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ABSTRACT

The prediction filters are well known models for signal
estimation, in communications, control and many others
areas. The classical method for deriving linear
prediction coding (LPC) filters is often based on the
minimization of a mean square error (MSE).
Consequently, second order statistics are only required,
but the estimation is only optimal i f the residue is
independent and identicall y distributed (iid) Gaussian.
In this paper, we derive the ML estimate of the
prediction filter. Relationships with robust estimation of
auto-regressive (AR) processes, with blind
deconvolution and with source separation based on
mutual information minimization are then detailed. The
algorithm, based on the minimization of a high-order
statistics criterion, uses on-line estimation of the residue
statistics. Experimental results emphasize on the
interest of this approach.

1. INTRODUCTION

The prediction filters are well known models for signal
estimation or modelisation, in communications, speech
processing, control and many others areas. The classical
method for estimating linear prediction coding (LPC)
[1] filters consists in minimizing of a mean square error
(MSE). As a consequence, the method is very simple
because second order statistics are only required, but the
estimation is only optimal i f the residue is independent
and identicall y distributed (iid) Gaussian.

However, if the residue is not Gaussian, the estimation
is no longer optimal. If one knows the theoretical
statistics, it is possible to improve the estimation by
using optimal (higher order) statistics. Otherwise, i.e. if
the statistics is not known,  one can wonder how to
implementing a quasi-optimal estimation.

This paper is organized as follows. In Section 2, we
derive the maximum likelihood (ML) estimate of LPC
and show that it only coincides to the classical method in
the Gaussian case. In Section 3, we compute the ML
estimate in the general case, which clearly involves the
score functions. In section 4, we show the relationships
with blind deconvolution and recent advances in source
separation, which inspire a new, quasi-optimal LPC
algorithm. Section 5 is devoted to experiments and
comparisons between the new and classical LPC
algorithms. Finall y, the major results and outline of
future works are summarized in the conclusion.

Figure 1. Block diagram linear prediction coding
system.

2. CLASSICAL LPC

The classical LPC methods are based on the
minimization of a mean square error, defined as the
difference between the input signal x k( )  and the

predicted signal )1()]([)( −= kxzwky , where w z( )  is a

L -th order causal finite impulse response filter, i.e. a
filter whose entrieswi = 0  for 1,,0 −∉ Li � . The block

diagram of a linear predictor is shown in Fig. 1.

From Fig. 1, it is easy to derive the cost function to be
minimized:
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Denoting E x k x k l R lxx[ ( ) ( )] ( )− = , the cost function

reduces to :
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which is the classical expression of the LPC criterion.
Minimizing this function with respect to the filter entries
provides the classical LS linear predictor.

This estimation can be viewed as a maximum likelihood
(ML) estimate in the special case of independent and
identicall y distributed (i.i.d.) Gaussian error. In fact,
first consider only the prediction at time k .  Taking into
account the relation y k x k e k( ) ( ) ( )= − , and denoting

pE (.)  the probabilit y density function (pdf) of the

residue e k( ) , the li kelihood of the estimation is :

)).()(()),(/)(( kykxpkxkyp E −=w (3)

where w denotes the parameter vector.
Now consider the prediction done using N successive
samples. Assuming that the errors e k( )  are iid, and
using the Bayes theorem, the li kelihood of the N samples
is:
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Taking the natural logarithm, the ML estimate is then:
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Assuming that the error e k( ) is a Gaussian zero mean
random variable:
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the Maximum Likelihood estimation is:
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As it is well known, in the Gaussian case,
asymptoticall y, the ML is nothing but the minimum
mean square error (MMSE) estimate.

3. HIGHER ORDER METHOD

Unfortunately, if the error is not Gaussian, the MMSE
estimate is no longer equal to the ML estimate.  In fact,
from  (5), one can compute the ML equation by deriving
the equation with respect to the entries w j :
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where ψ E (.)  denotes the derivative of  ln (.)pE , the so-

called score function. Consequently, asymptoticall y, for
any error distribution, the ML estimate of w j ,

j L= −0 1, , ,�  is equivalent to the equation set:

[ ] .1,,0,0)1())(( −==−− LjjkxkeE E
�ψ (8)

Basicall y, the score function is a nonlinear function,
except in the Gaussian case.  Then, equation (8) prove
that the optimal ML estimate involves higher (than 2)
order statistics, except in the Gaussian case.
Implementation of equations (8) suggests two questions :
• How is it possible to estimate the actual statistics of

the residue, which is generall y unknown ?
• What performance gain can be obtained with the

optimal criterion ?

4. LPC, DECONVOLUTION AND
SOURCE SEPARATION

Before to address these questions, we emphasize in this
section on the relationships between LPC, blind
deconvolution and source separation.

LPC is based on the assumption that the signal x k( )  is
linear, i.e. the linear auto-regressive (AR) filtering of an
iid sequence )(kn :

)()()( knkxzH = (9)

where K
K zhzhzH −− +++= �

1
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Figure 2. On the top, the convolution system F(z) and the deconvolution system G(z). The recovered signal y(k) is s(k) iff G(z)F(z)=1.
On the down, the classical LPC viewed as a deconvolution problem: 1/H(z) is the unknown filter and the dashed bloc its inverse, to be
estimated, in order to recover e(k)=n(k).

It is clear that the linear prediction of x k( ) is nothing
but the deconvolution of x k( ) , with a filter with the
constrained structure of Fig. 1, and that the optimal
solution should verify:

)()(1 1 zHzwz =− − (10)

as shown in Fig. 2.If n k( ) is Gaussian, classical LPC
and second order deconvolution are equivalent, because
the optimal filter must provide Gaussian residue e k( ) .
On the contrary, if )(kn is not Gaussian,  the error

residue must not be Gaussian. Equations (8) show that
the optimal deconvolution as well as the optimal LPC
must provide iid residue e k( ) with the same pdf than
n k( ) .Both problems involve higher order statistics, and
the knowledge of the pdf or of the score function is
required for choosing the optimal (high order) statistics
at the ML sense.

Recently, Taleb et al. [2, 3] addressed the problem of
Wiener system blind inversion using source separation
methods. Of course, this approach can also be used for

blind linear deconvolution. Assuming the observed
signal x k( )  satisfies

)()]([)( knzFkx = (11)

where F z( )  is an invertible filter and )(kn  an iid.

The deconvolution problem consists in estimating a filter
G z( )  such that G z F z( ) ( ) = 1. The output )(ke

of G z( ) must then be the iid sequence )(kn :

)()]([)( kxzGke = (12)

The key idea is based on the following parameterization.
Denotex( ) ( , ( ), ( ), , ( ), )k x k x k x k K= + +� � �1 , and

)(ke and )(kn similarly, then equation (11) writes :

)()( kk nFx = (13)

where F  is the infinite matrix :
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Similarly, equation (12) writes

)()( kk xGy = . (15)

Since successive samples of )(kn  are iid, the

components of the vector )(kn  are spatiall y statisticall y

independent. Then, equation (13) and (15) are nothing
but a mixing model and its separation matrix.
Consequently, the blind deconvolution problem is
equivalent to an infinite-size blind source separation
problem.

 Constraining the size of the matrix G , one can deduce
a truncated  estimation of the filter G z( ) by using source
separation methods. Anyway, it is now well known that
optimal blind source separation requires the knowledge
of the source ( s k( ) ) pdf or of its score function.

Many methods have been proposed for estimating the
score function. Pham et al. [4] proposed a simple
estimation of score using the projection on a basis of
nonlinear functions. Another approach consists in
estimating directly the score function with a universal
nonlinear model li ke a multil ayer perceptron, according
to a LS method. Detail s on this approach can be found in
[5]. A nonparametric approach can also been used, based
on the pdf estimation, and followed by a derivation,
which give the estimation:
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The pdf estimation can be done with kernel estimators
[6], whose a key parameter is the kernel width. This
parameter can be chosen easil y, but with a good
eff iciency, with the "rule of thumb" proposed in [6]. This
method has been used in the experiments of the
following section.

The first question of Section 3 is solved. The quasi-
optimal higher order predictor is then showed in Fig. 3.
It is a cascade of a classical LPC filter followed by a
score function estimator block, which allows to adjust
the filter )(zw  by satisfying :

[ ]E e k x k j j KEψ ( ( )) ( ) , , ,− − = =1 0 0 �

Algorithm. Denoting { })(,),2(),1( NxxxX �=  the

observation sequence, the quasi-optimal LPC algorithm
writes (for more detail s, see [2, 3]):

Require: X

% filter initiali zed to the Dirac function
w = 1
for k = 1 to N do
 % w filter output initiali sation

( ) ( )[ ] ( )1−= kxzwky

end  for 
% error (output) estimation
E=X-Y
repeat

% score function estimation
( )eEψ  estimation

% estimation of the croscorrelation between
% observation  and score function  (Eq. (8))

( )e,x Eψγ  estimation

% equivariant adaptation of filter coefficients

( ) w*ww e,x E 







++← δγµ ψ

for k = 1 to N do
% output estimation

( ) ( )[ ] ( )1−= kxzwky

end  for
to convergence
% final prediction error, output of the LPC system
E=X-Y

5. EXPERIMENTS

In this section, we compare LPC filters obtained with (i)
second-order statistics (the classical method, optimal for
Gaussian error pdf) using the Matlab LPC function, and
(ii ) the quasi-optimal (batch) algorithm, where the score
function is estimated using (16) and a kernel estimation
of the pdf (our algorithm).

The signal )(kx , used as input signal of the LPC system,

is generated by the linear filtering of a random noise
(Gaussian or non Gaussian) with an all -pole filter

)(
1

zH . Thus, the optimal filter w z( )  of the LPC

system should satisfy (10).

Performance is evaluated in terms of  the parametric
square error, averaged over 50 iterations, and has been
computed for signal lengths from 100 to 1000 samples.

In Fig. 4, we can see the parametric square errors
obtained with the theoretical filter =)(zH [1,0.5,-
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0.2], for non Gaussian noise. As intended, the quasi-
optimal algorithm (diamonds) provides a better
performance than the Matlab LPC (small squares),
whatever the number of samples of the signal. To
emphasize on the interest of the score function
estimation, we show experimentall y (stars) that an
arbitrary choice of the score function, i.e. of the higher
order statistics, leads to intermediate performance.

In Fig. 5, we can see the results obtained with the same
filter =)(zH [1,0.5,-0.2], but with Gaussian

noise. As intended, classical LPC (small squares) and
the quasi-optimal algorithm (diamonds) provide very
close performance. The classical LPC is better for small
samples, probably because of the score function
estimation error. In that case, the arbitrary choice of the
score function ψ ( ) ( )e atn e=  leads to similar results

(stars) (see Fig. 6).

Figure 3. Block diagram of the quasi-optimal higher order predictor.

Theoretical performance can be deduced from Beran
results [7] concerning autoregressive processes, since
LPC and RA modeling are dual problems (see Section
4).Denoting *w  the exact solution, and MMSEŵ  and

ψŵ the estimates based respectively on second order

statistics  (Gaussian residue) and on higher order
statistics (score function of residue is )(eEψ ), Beran

shows that the asymptotic distribution of )ˆˆ(2/1 ww −ψN

as ∞→N  is Gaussian ),0( 12 −Γψ , with

∫= duupu )()(22 ψψ  and )(
)(')( up

upu =ψ , while the

asymptotic distribution of  )ˆˆ(2/1 ww −MMSEN  as ∞→N

is Gaussian ),0( 12 −Γσ . Then, the asymptotic eff iciency

of  MMSEŵ  is always less than or equal to the asymptotic

eff iciency of ψŵ , with equalit y if and only if the residue

pdf is Gaussian. Experiments confirm these results, and
emphasize on the performance gain of quasi-optimal
LPC, especiall y for small samples.

6. SUMMARY

Inspired by source separation techniques, we have
presented a new algorithm for performing linear
prediction, which gives better results than the classical
LPC methods, especiall y for small samples.

The method is based on a criterion which requires the
knowledge of error pdf, or more precisely of the score
functions. Implicitl y, this criterion involves higher order
statistics, which can be chosen optimally with a good
estimation of the score function, e.g. computed from
kernel estimators of the error pdf.

For non Gaussian noise (RND3), experiments show that
this method is always better than Matlab LPC function,
simply based second order statistics. For Gaussian noise,
performance obtained with the two methods are equal.

Currently, practical and theoretical issues are both
addressed: (i) how improve the estimation of the score
function for enhancing the results and obtaining faster
and better algorithms, (ii ) computing the performance of
the method according to the estimation error on the score
function.
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Figure 4. Error variance averaged over 50 iterations, for
signal lengths from 100 to 1000 samples, with non
Gaussian (RND3) noise. Small squares are obtained by the
Matlab LPC function ; Diamond are the results of the quasi-
optimal algorithm ; Stars corresponds to arbitrary higher
order statistics due to the approximation ψ ( ) ( )e atn e= .

Figure 5. Error variance averaged over 50 iterations
and for signal lengths from 100 to 1000 samples, with
Gaussian noise. The results obtained by classical LPC
(small squares) and quasi-optimal (diamonds)
algorithms are very close.

Figure 6. Error variance averaged over 50 iterations
and for signal lengths from 100 to 1000 samples, with
Gaussian noise. The results obtained by classical LPC
(small squares) and heuristic higher order (stars)
algorithms are very close.
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