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Abstract An on-line learning algorithm, which minimizes
a criterion based on geometrical properties, is derived for
blind separation of mixed signals. This new contrast function
focuses on the concept of center of masses and higher order
moments (HOM) applied to the outputs. The source signals
and the mixing matrix are unknown except for the number of
sources. A set of estimating equations is obtained. The
relative (natural) gradient is used as learning law. This new
algorithm is related to the Maximum Likelihood approaches
providing a new point of view for understanding them. It is
concluded that HOM methods outperform them. Some
results are included for audio and synthetic signals. These
results show how the algorithm proposed presents better
convergence in comparison to other well-known approaches.

I. INTRODUCTION

The problem of blind signal separation arises in many
areas such as speech recognition, data communication [3],
sensor signal processing [10][11], finances [4] and
medical science [13][14]. Several on-line algorithms have
been proposed. Most of them may be rewritten in the form
of relative gradient through the score functions. The
performance of these algorithms is strongly affected by the
selection of these functions. The optimum score functions
are computed from the probabilit y density functions
(p.d.f.) of the sources [9]. As they are unknown, the score
functions are usually chosen ad hoc or computed from the
outputs [15]. We shall present a new contrast function
based on the center of masses (CoM) and higher order
moments (HOM) of the outputs. The score functions
related to this estimating function are derived to compare
this method to others found in the literature. Other
approaches exist based upon geometrical properties [16].
Nevertheless, these are based on approaching the mixture
by a set of uniform distributions. Thus, they are faraway
from the one presented here. Next, we proceed to
introduce the problem.
The simplest source separation model is that of an n x 1
vector of observations with structure

)()( tAt sx = (1)

where A is an invertible n x n unknown matrix and s is an
unobserved n x 1 vector. The components of vector s, the

Fig. 1. Mixing and demixing matrix in a BSS problem.

so-called ‘sources’ , are statistically independent. The task
is to recover the source signals and/or to identify matrix A
using only the assumption of source independence. Only
the case of real zero mean signals is considered here. In
adaptive approaches, one explicitly updates an n x n
‘separating’ matrix B which yields an ‘output vector’
y=Bx=Cs. The product Cs is said to be a ‘copy’ of s [9] if
matrix C is nonmixing, i.e, it has one and only one
nonzero entry in each row and each column. Therefore the
entries of Cs are identical to those of s up to permutations
and changes of scales and signs.

Under the stationary assumption, it may be defined a
contrast function [12]. These contrasts are of the form φ[y]
with y=Bx and should, for any matrix C, satisfy φ[Cs]≥
φ[s] with equality only when y=Cs is a copy of the source
signals. Since the mixture can be reduced to a rotation
matrix by enforcing the whiteness constraint E[yyT]=I,
one can also consider orthogonal contrast functions
denoted herein by φº[y].

II . CoM BASED CONTRAST FUNCTION

We shall work on the 2-dimensional (2-d) case. The
results will be carried over higher order cases. The center
of mass of a body is the point about which its mass can be
considered to act. If a 2-d body is defined by a set of
points samples of the vector s(t),  s(t) t = 1,...,T, its center
of mass may be written as the pair
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Proposition 1: Under the whiteness constraint and for
zero mean mixtures, it may be written the following
contrast function:
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Proof of Proposition 1: As the number of samples
T�∞, ψ12[y] yields
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As the mixture is unbiased, and under whiteness
constraint, we impose independence between y1 and y2,
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Simple calculus yields:
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The same applies to ψ21[y]. Thus, a rotation angle θdmx

that makes null both terms in (3) makes the output
independent.

An interpretation of (7) and (9) is that the centers of
mass for each quadrant must satisfy some symmetry rules
at the optimum-demixing angle. Fig. 2 includes some
different situations and its CoM. Fig. 2 (a) and (b) are
mixtures of two sources with different p.d.f. We have
drawn the projections onto the y1 axis so ψ21[y] is easily
computed. The rotation angles are zero and a random one
respectively. Fig. 2 (c) shows a maximum mixing angle
(π/4) that is a solution to the contrast. In this case both
sources have the same p.d.f.

We have demonstrated that the demixing angle is a
solution to the contrast. Nevertheless, as in other contrast
functions such as φML[y] (the based on the maximum
likelihood, ML, theory), we cannot prove that the
conditions provides are suff icient. In fact, sometimes the
maximum mixing angle, θmmx, is also a solution to these
contrasts, see Fig. 2 (c). They may be discriminated by
studying the sign of the first derivative of the sum ψ12[y]+
ψ21[y] along with the sign of the kurtosis of the sources.

Fig. 2. CoM for different rotations: (a) independence, (b) any
rotation, and (c) maximum mixing and same p.d.f’s.

Finally, in non-very probable situations, may be more than
2 solutions. It takes place whenever the sum of CoM in (4)
and (5) cancels at a rotation angle different from θdmx and
θmmx. Thus, it depends on the specific structure of the data
to separate.

As we focus on an on-line method, we devote the next
section to relate this contrast function to the ML approach
and the natural gradient. This way we will extend the CoM
contrast function to the n-dimensional case under non-
whiteness constraint.

III . ESTIMATING AND SCORE FUNCTIONS

Before relating both theories, we first introduce the main
concepts of the ML approach [9]. An estimating function
for the BSS problem is a function H: R�  Rnxn. It is
associated with an estimating equation [8]
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thus called because H being matrix valued. At the core of
the BSS contrast function is φML[y], which is associated
with the likelihood given the source densities q1,q2,...,qn.
The ML principle suggest the specific form
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with �: R�  Rn the entry-wise nonlinear function
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collecting the score functions related to each source
through

)()(or)(log 11 ⋅′⋅−=′− iii qqq ϕϕ � (13)

Once the estimation and score function has been
defined, the contrast function in (3) may be rewritten to
identify the score functions related to the CoM approach.

Proposition 2: The contrast function φCoM[y] is
equivalent to the φML[y] with a priori p.d.f. qi(·)= exp(-|si|) .

Proof of Proposition 2: The expressions for ψ12[y] and
ψ21[y] are special cases of the general term
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Equation (3) may be rewritten as
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Notice that the contrast function in this new expression
is no more constrained to the whiteness condition. Since
symmetry between quadrants may only be achieved if
E[yyT]=I.

From (11) and (15), the score functions for the CoM
approach are found to be
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Simple calculus yields
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We conclude that the φCoM[y] is equivalent to φML[y]
with  supposed p.d.f as given in (17). Notice that, as for
ML solutions, the sign of the kurtosis discriminates
between the maximum and the minimum mixing solutions,
if the first exists.

At this point, the extension to a higher number of
sources is immediate. On the other hand, this result, along
with the relative gradient definition [2], allow us to
formulate the following learning law

ttt BtHIB ))(((1 yϕµ−=+ (18)

where Hϕ was given in (11), ϕ(y) is that of equation (16),
µt is the learning rate and B is the separating matrix. Thus,
this learning algorithm is equivariant [7].

Proposition 2 establishes the relation between CoM and
ML approaches. Before drawing some conclusions about
this relation, it is interesting to consider introducing higher
order moments (HOM). This way, it will be possible to
study its performance along with other well know ML
based contrast functions.

IV. HIGHER ORDER MOMENTS

If the CoM of a 2-d body was defined in (2), the
moment of masses of order l yields
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In the following, the estimating matrix in (10) will be
derived for odd and even orders.

A.  Odd Order Moments

Proposition 3: The matrix function

T)()( yy ϕυυ ⋅=H (20)

where ϕ(y) was defined in (16) and
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is an estimating matrix, i.e., a solution to (10) if the p.d.f.
of the sources, qi(⋅), are symmetric.

Proof of Proposition 3: In Equation (9), there are
diagonal
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and crossed elements:
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If we impose independence between y1 and y2, coi
l is a

constant. In addition, the crossed elements cancel:
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Symmetry in the p.d.f. enforces both terms in (25) to
cancel. Thus, Odd order moments may be included in the
manifold of estimating matrices solutions to the BSS
problem. In the following section we face the even order
moments.

B. Even Order Moments

Similarly, it can be stated the following for even orders.
Proposition 4: The estimating matrix

T)()( yy ϕυυ ⋅=H (26)

where ϕ(y) was defined in (16) and

,...4,2)sgn( =⋅= lyy l
iiiυ (27)

is an estimating matrix for sources with symmetric p.d.f.
Proof of Proposition 4: Again we study diagonal, hii,

and cross elements, hij i ≠j, separately. Similarly, as the
number of samples T�∞ and under independence
condition, hii yields
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where coi
l is a constant. Again, the crossed terms cancel:
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In the same way as the odd case, equations (28) and (29)
prove that even order moments may be included in the
manifold of estimating matrices solutions to the BSS
problem. Notice that the even moments have been
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artificially converted to odd symmetric functions. Thus,
the distributions of moments for each quadrant are
different and the gradient will perform better. Notice that
some even ML score functions such as ϕ(y)=y2 are not
usually used as they have poor performance.

C. Polynomial Estimating Matrices

Once the even and odds moments have been developed,
we next define the manifold of possible estimating
matrices as a linear combination of them.

Corollary 1: the matrix function
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And ϕ(y)=sgn(y) is a valid estimating matrix for sources
with symmetric p.d.f.

Proof of Corollary 1: If there is only one αl ≠ 0 in (35),
the Corollary reduces to Proposition 3 (l odd) or
Proposition 4 (l even). Similarly to proofs of Proposition 3
and Proposition 4, as the number of samples T�∞ and by
imposing independence, a linear combination of the
functions in (21) and (27) results in constants values for
diagonal elements and zeros for the crossed ones.

The generalization of υ(y) to any function is, somehow,
immediate. Nevertheless, it is not in the scope of this
paper. On the other hand the estimating matrices presented
in (30) does not cancel for non-symmetric p.d.f. However,
in the results included in Section V.C. the natural gradient
converges to the separation minimizing the associated
contrast function. The generalization for non-symmetric
p.d.f. it is considered here as a future line of work.

In the following section we include a discussion on the
ML and HOM estimating matrices, Hϕ and Hυ
respectively.

D. Discussion

The set of ML score functions ϕ(y)=yl with l=1,3,5,...,
are well known and exploited, [5][1]. We first analyze
their estimating matrix Hϕ in comparison to Hυ.

Similarly to previous proofs, we apply the same steps to
Hϕ. Again we study diagonal, hii, and cross terms, hij i ≠j,
separately. As the number of samples T�∞ and by
imposing independence, hii yields
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where cti is a constant. On the other hand, crossed terms
cancel:
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We first may deduce that if the p.d.f. are symmetric and
l is even, only the first term in (34) cancels. That is, the
proposed combination of four different moments in a step
of the gradient reduces to two as the first two terms and
the two last ones are the same. Thus, the combination of
them provide no information to the gradient, since

ijij
l

iijij
l

i

ijij
l

iijij
l

i

dyyyPyydyyyPyy

dyyyPyydyyyPyy

),(),(

),(),(

0 00

0

0

0

0 0

∫ ∫=∫ ∫

∫ ∫=∫ ∫

∞− ∞−∞−

∞

∞

∞−

∞∞

(36)

On the other hand, while in Hυ only the integration of
the p.d.f. over the negative and positive parts is estimated,
in Hϕ the estimation of its mean is computed. Leaving the
computational burden out of this discussion, it may be
deduced that the error in the estimation of these values is
bigger than in the HOM case. To accomplish this idea, we
compute the variance of both estimators. Under
independence constraint, the variance for the crossed
element hij of the ML based estimating matrix Hϕ at any
step of the natural gradient yields
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On the other hand,
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Thus, the error of the ML estimation is affected by the
term yj

2. The convergence and stabilit y of this new
approach will i mprove in relation to this factor.

Finally we close this section remarking two important
conclusions. Notice first that by introducing HOM in the
estimating equation it is possible to use even functions as
scores. Besides, the method described provides the ML
approach with the basis to explain why a p.d.f. and its
associated score function does, or not, performance
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adequately. Symmetry properties impose the necessary
and suff icient conditions.

For each cross term in the estimating equation, the
necessary conditions have been discussed through the
latest sections. The suff icient condition, as discussed in
Section II , depends on the structure of the sources. Recall
that usually there are just one or two solutions to the
estimating equation. These are discriminated by the sign
of the kurtosis. If any other solution exists, the method
may not converge to the separation. This, again, may be
explained by the HOM approach, as this solution does
meet the symmetry conditions enforced by the estimating
equation elements.

We present next some experiments to compare the
performance of our approach to some well -known contrast
functions.

V. PERFORMANCE ANALYSIS.

We divide this section in various points containing some
different experiments to study the performance of the
HOM approach. They all have in common the index [1]
used to measure the performance. It is defined as:
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where C was defined in section I as the product BA.
The mixing matrix for all subsections was randomly

generated as
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A. Third order functions

In this subsection the estimating matrices Hϕ and Hυ
with ϕ =y3 and υ=y3 are compared. Fig. 3 includes the
performance index along time for the mixture of the
sources in [17]. These signals were proposed as
benchmark for the ICA 1999 workshop. The continuous
and dashed lines correspond to the ML and HOM cases
respectively. We studied first the learning rates, µML and
µHOM, making the algorithm unstable and then reduce them

Fig. 3. ML and HOM convergence for mixed audio signals.

slightly (µML=8e-5 and µHOM=10e-5) to smooth their
learning curves. It can be remarked two aspects. First of
all , the algorithm proposed is 2/3 times faster than the ML
approach. Besides it is less sensitive to problems
associated to the correlation and absence of data. At
second 5, the first source has a set of samples with values
near to 0. This set makes the ML algorithm to diverge
from  separation.

B. Uniform Performance: EASI Algorithm

The uniform performance [6] (UP), applied to the ML
score functions [7] results in eff icient algorithms whose
behavior do not highly depends on the learning rate. They
provide better stabilit y features. We include here three
methods: the score function ϕ =y3 with uniform
performance (EASI), the HOM with uniform performance
and the HOM algorithm for υ=y3

. They are included in
Fig. 4. with continuous, dashed and dotted lines
respectively. The sources in [17] were mixed with the
matrix in (40). The learning rates µEASI=6.67e-5
(parameter λ in [6]) µHUP=6.67e-5 and µHOM=10e-5 were
the maximum rates keeping the index performance under
E1=0.3. The HOM algorithm outperforms both, EASI and
HOM UP methods. Besides, it reduced the number of float
points operations in a factor η=1.89.

C. Polynomial Score Functions

In [1], a polynomial score function was derived
obtaining:

357911 14.511.754.676.23 .75)( yyyyyy ++++=ϕ (41)

We included in Fig. 5 a comparison between the EASI
algorithm with ϕ =y3 (continuous line), the polinomial
score function in (41) (dashed) and the HOM with υ=y3

(dotted). We generated four pairs of random synthetic
signals: beta and beta distributions, uniform and uniform,
exponential and exponential, and gamma (with symmetry
around origin) and exponential. We set the learning rates
to µEASI=1.3e-4, µPol=1.8e-4 and µHOM=3e-4. The
conclusion is that for a

Fig. 4. Uniform performance in the HOM approach: EASI
(continuous line), HOM with UP (dashed) and HOM (dotted).
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Fig. 5. Separation of mixtures of random synthetic signals with
different p.d.f. with EASI, a polynomial score and HOM.

fixed learning rate the HOM algorithm presents a better
and homogeneous behavior. Besides, and as it was
remarked in section IV.C, the results for non-symetric
p.d.f. are also succesful.

D. Standard Deviation of the Estimators

Finally, we show in Fig. 6 the standard deviations for
one element of the estimators Hϕ (continuous line) and Hυ
(dotted) in Section IV.A. It can be observed that the error
in in the ML approach is 3 times bigger than in the HOM
case.

VI. SUMMARY

The theory on center of masses was the starting point to
draw a new contrast function. This function was related to
the ML approach. First of all , to obtain the corresponding
supposed p.d.f. and, in second place, to use the natural
gradient as on-line method.
Once the CoM was introduced we exploited higher order
moments and its combinations resulting in a set of
estimating matrices. The experiments included within this
paper show how the convergence of this new approach
improves in comparison to other well -known algorithms.

Ml approaches suppose an a priori p.d.f., q(⋅), for the
sources. Only if the q(⋅) is the correct one, the separation
is optimum in the ML sense. But it does not explains what
happens when the p.d.f. are not q(⋅). At this point we first
pointed out that symmetry is an important property to take
into account. It states the necessary and suff icient
conditions to allow separation. We have gone further and
exploit it to present a new algorithm with better
convergence features.

Fig. 6. Standard deviation of an element of the estimation equation
for the ML and the HOM algorithms in Section V.A.
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