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ABSTRACT

The prediction filters are well known models for signal
estimation, in communications, control and many others
areas. The dasdca method for deriving linear
prediction coding (LPC) filters is often based on the
minimization of a mean square earor (MSE).
Consequently, second order statistics are only required,
but the estimation is only optimal if the residue is
independent and identically distributed (iid) Gaussan.
In this paper, we derive the ML egtimate of the
prediction filter. Relationships with robust estimation of
auto-regressve  (AR)  processs, with  blind
deoonvolution and with source separation based on
mutual information minimizaion are then detailed. The
algorithm, based on the minimization of a high-order
statistics criterion, uses on-line estimation of the residue
datistics. Experimental results emphasize on the
interest of this approach.

1. INTRODUCTION

The prediction filters are well known models for signal
estimation or modelisation, in communications, speet
processng, control and many others areas. The dasscal
method for estimating linear prediction coding (LPC)
[1] filters consists in minimizing of a mean square eror
(MSE). As a consequence, the method is very smple
becuse semnd order statistics are only required, but the
estimation is only optimal if the residue is independent
and identically distributed (iid) Gaussan.

However, if the residue is not Gausdan, the estimation
is no longer optimal. If one knows the theoretical
datigtics, it is possble to improve the estimation by
using optimal (higher order) statistics. Otherwise, i.e. if
the statistics is not known, one @n wonder how to
implementing a quasi-optimal estimation.
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This paper is organized as follows. In Sedion 2, we
derive the maximum likelihood (ML) estimate of LPC
and show that it only coincides to the dasdcal method in
the Gausdan case. In Sedion 3, we mmpute the ML
estimate in the general case, which clearly involves the
score functions. In sedion 4, we show the relationships
with blind deconvolution and recent advances in source
separation, which inspire a new, quasi-optimal LPC
algorithm. Sedion 5 is devoted to experiments and
comparisons between the new and classcal LPC
algorithms. Finally, the maor results and outline of
future works are summarized in the wnclusion.

x(K) d(k) = x(k) e(k)
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Figure 1. Block diagram linea prediction coding
system.

2. CLASSICAL LPC

The dasscal LPC methods are based on the
minimization of a mean square eror, defined as the
difference between the input signal x(k) and the

predicted signa y(k) =[w(2)]x(k—1), where w(2) is a
L -th order causal finite impulse response filter, i.e. a
filter whose entriesw; = 0 fori [J(0,...,L~1). The block

diagram of alinear predictor is own in Fig. 1.

From Fig. 1, it is easy to derive the st function to be
minimized:



J = E[e” (k)] = E[(x(k) - y(k))*]

= E[x?(K)] - 2Lz_lwn E[x(K)x(k - n—-1] )

L-1L-1
+ w_ W, E[x(k —-m-2)x(k -n-1]

Denoting E[x(K)Xx(k —DN]=R.(),
reducesto:

the st function

L-1L-1

3= RXX(O)—2ZWHRXX(n+1)+ >

m=0n=

WmWn RXX (m_ n) (2)

which is the dasdcal expresson of the LPC criterion.
Minimizing this function with resped to thefilter entries
provides the dasdcal LS linear predictor.

This estimation can be viewed as a maximum likelihood
(ML) egtimate in the speda case of independent and
identically digtributed (i.i.d.) Gaussan error. In fact,
first consider only the prediction at time k. Taking into
acoount the relation y(k) = x(k) —e(k), and denoting
P (.) the probability density function (pdf) of the
residue (k) , thelikelihood of the estimation is:
P(y(K) / x(k), w) = pe (X(k) = y(K)).

where w denotes the parameter vedor.

Now consider the prediction done using N successve
samples. Asauming that the arors e(k) are iid, and

using the Bayes theorem, the likelihoad of the N samples
is.

3

p(y/X(k) x(k=1),..
= |_| p(y(k+i)/ x(k =i), w)

=0

S X(K=N+1D,w)

N-1

= | | Pe Ok +1) = y(k+1))

1=0

(4)

=[] pe(e(k+i))
Taking the natural logarithm, the ML estimate is then:
ArgMax, § In(pe (el + ) )

Asaming that the aror ek)is a Gaussan Zero mean
random variable;

(6)

o ( e (k+|)E

r

the Maximum Likelihood estimation is:
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ArgMin,, ﬁl(e(km)% ()
=0 O

As it is wdl known, in the Gaussan case
asymptotically, the ML is nothing but the minimum
mean square eror (MM SE) estimate.

3. HHGHER ORDER METHOD

Unfortunately, if the eror is not Gaussan, the MM SE
estimate is no longer equal to the ML estimate. In fact,
from (5), one @n compute the ML equation by deriving
the eguation with resped to the entries w; :

o In(pe (el )= 5 P (e i) )

IOd 1=0 J

=—§¢'E(e(k+i))x(k+i - D

where (. (.) denotesthe derivative of Inp.(.), the so-

called score function. Consequently, asymptatically, for
any eror distribution, the ML estimate of w,

Jl
j=0,...,L -1, isequivalent to the ejuation set:

Elwe (e)xk-j-D]=0, j=0...L-1 ()
Basically, the score function is a nonlinear function,
except in the Gausdan case. Then, equation (8) prove
that the optimal ML estimate involves higher (than 2)
order datistics, except in the Gaussan case.
Implementation of equations (8) suggests two questions :
* How isit possble to estimate the actual statistics of

the residue, which is generall y unknown ?
e What performance gain can be oktained with the
optimal criterion ?

4. L. PC, DECONVOLUTION AND
SOURCE SEPARATION

Before to address these questions, we a@nphasize in this
sedion on the relationships between LPC, blind
deoonvolution and source separation.

LPC is based on the assumption that the signal x(k) is
linear, i.e. the linear auto-regressve (AR) filtering of an
ild sequence n(k) :

H (2)x(k) = n(k) 9)

where H(2) =1+hz +--.+h, z¢



n(k) x(K) e(k)
—» F©2) » G(2 >
unknown observation
n(k)
K d(k) = x(k K
VH() =X( ) (K) = x(k) . e(k)
Z_:L > \N(Z)
x(k-1) y(k)

Figure 2. On the top, the convolution system F(z) and the deconvolution system G(2). The recovered signa y(K) is s(k) iff G(2F(2)=1.
On the down, the clasdcal LPC viewed as a deconvolution problem: 1/H(2) is the unknown filter and the dashed bloc its inverse, to be

estimated, in order to recover e(k)=n(k).

It is clear that the linear prediction of x(k)is nothing
but the demnvolution of x(k), with a filter with the

constrained structure of Fig. 1, and that the optimal
solution should verify:

1-z"'W(2) =H(2) (10)

as down in Fig. 2.If n(k) is Gaussan, classca LPC
and seand order demnvolution are ejuivalent, because
the optimal filter must provide Gausdan residue e(k) .
On the antrary, if n(k)is not Gausdan, the earor
residue must not be Gaussan. Equations (8) show that
the optimal dewnvolution as well as the optimal LPC
must provide iid residue e(k) with the same pdf than
n(k) .Both problems involve higher order statistics, and
the knowledge of the pdf or of the score function is
required for choosing the optimal (high order) statistics
at the ML sense.

Recently, Taleb et al. [2, 3] addresed the problem of
Wiener system blind inversion using source separation
methods. Of course, this approach can also be used for
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blind linear demnvolution. Asauming the observed
signal x(k) satisfies

x(k) = [F(2)In(k)

where F(z) isaninvertiblefilter and n(k) aniid.

(11

The demnvolution problem consists in estimating a filter
G(z) such that G(z2)F(2)=1. The output e(k)
of G(z) must then be the iid sequence n(k) :

e(k) =[G(2)]x(k) 12
The key idea is based on the following parameterization.

Denotex(k) = (---, X(k), x(k +1),---, x(k + K),---), and
e(k) and n(k) smilarly, then equation (11) writes:
x(k) = Fn(k) (a3
where F istheinfinite matrix :
G- f(p+td) f(p) f(p-1) ---C
F= 14
é f(p+2) f(p+D  f(p) E 9



Similarly, equation (12) writes

y(k) =Gx(Kk). (15
Since successve samples of n(k) are iid, the
components of the vedor n(k) are spatially statistically
independent. Then, equation (13) and (15) are nothing
but a mixing mode and its sparation matrix.
Consequently, the blind demnvolution problem is

equivalent to an infinite-size blind source separation
problem.

Constraining the size of the matrix G, one @an deduce
atruncated estimation of thefilter G(z) by using source
separation methods. Anyway, it is now well known that
optimal blind source separation requires the knowledge
of the source (s(k) ) pdf or of its score function.

Many methods have been proposed for estimating the
score function. Pham et al. [4] proposed a simple
estimation of score using the projedion on a basis of
nonlinear functions. Ancther approach consists in
estimating dredly the score function with a universa
nonlinear mode like a multil ayer perceptron, according
to a LS method. Detail s on this approach can be found in
[5]. A nonparametric approach can also been used, based
on the pdf estimation, and followed by a derivation,
which give the estimation:
Pe(@=2E(9) (16
Pe
The pdf estimation can be done with kerne estimators
[6], whose a key parameter is the kernel width. This
parameter can be dosen easily, but with a good
efficiency, with the "rule of thumb" proposed in [6]. This
method has been used in the e&periments of the
following sedion.

The first question of Sedion 3 is lved. The quasi-
optimal higher order predictor is then showed in Fig. 3.
It is a cascade of a classcal LPC filter followed by a
score function estimator block, which allows to adjust
thefilter w(z) by satisfying :

E[we (e(k) x(k-j-D] =0, j=0,--,K

Algorithm. Dencting X :{x(l),x(2),...,x(N)} the
observation sequence the quasi-optimal LPC algorithm
writes (for more detail s, see[2, 3)):

Require: X

196

% filter initialized to the Dirac function

w=1

for k=1toNdo

% w filter output initialisation

ylk)= [Wz)x(k -1)

end for

% error (output) estimation

E=X-Y

repeat
% score function estimation
1/ (e) estimation
% edimation d the croscorrelation between
% ohservation andscore function (Eg. (8))
Y. (e) ESiMation

% equivariant adagation d filter coefficients
W~ W+ l_,lEwaE(e) +5% w
O O

for k=1toNdo
% output estimation
ylk)= [Wz)x(k -1)
end for
to convergence
% final predictionerror, output of the LPC system
E=X-Y

5. EXPERIMENTS

In this ®dion, we cmpare LPC filters obtained with (i)
second-order statistics (the dasscal method, optimal for
Gaussan error pdf) using the Matlab LPC function, and
(i) the quasi-optimal (batch) algorithm, where the score
function is estimated using (16) and a kernel estimation
of the pdf (our algorithm).

Thesignal x(k), used asinput signal of the LPC system,

is generated by the linear filtering of a random noise
(Gaussan or non Gausdan) with an all-pole filter

}{-I(z)' Thus, the optimal filter w(z) of the LPC
system should satisfy (10).

Performance is evaluated in terms of the parametric
square aror, averaged over 50 iterations, and has been
computed for signal lengths from 100to 1000samples.

In Fig. 4, we @n see the parametric square arors
obtained with the theoretical filter H(z)=[ 1, 0.5, -



0. 2], for non Gaussan noise. As intended, the quasi-
optimal algorithm (diamonds) provides a better
performance than the Matlab LPC (small squares),
whatever the number of samples of the signal. To
emphasize on the interest of the score function
estimation, we show experimentaly (stars) that an
arbitrary choice of the score function, i.e. of the higher
order statistics, leads to intermediate performance

In Fig. 5, we @n seethe results obtained with the same
fiter H(2)=[1,0.5,-0.2], but with Gaussan

noise. As intended, classcal LPC (small squares) and
the quasi-optimal algorithm (diamonds) provide very
close performance The dasscal LPC is better for small
samples, probably because of the score function
estimation error. In that case, the arbitrary choice of the
score function ¢ (e) =atn(e) leads to similar results

(stars) (seeFig. 6).

x(K) d(k) = x(K) e(k) Y(e(K)
> ) —
o Z o W
X(k-1) y(K)
Figure 3. Block diagram of the quasi-optimal higher order predictor.
Theoretical performance @n be deduced from Beran 6 SUMMARY

results [7] concerning autoregressve processs, since
LPC and RA modding are dual problems (see Sedion
4).Dencting w* the eact solution, and W, and

W, the estimates based respedively on second order

datistics  (Gaussan residue) and on higher order
dtatistics (score function of residue is (e (€)), Beran

shows that the asymptotic distribution of N2 (W, —W)

O e T ™),
2 = 2 = pl(u) i

ol = fo* @p@du and gy =P U wiile the

asymptotic distribution of N*?(W e —~W) @ N - o

as N o is Gaussan with

is Gaussan (0,0°T ™). Then, the asymptotic eficiency
of Wyuse iSaways lessthan or equal to the asymptotic
efficiency of W, , with equality if and only if the residue

pdf is Gausgan. Experiments confirm these results, and
emphasize on the performance gain of quasi-optimal
LPC, espedally for small samples.
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Inspired by source separation techniques, we have
presented a new algorithm for performing linear
prediction, which gives better results than the dasscal
LPC methods, espedally for small samples.

The method is based on a criterion which requires the
knowledge of error pdf, or more predsdy of the score
functions. Implicitly, this criterion involves higher order
gtatistics, which can be dosen optimally with a good
estimation of the score function, eg. computed from
kernd estimators of the aror pdf.

For non Gaussan noise (RND?), experiments show that
this method is always better than Matlab LPC function,
simply based second order statistics. For Gaussan noise,
performance obtained with the two methods are equal.

Currently, practical and theoretica issies are bah
addres=d: (i) how improve the etimation of the score
function for enhancing the results and obtaining faster
and better algorithms, (ii) computing the performance of
the method according to the etimation error on the score
function.
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Figure 4. Error variance averaged over 50 iterations, for
signal lengths from 100 to 1000 samples, with non
Gaussan (RND?) noise. Small squares are obtained by the
Matlab LPC function ; Diamond are the results of the quasi-
optimal algorithm ; Stars corresponds to arbitrary higher
order statistics due to the goproximation (e) = atn(e) .
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Figure 5. Error variance averaged over 50 iterations
and for signal lengths from 100 to 1000 samples, with
Gausdan noise. The results obtained by classcal LPC
(small squares) and quesi-optimal  (diamonds)
algarithms are very close.
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Figure 6. Error variance averaged over 50 iterations
and for signal lengths from 100 to 1000 samples, with
Gausdan noise. The results obtained by classcal LPC
(small sguares) and leuristic higher order (stars)
algarithms are very close.
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