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ABSTRACT

A parameterized threshold nonlinearity, which separates amix-
ture of signals with any distribution (except for Gaussian), is intro-
duced. This nonlinearity is particularly simple to implement, since
it neither uses hyperbolic nor polynomial functions, unlike most
nonlinearities used for blind separation. For some specificdistri-
butions, the stable region of the threshold parameter is derived,
and optimal values for best separation performance are given. If
the threshold parameter is made adaptive during the separation
process, the successful separation of signals whose distribution
is unknown is demonstrated and compared against other known
methods.

1. INTRODUCTION

Blind signal separation using higher-order statistics either explic-
itly or implicitly has attracted many researchers whose main goal
is to separate a set of mixed signals as fast as possible with the
smallest residual mixing. Most approaches require complete or at
least some knowledge of the source distributions. If sources of dif-
ferent distributions are mixed, such techniques may fail towork.

Throughout this paper we assume a linear mixing and separa-
tion process, where the measured signals� � �� � � � � � � ��� 	
 to
be processed are linear combinations of the original sourcesignals� � �� � � � � � � �� � 	
 , weighted by scalars, which are the elements
of the mixing matrix . � � denotes the number of sources as
well as the number of sensors. Recovery of the signals is carried
out by a blind adaptive algorithm adjusting the coefficientsof the
separation matrix� . The output of the algorithm is therefore� � �� � � � � � � ��� 	
 � � � � � � � � � � (1)

In order to successfully separate the signals,� � � should ap-
proximate as closely as possible a scaled permutation matrix. A
possible update equation for the separation matrix� results from
either the minimization of the mutual information of the output
signals [1], the output entropy maximization [2], the ML estima-
tor [3], the maximum negentropy [4], and applying the natural gra-
dient [1] to these methods, or exchanging a non-blind criterion of
an RLS-like algorithm with a blind criterion [5],� �� � � � � � � �� � � ����
 � � � (2)

where� is the step size,
�

the identity matrix, and
� �� � aBussgang

nonlinearity [6].

2. THE THRESHOLD NONLINEARITY

The nonlinearity plays a central role in blind signal separation. Its
nature is defined by the objective or contrast function, which is
often some kind of information-theoretic measure, such as entropy
or mutual information. Very frequently, the nonlinearities derived
by different methods are similar in nature for a given probability
distribution of the signals to separate. In fact, the exact curve of the
nonlinearity might not matter [7]. Whereas the minimization of the
mutual information leads to a pdf-independent polynomial with
several terms [1], both the Infomax and the Maximum-Likelihood
approach [8] lead to� ��  � � � ! "#$ % & ��  �! �  � � % '& ��  �% & ��  � � ( � )� � � � � � � (3)

where% & �� � and% '& ��  � are the pdf and its derivative, respec-
tively, of the source signals. In the following, the range of( will
be assumed as that given in (3) if not indicated otherwise. (3) is
referred to as the score function of a certain pdf% & ���. From (3) it
can be seen, that super-Gaussian signals typically have sigmoidal
nonlinearities such as*+$, ��� or -.,/ ���, whereas sub-Gaussian
signals can be separated using a nonlinearity of the form� ��  � � 0 1 �2 � % odd� % 3 4 � (4)% being odd ensures the validity of the sign after the nonlinearity.
If (4) is rewritten as� ��  � � 0 1 5�  52 6��  � % 7 ) (5)% is no longer restricted to odd integers, but can be any rational
number greater than one. (5) also has the advantage that it isdi-
rectly applicable to complex signals. A very simple nonlinearity
for the separation of sub-Gaussian signals has been derivedin [9]
starting from the pdf of a generalized Gaussian signal% & ��� � 89: ; < �= > ? 6 @ AB AC DE

(6)

where8 7 9
for sub-Gaussian signals. The nonlinearity according

to (3) is � ��  � � 8 F; < G= >; < �= > H =IJ *+$, ��  � 1 5�  5= 6� � (7); ��� is the gamma function given by
; �0� �K LM �N6� OPQ ����R�, and shows a recursive property simi-

lar to the factorial function,
; �0 � )� � 0; �0 �. For large8 , (7)
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yields� ��  � ����=� � � 8 F *+, <�= >*+, <G�= > H =IJ *+$, ��  � 1 5�  5= 6� � (8)

However, for large8 the sine functions are well represented by the
first term of their Taylor expansions, so (8) becomes� ��  � ����=� � � 8 �)4 �=IJ *+$, ��  � 1 5�  5= 6� � 8 )� ��J 4 �=IJ �

(9)

In the limit for 8 � � (uniform distribution) we get thethreshold
nonlinearity"+�=	L � ��  � � 
 � � 5�  5 � 4� 1 *+$, ��  � � 5�  5 3 4 � (10)

A more detailed derivation of Eqs. (7) to (10) can be found in the
appendix. The infinite gain in (10) will of course cause conver-
gence problems for a finite step size. The gain can therefore be
traded off against a lower threshold� for a specified output power.
To this end, we make use of the scaling equation [9]� L6L % & ��  �� ��  ��  R�  � ) (11)

which is a result of the Bussgang property.% & ��� is a source dis-
tribution with unit variance� J& � ). Solving (11) for the uniform
distribution and a given threshold� results in a finite gain of0 � 9 44 � � J (12)

for � � � � 4. The resulting threshold nonlinearity is� ��  � � 
 � � 5�  5 � �0 *+$, ��  � � 5�  5 3 � (13)

and is depicted in Fig. 1. Note that0 is always positive for the
assigned range of�.

��
�
�����

�� �
��

Figure 1: Threshold nonlinearity with parameter�.

In [9], the application of (13) to sub-Gaussian pdfs other than
the uniform distribution (e.g.� -PAM or � -QAM) was demon-
strated with the possible need for adjusting gain0 for normalized
output power. By experiment, a good value for the threshold was

found to be� � )��. On the other hand, for the Laplacian distri-
bution, which is an example of a super-Gaussian distribution and
can be written in the form of Eq. (6) with8 � ), Eq. (7) simplifies
to � ��  � �  9 *+$, ��  � (14)

which is the same as (13) for0 �  9
and� � �. The signum

nonlinearity can hence be regarded as a threshold nonlinearity with
threshold� set to zero.

3. STABILITY ANALYSIS

In [10] it was shown that a necessary and sufficient stabilitycrite-
rion for the separation of the(th and� th source is that the eigen-
values of the Hessian sub-matrix� � �� �� ' �� � � !�J" # � ��  �� ��  � ��" ��" ��"  � !� '" ��" �# � !�J #$ (15)

are positive. For equal source distributions and nonlinearities, the
eigenvalues of

�
are given by%� � � !� ' �� �# � !�J # � � ��  �� ��  (16)%6 � � !� ' �� �# � !�J # � � ��  �� ��  � (17)

Note that this analysis concerns local stability, hence thestatistics
of � and � are interchangeable near convergence. Similar analy-
ses have been carried out in [11] and [12]. The source power is
assumed to be normalized to one, i.e.,

� !�J # � ), and we scale
the nonlinearity such that

� ��  �� ��  � ). Although the thresh-
old nonlinearity is not differentiable at� � &� , we can derive� �� ' �� � by the use of'-functions and assuming a symmetric
distribution� !� ' ��  �# � � L6L % & �� �� ' ��  �R�  � � L6L % & �� �0 �' ��  � � � � ' ��  � � ��R�  � 90 1 % & �� � � (18)

(16) and (17) can therefore be written as%� � 90 1 % & �� � � ) (19)%6 � 90 1 % & �� � � )� (20)

For a positive scaling factor0, (19) is always positive. To
make (20) positive, we must ensure that

90 1 % & ( �� � 7 ) by suit-
able choice of�. For the threshold nonlinearity and symmetric
distributions, Eq. (11) can be written as90 � L) % & ��  ��  R�  � ) (21)

or, if solved for the scaling factor,0 � )9 K L) % & ��  ��  R�  � (22)

Thus, the stability condition results in% & �� �K L) % & ��  ��  R�  7 )� (23)



223

Eq. (23) defines a stable region for� depending on the source
distribution. In order to find the optimal values for� (in the
sense of quality of separation), we have to minimize the term�� �%� � � 6�%6 [10], with %� and %6 defined by Eqs. (16)
and (17), respectively, and

�� � � !� J �� �# � !�J # � �� ��  �� ��  �J
(24)

� 6 � � !� J �� �# � !�J # � �� ��  �� ��  �J � (25)

For the threshold nonlinearity we can write� !� J �� �# � 90J � L) % & ��  �R�  � (26)

We then get

�� �%� � � 6�%6 � 90J K L) % & ��  �R�  � )90% & �� � � )� 90J K L) % & ��  �R�  � )90% & �� � � )� �0G% & �� � K L) % & �� �R�  � 9
�0 J% J& �� � � ) (27)

so the optimal value for the threshold is

� ��� � .�$ � +,) �0G% & �� � K L) % & ��  �R� � )
�0J% J& �� � � ) � (28)

Fig. 2 shows the stability region and the optimal values of� of the
threshold nonlinearity for the generalized Gaussian distribution.
For signals with8 � ), the stable range for� is roughly between
0 and 0.5 with an optimal value of 0. For this threshold value,the
threshold nonlinearity is the true score function for the Laplace
distribution. Interestingly, the optimal value for) � 8 � 9

is
slightly higher than 0. At the other extreme is the uniform distrib-

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

α →

ϑ 
→

α=2α=2

ϑ
min

 (lower bound)
ϑ

max
 (upper bound)

ϑ
opt

              

Figure 2: Range of threshold� (shaded area) as a function of the
generalized Gaussian parameter8 .

ution with 8 � � . While the upper limit of the stability range is4, the lower limit is 1. The optimal value approaches4 as the

pdf gets close to the uniform distribution. Note that only for the
uniform distribution the threshold nonlinearity is the score func-
tion (except for the finite gain).

Generally speaking, for sub-Gaussian signals, the stable range
is between 1 and4. By decreasing8 we approach the normal
distribution (8 � 9

), which clearly poses a singularity in the sta-
bility plot. This can be seen by the broken stability regionsaround8 � 9

.
In the following we take a closer look at two distributions,

specifically the Laplacian and the uniform distribution as represen-
tatives of super- and sub-Gaussian distributions, respectively, and
work out the optimal values for the threshold�. For the Laplacian
distribution, which is given by (6) with8 � ), or, for unit variance% & ��� � )9 ?6�J 	
 	

(29)

we get with Eq. (22) for the gain of the threshold nonlinearity0 � )�� � � JJ � ? 6�J) � (30)

Using (30) in (28) we find after some calculations the optimal
threshold as

� ��� � .�$ � +,) 9?� J) � �� � � JJ � G9 �� � � JJ � � �� � � JJ �G (31)

which by numerical inspection reveals� ��� � �. A similar calcu-
lation can be carried out for the uniform distribution, given by% & �� � � 
 �J�G � 5� 5 � 4� � otherwise

(32)

where the scaling factor0 has already been computed by Eq. (12).
Eq. (28) then results in

� ��� � .�$ � +,) � 4 � <4 � �> <4 � � J >J<4 � �> <� � �4 � � J �J > � (33)

Numerical inspection of (33) on the interval�� � 4� shows that� ��� � 4.

4. BLIND SEPARATION OF ARBITRARY SOURCES

4.1. Known Methods

In practice, the distributions of the sources are often identical,
since the nature of their origin is related. In that case, thenonlin-
earity will be the same for all outputs. However, we may find the
situation where some sources have different distributions, possibly
with a different sign of their respective kurtoses. If in a mixture
some sources are sub-Gaussian and some super-Gaussian distrib-
uted, the appropriate nonlinearity might be chosen in advance, as
long as the number of sub- and super-Gaussian sources is known.
Doing so, the system is deprived of some degree of freedom, due
to the restriction of permutation within the group of equal kurtosis
sign. In other words, once a nonlinearity is chosen, only a signal
with the appropriate kurtosis can be separated at that specific out-
put. Other signals are forced away to outputs with the appropriate
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nonlinearity. Global convergence can be greatly accelerated by let-
ting the system choose its permutation closest to some initial mix-
ing condition. This can be achieved by an adaptive nonlinearity.
If the number of sub-Gaussian and the number of super-Gaussian
sources is unknown, adaptive nonlinearities are a necessity.

Douglaset al. [13] switch between two nonlinearities, namely� � ��  � � �G and �J ��  � � -.,/ �)��  � (34)

where� � ��� and � J ��� separate sub- and super-Gaussian signals,
respectively. The algorithm does not try to normalize its output
power regardless of the distribution. A sufficient stability condi-
tion is therefore� !� ' ��  �# � !�J # � � ��  ��  ��   7 � � (35)

The left-hand side of (35) is constantly evaluated for the two non-
linearities� � ��� and� J ���. The larger value decides which nonlin-
earity is applied.

Similarly, Leeet al. [14] present an extended Infomax algo-
rithm, where the update equation for the separation matrix is for-
mulated as� �� � � � � � � �� � � -.,/ �� ��
 � ��
 � � � (36)

with
� � � +.$ �� � � � � � � ��� 	
 being the vector of signs.�  is

positive for a super-Gaussian and negative for a sub-Gaussian sig-
nal, respectively. If the distributions are unknown, the sign might
be switched according to a kurtosis estimation at the outputor
some parameter expressing the stability of the nonlinearity cur-
rently used. Similarly to (35) it follows

�  <�) � � !-.,/ ��  �J #�� !�J # � � �-.,/ ��  ��   > 7 � �
(37)

By choosing�  the same sign as the rest of (37), the algorithm is
stabilized. Thus, the sign must be adapted as

�  � *+$, <�) � � !-.,/ ��  �J #�� !�J # � � �-.,/ �� ��   > �
(38)

Again, output powers are not normalized, and depend on the
source distributions.

4.2. Adaptive Threshold Nonlinearity

Since we know that any non-Gaussian distribution can be sepa-
rated by the threshold nonlinearity with either� � � or � � )��,
we can set up an algorithm in which the update equation for the
separation matrix is given by (2) with�  ��  � � 
 � � 5�  5 � �  0  *+$, �� � � 5�  5 3 �  � (39)

Each threshold�  is chosen from
�� � ) �� as that value which

maximizes the right-hand side of (17) with�  ��� of (39). The use
of the stability equation to switch between the two threshold val-
ues has two important disadvantages. First, the value of% & �� � is
difficult to work out since the function% & ��� is unknown. Second,
although the threshold nonlinearity successfully separates discrete
distributions,% & �� � is generally zero for discrete distributions as
used in data communications, making the switching criterion in-
valid.

An alternative is to adapt the threshold vector� ��� � � � � � � ��
s
	
 according to

� �� � � � � � �) �� � (40)

where �� � is an estimate of the output kurtoses of the vector� at
sample time�. Additionally, � �� � is clipped at 0 and 1.5 to keep
it inside a meaningful region.

4.3. Output normalization

In the analysis of the stability we have shown that the scaling
factors in� � �0 � � � � � � 0�� 	
 have to be chosen according to
Eq. (21) in order to obtain output signals with unit variance. In an
environment where the probability distributions are given, Eq. (21)
can be evaluated off-line and� is thus fixed for the adaptation
part. If the distributions are unknown, however,� itself has to be
found adaptively. To this end, we note that for unimodal, symmet-
ric distributions,0 is a monotonously decreasing function of the
output standard deviation� �( . Vice versa,� �( can be written as� �( � 	  �0  �, where	  ��� is a monotonously decreasing function
for 0 7 �, hence ! 	 �0  �! 0  � � � (41)

The exact course of	 ��� depends on the pdf of the(th source. For
convenience we denote
 ��� � �	 � ��� � � � � � 	�� ���	
 . We define
our error function� � �? � � � � � � ?� � 	
 by the deviation from unit
variance ? � ) � �� J�( (42)

and its sum of squares as the cost function

 �� � � �
 � � ��� � � ?J � ��� � � �) � �� J�( �J � (43)

�� J�( denotes the estimation of the output power� J�( . The derivative
of the cost function

 �� � with respect to the gain� is

��  �� � � 9� � � ! ? �! 0 � � � � � � ! ?� �! 0�� 	
� � � ��) � �� J�� � �� �� ! 	 � �0 ��! 0 � � � � � �� � � � � �) � �� J�� � � �� �� � ! 	�� �0� � �! 0� � $
 � (44)

� denotes element-wise multiplication of two vectors. We can
now develop a stochastic gradient algorithm to adapt the gain vec-
tor

� �� � � � � � ���  �� � � (45)

Using Eq. (41) and the fact that
�� �( 7 �, we can incorporate

�� �(
and � �( �N ( ��N ( into a different step size�N and write

� �� � � � � � �N �� � �� J� � (46)

with �� J� � ��� J�� � � � � � �� J�� � 	
 being the vector of power esti-
mates and

�
a vector of ones, respectively. (46) is a simple AGC

(automatic gain control) algorithm, which normalizes the outputs
of the separation process. It runs along with the adaptationof �
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and�. Alternately, the normalization can of course be performed
by a separate AGC stage after the separation process. This isfor
example necessary if the mixture contains binary sources. It is
intuitively clear that a normalized source with symbol values& )
produces zero output after the threshold nonlinearity with� � )��.

In summary, the adaptive threshold nonlinearity algorithmis
given as

Adaptive Threshold Nonlinearity Algorithm� �� � � � � � � �� � � ����
 � � � (47)�  ��  � � 
 � � 5�  5 � �  0  *+$, ��  � � 5�  5 3 �  (48)

� �� � � �"+Q �� � � �) �� � � (49)

� �� � � � � � �N �� � �� J� � � (50)

5. SIMULATIONS

For the following simulations of the convergence behavior of blind
signal separation using the adaptive threshold device,� � � )� in-
dependent source signals were mixed by random matrix , whose
condition number is chosen� � � � )�� (the singular values of are logarithmically distributed). Block processing with ablock
length � � �� was applied. With this length the kurtosis esti-
mation for the purpose of threshold adaptation is accurate enough,
and inter-block memory does not offer any advantage.
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Figure 3: Course of some statistics during the separation process
of mixed-kurtosis signals. Top left: Separation performance. Top
right: Output powers. Bottom left: Adaptive threshold values.
Bottom right: Kurtoses of output signals.

In the first computer experiment we mixed three Laplacian,
three uniform, three 16-PAM, and one Gaussian source. If more
sources are Gaussian distributed, they can still be separated from
other sources by the adaptive threshold nonlinearity, but remain
mixed among themselves, leading to a disturbed permutationma-
trix. This is an inherent limitation of blind separation using higher-
order statistics, and is usually circumvented by the restriction to
at most one Gaussian source. The adaptive threshold nonlinear-
ity algorithm (47) to (50) was then used to separate the signals in

a block-processing manner. The step size of the adaptation was
adjusted for a residual mixing of


ICI

�� � � �9� dB, where the
performance measure


ICI

�� � � )� � F ��� � �
� ��
�� � % J �
� .P
� % J � H � ) (51)

is the average interchannel interference and is described in [15].
Fig. 3 shows the adaptation process. The effect of the AGC

can be observed as well as the convergence of the kurtoses of the
output signals to the respective values4 for Laplacian,

� )�9 for
uniform,

� )�9�� for 16-PAM, and� for Gaussian distributions.
The threshold values approach either� or )��, depending on their
kurtoses, and converge around 10000 samples, except for theout-
put with the Gaussian distribution where the threshold remains un-
decided.

In the next simulation we wanted to compare the adaptive
threshold nonlinearity algorithm with the algorithms found by
Douglaset al. [13] and Leeet al. [14]. To this end, we mixed 5
Laplacian and 5 uniform sources. The three algorithms were then
run with as similar parameters as possible to allow a fair compari-
son. A block processing with the block size� � �� was used for
all algorithms. The step sizes of the adaptation algorithmswere
adjusted individually for a residual mixing of


ICI

�� � � �9� dB.
Averaging over 50 runs with different matrices (all with thechar-
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Figure 4: Separation performance of adaptive threshold nonlinear-
ity.

acteristics as described above) were carried out to get typical be-
havior. Fig. 4 shows the separation performance for all tested al-
gorithms. The adaptive threshold nonlinearity algorithm and the
algorithm by Douglaset al. reach the

�9� dB point at exactly the
same time on average, whereas the extended Infomax algorithm
needs considerably more time.

A comparison with simulations of Laplacian sources only [5]
shows, that the convergence time associated with Laplacian
sources only is about the same as the convergence time obtained
here. Simulations also confirm that the adaptive threshold concept
is advantageous for mixed-kurtosis signals even if the distributions
are known, since by fixing the nonlinearity in advance we deprive
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the system of some degree of freedom by restricting the distrib-
utions to the outputs with the appropriate nonlinearity, whereas
with the adaptive threshold, the system is free to choose among
more permutations, thus reducing convergence time.

6. CONCLUSIONS

A threshold nonlinearity for the blind separation of any non-
Gaussian sources has been derived. The threshold nonlinearity
is not just a simplification of polynomial functions but the true
score function for the uniform distribution. As shown in a stability
analysis, it separates any sub-Gaussian signals and, if thethreshold
is reduced to zero, even super-Gaussian signals.

Using the kurtosis of the output signal to control the threshold
parameter, the adaptive threshold nonlinearity might be used for
the blind separation of mixed-kurtosis signals.

The threshold nonlinearity offers very simple implementation
options, since the set of possible output values of the nonlinearity
only contains three values,&0 and� for negative-kurtosis signals,
and two values,&0 for positive-kurtosis signals, respectively. The
threshold operation can easily be implemented by two comparators
only.

7. APPENDIX: DETAILED DERIVATION OF THE
THRESHOLD NONLINEARITY

Differentiating (6) with respect to� leads to% '& ��� � �8 � 5� 5: �= 6� *+$, ���: 89: ; < �= > ?6 @ AB AC DE � (52)

If we divide (52) by (6) and flip the sign we get� ��� � � % '& ���% & ��� � 8 � 5� 5: �= 6� *+$, ���: � 8: = 8 5� 5= 6� *+$, ��� �
(53)

For unit variance, we can find
:

from the general expression for
the�th-order moment of a generalized Gaussian signal [16]� �5� 5� � � ; � �� �= �; � �= � : � � (54)

For� � 9
, Eq. (54) gives� �5� 5J � � ; � G= �; � �= � : J � (55)

or, for unit variance, we have: � � ; � �= �; � G= � � (56)

Inserting (56) into (53) yields (7). Using
; �� � 1 ; �) � �� �� � *+, ���� from [17] leads to� ��� � 8 F ���� ��E���� �E 1 ; �) � �= �; �) � G�= � H E	 5� 5= 6� *+$, ��� � (57)

Both terms
; �) � �= � and

; �) � G�= � are close to
; �)� � ) for

large values of8 , so that simplification of (57) yields (8). The
first term of the Taylor expansion of a sine function for a small
argument is just the argument itself, leading to (9). Eq. (10) finally
is a consequence of the behavior of"+� 
	L 0 
 depending on0
being less or greater than one.
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