduced in (2.16) and the optimization methods that
were discussed in the previous section. Because we want to
use steepest descent and conjugate gradient over the Stiefel
manifold we need to calculate the gradient of the objective
function over the manifold. To do so we first find I'y, , the
matrix of the partial derivatives of I'(Vj) with respect to
elements of V3. We have:

(Cv)ig = 50 == 3 28OS sty — 1,0,
K =1 W op=1
p#i
(4.29)
and
S rih) oy () = ey () ~ Tr(R, @), (4:30)
o

where R, (l) = E[y(m)y(m — I)T]. Notice that here since
Vi is an unitary matrix we have:

Tr(Ry(1)) =Tr(R.(1)) =c VI, (4.31)



where ¢ is a constant and independent of Vi. We also find
that:

a’l"q;j (l)
Ovi;

= 2V R (1))i; (4.32)

Substituting above equations in 4.29 we can show the
following for I'(V%):

v = =2 Ay (DViR. (1),

=1

(4.33)

where

Ay(l) =nDy(l) — cl,, (4.34)
and Dy (1) represents a diagonal matrix whose diagonal el-
ements are the same as diagonal elements of R,(l) and I,
is an n-by-n identity matrix. By inserting I'v, in (3.20) we
can calculate the gradient of our objective function over the
Stiefel manifold. After doing some algebraic manipulations
we will obtain:

=2 (Ay(ORy (1) — Ry (DA, (1) Vi (4.35)
=1

Having the gradient of objective function we can now cal-
culate the search direction using the steepest descent or
conjugate gradient methods, and the update of V' can be
done through equations (3.16),(3.17) and (3.18). Below is
a summary of the algorithm using conjugate gradient over
Stiefel manifold.

BSS Algorithm Using Conjugate
Gradient on Stiefel Manifold

Stepl Given the observed data x(m) form the estimated
covariance matrix R, = = Em —0 » x(m)x(m)T (N num-
ber of samples) and calculate the eigen decomposi-
tion:

R, =UsU"

Step2 Calculate the whitening matrix W as:

w=x"'U"

and apply W to observed data to obtain the whitened

data z(m) = Wx(m). Calculate the estimated co-
variance matrices R;(l) from

L N1

=N _Ozm)z(m—l l=0,---,L

Step3 Initialize Vp to some random matrix such that Vg Vo =
I and calculate the output y(n) = Vox(n). Calculate
the estimated output covariance matrices form

Ry() = VoR- (Vg

1=0,--,L

)

378

Step4 Calculate:

Ty, = =23 Ay()ViR: (1),

=1

where A, (k) is calculated from (4.34) and from there
calculate the gradient:

Go =Ty, — VoI't, Vo,

and set Hyp = —Gy

Step5 Choose a value for ¢t (0 < ¢t < 1) and compute the
updated value of V from:

Vi = VoE(t) + QF (%)

where Q and R are the QR decomposition of (I —
VoVi' )Ho, A = Vg and E(t) and F(t) are n-by-n
matrices calculated from matrix exponential:

(#0)=e[(2 & )(%)
-V, Wi

Step7 Compute parallel transported tangent vector Hjp,
from point V; to point Vi from:

Step6 Compute G =Ty,
TH = HoE(t) — VoRT F(t)
and compute the new search direction

H, =-G; -f—,BTH

where
5. (€=CoG)
(G,G)
and (A1, Az) = Tr(AT(I-3VVT)A,) represents the

inner product between two tangent vectors on Stiefel
manifold defined by (3.27).

Step8 Set Vo = Vi, Hy = Hi, Go = G1 and repeat steps
5 — 7. Reset Hi = —G if the number of iterations
Mod n(n-1)/2 =0. The iterations can be stopped
when (Go, G0) < € where € is a small positive number.

5. SIMULATION RESULTS

To measure the performance of the new algorithm and also
to compare the speed of convergence between conjugate gra-
dient and gradient descent we applied the algorithm to blind
separation of deterministic source signals. For this purpose
we used synthetic signals generated by following formulas:
s1(m) = sign(cos(2wm/30))

s2(m) = chirp(m, 10,1000, 1000)

s3(m) = sin(2rm/10 + 6 cos(2wm/50))

s4(m) = sin(27m/10)

Figure (1) shows the plot of these sources for 100 samples.
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Figure 1: Set of original sources used in the experiment

We mixed the sources by a randomly generated mixing ma-
trix A given by:

—0.4977 —0.7562 —0.9812 —0.4129
A— —1.1187 —0.0891 —0.6885 —0.5062

0.8076  —2.0089  1.3395 1.6197 ’

0.0412 1.0839 —0.9092  0.0809

where the results of mixture, the observed signals x(m), are
shown in figure (2). Separation was done using gradient

x1(n) x2(n)
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Figure 2: Set of randomly mixed sources (observed signals)

descent and conjugate gradient on Stiefel manifold. In all
experiments Vp was initialized to an identity matrix. To
estimate the covariance matrices in each iteration we used

100
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Figure 3: Set of output signals using Polak-Ribiere conju-
gate gradient method

10000 samples of data. The performance of separation was
measured using the formula:

n

>

Jj=1

|pij |
mazr(|pix|)

—1)) (536)

1.
Pirdex = 20l0910(5(2(
i=1

where p;; is the (7, j)th element of the matrix P = VW A.
Notice that for unit power sources, equation (5.36) with
good approximation represents the average interference to
signal ratio for all the outputs. Figure (4) shows the speed
of convergence for gradient descent and the conjugate gra-
dient methods over the Stiefel manifold. The curves show
the reduction of P;,4., versus number of iterations. As can
be seen from the figure, both conjugate gradient methods
converge after 9 iterations.

Figure (3) shows the outputs for the Polak-Ribiere con-
jugate gradient method. As can be seen, the outputs with
good approximation resemble the original sources.

6. CONCLUSIONS

In this paper we applied a geometrical optimization method
to blind source separation (BSS) of signals. To do this
we first showed that the BSS problem can be modelled as
an optimization problem with an orthogonality constraint.
The orthogonality constraint represents a nonlinear space
known as Stiefel manifold. The idea is that orthonormal
constrained optimization problems defined in linear space
can be treated as an unconstrained ones on the nonlinear
Stiefel manifold. To minimize (or maximize) a function on
the Stiefel manifold we can use similar methods for uncon-
strained optimization in linear space, with the difference
that we need to use differential geometry techniques to re-
define operations such as gradient, Hessian etc., to appro-
priate ones on the manifold. Based on these ideas, we devel-
oped an adaptive algorithm which uses the steepest descent
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Figure 4: Convergence performance for various forms of
optimization over the Stiefel manifold.

and conjugate gradient methods to maximize the objective
function. We defined the objective function based on second
order moments of the output signals. We applied the new
algorithm for blind separation of deterministic sources. The
simulation results showed quadratic convergence and good
separation performance for the new algorithm.
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