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ABSTRACT

A parameterized threshold nonlinearity, which separatesxa
ture of signals with any distribution (except for Gaussjéjntro-
duced. This nonlinearity is particularly simple to implemesince
it neither uses hyperbolic nor polynomial functions, uelikost
nonlinearities used for blind separation. For some spedisiti-
butions, the stable region of the threshold parameter ivetér
and optimal values for best separation performance ara gilfe
the threshold parameter is made adaptive during the separat
process, the successful separation of signals whosebdisom

2. THE THRESHOLD NONLINEARITY

The nonlinearity plays a central role in blind signal separa Its
nature is defined by the objective or contrast function, Wwhs
often some kind of information-theoretic measure, suchna®py
or mutual information. Very frequently, the nonlinearitiderived
by different methods are similar in nature for a given proligtb
distribution of the signals to separate. In fact, the exanteof the
nonlinearity might not matter [7]. Whereas the minimizatad the
mutual information leads to a pdf-independent polynomighw
several terms [1], both the Infomax and the Maximum-Liketid

is unknown is demonstrated and compared against other knownapproach [8] lead to

methods.

1. INTRODUCTION

Blind signal separation using higher-order statistichegiexplic-
itly or implicitly has attracted many researchers whosemggaial

is to separate a set of mixed signals as fast as possible heth t
smallest residual mixing. Most approaches require corapeat
least some knowledge of the source distributions. If saoteif-
ferent distributions are mixed, such techniques may faildok.

Throughout this paper we assume a linear mixing and separa-

tion process, where the measured signals [z1, ... ,zu,]” to
be processed are linear combinations of the original saigrels
s = [s1,...,5um,]7, weighted by scalars, which are the elements
of the mixing matrixA. M; denotes the number of sources as
well as the number of sensors. Recovery of the signals igedarr
out by a blind adaptive algorithm adjusting the coefficiesftthe
separation matri¥W. The output of the algorithm is therefore
u=[ui,...,ur]" = Wx =WAs =Ps. (1)
In order to successfully separate the signBlss WA should ap-
proximate as closely as possible a scaled permutationxmari
possible update equation for the separation ma¥ixesults from
either the minimization of the mutual information of the puit
signals [1], the output entropy maximization [2], the MLigs-
tor [3], the maximum negentropy [4], and applying the ndtgra-
dient [1] to these methods, or exchanging a non-blind éoiteof
an RLS-like algorithm with a blind criterion [5],

Wit =W+ (I - g(u)uT) Wi @)

wherey is the step sizd, the identity matrix, ang(u) aBussgang
nonlinearity [6].
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(9U¢

__Ps(w)
pS(Ui),

g(ui) = 1,...,M; (3)
whereps(u;) andp’s(u;) are the pdf and its derivative, respec-
tively, of the source signals. In the following, the range ofill

be assumed as that given in (3) if not indicated otherwisgis(3
referred to as the score function of a certain pgf.). From (3) it
can be seen, that super-Gaussian signals typically haneigl
nonlinearities such asign(.) or tanh(.), whereas sub-Gaussian
signals can be separated using a nonlinearity of the form

podd p> 3. 4)

p being odd ensures the validity of the sign after the nonfitea
If (4) is rewritten as

9(ws) = a-uf,

()

p is no longer restricted to odd integers, but can be any rattion
number greater than one. (5) also has the advantage thatiit is
rectly applicable to complex signals. A very simple nondinty
for the separation of sub-Gaussian signals has been démiyefl
starting from the pdf of a generalized Gaussian signal

g(ui) =a- i’ tui, p>1

Is] <

e

ps(s) = —=7ve \” (6)
)= 380 (D)
wherea > 2 for sub-Gaussian signals. The nonlinearity according
to(3)is
a/2
(2

9(w) = o (FE—D sign(wa) - Jus*™ (7)

I'(.) is the gamma function given byI'(a) =

15° %' exp(—z)dz, and shows a recursive property simi-
lar to the factorial functionl'(a + 1) = aI'(a). For largea, (7)



yields found to bed = 1.5. On the other hand, for the Laplacian distri-
) bution, which is an example of a super-Gaussian distribugioed
sin (z) o/ L can be written in the form of Eq. (6) witkh = 1, Eq. (7) simplifies
~ & sign(u;) - |us|*”".  (8)
a>1

g(ui)

sin (2X) 0

However, for largex the sine functions are well represented by the
first term of their Taylor expansions, so (8) becomes

g(ui) = V2sign(us) (14)

which is the same as (13) far = v/2 and® = 0. The signum

1\°/2 1 2N\ /2 nonlinearity can hence be regarded as a threshold noritiyneéth
g(ui) SN (—) sign(u;) - |ui|* ' = a— (u—”‘> . thresholdd set to zero.
a1 3 u; \ 3
©) 3. STABILITY ANALYSIS
In the limit for  — oo (uniform distribution) we get ththreshold . . .
nonlinearity In [10] it was shown that a necessary and sufficient stalilitye-
rion for the separation of th&h and;jth source is that the eigen-
) values of the Hessian sub-matrix

lim g(u¢)={ 0, - sign(ui) I“TI ; g (10)

o oo signlus), - fuil 2 V- = [Pl B} Blgi(si)si}
A more detailed derivation of Egs. (7) to (10) can be founchia t {9 (si)si} {95 (s} E{s?}

appendix. The infinite gain in (10) will of course cause canve
gence problems for a finite step size. The gain can therefere b
traded off against a lower threshafdor a specified output power.

are positive. For equal source distributions and nonlitiear the
eigenvalues oE are given by

To this end, we make use of the scaling equation [9] ky = E{gi(s))} E {sf} + E {g:(s:)s:} (16)
| pstuguiyusdu: =1 (11) wo = B{gie)} B} - Blgiosid. A7)

- Note that this analysis concerns local stability, hencesthtstics
which is a result of the Bussgang properpy (.) is a source dis-  Of s andu are interchangeable near convergence. Similar analy-
tribution with unit variances? = 1. Solving (11) for the uniform ~ Ses have been carried out in [11] and [12]. The source power is
distribution and a given thresholtiresults in a finite gain of assumed to be normalized to one, i {s}} = 1, and we scale

the nonlinearity such that {g;(s;)s;} = 1. Although the thresh-
23 old nonlinearity is not differentiable at = +¢, we can derive
=392 12 E {gi(s:)} by the use of-functions and assuming a symmetric
distribution

for 0 < ¥ < /3. The resulting threshold nonlinearity is oo
B o)} = [ ps(udgi(u)du,

N 0, |u1| <d
909 = { Duigatu), ol 59 a3 =
_ / ps (u)a(6(ui +9) + 8(us — 9))dus
and is depicted in Fig. 1. Note thatis always positive for the —oo
assigned range af. = 2a - ps (V). (18)
g(w) (16) and (17) can therefore be written as
? Kt = 2a-ps(d) +1 (19)
ar . ki =2a-ps(d) — 1. (20)
For a positive scaling factoa, (19) is always positive. To
! make (20) positive, we must ensure tBat- pg, (9) > 1 by suit-
7777777777777 -4 ! e able choice ofy. For the threshold nonlinearity and symmetric
1 9 ! distributions, Eg. (11) can be written as
2a/ ps(us)uidu; =1 (21)
9
—aT or, if solved for the scaling factor,
- 22
Figure 1: Threshold nonlinearity with parameter T3 Jo ps(ui)uidu;’ #2)
In [9], the application of (13) to sub-Gaussian pdfs othanth ~ Thus, the stability condition results in
the uniform distribution (e.gM-PAM or M-QAM) was demon- #)
strated with the possible need for adjusting gaiior normalized W 5 (23)

output power. By experiment, a good value for the threshald w J5” ps(uiuidu;
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Eq. (23) defines a stable region férdepending on the source
distribution. In order to find the optimal values for (in the

pdf gets close to the uniform distribution. Note that only floe
uniform distribution the threshold nonlinearity is the szdunc-

sense of quality of separation), we have to minimize the term tion (except for the finite gain).

Y+/k+ + v—/k— [10], with k4 and k_ defined by Egs. (16)
and (17), respectively, and

v+ = E{gi(s0)} E{si} + (B{gi(s:)s:})*  (24)
v =E{gi(s)} E{si} — (E{gi(s)s:})*.  (25)
For the threshold nonlinearity we can write
E{g(s:)} = QGZ/ ps (us)dus;. (26)
9
We then get
2a” [° ps(ui)du; + 1
rY+/K/++,y_/K’_ - 201])5(’(9)"‘1
2q2 I ps(ui)du; — 1
2aps(¥) — 1
8a3 9) [° i)du; — 2
_ 8a’ps(9) [y~ ps(ui)du @7
4a?p?%(9) — 1
so the optimal value for the threshold is
_4a®ps(9) [5° ps(ui)dui — 1
Fopt = arg min 1ap3(0) — 1 (28)

Fig. 2 shows the stability region and the optimal valueg of the
threshold nonlinearity for the generalized Gaussian itigion.
For signals withoe < 1, the stable range fat is roughly between
0 and 0.5 with an optimal value of 0. For this threshold vathe,
threshold nonlinearity is the true score function for theplaae
distribution. Interestingly, the optimal value for< o < 2 is
slightly higher than 0. At the other extreme is the uniforrstidb-
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Figure 2: Range of thresholdl (shaded area) as a function of the
generalized Gaussian parameter

ution witha = co. While the upper limit of the stability range is
/3, the lower limit is 1. The optimal value approach¢8 as the
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Generally speaking, for sub-Gaussian signals, the stahiger
is between 1 and/3. By decreasingx we approach the normal
distribution @ = 2), which clearly poses a singularity in the sta-
bility plot. This can be seen by the broken stability regiansund
a=2.

In the following we take a closer look at two distributions,
specifically the Laplacian and the uniform distribution@sresen-
tatives of super- and sub-Gaussian distributions, respeégtand
work out the optimal values for the threshatdFor the Laplacian
distribution, which is given by (6) with: = 1, or, for unit variance

= L Vol
V2

we get with Eq. (22) for the gain of the threshold nonlingarit

ps(s) (29)

1

‘s (19+ @) e-VED

(30)

Using (30) in (28) we find after some calculations the optimal
threshold as

V2eV? — (19+ 4)3
2(9+%2) - (9+ @)3

which by numerical inspection reveals,, = 0. A similar calcu-
lation can be carried out for the uniform distribution, givey

|z| < V3

otherwise

Popt = arg min (31)

(32

where the scaling factar has already been computed by Eqg. (12).
Eq. (28) then results in

8V3 — (V3+9) (39"
(V3+9) (1-G-07)7)

790pt

= arg min
& 9

(33)

Numerical inspection of (33) on the intervEO, \/?_)] shows that

190pt = \/g

4. BLIND SEPARATION OF ARBITRARY SOURCES

4.1. Known Methods

In practice, the distributions of the sources are often tidah
since the nature of their origin is related. In that casentirdin-
earity will be the same for all outputs. However, we may finel th
situation where some sources have different distributipassibly
with a different sign of their respective kurtoses. If in axtare
some sources are sub-Gaussian and some super-Gausgian dist
uted, the appropriate nonlinearity might be chosen in ackvaas
long as the number of sub- and super-Gaussian sources isiknow
Doing so, the system is deprived of some degree of freedom, du
to the restriction of permutation within the group of equaitksis
sign. In other words, once a nonlinearity is chosen, onlygaai
with the appropriate kurtosis can be separated at thatfapeat-

put. Other signals are forced away to outputs with the apjatap



nonlinearity. Global convergence can be greatly accealdray let-

ting the system choose its permutation closest to somaliriii-

ing condition. This can be achieved by an adaptive nonlitear

If the number of sub-Gaussian and the number of super-Gaussi

sources is unknown, adaptive nonlinearities are a negessit
Douglaset al. [13] switch between two nonlinearities, namely

g1(uw;) = U,? and g2(u;) = tanh(10u;) (34)
whereg:(.) and g2(.) separate sub- and super-Gaussian signals,
respectively. The algorithm does not try to normalize itspat
power regardless of the distribution. A sufficient stapilibndi-

tion is therefore
E{gi(u:)} B {u} — E{gi(us)us} > 0.

The left-hand side of (35) is constantly evaluated for the mon-
linearitiesg: (.) andg2(.). The larger value decides which nonlin-
earity is applied.

Similarly, Leeet al. [14] present an extended Infomax algo-
rithm, where the update equation for the separation magrigri
mulated as

(35)

Wi =Wi+p (I — Ktanh(u)u” — uuT) W: (36)

with K = diag[ki, ..., k)" being the vector of signsk; is
positive for a super-Gaussian and negative for a sub-Gausgi-
nal, respectively. If the distributions are unknown, thgnsinight
be switched according to a kurtosis estimation at the oubput
some parameter expressing the stability of the nonlinearit-
rently used. Similarly to (35) it follows

ki(1—-E {tanh(ui)Z})E {uf} — E {tanh(u;)u;}) > 0.
(37)
By choosingk; the same sign as the rest of (37), the algorithm is
stabilized. Thus, the sign must be adapted as
ki =sign (1 —E {tanh(ui)2})E {uf} — E {tanh(u;)us}) .
(38)

Again, output powers are not normalized, and depend on the
source distributions.

4.2. Adaptive Threshold Nonlinearity

Since we know that any non-Gaussian distribution can be-sepa
rated by the threshold nonlinearity with eithgre= 0 or ¥ =~ 1.5,

we can set up an algorithm in which the update equation for the
separation matrix is given by (2) with

0,
a; sign(ui),

|u7;| <Y

| > 9. (39)

9i(ui) = {
Each thresholdy; is chosen from{0, 1.5} as that value which
maximizes the right-hand side of (17) wigh(.) of (39). The use
of the stability equation to switch between the two threghaall-
ues has two important disadvantages. First, the valyg; 0f) is
difficult to work out since the functiops(.) is unknown. Second,
although the threshold nonlinearity successfully separdiscrete
distributions,ps(¥) is generally zero for discrete distributions as
used in data communications, making the switching criteiin
valid.
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An alternative is to adapt the threshold vectér
[91,..., 9T according to
Vi1 =P — poke (40)
wherek; is an estimate of the output kurtoses of the veetat
sample time. Additionally, 9;+1 is clipped at 0 and 1.5 to keep
it inside a meaningful region.

4.3. Output normalization

In the analysis of the stability we have shown that the sgalin
factors ina = [a1,... ,an,]" have to be chosen according to
Eqg. (21) in order to obtain output signals with unit variankcean
environment where the probability distributions are giveg. (21)
can be evaluated off-line anal is thus fixed for the adaptation
part. If the distributions are unknown, howevaritself has to be
found adaptively. To this end, we note that for unimodal, syt

ric distributions,a; is a monotonously decreasing function of the
output standard deviatiofy,. Vice versagy,; can be written as
ou; = fi(a:), wheref;(.) is a monotonously decreasing function
fora; > 0, hence

Ofi(ai)
Oa;

The exact course of;(.) depends on the pdf of théh source. For
convenience we deno®.) = [fi(.),-- -, fa.()]*. We define

<0.

(41)

our error functione = [e1, ... ,ear,]” by the deviation from unit
variance
ei =1—067, (42)
and its sum of squares as the cost function
M, M,
J(a)=e"e= Ze? = Z(l — &ZUZ)Q. (43)
i=1 i=1

&?,l_ denotes the estimation of the output powé;. The derivative
of the cost function/(a) with respect to the gaia is

_ 881 aeMST
VaJ(a)—QeQ[—aal,... ’aaMs]
2\, O
=-1 (1_02Ul)0U1 fgi?l)7"'7
2 v Ofulan)]”
,...,(1—03MS)0UMSM . (44)

dawmr,

s

® denotes element-wise multiplication of two vectors. We can
now develop a stochastic gradient algorithm to adapt thre -
tor

at+1 = at — p,VaJ(a). (45)

Using Eq. (41) and the fact th&t;, > 0, we can incorporatéy,
and 244 into a different step sizg, and write

a1 =ar — pa(1—67) (46)

with 6% = [67,,---,67,, |" being the vector of power esti-
mates and a vector of ones, respectively. (46) is a simple AGC
(automatic gain control) algorithm, which normalizes thepots

of the separation process. It runs along with the adaptatiaiV



andd. Alternately, the normalization can of course be performed
by a separate AGC stage after the separation process. This is
example necessary if the mixture contains binary sourcess |
intuitively clear that a normalized source with symbol esd-1
produces zero output after the threshold nonlinearity Wit 1.5.

In summary, the adaptive threshold nonlinearity algorifem
given as

Adaptive Threshold Nonlinearity Algorithm
Wit = Wi + (1 - g(u)uT) W, (47)
() — 0, |u1| <Y
gl(ul) = { a; sign(ui), |Uz| > 9 (48)
’l9t+1 = Clip (’19,5 - p,,gkt) (49)
a1 =a; — pa(l—67). (50)

5. SSIMULATIONS

For the following simulations of the convergence behavidiliod
signal separation using the adaptive threshold devifie= 10 in-
dependent source signals were mixed by random matyiwhose
condition number is chosep(A) = 100 (the singular values of
A are logarithmically distributed). Block processing witblack
length L = 64 was applied. With this length the kurtosis esti-
mation for the purpose of threshold adaptation is accuradegh,
and inter-block memory does not offer any advantage.

0
o
k=)
a-10
o |
L) i
-20 fl
0 5000 1000015000 0 5000 1000015000
sample index sample index
4

thresholdd

b MAM

5000 10000 15000
sample index

5000 10000 15000
sample index

Figure 3: Course of some statistics during the separatiocegs
of mixed-kurtosis signals. Top left: Separation perforg®nTop
right: Output powers. Bottom left: Adaptive threshold vedu
Bottom right: Kurtoses of output signals.

In the first computer experiment we mixed three Laplacian,
three uniform, three 16-PAM, and one Gaussian source. |Emor
sources are Gaussian distributed, they can still be sephfiam
other sources by the adaptive threshold nonlinearity, éotain
mixed among themselves, leading to a disturbed permutatsn
trix. This is an inherent limitation of blind separationmgiigher-
order statistics, and is usually circumvented by the ret#in to
at most one Gaussian source. The adaptive threshold nanrline
ity algorithm (47) to (50) was then used to separate the Egna
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a block-processing manner. The step size of the adaptatien w
adjusted for a residual mixing ofici(P) = —20dB, where the
performance measure
Mg
M, ZP?}:
k=1

(L)

i—1 m’?‘Xpik

Jia(P) = L

S

(51)

is the average interchannel interference and is descnibjdd].

Fig. 3 shows the adaptation process. The effect of the AGC
can be observed as well as the convergence of the kurtoshs of t
output signals to the respective valule$or Laplacian,—1.2 for
uniform, —1.209 for 16-PAM, and0 for Gaussian distributions.
The threshold values approach eitBesr 1.5, depending on their
kurtoses, and converge around 10000 samples, except fouthe
put with the Gaussian distribution where the threshold resnan-
decided.

In the next simulation we wanted to compare the adaptive
threshold nonlinearity algorithm with the algorithms fauby
Douglaset al. [13] and Leeet al. [14]. To this end, we mixed 5
Laplacian and 5 uniform sources. The three algorithms weze t
run with as similar parameters as possible to allow a fairzamn
son. A block processing with the block size= 64 was used for
all algorithms. The step sizes of the adaptation algoritiras
adjusted individually for a residual mixing dfci(P) = —20dB.
Averaging over 50 runs with different matrices (all with ttiear-

5,
A N — adaptive threshol
N Tl - - Douglas et. al.
o- > T - - Leeet. al.
_5,
)
KA
10
5]
~
_15,
_20,
_25 1 1 1 1 1 1 1 I
0 0.5 1 1.5 2 2.5 3 3.5 4
sample index x1d

Figure 4: Separation performance of adaptive thresholdmear-
ity.

acteristics as described above) were carried out to getalype-
havior. Fig. 4 shows the separation performance for aleteat-
gorithms. The adaptive threshold nonlinearity algorithma she
algorithm by Douglast al. reach the-20 dB point at exactly the
same time on average, whereas the extended Infomax algorith
needs considerably more time.

A comparison with simulations of Laplacian sources only [5]
shows, that the convergence time associated with Laplacian
sources only is about the same as the convergence time ethtain
here. Simulations also confirm that the adaptive threshmidept
is advantageous for mixed-kurtosis signals even if theitigions
are known, since by fixing the nonlinearity in advance we sepr



the system of some degree of freedom by restricting theilolistr 8. REFERENCES
utions to the outputs with the appropriate nonlinearity,eveas . . ) '
with the adaptive threshold, the system is free to choosengmo  [1] S.-I. Amari, A. Cichocki, and H. H. Yang, “A new learning

more permutations, thus reducing convergence time. algorithm for blind signal separation,Advances in Neural
Information Processing Systems, vol. 8, pp. 757—763, 1996.
6. CONCLUSIONS [2] A.J. Bell and T. J. Sejnowski, “An information-maximiza
tion approach to blind separation and blind deconvolution,
A threshold nonlinearity for the blind separation of any fion Neural Computation, vol. 7, pp. 1129-1159, 1995.
Gaussian sources has been derived. The threshold noftynear [3] j.-F. Cardoso, “Blind signal separation: Statisticehgi-
is not just a simplification of polynomial functions but theie ples,” Proc. |EEE, vol. 86, no. 10, pp. 2009—2025, Oct. 1998.

score function for the uniform distribution. As shown in alstity
analysis, it separates any sub-Gaussian signals and{fifréhold
is reduced to zero, even super-Gaussian signals.

Using the kurtosis of the output signal to control the thodgh

[4] M. Girolami and C. Fyfe, “Negentropy and kurtosis as pro-
jection pursuit indices provide generalised ICA algorigiim
in Proc. NIPS Aspen, CO, Dec, 7, 1996.

parameter, the adaptive threshold nonlinearity might kel der [5] M. Joho and H. Mathis, “Performance comparison of com-
the blind separation of mixed-kurtosis signals. bined blind/non-blind source separation algorithms,” in
The threshold nonlinearity offers very simple implemeiotat Proc. ICA, Aussois, France, Jan. 11-15, 1999, pp. 139-142.
options, since the set of possible output values of the neatity [6] R. H. Lambert and A. J. Bell, “Blind separation of multi-
only contains three values;a and0 for negative-kurtosis signals, ple speakers in a multipath environment,” Rroc. ICASSP,
and two valuesia for positive-kurtosis signals, respectively. The Munich, Germany, Apr. 21-24, 1997, pp. 423—-426.
threshold operation can easily be implemented by two coatipes [7] A. Hyvarinen and E. Oja, “Independent component analysi
only. by general nonlinear Hebbian-like learning rules3gnal
Processing, vol. 64, pp. 301-313, 1998.
7. APPENDIX: DETAILED DERIVATION OF THE [8] T.-W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski, “A
THRESHOLD NONLINEARITY unifying information-theoretic framework for independen
. o . component analysis,Int. J. Math. and Comp. Modeling, in
Differentiating (6) with respect te leads to press, 1999.
PN Is|\*" ! sign(s) a - %)“ [9] H. Mathis, M. Joho, and G. S. Moschytz, “A simple thresh-
ps(s) = —a (F) B 261 (1) e - (52 old nonlinearity for blind signal separation,” Rroc. ISCAS,

Geneva, Switzerland, May 28-31, 2000, accepted for publi-
If we divide (52) by (6) and flip the sign we get va, Switz y P publ

cation.
(s) = _p's(s) _ M al sign(s) a | |a_1 ign(s) [10] T. P. von Hoff, A. G. Lindgren, and A. N. Kaelin, “Trans-
98 = ps(s) B L als SIghS)- pose properties in the stability and performance of thesidas
(53) adaptive algorithms for blind source separation and dezonv

For unit variance, we can find from the general expression for lution,” Signal Processing, 2000, submitted.

thenth-order moment of a generalized Gaussian signal [16] [11] J.-F. Cardoso and B. H. Laheld, “Equivariant adaptverse
i separation,”|EEE Trans. Sgnal Processing, vol. 44, no. 12,
E(X|") = F(T)ﬂn (54) pp. 3017-3030, Dec. 1996.
r'(3) [12] S.-l. Amari, T.-P. Chen, and A. Cichocki, “Stability alysis
Forn = 2, Eq. (54) gives of adaptive blind source separatiorifeural Networks, vol.
s 10, no. 8, pp. 1345-1351, Aug. 1997.
E(X*) = (—a:)ﬁ2. (55) [13] S. C. Douglas, A. Cichocki, and S. Amari, “Multichan-
') nel blind separation and deconvolution of sources with-arbi
or, for unit variance, we have trary distributions,” inlEEE Workshop on Neural Networks
- for Sgnal Processing, Almelia Island Plantation, FL, Sept.
5= I'(3) (56) 1997, pp. 436-445.
F(%) [14] T.-W. Lee, M. Girolami, and T. J. Sejnowski, “Indepentle
Inserting (56) into (53) yields (7). Usingi(z) - T(1 — &) = component analysis using an extended infomax algorithm for

. from 1171 leads to mixed sub-Gaussian and super-Gaussian sourcisiiral
m/ sin(wz) from [17] Computation, vol. 11, no. 2, pp. 417—441, 1999.

sinﬂ%’" ra-x % i . [15] M. Joho, H. Mathis, and G. S. Moschytz, “An FFT-based al-
= T(1-2x) |s|*" sign(s).  (57) gorithm for multichannel blind deconvolution,” iroc. IS-
S @ CAS Orlando, FL, May 30 — June 2, 1999, pp. [11-203-206.

Both termsI'(1 — Z) andI'(1 — %) are close td'(1) = 1 for [16] R.H.LambertMultichannel Blind Deconvolution: FIR Ma-
large values ofx, so that simplification of (57) yields (8). The trix Algebra and Separation of Multipath Mixtures, Ph.D.
first term of the Taylor expansion of a sine function for a dmal thesis, University of Southern California, 1996.

argument is just the argument itself, leading to (9). Eq) {it@lly [17] I. N. Bronshtein and K. A. SemendyayevHandbook of

is a consequence of the behaviorlofi,, o a® depending oru Mathematics, Springer Verlag, 3rd edition, 1997
being less or greater than one. ’ ' '

g(s)=a

226



