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ABSTRACT

Blind Source Separation (BSS) is a well-known
problem that arises in a large number of signal process-
ing applications. In this paper we present a new ap-
proach developed in the context of unsupervised learn-
ing of Neural Networks (NN) and based on the In-
fomaz Principle for the separation of linear mixtures
of sources with memory (convolutive mixtures). The
problem is solved in the frequency domain, turning
the convolution operation in the time domain into a
multiplication in the frequency domain. The simula-
tion results show the performance of the proposed al-
gorithm for the separation of convolutive mixtures of
white sources.

1. INTRODUCTION

Most of the approaches that have been developed to
solve the Blind Source Separation (BSS) problem con-
sider that the input of the separating system is a linear
and instantaneous mixture of the sources. Unfortu-
nately, this kind of mixture is seldom found in real
world applications and it is more suitable to consider
mixing systems that can be modeled with Finite Im-
pulse Response (FIR) filters. In this case the separation
can be achieved using criteria based on Higher Order
Statistics (HOS) to invert the effect of the FIR filters
in the mixture [1].

Most of the solutions to the convolutive problem
are time domain extensions of adaptive algorithms for
instantaneous mixtures under the hypothesis of statis-
tically independence among the sources [2]. A different
alternative is to work in the frequency domain [3, 4].
Applying the Discrete Fourier Transform (DFT) to a
data window, i.e., the Short-Time Fourier Transform
(STFT), it is possible to convert the general problem
of convolutive mixtures into several problems of instan-
taneous mixtures, one for each frequency. In this way
it is possible to apply the same algorithms used for the
instantaneous case to each frequency band and, finally,
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recover the original sources in the time domain using
the Inverse Short-Time Fourier Transform (ISTFT). In
addition, since for each frequency the sources can be
obtained with a different order, a permutation stage is
needed before the ISTFT (see figure 1).
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Short-Time
Fourier
Transform

Short-Time

Fourier
Transform

Figure 1: Separation in the frequency domain.

In this paper we present a new approach to solve
the convolutive mixtures of white sources based on a
previous work for instantaneous mixtures [5] that uses
the Infomaz Principle. Section 2 presents the problem
statement. In section 3 an extension of the informa-
tion transfer maximization in the frequency domain is
showed and the learning rule is derived. In section 4
a method is proposed to solve the permutation prob-
lem. Section 5 presents some simulation experiments
and section 6 contains the conclusions.

2. PROBLEM STATEMENT

Let us consider a vector of observations x(n)

[z1(n),---,zn(n)]T which is a convolutive mixture of a
vector of unknown sources s(n) = [s1(n),- -+, sy (n)]7,
that is,

Z H(k)s(n — k)

k=—o00

(1)

x(n)

where H(n) is an unknown N x N matrix of linear
filters representing the mixing system. The element
hi;j(n) of this matrix denotes the impulse response of
the filter over the j source in its way towards the 4



sensor. We will assume that the sources are statistically
independent, zero-mean, unit-variance and temporally
white.

To recover the sources, x(n) is processed through
a linear Multi-Input Multi-Output (MIMO) system
which should not only recover the sources but also re-
move the effect due to the memory in the mixing sys-
tem. The output y(n) after a linear filtering of the
observations can be expressed as follows

> WH(Ek)x(n — k)

k=—o0

y(n) (2)

where W(n) is a N x N matrix of linear filters repre-
senting the separating system and y;(n) is a particular
output y;(n) E;VZI w;j(n) *x;(n), being * the linear
convolution operator.

Combining (1) and (2), we can express the output
in the z-domain as follows

Y(2) = W (2)X(2) = W (2)H(2)S(2) = G" (2)S(2) (3)

The objective to recover the original sources is to
select the filter matrix W(z) in order that each
output corresponds to a single and different source.
When this occurs, the matrix G(z) can be ex-
pressed as Gop)(2) = A(2)P(z), where A(z)
Diag(on1z™™,---,annz~ ™), being «a; a complex
constant, and P(z) a permutation matrix.

In practice we will assume that the filters in H(n)
can be modeled as FIR causal filter of order M. Then,
we can express the vector of observations x(n) given in
(1) as follows

M—

x(n) = > H(k)s(n-—k)

k=0

[

In the same way, assuming FIR filters of order F in the
separating system, we can expressed the output vector

y(n) = [yi(n), -+, yi(n), -, yn(n)? as

F—-1
ym) = S WTk)x(n - k) (4)
k=0

3. EXTENSION OF INFOMAX PRINCIPLE
TO CONVOLUTIVE MIXTURES

In [5] a learning rule to update the coefficients of a
single layer nonlinear Neural Network (NN) has been
derived from a unsupervised learning paradigm called
Infomaz Principle [6]. Based on this principle, it is
proposed as a criterion for the separation of instan-
taneous mixtures the maximization of the information
transfer between the input and the output of the NN.
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This is equivalent to the maximization of the output
entropy H(u), being u the vector of the outputs af-
ter the nonlinear activation function of the NN, i.e.,
u; = 9g(yi), i = 1,---, N. Choosing as nonlinearity the
function g(z) = [*__ exp(—|[t|* — 1*)dt, it is demon-
strated in [5] that the maximization of H (u) is equiva-
lent to the minimization of the following cost function

N
9(W) =>_Elllyil — 1] —In|det W[ (5)

The previous function admits another interesting in-
terpretation from the perspective of blind adaptive fil-
tering. The first part of (5) is the extension to MIMO
systems of the well-known Constant Modulus (CM) cri-
terion [7] widely used in blind equalization. When this
criterion is used to solve the BSS problem, it can lead
to a situation where the same source is extracted at
different outputs. This situation is avoided by the sec-
ond term because, when it occurs, two columns of W
are linearly dependent and the second part of (5) grows
very large. In [8] it is also presented an analysis of the
stationary points of (5), which demonstrates its abil-
ity to separate instantaneous mixtures of sources with
negative kurtosis.

To extend the criterion (5) to the separation of con-
volutive mixtures in the frequency domain, we will con-
sider a new instantaneous mixing and separating model
for each frequency band [8]. Towards this aim, we split
each particular observation z;(n), in R non overlapped
segments ;cg-T)(m) of length K (see figure 2), where
r=0,---,R—land m=0,---,K — 1, i.e,

zj(n) = imgr)(n—rK)
=0

where each segment is obtained from the following ex-
pression

m = {

Taking into account this segmentation, we can con-

sider a similar model to the one described in (4) for

(r)

each window z;’(m) and to define a vector y(m) =
(T)(m), (r)

[yl LY (m)7
are obtained as follows

0<m<K-1
rest

zj(rK +m)

2t 0

J

, yj(\?) (m)]T whose components

yO(m) = ) wii(n) i (m)

We define now the L points DFT of Y}(T)(k) as

Vi) = WX k)
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Figure 2: Segmentation of the observations.

where W;; (k) and X J(-T) (k) represent the L points DFTs

of the sequences w;;(m) and a:;-T) (m) of length F and
K respectively , being L > F + K — 1

L—-1

Wisk) = Y wiy(m)e 7EM™ k=0, L-1
m=0
L—-1 )

XO%) = S aVm)eIER k=0, L1
m=0

Computing the IDFT of Yj(r)(k), we obtain each com-
ponent of the vector y(") (m)

L-1

1 P27 o
i) = 7 v

k=0

To recover a particular output y;(n) we add the delayed

se () king i he overlappi
quences, y; ' (m), taking into account the overlapping

of F'—1 points due to the shift of K points of each input

segment
yin) = Yy (n—rK) (6)
r=0

This reconstruction procedure is called overlap-add [6].

Taking into account the notation derived above, the
mixing model for each frequency band can be expressed
now as follows

XM (k) = H(K)ST (k)
where SM)(k) = [S{”(k), -, ¥ (K)], X(k) =

X (k), -, X (k)" and H(k) is a N x N matrix
of the form

Hy (k) Hy;(k) Hyin()
H(E) = | Ha(k) Hys(k) Hin (k)
Hyi(k) - Hyj(k) - Hyn(k)

In the same way, the separating system can be defined
as

YO (k) = WHE)XO (k)

where W(k) is a N x N matrix and Y(k) =
k), Y (k)T

Extending the previous notation to the proposed
criterion in (5) and taking into account the model
showed in figure 3, we obtain that the output entropy
of the NN is

N
HUD (k) = In |det(WH (k)| - S EI[Y;" (k)| - 1]
=1

where U (k) = [U (K), - -, U (k)]T and U (k) =
g(YZ-(T) (k)) being g(.) the non linear activation function
of the NN defined above.

The maximization of the output entropy,
H(U™(k)), is equivalent to the minimization of the
following cost function for each frequency &

min ¢(W(k))

N
def (r) 2 2
= E[|Y:(k)|“ —1
min > Bl WP -17)

— I |det(W" (k)| (7)

H(K) :> W'k

Separation

Mixture Sigle layer no-linear NN

Figure 3: Mixing model and separating MIMO system
for each frequency k.

The optimization problem (7) can be solved with
a simple stochastic gradient adaptive algorithm, that
allows us to recursively update the coefficients of the
matrices W (k) in each frequency

= Wy(k) + uVwryd(n)

where W, (k) is the value of the matrix W (k) at time n,
p is a positive constant and Vy ) #(n) is the gradient
of the function with respect to the matrix W (k) at time
n. A similar procedure presented in [5] leads us to the
following learning rule to minimize the cost function

(7)

Woti(k) = Wa(k)

Wn+1(k)

+ u (@ BXD (k)Y (k)]
— 4 EXD R (YT () DY (K))]
+ (Wa(k)"T) 8)



where (.)# denotes the hermitic operator and
D(Y () (k) = Diag([V,\" (K)?, -, [V (B)?).

The cost function (7) can also be minimized using
a relative stochastic gradient algorithm [12, 13] as

Woii(k) = Wa(k)+p Wa(k)(Wa (k)" Vivyd(n)
= Wa(k) +p Wa(k)(4 E[YS (k)Y (k)]
4 E[YO (k)Y (k) DY (k)] + 1) (9)

where I denotes the identity matrix.

4. PERMUTATION PROBLEM

BSS algorithms for instantaneous mixtures of sources
do not take into account the order in which the origi-
nal sources are recovered. In this case the separation
is achieved when Gy = AP where A is a diag-
onal matrix and P is a permutation matrix. As a
consequence, when the BSS of convolutive mixtures
is solved in the frequency domain the separation is
achieved when G, (2) = A(2)P(2) where A(z) is
a diagonal matrix and P(z) is a permutation matrix.

Since at each frequency we are applying an algo-
rithm for instantaneous mixtures, it is possible that
the permutation matrix P(z) be different for each one
of these frequencies. When this occurs, we have a per-
mutation problem that can lead us to a wrong recon-
struction of the spectrum of the recovered sources at
the output of the separating system.

Although our algorithm seems to converge to the
same permutation matrix for all the frequencies, as it
will be shown in the simulations, this is an important
problem to take into account and for whose solution
different approaches have been proposed [4, 10, 11].
A first approach consists of considering the statisti-
cally relationship among each one of the frequencies
of the estimated sources. The simplest relation would
be to determine the correlation between two frequency
bands. However, the correlation between two bands of
adjacent frequencies of the same source depends on the
form of the spectral density [4]. This is because it is
not always easy to define a threshold which allows us to
decide if a particular frequency band belongs to one or
another source. Moreover, when the sources are white,
as in our case, the correlation between two frequency
bands of the same source would be zero. We propose a
different alternative, which consists of determining the
fourth-order cross-cumulant of the outputs in all the
frequencies taking into account the different possible
combinations, i.e.,

Cum(Ynm (4)), Yi(4))

E(lYn()I°] EIV:(5)I’]

where m,l = 1,---,N and ¢,7 = 1,---,L, being i <
j. Since the sources are statistically independent, the
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E[Ym()*Yi(5)I’] (10)

|E[Yom (0)Y7" (D)]I” — |E[Ym (3)Y1(3)]|

cross-cumulants (10) will be non-zero when the outputs
Y. (i) and Y;(j) extract the same source. In contrast,
expression (10) will be zero when different sources are
extracted.

5. SIMULATIONS

In this section we present the results of a computer
simulation carried out to illustrate the behavior of
the learning rule proposed in (9) with a step size
i = 3 x 1072, We have considered an environment
with two white and statistically independent sources,
a 4-QAM and a 16-QAM. As the mixing system we
have considered FIR filters of order M = 4 obtained
by truncating to four samples the transfer matrix

—0.8 0.14271 0.5 0.242"1

— 14+0.12~1 1+40.2z1
H(Z) - 0 5 0.-5+z_1 _0 8 0.1+z_1
*140.5z-1 *~¥140.1z-1

The result of this mixture in the time domain is showed
in the left column of figure 4. We have considered seg-
ments of length K = 2 and the expectations have been
estimated with 512 samples (block approximation [8]).
In the separating system we have used FIR filters of
order F' = 11. The right column of figure 4 shows the
outputs obtained after applying the adaptive learning
rule in each one of the L = 12 frequencies after 250
iterations. It is clearly seen that our approach is able
to successfully recover the original sources.
Observations Outputs
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Figure 4: Separation from the convolutive mixture of
two sources 16-QAM y 4-QAM.

In order to measure the performance of our algo-
rithm at each frequency band we used the following per-
formance index described in [9], which is zero when the



matrix G(z) = WH(2)H(z) corresponds to the sepa-
ration of the sources, i.e., when G (o) (2) = A(2)P(2),

N

|9i (2)[? _
-2 Zmaxl lga®) ~ "

P
+ Z<Zmax, (9P 1)

Figure 5 illustrates the evolution of this index for each
one of the L = 12 frequencies. We can see that the
algorithm has separated the sources in all the frequen-
cies. Table 1 shows the cross-cumulants computed
from (10) among the outputs at different frequen-
cies. We can see that the fourth-order cross-cumulants
Cum(Y1(i),Y1(j)) and Cum(Y>(i),Y2(j)) for all the
frequencies are non-zero. In contrast, the fourth-order
cross-cumulants Cum(Y7 (%), Y2(j)) take values close to
zero. This means that the same source has been ex-
tracted at the same output for all the frequencies.

In addition, it is interesting to compare the results
in Table 1 with the theoretic values obtained from the
stability analysis presented in [8]. Extending the re-
sults derived in [8] to the frequency domain, and as-
suming that the ¢ — th source is extracted at the i —th
output for all the frequencies, we obtain that at each
frequency k

) ] 1+ /1+c(k) 14+/1+ca(k)
Gomlk) = D’“9< 2ei(®) 1 2a(h) )

where ¢;(k) = E[|S;(k)[*] is the fourth-order moment
of the i —th source at frequency k. In our experiments,
we have observed that the fourth-order moments of the
sources in the frequency domain are ¢; (k) = 1.4881 Vk
and c3(k) = 1.6664 Vk, and that the kurtosis are
k1(¢) = —0.512 Vi and k2(i) = —0.338 Vi, i = 1,---, L.
Then for these particular sources we obtain that the
matrix G2,;(k) = Diag(0.866,0.790). Now, using the
properties of the cumulants, we obtain that the theo-
retic values for the fourth-order cross-cumulant of the
outputs are Cum(Y1(i),Y1(j)) = ¢71(0)g51 (§)k1 (i) =
—0.3840 and Cum(Va(i), Y2 (j)) = 92,(1)92,(j)ka(i) =
—0.2084. Note that these values are close to the exper-
imental results shown in Table 1.

6. CONCLUSIONS

In this paper we address the blind source separation of
convolutive mixtures of sources. This problem can be
solved in the time or in the frequency domain. When
the second option is chosen, the convolutive problem
can be treated as L problems of instantaneous mixtures
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Figure 5: Performance index for each frequency.

Cum(Y1(7),Y1(5))

(@) | @) [ @) | i@ |

Y1(1) - -0.3670 | -0.3720 | -0.3735
vi(2) | - - -0.3751 | -0.3764
i3) | - - - -0.3813
Yi(4) - - - -
Cum(m) Y3(j ))
| | () [ Y2(2) [ Ya(3) | Ya(4) |
Yl(l) -0.0016 —0.0024 -0.0019 -0.0018
Y1(2) - -0.0063 | -0.0072 | -0.0075
Y1(3) - - -0.0105 | -0.0106
Yi(4) - - - -0.0106
Cum(Y2(4), Ya(4))
| [0 2(2) [ %2B) | (@) |
Y>(1) | - [-0.2970 [ -0.1962 | -0.1974
2(2) | - -0.1979 | -0.1988
Y2(3) | - - - -0.2000
Y>(4) - - - -

Table 1: Fourth-order cross-cumulant values.




for each one of the frequency bands obtained after ap-
plying a DFT to a data segment of the observations.
In this way, any algorithm for the BSS of complex in-
stantaneous mixtures of sources can be applied to each
one of the L frequencies.

As separation criterion for each frequency, we have
proposed an extension of the Infomaxz Principle used
in the unsupervised learning of NN [5]. The optimiza-
tion problem has been solved with a simple stochastic
adaptive gradient algorithm in two versions, conven-
tional and natural or relative. The original sources in
the time domain can be recovered after the reconstruc-
tion of their spectrum and an inversion process of the
DFTs of each segment. The simulation results show the
behavior of the relative algorithm with a block approx-
imation for the BSS of convolutive mixtures of white
sources.
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