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ABSTRACT

This paper presents a new adaptive algorithm for the on-
line linear and non-linear separation of  signals with non-
uniform, symmetrical probabilit y distributions. The
procedure is based on the interpretation and properties of
the vectorial spaces of sources and mixtures, using a
multiple l inearization in the mixture space. The main
characteristics of the procedure are its simplicity, its
immunity to symmetricall y-distributed additi ve noise, and
the rapid convergence experimentall y validated when the
method is applied to the separation of multiple EEG
signals.

1. INTRODUCTION

The problem of linear blind separation of sources involves
obtaining the signals generated by p sources, vectoriall y
represented by  s(t)=[s1(t),....,sp(t)]

T , from the linear
mixture signals, e(t)=[e1(t),...ep(t)]

T. The mixture, normally
produced in a medium or in the sensors, is characterized by
a non singular matrix A such that e = A s. The goal
traditionall y sought within the context of separation of
sources is to estimate A by means of another matrix W such
that the output vector s* = W -1 e  coincides with that of the
original sources except for a scale factor and a permutation,
i.e.
 

W
�� 1 � A P D                     (1)

where P is a permutation matrix and D is a diagonal
matrix. Any matrix W related to A as in (1) is said to be
similar to A.

For linear mixtures and bounded sources, we have
presented a new way to apply the geometrical method,
which does not require obtaining vertices or edge points.
From geometric considerations, it is possible to obtain a
matrix that is similar to A by determining the slopes of, or
any vector on, the edges that are incident on any one of the
vertices. We have presented various algorithms [4, 6], all of
which attempt to select one vertex, from the mixing vectors

obtained, and one or more points from each of the edges
that are incident to it. The problem is then reduced to that
of finding the distribution axes of probabilit y within the
known mixing space, as these are parallel to the axes of the
hyperparallelepiped that contains the observation space [5].

An interesting way was recently proposed to solve the
separation of linear mixtures,  consisting of using the
Kullback-Leibler divergence or the mutual information [3],
where the independent axes are computed eff iciently. For
post-nonlinear mixtures, a batch procedure based on a
maximum li kelihood approach has been developed in [8].
For non-linear mixtures, the method proposed in [2] is
adaptive and adequate for sharply peaked distributions. The
approach presented here is related to the above, but is valid
for more than two signals and for “non-symmetric” non-
linear mixtures.

In [7] we described an adaptive procedure for the demixing
of linear and non-linear mixtures of two  signals with
probabilit y distributions that are symmetric with respect to
their centres and non uniform, performing a fixed piecewise
linearization in the case of nonlinear mixtures in order to
obtain the distribution axes of probabilit y that are parallel
to the slopes of the parallelepiped for two sources.

Here, we combine the geometric properties of the
distributions, which provide the independent components,
with the advantages of the competiti ve neural networks, in
order to adaptively compute the axes of the density function
in the linear or non-linear observation space, by means of
a dynamic piecewise linearization valid for all kinds of
sources exhibiting an unimodal probabilit y distribution,
such as Gaussian, Laplacian, Poisson, Gamma and others.

2. PROPOSED METHOD

The main idea of this method combine geometric
considerations, previously  developed, with an adaptive
processing, and it consists of normalizing the observed
space in a set of concentric layers in order to adaptively
compute the slopes corresponding to the independent axes
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of the distributions of the mixtures by means of an array of
symmetricall y distributed neurons in each dimension. The
procedure has two stages, firstly a preprocessing stage to
normalize the observed space, followed by the processing or
learning of the neurons, which estimate the high density
regions in a similar, but not identical way to that of self
organizing maps.

2.1  Preprocessing

First of all , the observed signals é  are set to zero mean, µ,
and unity variance, � , as follows:

e � (é � µ)� (2)

The average correlation coeff icient is also computed by
means of the following expression:

< � > � 1
p

�
i, j � i j , � i j � 1

T

�T

t 	 1
(ei (t) .ej (t) )

i, j 
 { 1...p} , i < j

(3)

From (3), the procedure can eliminate unnecessary samples
by using the parameter � , as follows:

� � exp ( 
 < � > 2)
(4)

Many kind of signals, as speech or EEG signals, present
unnecessary points near the origin that do not provide
information when the computation of the distribution axes
is being carried out (Figure 1), and these can be adecuately
r emoved i f  t he f ol l owi ng  condi t i on  i s
verified:

|| e || < �
i � i . � � R , i � { 1...p} (5)

where R is the radius of the eliminated points circle.
Moreover, the algorithm can select useful points near the
independent components (Figure 2), as follows:

ek < � k � , � k � { 1,...,p} (6)

2.2  Processing

The observation space is subsequently quantized in n circles
or layers each with  a radius � (k) (k=1...n) covering the
points as follows:� �

(k) |
�
(k � 1) < ||e(t) || <

�
(k) , � k� { 1,...,n} (7)

The distance between one point and the 2p neurons existing
in the p-dimensional space is:

d(i ,
�

(k)) � || wi(
�

(k) ,t) � ei(
�

(k) ,t) ||
i � { 1,...,2p} , k� { 1,..,n}

(8)

A winner neuron, labeled i*, in a layer 
�
(k), has a minimum

distance to the point and verifies:

d(i � , � (k)) � min{ d( i , � (k) )} i � { 1,.,2p} k � { 1,.,n} (9)

From now on, we will denote �  the layer � (k) defined in (7).
After this, three methods can be used for the learning
process. If a winner neuron approaches the density region,
at time t, the learning rule is given by:

wi � ( ,t ! 1) " wi # ($ , t) ! % (t ) sgn(ei (& , t) ' wi ( (& ,t )) (10)

where:

% ( t ) 1) * % (t) & +
1 ) , (i - , . ) / 2

i 0 1 { 1,...,2p}

2
(i 0 , 3 ) 4 <sgn(ei 5 ( 3 , t) 6 wi 5 ( 3 ,t)>

(11)

where 7  is a geometry-dependent decreasing learning rate.
For the sake of simplicity, equation (10) does not show the
inverse movement of the symmetric neuron (ii * ) belonging
to the same axis, and this property decreases the
convergence time. Note that a great variety of suitable
monotonic functions, 7 , can be used.

A second type of learning, similar to the first, can also be
used in which the learning space of each neuron, i, is
reduced to its associate quadrant, c; this is useful when it is
known in certain real applications that the mixing matrix,
A, verifies  aii > aij . If this is so, only the representative
winner neuron, ic* , is active, and it is only necessary to
detect the quadrant, c, e(3 ,t) belongs to, as follows:

wic 8 (9 , t : 1) ; wic < (= , t ) > ? (t ) sgn[ ei (@ , t) A wic B (C , t )]

ic D E { 1,...,2p}
(12)

The third learning procedure activates all neurons at once,
by means of a factor, k(t), that modulates competitive
learning, as in self-organizing systems.

wi (F , t G 1) H wi (F , t) G I 1(t) sgn[ei ( F , t) J wi K (F ,t )] k( t)

k( t ) H exp ( J I 2(t ) ||ei (F ,t ) J wi K ( F ,t ) ||2 )
(13)

Here L 1(t) and L 2(t) are geometry-dependent learning rates.
After the learning process, the neurons are maintained on
their respective layers by means of the following
normalization:

wi ( M , t) N wi( M ,t) M
||wi (M , t) ||

, i O { 1..2p} M O { M (1)..M (n)} (14)

Some improvements have been made to the process for
good estimation of the distribution axes. For non-linear
mixtures, the spatial neuron order in successive layers may
change, and for correct adaptive separation it is necessary
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e1(t ) � � 2 sgn[s1(t )] s1(t )
2 � 1.1 s1(t )

� s2(t )

e2(t ) � � 2 sgn[s2(t )] s2(t )
2 � 1.1 s2(t )

� s1(t )
(22)

to check, periodicall y, the following expression:

min(i, j) � min ||wi(
� ,t) � wj(

� � 1,t) || i,j � { 1...2p} (15)

Once this expresion is computed, the rearranging is done
bottom-up, begining from layer (� -1) in (15), if the
condition min(i,j) < min(i,i) is verified.

Furthermore, in linear or non-linear mixtures the real
observed signals may exhibit non-uniform density
distributions, and the procedure generates adaptively
variable layers in accordance with the point density. Then,
the distance between the circles, � (i,� ), in time � , can be
adjusted as a  function of the density points, � (i,� ), between
two successive layers:

� (i, � 	 1) 
 � (i,� ) 	 � ( � ( i 
 1, � ) � � ( i , � ) ) (16)

where �  is a learning rate. 

3. SEPARATION MATRICES

Due to the piecewise linearization of the space, a set, W, of
matrices is obtained for each layer:

W � W� (1) , ... , W� (n) (17)

where the matrices W�  ( i ) are equal to:

W� ( i ) �
W11 � ( i) .. W1p � ( i)

Wp1 � ( i) .. Wpp � ( i)

(18)

For linear systems or “symmetric” non-linear mixtures [2],
the elements of the matrix (18) are the symmetric slopes, in
the layer � (k), between two neurons of each dimension,
computed in (10), (12) or (13), i.e.:

Wi j � (k) �
w2j i � (k) � w2j i � (k� 1)

w2j j � (k) � w2j j � (k� 1)

i, j � { 1...p} , k � { 1...n}

(19)

Since the main simulation presented in this paper refers to
a linear mixture of EEG signals, we will use this particular
expression (19), although in the general case and for pure
non-linear mixtures (without symmetry at the origin), the
above expression must be replaced by a similar one, as
follows:

Wi j � (k)  
w! ( j) i " (k) # w! ( j) i " (k$ 1)

w! ( j) j " (k) # w! ( j) j " (k$ 1)

%
( j ) & { (' ,( ) | d() ,* )<d(+ ,* ) , d(( ,* )<d(+ ,* )}

i, j , { 1...p} , k , { 1...n} , ) ( + , { 1...2p} , ) - .

(20)

Note that (19) is a particular case of (20), with / (j)=2j, and
that Wii 0 (k) = 1 in both equations. Equation (20) means that
the subspace associated to the neurons labeled (1 ,. ) around
point e i 0 (k) (t) provides the linear contour where the mixture
can be considered linear.

For the purpose of separation, the network uses the typical
recursive recall taking into account the layer quantization
in the observation space, i.e.:

si ( t 2 1) 3 ei 4 (k)( t ) 5 6
p

i 7 1
wi j 8 (k) sj ( t )

i 9 j : { 1,...,p} , k : { 1,.... ,n}
(21)

4. SIMULATION RESULTS

Two simulations are presented in order to show the
eff iciency of the proposed algorithms.
The first one, corresponds to a sinthetic non-linear mixture
presented in [2] for sharply peaked distributions, original
sources being digital 32-bit signals, as follows:

As shown in Figure 4, good estimation of the density
distribution is obtained with 3 iterations of 10000 samples,
and using n=4 layers. The four matrices (18) obtained were
the following:

W8 (1) ;
1 1.7

< 1.6 1
W8 (2) ;

1 0.25
< 0.22 1

W8 (3) ;
1 0.2

< 0.22 1
W8 (4) ;

1 0.1
< 0.15 1

(23)

The second simulation corresponds to a real mixture of 21
EEG signals with 25 time series of 7680 samples each.
Similar results as in [1] are obtained. Three artifactual and
two tumor related ICA components may be identified from
Figure 6. Eye blink artifacts in the EEG data are isolated to
ICA component number 2. ICA components numbers 4 and
17 show =  and >  waves with a low characteristic frequency
and not observed with normal objects. Component number
13 reveals small periodic muscle spiking and any cardiac
contamination in the EEG data is concentrated in ICA
component number 21. Analyzing the obtained values in
(20), the procedure ensures that the hypothese of linear
model for this kind of recording is a good approximation.
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Figure 1. Eliminating points without
information
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Figure 2. Points near the independent axes 
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Figure 3. n-layer quantization for p=2.

5. CONCLUSIONS

We have shown the powerful of adaptive-geometric
methods  by means of a piecewise linearization in the
mixture space and using competiti ve unsupervised learning,
in order to find the  density function of the observed signals
or independent components.
Future work concerns the study of the noise and the
implementation of the proposed procedure, once a wide
range of non-linear mixtures have been simulated with real
signals and using more than two neurons per dimmension.
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Figure 4. a) Space of original digital 32-valued signals. b) Space of non-linear mixture.

Figure 5. Configuration of the neurons with
3 iterations and 4 layers.

Figure 6. ICA components obtained from EEG sensors
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