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ABSTRACT

This paper presents a new adaptive algorithm for the on-
line linear and non-linear separation of signalswith non-
uniform, symmetrical probability distributions. The
procedure is based on the interpretation and properties of
the vedorial spaces of sources and mixtures, using a
multiple linearization in the mixture space The main
characteristics of the procedure are its smplicity, its
immunity to symmetricall y-distributed additive noise, and
the rapid convergence eperimentally validated when the
method is applied to the separation of multiple EEG
signals.

1. INTRODUCTION

The problem of linear blind separation of sourcesinvolves
ohtaining the signals generated by p sources, vedorialy
represented by  S(t)=[s,(t),....s,()]" , from the linear
mixturesignals, e(t)=[e(t),...e,(t)]". Themixture, normally
produced in amedium or in the sensors, is characterized by
a non singular matrix A such that e = A s. The goal
traditionally sought within the mntext of separation of
sourcesisto estimate A by means of another matrix W such
that the output vedor s* =W e coincideswith that of the
original sourcesexcept for ascalefactor and a permutation,
i.e

W1l=API )

where P is a permutation matrix and D is a diagonal
matrix. Any matrix W related to A asin (1) is sid to be
similar to A.

For linear mixtures and bounded sources, we have
presented a new way to apply the geometrical method,
which does not require obtaining vertices or edge points.
From geometric considerations, it is possble to oltain a
matrix that is smilar to A by determining the slopes of, or
any vedor on, the algesthat areincident on any one of the
vertices. Wehave presented various algorithms|[4, 6], dl of
which attempt to seled onevertex, from the mixing vedors

ohtained, and one or more points from each of the alges
that are incident to it. The problem is then reduced to that
of finding the distribution axes of probability within the
known mixing space, asthese are parall € to the axes of the
hyperparall e epiped that containsthe observation space[5].

An interesting way was receantly proposed to solve the
separation of linear mixtures, consisting of using the
Kull back-Leibler divergenceor the mutual information [3],
where the independent axes are cmputed efficiently. For
post-nonlinear mixtures, a batch procedure based on a
maximum likelihood approach has been developed in [8].
For non-linear mixtures, the method proposed in [2] is
adaptive and adequate for sharply peaked distributions. The
approach presented hereisrelated to the abowe, but isvalid
for more than two signals and for “non-symmetric” non-
linear mixtures.

In [7] we described an adaptive procedure for the demixing
of linear and non-linear mixtures of two signals with
probabilit y distributions that are symmetric with resped to
their centresand non uniform, performing afixed piecevise
linearization in the @ase of nonlinear mixturesin order to
ohtain the distribution axes of probability that are parall e
to the dopes of the parall € epiped for two sources.

Here, we @mbine the geometric properties of the
distributions, which provide the independent components,
with the advantages of the cmpetiti ve neural networks, in
order to adaptively compute the axes of the density function
in thelinear or non-linear observation space by means of
a dynamic piecavise linearization valid for all kinds of
sources exhibiting an unimodal probability distribution,
such as Gausgan, Laplacian, Poisson, Gamma and others.

2. PROPOSED METHOD

The main idea of this method combine geometric
considerations, previousy developed, with an adaptive
processng, and it consists of normalizing the observed
space in a set of concentric layers in order to adaptively
compute the slopes corresponding to the independent axes
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of the distributions of the mixtures by means of an array of
symmetrically distributed neuronsin each dimension. The
procedure has two stages, firstly a preprocessng stage to
normali ze the observed space, foll owed by the processng or
learning of the neurons, which estimate the high density
regions in a similar, but not identical way to that of sdf
organizing maps.

2.1 Preprocessing

First of al, the observed signals € are set to zero mean, |,
and unity variance, o, as foll ows:

G
(6}

)

The average arrelation coefficient is also computed by
means of the foll owing expresson:

1 1y
<Q>:Fi§,j:gij , Qij:_l_g;(ei(t)'ej(t))

i,je{1...p} , <]

From (3), the procedure @n elimi nate unnecessary samples
by using the parameter 3, asfoll ows:

8:exp(7<9>2) (4)
Many kind of signals, as eed or EEG signals, present
unnecessary points near the origin that do not provide
information when the computation of the distribution axes
isbeing carried out (Figure 1), and these can be adeauately
removed if the following condition is
verified:

lell<Y o.8 = R, ic{l.p} )
I
where R is the radius of the diminated pdnts circle.

Moreover, the algorithm can seled useful points near the
independent components (Figure 2), as foll ows:

6<c.d , Vke{l..p} )

2.2 Processing

Theobservation spaceis sibsequently quantizedin ncircles
or layers each with a radius p(k) (k=1...n) covering the
points as foll ows:

Fp() | pk-1)<[le(®ll<pk) , vke{l,...n}  (7)

The distancebetween one point and the 2p neurons existing
in the p-dimensional spaceis:

d(i,p(k)) =l wi(p(k),t) —e(p(Kk),1) |l ®)
ic{1,..20} , ke{l,..n}

A winner neuron, labeledi”, in alayer p(k), hasaminimum

distanceto the point and verifies:
d(@i*,p(k))=min{d(i,p(k))} ie{1,.,2p} ke{1,.,n} (9)

From now on, we will denotep thelayer p(k) defined in (7).
After this, three methods can be used for the learning
process If awinner neuron approaches the density region,
at timet, thelearning rule is given by:

W (pt+1) = W (p,t) + aft) sgn(e (p.t) -wi-(p,t))  (10)
where:

_e®OPpd g on

a(t+l) = :
1+B(i *ap)_z (12)

B(I *!p) - <$n(ei* (p!t) 7\Ni* (p!t)>

where a is a geometry-dependent deaeasing learning rate.
For the sake of simpli city, equation (10) does not show the
inverse movement of the symmetric neuron (ii*) belonging
to the same axis, and this property deaeases the
convergence time. Note that a great variety of suitable
monotonic functions, «, can be used.

A seand type of learning, similar to thefirst, can also be
used in which the learning space of each neuron, i, is
reduced to its asociate quadrant, ¢; thisisuseful wheniitis
known in certain real appli cations that the mixing matrix,
A, verifies g > g; . If thisis o, only the representative
winner neuron, ic*, is active, and it is only necessary to
deted the quadrant, c, e(p,t) beongsto, as foll ows:

W« (P, t+1) = W (p,t) + a(t) sgn[e (p,t) - Wi (p,1)]
(12
ic*e{1,...,2p}

Thethird learning procedure activates all neurons at once,
by means of a factor, k(t), that modulates competitive
learning, as in sdf-organizing systems.

W (p, 1) =w (p, 1) + ay(t) sgnieg (p.t) -w- (p,t)] k(1)

13
k(t)=exp (-o,(t) llg(p.t)-w.(p,)II?)
Here oy (t) and o,(t) are geometry-dependent learning rates.
After the learning process the neurons are maintained on
their respedive layers by means of the following
normali zation:

~w(pt) p
R T

Some improvements have been made to the process for
goad estimation of the distribution axes. For non-linear
mixtures, the spatial neuron order in successve layers may
change, and for corred adaptive separation it is necessary

ie{1..2p} pe{p(D)..p(N)} (14
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to ched, periodically, the following expresson:
min(i,j) =min[w(p,t) ~w(p-1,9] i,je{1..2p} (15

Oncethis expresion is computed, the rearranging is done
batom-up, begining from layer (p-1) in (15), if the
condition min(i,j) < min(i,i) is verified.

Furthermore, in linear or non-linear mixtures the red
observed signals may exhibit non-uniform density
digtributions, and the procedure generates adaptively
variable layersin accordancewith the point density. Then,
the distance between the drcles, p(i,z), in time t, can be
adjusted asa function of the density points, A(i,z), between
two successve layers:

p(i,t+1) =p(i,t) +y (A(i-1,7) - A(i,T)) (16)

wherey isalearning rate.
3. SEPARATION MATRICES

Dueto the piecavise linearization of the space aset, W, of
matricesis oltained for each layer:

W={ W,y o Wooy (17)

where the matrices W, (;, are equal to:

WP

W W (19

([ Waseiy -+ Wi
M~
pLp() * VVppp(i)

For linear systemsor “symmetric’ non-linear mixtures[2],
the elements of thematrix (18) arethe symmetric Sopes, in
the layer p(k), between two neurons of each dimension,
computed in (10), (12) or (13), i.e.

~ Waiipw ~ Waiipk-n)
Wiiow = "W

e V2 jp(k-D) (19

i,je{1..p} , ke{l..n}
Sincethe main simulation presented in this paper refersto
alinear mixture of EEG signals, we will usethis particular
expresson (19), athough in the general case and for pure
non-linear mixtures (without symmetry at the origin), the

abowve expresson must be replaced by a similar one, as
follows:

= Weiyipmo ~ W i pke)
Weiyipt ~ Wt j p(k-1)

&) e{ (a,p) | d(ap)<d(y,p) , d(B.p)<d(y.p)}

ije{l.p} , ke{l..n} , apye{l..2p} , a*p

\Nii p(K)

(20

Notethat (19) isaparticular case of (20), with &(j)=2j, and
that Wi, = 1 in bath equations. Equation (20) means that
the subspace associated to the neuronslabel ed (a, ) around
point e, (t) providesthelinear contour where the mixture
can be onsidered linear.

For the purpose of separation, the network uses the typical
rearsive reall taking into account the layer quantization
in the observation space i.e.:

P
§(tr1) = & (1) - ;Wiip(k) §(1) (21)
i#je{l,..,p} ,ke{1,...,n}

4. SSMULATION RESULTS

Two simulations are presented in order to show the
efficiency of the proposed algorithms.

Thefirst one, correspondsto a sinthetic non-linear mixture
presented in [2] for sharply peaked dstributions, original
sources being dgital 32-hit signals, as foll ows:

e (t) = ~2sgn[s;(t)] s,(t)* + L.1s,(t) - Sy(t)

e - 2N St? 11s) 1) O

As shown in Figure 4, good estimation of the density
distribution is oltained with 3 iterations of 270000samples,
and using n=4 layers. Thefour matrices (18) obtained were
the foll owing:

wo | ro7)y o, [ 1 oo
P16 1 P@ 1 022 1

wo [ roo? ., [1 o1
P@® | 022 1 P@ 1 015 1

The second simulation corresponds to a real mixture of 21
EEG signals with 25 time series of 7680 samples each.
Similar resultsasin [1] are oltained. Threeartifactual and
two tumor related ICA components may be identified from
Figure 6. Eye blink artifactsin the EEG data aeisolated to
ICA component number 2. ICA components numbers4 and
17 show & and ¥ waves with alow characteristic frequency
and not observed with normal ohjeds. Component number
13 reveals snall periodic muscle spiking and any cardiac
contamination in the EEG data is concentrated in ICA
component number 21. Analyzing the obtained values in
(20), the procedure ensures that the hypothese of linear
model for this kind of recording is a good approximation.

(23
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5. CONCLUSIONS

We have shown the powerful of adaptive-geometric
methods by means of a pieceavise linearizaion in the
mixturespaceand using competiti ve unsupervised learning,
in order tofind the density function of the observed signals
or independent components.

Future work concerns the study of the noise and the
implementation of the proposed procedure, once a wide
range of non-li near mixtures have been smulated with real
signals and using more than two neurons per dimmension.
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Figure 1. Eliminating points without
information
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Figure 2. Paints near the independent axes

Figure 3. n-layer quantization for p=2.



€1

€1

e, €

Figure 4. @) Spaceof original digital 32-valued signals. b) Space of non-linear mixture.
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Figure 5. Configuration of the neurons with
3iterationsand 4 layers.
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Figure 6. ICA components obtained from EEG sensors
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