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AbstractJ An on-line learning algorithm, which minimizes
a criterion based on geometrical properties, is derived for
blind separation of mixed signals. This new contrast function
focuses on the concept of center of masses and higher order
moments (HOM) applied to the outputs. The source signals
and the mixing matrix are unknown except for the number of
sources. A set of estimating equations is obtained. The
relative (natural) gradient is used as learning law. This new
algorithm is related to the Maximum Likelihood approaches
providing a new point of view for understanding them. It is
concluded that HOM methods outperform them. Some
results are included for audio and synthetic signals. These
results show how the algorithm proposed presents better
convergence in comparison to other well-known approaches.

|. INTRODUCTION

The problem of blind signal separation arises in many
aress auch as peed recgnition, data communication [3],
sensor signal processng [10Q][11], finances [4] and
medicd science [13][14]. Several on-line dgorithms have
been proposed. Most of them may be rewritten in the form
of relative gradient through the score functions. The
performance of these dgorithmsis drongly affeded by the
seledion of these functions. The optimum score functions
are computed from the probability density functions
(p.d.f.) of the sources [9]. Asthey are unkrown, the score
functions are usually chosen ad hoc or computed from the
outputs [15]. We shall present a new contrast function
based on the caiter of masses (CoM) and higher order
moments (HOM) of the outputs. The score functions
related to this estimating function are derived to compare
this method to others found in the literature. Other
approaches exist based upon geometricd properties [16].
Nevertheless these ae based on approaching the mixture
by a set of uniform distributions. Thus, they are faraway
from the one presented here. Next, we procea to
introduce the problem.

The simplest source separation model is that of an n x 1
vedor of observations with structure

x(t) = As(t) @

where A is an invertible n x n unknown matrix and s is an
unobserved n x 1 vedor. The mmponents of vedor s, the
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Fig. 1. Mixing and demixing matrix in aBSSproblem.

so-cdled ‘sources, are statisticdly independent. The task
is to recover the source signals and/or to identify matrix A
using only the assumption of source independence. Only
the cae of red zero mean signals is considered here. In
adaptive gproaches, one explicitly updates an n x n
‘separating matrix B which yields an ‘output vedor’
y=Bx=Cs. The product Csis sid to be a‘copy’ of s[9] if
matrix C is nonmixing, i.e, it has one axd only one
nonzero entry in ead row and ead column. Therefore the
entries of Cs are identicd to those of s up to permutations
and changes of scdes and signs.

Under the stationary assumption, it may be defined a
contrast function [12]. These mntrasts are of the form @[y]
with y=Bx and should, for any matrix C, satisfy ¢[Cs]=
@[s] with equality only when y=Csis a mpy of the source
signals. Since the mixture can be reduced to a rotation
matrix by enforcing the whiteness constraint E[yyT]=l,
one can also consider orthogonal contrast functions
denoted herein by ¢7[y].

I1. CoM BASED CONTRAST FUNCTION

We shal work on the 2-dimensional (2-d) case. The
results will be caried over higher order cases. The ceiter
of massof abody isthe point about which its masscan be
considered to ad. If a 2-d bod/ is defined by a set of
points ssmples of the vedor s(t), s(t)t=1,....T, its center
of massmay be written as the pair

em(952 $5() and cmy(98L 3 5,(0) @
Ti=1 Ti=1 :

Propgasition 1: Under the whiteness constraint and for
zeo mean mixtures, it may be written the following
contrast function:

com LYl2abs1o[ Y1) +absyoq[ Y1) Q)
with



wialylalem(y, y1 >0,y >0)+cm(y, y1 <0,y, >0))- @
(cm(y,51 >0y, <0)+cm(y,y1 <0y, <0))
and

WorlylAlemy(y, y1 >0,y >0) +cmy(y, y1 >0,y, <0))-

(cmu(y. y1 <0,y >0) +cmy(y, y1 <0,y, <0)) ®©)
Proof of Propasition 1 As the number of samples

0000 0 o
Wial Yl = [ [yiP(y1, Yo)dyadys + [ [y1P(yy, yo)dyidys
00 00 ©)
w0 0 OO0
- g JY1P(y1 y2)dyidys = [ [y1P(y1, Y2)dyidy,
As the mixture is unbiased, and under whiteness
constraint, we impase independence between y; and v,

w 0
Wil yl =co [yiP(y1)dys +¢" [yiP(y1)dy

. 0 o - (7)
—Cy [y1P(yr)dy —ca [y1P(y1)dy; =0

0

—00

with

© 0
c" = [P(yp)dy, and c” = [P(y,)dy, (8)
0

—00

Simple cdculusyields:

Wialyl = (c" =¢57) [y1P(yy)dy; =0 9)

The same gplies to q[y]. Thus, a rotation angle Gy
that makes null both terms in (3) makes the output
independent.

An interpretation of (7) and (9) is that the centers of
massfor eah quadrant must satisfy some symmetry rules
a the optimum-demixing andle. Fig. 2 includes me
different situations and its CoM. Fig. 2 (a) and (b) are
mixtures of two sources with different p.d.f. We have
drawn the projedions onto the y; axis D Yhrq[y] is easily
computed. The rotation angles are zeo and a random one
respedively. Fig. 2 (c) shows a maximum mixing ange
(Tv4) that is a solution to the wntrast. In this case bath
sources have the same p.d.f.

We have demonstrated that the demixing angle is a
solution to the contrast. Nevertheless as in other contrast
functions such as @y [y] (the based on the maximum
likelihood ML, theory), we canot prove that the
conditions provides are sufficient. In fad, sometimes the
maximum mixing angle, G, is aso a solution to these
contrasts, see Fig. 2 (¢). They may be discriminated by
studying the sign of the first derivative of the sum g [y]+
Yr4[y] along with the sign of the kurtosis of the sources.
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Fig. 2. CoM for different rotations: (a) independence, (b) any
rotation, and (¢) maximum mixing and same p.d.f’s.

Findly, in non-very probable situations, may be more than
2 solutions. It takes placewhenever the sum of CoM in (4)
and (5) cancds at arotation ange different from G,y and
Bnme Thus, it depends on the spedfic structure of the data
to separate.

As we focus on an on-line method, we devote the next
sedion to relate this contrast function to the ML approach
and the natural gradient. This way we will extend the CoM
contrast function to the n-dimensional case under non-
whitenessconstraint.

Il . ESTIMATING AND SCORE FUNCTIONS

Before relating both theories, we first introduce the main
concepts of the ML approach [9]. An estimating function
for the BSS problem is a function H: R— R™. It is
asociated with an estimating equation [8]

1 T
T > H(y())=0 (10)
t=1

thus cdled becaise H being matrix valued. At the core of
the BSS contrast function is gy [y], which is asciated
with the likelihood given the source densities g, 0y, ... O
The ML principle suggest the spedfic form

Hg (V)2¢(y)y" -1 (1)

with ¢: R— R" the entry-wise nonlinea function

S(V2[p1(y1),- B (yn)] (12)

colleding the score functions related to ead source
through

¢12-(logg;)" or @g =—0;(0/ (Y 13
Once the estimation and score function has been
defined, the mntrast function in (3) may be rewritten to
identify the score functions related to the CoM approadh.
Proposition 2: The ntrast function g@oum[y] is
equivalent to the gy, [y] with apriori p.d.f. gi(-)=exp(-|s]) .
Proof of Propaosition 2 The expressons for ¢n5[y] and
Un1ly] are spedal cases of the general term

Wi [yl =sign(y;) Iy (19



Equation (3) may be rewritten as

Ocom Y12 absyy1[Y]) +absyqo[ y]) +
+abs(y o[ y]) +absy o[ ¥])
Notice that the @ntrast function in this new expresson

is no more nstrained to the whiteness condition. Since
symmetry between quadrants may only be adieved if
Elyy'l=l.

From (11) and (15), the score functions for the CoM
approach are found to be

¢; =sgn(y;) (16)
Simple cdculusyields

(19

6(9=e an

We mnclude that the @-ou[y] is equivalent to @[]
with supposed p.d.f as given in (17). Notice that, as for
ML solutions, the sign of the kurtosis discriminates
between the maximum and the minimum mixing solutions,
if the first exists.

At this point, the extension to a higher number of
sources is immediate. On the other hand, this result, along
with the relative gradient definition [2], alow us to
formulate the foll owing learning law

Bre1 = (I = eHg (Y1) By (18

where Hy was given in (11), ¢(y) is that of equation (16),
L isthe leaning rate and B is the separating matrix. Thus,
thislearning algorithm is equivariant [7].

Propasition 2 establi shes the relation between CoM and
ML approaches. Before drawing some mnclusions about
thisrelation, it isinteresting to consider introducing rHgher
order moments (HOM). This way, it will be possble to
study its performance dong with other well know ML
based contrast functions.

IV. HIGHER ORDER MOMENTS

If the CoM of a 2-d bod/ was defined in (2), the
moment of masses of order | yields

hom(9a2 55/ and homy(9at 55/ (19
Ti=1 T¢=1 '

In the following, the estimating matrix in (10) will be
derived for oddand even orders.

A. Odd Order Moments

Propgsition 3: The matrix function

Hy =00 ()’ (20
where ¢(y) was defined in (16) and
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v =y 1=135,. (21)

is an estimating matrix, i.e., a solution to (10) if the p.d.f.
of the sources, ¢;()}, are symmetric.

Proof of Proposition 3 In Equation (9), there ae
diagonal

hi =sgn@i) O 1=135,... (22)
and cros=d elements:
hjizj =sonGig ;' | =135... (23

Asthe number of samples T, h; yields
P 0
Elhi 1= [y P(yi)dy; - [yi'P(y;)dy; =co (24)
0 —00

If we impose independence between y; and y,, co;' is a
constant. In addition, the cossed elements cancd:
Elh1=(c;* —c;7) fyi' P(y;)dy, =0 (25)
Symmetry in the p.d.f. enforces both terms in (25) to
cancd. Thus, Odd ader moments may be included in the
manifold of estimating matrices olutions to the BSS

problem. In the following sedion we facethe even order
moments.

B. Even Order Moments

Similarly, it can be stated the following for even orders.
Propasition 4: The estimating matrix

Hy =u(0)$()' (26)
where ¢(y) was defined in (16) and
v =sgn@y) O 1=24,... (27)

is an estimating matrix for sources with symmetric p.d.f.

Prodf of Propasition 4 Again we study diagonal, h;,
and cross elements, hj 4, separately. Similarly, as the
number of samples T—o and under independence
condition, h; yields

1= fsanti) sanGi)y' P(y)dy =ce'  (29)
where co/' isa constant. Again, the aossd terms cancd:
B 1= (c;" ~c; )ﬁy. P(y;)dy - ;y. Py, )dy Ezo 29

In the same way as the odd case, equations (28) and (29)
prove that even order moments may be included in the
manifold of estimating matrices lutions to the BSS
problem. Notice that the even moments have been



artificially converted to odd symmetric functions. Thus,
the distributions of moments for ead quadrant are
different and the gradient will perform better. Notice that
some even ML score functions such as ¢(y)=y* are not
usually used as they have poar performance

C. Polynomial Estimating Matrices

Oncethe even and odds moments have been devel oped,
we next define the manifold of posshle etimating
matrices as alinea combination of them.

Corollary 1: the matrix function

Hy =0(y)#(y)" (30)
where

U-—Lasn ) 1y (31
|_|§1I g (y|) Yi

And ¢(y)=sgn(y) is a valid estimating matrix for sources
with symmetric p.d.f.

Prodf of Corollary 1: If thereisonly one a; # 0 in (35),
the Corollary reduces to Propcsition 3 (I odd) or
Propasition 4 (I even). Similarly to proofs of Propasition 3
and Propgsition 4, as the number of samples T—co and by
imposing independence, a linea combination of the
functions in (21) and (27) results in constants values for
diagonal elements and zeros for the aossed ones.

The generalizaion of u(y) to any function is, somehow,
immediate. Nevertheless it is not in the scope of this
paper. On the other hand the estimating matrices presented
in (30) does not cancd for non-symmetric p.d.f. However,
in the results included in Sedion V.C. the natural gradient
converges to the separation minimizing the aciated
contrast function. The generalizaion for non-symmetric
p.d.f. it is considered here & a future line of work.

In the following sedion we include adiscusson on the
ML and HOM edstimating matrices, H¢ and Hu
respedively.

D. Discusson

The set of ML score functions ¢(y)=y with I=1,35,...,
are well known and exploited, [5][1]. We first analyze
their estimating matrix H, in comparison to H,.

Similarly to previous prodfs, we gply the same stepsto
Hy. Again we study diagonal, h;, and crossterms, hj i,
separately. As the number of samples T—oo and by
impaosing independence, hy; yields

Elhi]= [y ™P(y)dy; =ct (32
where ct; is a onstant. On the other hand, crossd terms
cancd:
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o 0
Elhy1=c;" [yi' Pyi)dy +¢;* [y P(y;)dy;

o0 . (33
+Cj_J(;Yi|P(Yi)dyi +¢;” [y P(y;)dy;

—00

Symple cdculusyields
Efhy1=(c;" +¢;7) fyi' P(y)dy, =0 (34)

where now
. ® _ o0
Cj :(I)YjP(Yj)dyj and c; :_ij'P(yJ')dyJ' (39

We first may deducethat if the p.d.f. are symmetric and
| is even, only the first term in (34) cancds. That is, the
proposed combination of four different moments in a step
of the gradient reduces to two as the first two terms and
the two last ones are the same. Thus, the combination of
them provide no information to the gradient, since

0000 o 0
[V YiPORL YAy = [ Iy PO Yy,
00 0—o0 (36)
0o | 00,

i J(;Yi YiP(yi,ypdyi = [ [y YiP(yi. yj)dy,

On the other hand, while in H, only the integration of
the p.d.f. over the negative and pasitive parts is estimated,
in Hy the estimation of its mean is computed. Leaving the
computational burden out of this discusdon, it may be
deduced that the eror in the estimation of these values is
bigger than in the HOM case. To acaomplish thisideg we
compute the variance of both estimators. Under
independence ®nstraint, the variance for the aossed
element h; of the ML based estimating matrix Hy at any
step of the natural gradient yields

UML2=E[(¢(yi)D/,- )2]=°f 1902 y;2Py,y; Myidy; (37)

—00 —00

On the other hand,

Thom” =E[(Ui(yi)sgn§/,-)t)?]= of }OU(M)ZP(WY,- )dydy; (38)

Thus, the aror of the ML estimation is affeded by the
term yjz. The mnvergence and stability of this new
approach will i mprove in relation to this facor.

Finaly we dose this dion remarking two important
conclusions. Notice first that by introducing HOM in the
estimating equation it is posshle to use even functions as
scores. Besides, the method cdescribed provides the ML
approach with the basis to explain why a p.d.f. and its
asciated score function does, or not, performance



adequately. Symmetry properties impose the necessry
and sufficient conditi ons.

For ead cross term in the estimating equation, the
necessry conditions have been discussd through the
latest sedions. The sufficient condition, as discussed in
Sedion I, depends on the structure of the sources. Recadl
that usually there ae just one or two solutions to the
estimating equation. These ae discriminated by the sign
of the kurtosis. If any other solution exists, the method
may not converge to the separation. This, again, may be
explained by the HOM approad, as this lution does
med the symmetry conditions enforced by the estimating
eguation elements.

We present next some experiments to compare the
performance of our approac to some well-known contrast
functions.

V. PERFORMANCE ANALYSIS.

We divide this £dion in various points containing some
different experiments to study the performance of the
HOM approach. They al have in common the index [1]
used to measure the performance. It is defined as:

E = ZH | By | H+ Hn | By | E (39)

Ell—lma& P | H _1lema>q< | Py | E

where C was defined in sedion | as the product BA.
The mixing matrix for al subsedions was randomly
generated as

10.8264 —0.2359]
=0 0 (40)
407538  0.9722

A. Third order functions

In this sibsedion the estimating matrices Hy and H,
with ¢ =y* and u=y® are ompared. Fig. 3 includes the
performance index along time for the mixture of the
sources in [17]. These signals were proposed as
benchmark for the ICA 1999 workshop. The cntinuous
and dashed lines correspond to the ML and HOM cases
respedively. We studied first the learning rates, . and
Hnom, Making the dgorithm unstable and then reduce them
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Fig. 3. ML and HOM convergencefor mixed audio signals.
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dightly (um=8e-5 and ppom=10e-5) to smocth their
leaning curves. It can be remarked two aspeds. First of
al, the dgorithm proposed is 2/3 times faster than the ML
approach. Besides it is less enstive to problems
asciated to the wrrelation and absence of data. At
seoond 5, the first source has a set of samples with values
nea to 0. This st makes the ML algorithm to dverge
from separation.

B. Uniform Performance EAS Algorithm

The uniform performance [6] (UP), applied to the ML
score functions [7] results in efficient algorithms whose
behavior do not highly depends on the leaning rate. They
provide better stability feaures. We include here three
methods: the score function ¢ =y* with uriform
performance (EAS]), the HOM with uriform performance
and the HOM algorithm for u=y® They are included in
Fig. 4. with continuous, dashed and ddted lines
respedively. The sources in [17] were mixed with the
matrix in (40). The leaning rates Lgpg=6.67-5
(parameter A in [6]) unup=6.67e-5 and pom=10e-5 were
the maximum rates keeping the index performance under
E;=0.3. The HOM algorithm outperforms bath, EASI and
HOM UP methods. Besides, it reduced the number of float
points operationsin afador n=1.89.

C. Polynomial Score Functions

In [1],
obtaining:

a poynomial score function was derived

o(y)= .75y +6.23° +4.67y" +11.75° +14.5/° (4))

We included in Fig. 5 a comparison between the EASI
agorithm with ¢ =y* (continuous line), the polinomial
score function in (41) (dashed) and the HOM with u=y®
(dotted). We generated four pairs of random synthetic
signals: beta and beta distributions, uniform and uniform,
exponential and exponential, and gamma (with symmetry
around origin) and exponential. We set the leaning rates
to [,lEAg:l.3e-4, ,Up0|:1.8e-4 and HHOM=3e-4. The
conclusion is that for a
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Fig. 4. Uniform performance in the HOM approach: EASI
(continuows line), HOM with UP (dashed) and HOM (dotted).
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fixed leaning rate the HOM algorithm presents a better
and homogeneous behavior. Besides, and as it was
remarked in sedion 1V.C, the results for non-symetric
p.d.f. are dso succesful.

D. Sandad Devation d the Estimators

Finally, we show in Fig. 6 the standard deviations for
one dement of the estimators Hy (continuous ling) and H,,
(daotted) in Sedion IV.A. It can be observed that the eror
in in the ML approach is 3 times bigger than in the HOM
case.

V1. SUMMARY

The theory on center of masses was the starting point to

draw a new contrast function. This function was related to
the ML approach. First of all, to oltain the corresponding
supposed pd.f. and, in second place to use the natural
gradient as on-line method.
Once the CoM was introduced we exploited higher order
moments and its combinations resulting in a set of
estimating matrices. The experiments included within this
paper show how the mnvergence of this new approach
improves in comparison to ather well-known algorithms.

MI approaches suppcse an a priori p.d.f., q(0) for the
sources. Only if the g(I) is the mrred one, the separation
isoptimum in the ML sense. But it does not explains what
happens when the p.d.f. are not (0. At this paint we first
pointed out that symmetry is an important property to take
into acount. It states the necessry and sufficient
conditions to alow separation. We have gone further and
exploit it to present a new agorithm with better
convergencefeaures.
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