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ABSTRACT

Blind source separation (BSS) in communications ap-
plications 1s usually considered under the assumption
that the observed or received signals are instantaneous
linear mixtures of the individual sources without in-
tersymbol interference (IST). Based on a more general
structure for multi-input multi-output channels, we pre-
sent a method using fractional sampling and BSS to re-
cover transmitted symbols in the presence of ISI. This
method is different from traditional ways for dealing
with IST. Tt can be used successfully even if there are
more sources than receivers. Simulation results are
given, illustrating the good performance of the method
and good agreement between theory and experiments.

Keywords: Blind source separation, Intersymbol
interference, Fractional sampling

1. INTRODUCTION

Blind Source Separation is the process of recovering a
set of independent signals when only some unknown
additive mixtures are observed. Many interesting ap-
plications of BSS have been discussed, and BSS and
more generally independent component analysis (ICA)
continues to be actively investigated [1], [2], [3]. Yang
[4] has recently addressed the problem of recovering
the input sequence of a SISO channel with a discrete-
time finite alphabet input and a continuous-time out-
put, where BSS using fractional sampling was applied
to achieve blind equalization of an FIR channel. Some
interesting and useful results are given in [4], which
include requirements on the oversampling factor and
the sample size along with some performance compar-
It is
also shown in [4] that some degree of correlation be-

isons with other blind equalization techniques.

tween adjacent symbols may be tolerated, even though
the theory is based on independent symbol sequences.

In this paper, we propose a more general linear dis-
torting channel with multiple inputs and outputs. In

the more general scenario, independent discrete sym-
bols from finite alphabets produce complex amplitude-
modulated carrier pulses at multiple transmitters. These
pulses pass through a mixing channel, characterized
by a channel impulse response matrix. As a special
case of this general channel model, the standard setting
of a BSS problem represents the mixing channel as a
constant matrix and the received samples are instanta-
neous linear additive mixtures of the original symbols.
To obtain separation and equalization in presence of
ISI, we incorporate fractional sampling into BSS to re-
cover the original symbols. A useful feature of the tech-
nique we discuss in this paper is that it allows for more
sources than receivers. Discussions on estimating the
number of sources and selecting best recovered signals
in case of redundancies are also given in the paper.
The normalized Equivariant Adaptive Source Sep-
aration (EASI) algorithm [5] is used in this paper.

2. SOURCE SEPARATION OF
INSTANTANEOUS MIXTURES

2.1. BSS Model

The block diagram in Fig. 1 shows a general adaptive
BSS scheme for the standard model of instantaneous
additive sources.

Source Received Essitérr?:ﬁtsed
signals Mixing signals Separating
matrix matrix
sin] A x[n] B, | ynl
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Figure 1: Adaptive BSS of instantaneous additive mix-
tures



The received discrete-time signal model is that of an

m-dimensional time series x[n] = (z1[n] - - z;[n] - - -z, [n])

of the form:
x[n] = As[n] (1)
where
sin] = ( s1[n] si[n] seln] )"

The channel characteristic between s[n] and x[n] is
defined by the constant mixing matrix A of size m X k;
there are k sources and m receivers. Here we require
m > k, which means the number of receivers should be
no less than the number of sources.

The objective is to get a separating matrix such
that y[n] consists of individually scaled and possibly
permuted versions of s[n]:

B, x[n] = B, As[n]
C,s[n]

y[n]
(2)

where

c, B, A

(3)
Ideally, for n large enough, B,, has converged to a ma-
trix B, and C = BA is very close to an identity matrix;
more generally, C is a permutation matrix with arbi-
trary scaling for each output.

The standard assumptions made in BSS are:
Assumption 1: Matrix A is full rank with m > k;
Assumption 2: The individual source processes {s;[n]},
1= 1,.--,m are mutually statistically independent.

In order to recover the source signals under the pres-
ence of intersymbol interference, we also make the as-
sumption:

Assumption 3: Source signals are 1.i.d. sequences.

2.2. The EASI Algorithm

The normalized Equivariant Adaptive Source Separa-
tion (EASI) algorithm [5] for the B, has the form:

y[nly[n]” — I
L4+ Ay [n]Ty[n]
g(v[ny[n]” —ylnlg"(y[]D)]
L4+ Aly[n]g(y[n])|

Bn+1 Bn - An

+ n (4)

where A, is the adaptation step size, and g(-) is a
component-wise nonlinear odd function for which de-
sign guidelines are available.

3. FRACTIONAL SAMPLING AND
SEPARATION/EQUALIZATION FOR
LINEAR MIXING CHANNELS

T

3.1. The Case of Two Sources and Two Re-
celvers

For simplicity, a two-source model is used in the follow-
ing. Here f11(t), f12(¢), f21(t) and fa2(t) are the equiv-

s.[n] £..(6) x,(E)
sz[n]4f7?(t) x,(t)

Figure 2: A general model of two-input two-output
mixing channels

alent channel mixing impulse responses. The received
two-dimensional signal is obtained as a convolution of
the transmitted symbols and these mixing impulse re-

sponses:
x(t) = Y F(t—nT)-s[n] (5)
where
fu(t)  fia(t)

)

x(1)

s[n]

T
= s2[n] )
and T is the symbol period. Here fi(¢) and f5(¢) are
the row vectors of matrix F(¢).
If symbol-rate sampling is applied at the receivers,
then the sample vector taken at ¢t = IT is

x[l]

x(IT)

oo

> F((l=n)T) -s[n]

n=—0o0

(7)

In the presence of ISI, the received signals are linear
mixtures not only of current independent symbols from
different sources but also of the adjacent symbols from
the same sources. If we treat this problem as a standard
source separation problem with instantaneous mixtures
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only, then the separated results would be convolutive
mixtures of adjacent symbols of each source separately.
Using fractional sampling combined with source sepa-
ration, it is possible in the general case to recover the
original sources directly as long as we have enough in-
formation via oversampling.

Let us make the following assumption about the
extent of IST in the channels:

fij®) =0, [t—D;| > L;T (L; >0), i,j€{1,2} (8)

where D; is the centering point which gives the mini-
mum integer L; for each f;;(t). Then the contributions
from source j with j = 1,2 can come from a maximum
of 2L; symbols at any receiver sampling point for dif-
ferent receivers. If we consider the set of samples over
a T interval and allow different sampling offsets within
a T interval at different receivers, we get contributions
from a maximum of 27; + 2 symbols from source j.

Let us assume different sampling offsets at differ-
ent receivers. To be more conservative, let us assume
L = maxz(L1, Ly). Fractionally sampling at rate M/T
with M > 2L + 1, the i-th received signal z;(t) at ¢ =
IT+ &L 4 7; with j =0,1,---,2L + 1, gives

iT I+L41
z;(IT + — 7)) =
z;(IT + i +7)
n=I-L
1=0,1,-- where 7; is some unknown sampling offset
at the i-th receiver, and M > 2L + 1. We assume that
7; € [0,T) since any sampling offset outside this range
can be accommodated by a shift in the time origin by
a multiple of T.
Let

def

| | i
Fi[] S (£i(T+ 5 + )" £(T + 3 +7)7 )" (10)

e . ; T
5l E (a(T+ & 4+7) e(T+E+m) ) (11)

then
L

> Fjnls[l—n]

n=—L-1

(12)

Redundant information about the source signals is
contained in r;[n] because of the oversampling, as can
be seen from:

ro[l] s[l — L]
] =e | (13)
ror+1[l] sl +L +1]
with
Fo[L] Fo[-L —1]
G - z . (14)
Forq1[l] Forp[-L —1]
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S (1= mT+ 5+ m)sla] (9)

of dimension 2(2L + 2) x 2(2L + 2).

The received signals can be oversampled uniformly
as above or non-uniformly but consistently in each T
interval as long as there are enough samples within each
interval T'. Since G is a constant matrix, this will be
a typical source separation problem if all the 2(2L + 2)
components in s[l — n] with n = —L —1,..., L are in-
dependent and G is of full rank. By the statistical inde-
pendence of Assumptions 2 and 3, we conclude that for
each [ all the elements in s[l — n]forn = —-L —1,.-. L
are indeed independent and identically distributed. Un-
der these conditions, for the case shown in Fig. 2, the
results of applying a BSS algorithm such as normalized
EASI should yield a maximum of 21 4 2 symbols from
each of the sources s; and s5. The recovered sources
are possibly amplitude scaled versions of the original
source signals and the recovered constellations may be
rotated. In addition, the recovered signals from the two
sources may not be aligned on the same symbol inter-
val, that is, the symbols of the first and second sources
cannot be put in their original time correspondence.

We can generalize Eq.(13) for k£ sources and m re-
ceivers with & < m. Thus G willbe am(2L + 2) x k(2L
+2) matrix. If there are more sources than receivers
with £ > m, then in order to recover the original sources,
we need to obtain [%1 x (2L + 2) samples per sym-
bol period from each receiver. Therefore, our method
allows for more sources than recievers. The case ad-
dressed by Yang in [4] is the k=1 and m = 1 case.
We can further extend Yang’s method in [4] to the
case where there are multiple sources and multiple re-
ceivers. In order to recover the original sources, it is
necessary for the generalized Yang’s method that the
oversampling factor be chosen so that M > k/m. Our
generalization of Yang’s method also allows for more
sources than receivers.

4. IDENTIFYING THE SOURCES AFTER
BSS

As the analysis and our example in the next section
show, the original sources are recovered with possibly
multiple redundancy. Therefore, we have two issues to
deal with. One is to recognize the sets of separated
outputs that represent each source, and the other is to
find the best signal among each set.

If there are m receivers and if samples are taken at
a rate of M/T at each receiver, then the total number
of samples for all the receivers is N = mM within ev-
ery symbol period 7. Based on the samples in the n-th
symbol period, the recovered signals are y;[n],i=1,---N.
Let
(i [n]

yiln— N+ 1]) (15)

u;, =



with i = 1,--- N, which represents the values of one of
the N separated signals.

Consider the case where the vectors u; in (15) cor-
respond to the perfect recontructions of the original
sources. If any two vectors uy, and u; with k # j are
the recovered sequences of two different signal sources,
then their cross-covariance matrix will be the zero ma-
trix. On the other hand, if u; and u; with k& # j repre-
sent the recovered sequences of the same source, then
their cross-covariance matrix may not be the zero ma-
trix. This is because the vectors u; and u;, although
not aligned on the same set of signaling periods, may
have elements in common. Eq.(15) shows row-vectors
u; with i =1,--., N have dimension N, however, we
can choose any other dimension as long as u; and u;
with k& # j, representing the same source, have at least
one symbol in common. Therefore, based on this prop-
erty, we can design a method to group all the recovered
signals into different sets. FEach set contains signals
representing the same source. The actual number of
sources can be estimated based on the number of sets
we obtain after the grouping. Singular value decompo-
sition can be applied to group the recovered signals.

After all the recovered signals have been grouped
into different sets, one possible method for picking a
good recovery of the original source utilizes higher or-
der statistics. We can pick the signal with the max-
imum sample kurtosis within each set. This implies
that we pick the signal which has the most compact
clusters within each set.

5. SIMULATIONS

We present here representative simulation results for
the method discussed in this paper. Example 1 is given
for the two-input, two-output general channel in Fig.
2. Example 2 is given for a two-input, one-output chan-
nel. In both cases the two sources are a 4QAM and a
16QAM source. Each source generates 5000 symbols
in Example 1, and 10000 symbols in Example 2. We
show the last 1500 recovered symbols in each of our
simulation results. White Gaussian noise is added in
each example with SNR = 25dB. The SNR is com-
puted as the ratio of the average power of the source
constellations to the noise power.

5.1. Example 1

The two sequences of source symbols are transmitted
by squared-half-cosine carrier pulses defined as follows:

cos?(mt/(2T))

P1(t)=p2(t):{ 0 if-T<t<T

otherwise

(16)
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These pulses pass through a mixing channel. This
mixing channel is represented as a constant matrix.
The symbols from each source are transmitted with
timing offsets (A; = 0.327 and Ay = 0.44T) relative
to the time origin. The continuous time mixing impulse
response functions defined in (6) are

=
o

C11P1( A1) ( )
C21P1( A1) ( )
c1apa(t — Ag) (19)

( (20)

= caapa(t — Ay)

t —
t —

Posliuiibes)
NN
NN N N
o~
RN -

Here T'is the symbol period and ¢11, ¢21, €12 and ¢g5 are
randomly generated complex numbers. In our simula-
tion for this example, we had ¢17 = 0.8558 + 0.43934,
ca1 = —0.7784 — 0.03214, ¢19 = —0.1636 — 0.5533¢ and
cag = —1.4002 + 0.8690:. Since Ly =1,Ly =1 in this
situation, L = maxz(L1, Ls) =1

Using our method, we choose the oversampling fac-
tor M = 4. Samples are taken at t = T+ ﬁT—}-TZ’ with
j=0,---,2L+1,1=0,1,---and 2 = 1,2. The sam-
pling offsets at each receiver are 7 = 0 and 7 = 0.987
respectively. Four samples are taken at each receiver
every symbol period. The recovered signals are shown
in Fig. 3.

Using the generalized Yang’s method, we choose
the oversampling factor M = 2. Samples are taken at
t=IT+4&T+7withj=0,1,1=0,1,---andi = 1,2.
The sampling offsets at each receiver are 4 = 0 and
9 = 0.987 respectively. Two samples are taken every
symbol period. All the samples taken over three con-
secutive symbol periods are used for one iteration in
the BSS algorithm. As mentioned earlier, the general-
ized Yang’s method needs to recover four more symbols
than ours. Due to the limit on the length of the paper,
simluations results for Yang’s method are not included
here.

Both methods are combined with the same EAST al-
gorithmin (4) with A, = 0.003 and g(-) as a component-
wise cubic function, and are run for the same number
of iterations. Our simulation shows that the results for
both methods become noisier if we increase the value of
An. On the other hand if we decrease the value of A,
we will get a slower convergence rate. We found the
generalized Yang’s method was more sensitive to the
choice of A, compared to our method. The recovered
signals using our method form the constellations shown
in Fig. 3, and are less spread out compared to those
for the generalized Yang’s method. We note that our
method needs to implement a higher sampling rate.



5.2. Example 2

Now there is only one receiver. One of the carrier pulses
p1(t) is squared-half-cosine defined in (16). The other is
a double-exponential-decaying pulse defined as follows:

{

The two channel impulse responses are defined in the
following.

te(1=/T)

0

if T <t<T
otherwise

p2(t) (21)

() = (e=2UT —e=t/TY/T if0 <t < 2T
1 - 0 otherwise
(22)

Te=tT. cos(3t/T)

—5e=HT .sin(3t/T)/12

hia(t) = 4923=3t/T . cos(t/T)/4

+25e¢73UT sin(t/T)/4 if0<t<2T

0 otherwise
(23)

The equivalent channel mixing impulse response func-
tions are defined by

( fu(t) fia() )
( pu(t) * haa(t)

F(1)

pa(t) x haa(t) )

. (24)

We have L; = Ly = 2 in this case.

Therefore, L = max(L1,Ly) =2. Samples are taken
at ¢ IT + jT/M with M =5, j = 0,---,2L and
1=0,1,---. Fig. 4 shows the recovered the symbols
from two sources with sampling rate at 5/7.

6. CONCLUSION

In this paper, fractional sampling and BSS are applied
to recover input source symbol streams for a general
structure of mixing channels with multiple inputs and
multiple outputs. We have shown that fractional sam-
pling can solve the problem of recovering independent
source signals from their mixtures in presence of ISI.
Moreover, fractional sampling makes it possible and to
recover the original sources when there are more source
than receivers. In essence, the sensitivities to both ISI
and the number of receivers, which are among the dif-
ficult problems in BSS, have been avoided by applying
fractional sampling.

As shown in both analysis and simulations, frac-
tional sampling combined with source separation algo-
rithms are very useful under real situations and can
be applied to both blind source separation and blind
deconvolution.
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(8) (h)

Figure 3: Example 1: Separating the mixtures of one
4QAM and one 16QAM signals; Squared-half-cosine
carrier pulses are used for transmission. SNR=25dB.
From (a) to (h) are the results of separation using our
method.
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Figure 4: Example 2: Separating the convolved mix-
tures of one 4QAM and one 16QAM signals; Only
one receiver is used. Squared-half-cosine and double-
exponential-decaying carrier pulses are used for trans-
mission. SNR=25dB. From (a) to (j) are the results of
separation using our method.



