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ABSTRACT

Most ICA algorithms are based on a model of station-
ary sources. This paper considers exploiting the (possible)
non-stationarity of the sources to achieve separation. We in-
troduce two objective functions based on the likelihood and
on mutual information in a simple Gaussian non stationary
model and we show how they can be optimized, off-line
or on-line, by simple yet remarkably efficient algorithms
(one is based on a novel joint diagonalization procedure, the
other on a Newton-like technique). The paper also includes
(limited) numerical experiments and a discussion contrast-
ing non-Gaussian and non-stationary models.

1. INTRODUCTION

The aim of this paper is to develop a blind source separa-
tion procedure adapted to source signals with time varying
intensity (such as speech signals). For simplicity, we shall
restrict ourselves to the simplest mixture model:

� ��� � �� ���
(1)

where
� ��� � �� 	 ��� 
 
 
 �� ����


is the vector of obser-
vations (at time

�
),
�

is a fixed unknown� � � invertible
matrix and

� ��� � �� 	 ��� 
 
 
 �� ����

is the vector of

source sequences and



denotes the transpose. The goal is
to reconstruct the sources

�� ���
basedonly on the assump-

tion of their mutual independence.
Most of the approaches to blind source separation are

based (explicitly or not) on a model where, for each�, ��� ����
is a sequence of independently and identically distributed
(i.i.d) variables (see [3] for a review of this approach). In
this case, the blind identification of

�
is possible only if

at most one of the sources has a Gaussian (marginal) dis-
tribution. In contrast, if the source sequences are not i.i.d.,
it is possible to blindly identify

�
even for Gaussian pro-

cesses. This is the case when each source sequence is a sta-
tionary (possibly Gaussian) process with non proportional

spectra [10, 12, 2] and when sources are non stationary pro-
cesses [11, 13, 7, 8, 4]. In this paper, we derive objective
functions from a simple non stationary model and introduce
algorithms for their optimization, leading to very efficient
separation techniques for non stationary sources.

2. OBJECTIVE FUNCTIONS

Using a simple non stationary model, we derive in this sec-
tion two objective functions based on the maximum likeli-
hood and minimum mutual information principles. In order
to exploit non stationarity, we shall make the simplest dis-
tributional assumptions compatible with it: the sources are
temporally independent and are Gaussian with a time de-
pendent variance. We must stress that this is only awork-
ing assumptionin order to derive objective functions. By
making the independence assumption, we simply have cho-
sen not to exploit the time dependence of the source signals
and by making the Gaussian assumption, we have chosen
to base the our procedures on second order statistics only.
However, our algorithms are applicable even for colored
non Gaussian sources (see section 4 for instance).

2.1. Maximum likelihood

The maximum likelihood (ML) objective is more conve-
niently handled by considering the negative of the normal-
ized log probability density of the data set

� ���
, . . . ,

� �� �
,

which we denote by�� � . Under the Gaussian temporally
independent model:

�� � �
�
�

��
��	

�
� tr
� !" ���� !	� ���� ���
 � !
 �

# �
� $%& '() ��* " ���� # $%& + '() � + (2)

where tr denotes the trace,
�!


stands for
�� !	�


(for
short) and

 " ���
is the covariance matrix of

� ���
, which is

diagonal with diagonal elements, "	 ���, . . . , , "� ���.
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The variation of�� � with respect to
�

is better ex-
pressed by computing its relative gradient, that is, the� ��
matrix denoted� , such that�� � �� # �� � � �� � �� � #
tr
�� 
� � # � ��� ��

. One finds

� � �
�

��
��	

 !" ��� �� ��� �� ���
 � �
(3)

where
�� ��� � � !	� ���

. The stationary points (with re-
spect to variations of

�
) of the likelihood are characterized

by � � �
. The off diagonal elements of this matrix equa-

tion are:

�
�

��
��	

��� ��� ��� ���	, "� ��� � � �� 
 � �� � 
 � � (4)

��� ���
being the�-th component of

�� ���
. These equations

express some form of non-correlation between the recon-
structed sources. The diagonal conditions merely state that
the normalized reconstructed sources

���	,� must have unit
sample variance, thus determining the “scale factor” in

�
.

In most practical situations, the variance profiles, "� ���
are not known in advance and must also be estimated from
the data. The standard ML approach is to postulate a para-
metric model for these profiles. In a blind context, however,
a non parametric approach is to be preferred: we simply es-
timate, "� ��� as a smoothed version of

�� "� ���
. Note thatthe

estimate of, "� ��� needs not be consistentbecause the decor-
relation condition
 ��� ����� ���	, "� ���� � �

, for which (4)
is an empirical version, holds for zero mean independent
sources, even if, "� �
� is not the true variance profile.

2.2. Block Gaussian likelihood

In this section, we consider a ‘block Gaussian’ model in
which the interval

�� � � �
may be divided into� consecutive

subintervals
� 	

, . . . ,
�� such that, "� ��� � , "� �� for

� � � �,
for all � � � � � � � �� . Define the matrices

� � � � "� �
 � �� � � �
�� �

�
��� �

� ���� ����
(5)

where
 "� is the diagonal matrix with diagonal elements, "	 ��

. . . , , "� �� and
�� � denotes the number of elements of

� �.
Then the normalized log likelihood (2) can be expressed as

�� � �
�
�
��
�� 	 ��� � �� � +�� � # Constant (6)

where�� � �� � 	� is the proportion of data points in the�
-th subinterval and

� ��� +� � � �
tr
�� !	� � � � � $%& '() �� !

	� � � � � � (7)

denotes the Kullback-Leibler divergence between two zero
mean� -variate normal densities with covariance matrices��

and
� �

respectively. It is known that� ��� +�� � � �
with equality if and only if

�� � ��
and thus is a legiti-

mate measure of deviation between positive matrices. Fur-
ther, for

� � of the form
� "� �
 , we have� � �� � +�� � �

� �� !	 �� �� !
 + "� � and therefore

�� � �
�
�
��
��	 ��� �� !

	 �� �� !
 + "� � # Constant
�

(8)

For any positive
�

and any positive diagonal
 

, the diver-
gence� �� + � can be decomposed as:

� �� + � � � �� +diag
� � # � �diag

� + � (9)

where diag
�

denotes the diagonal matrix with the same di-
agonal as

�
. Let us then define

off
�� � � � �� +diag

� � �
(10)

which measures deviation from diagonality since it is non
negative and can be zero only if it argument is diagonal. Us-
ing (9), the likelihood criterion (8) is seen to be minimized
for a fixed value of

�
when

 "� � diag
�� !	 �� �� !
 � and

the attained minimum is

� �� � �
��
��	 �� off

�� !	 �� �� !
 � # Constant
�

(11)

It is very striking that the ‘block-Gaussian’ likelihood di-
rectly leads to an objective function which is a criterion of
joint diagonalization. The idea of joint approximate diago-
nalization has already been used for source separation under
different hypothesis: non Gaussian sources in [5], colored
processes in [2]. In these contributions, however, the mea-
sure of joint diagonality was a simple quadratic criterion,
not directly related to the likelihood objective and more-
over is optimized under an orthogonality constraint which
requires prior whitening of the observations.

2.3. Gaussian mutual information

We turn to a different objective: finding a transformation
matrix � which minimizes of the mutual information be-
tween the random vectors

������ ��� 
 
 
 ����� �� ��
 �  � � � � � � �� (12)

Rather than trying to estimate the actual mutual informa-
tion, we shall consider instead the Gaussian mutual infor-
mation, defined in the same way as the ordinary mutual in-
formation but with respect to some hypothetical Gaussian
random vectors which have the same covariance structure
as the random vectors of interest. As we shall see, thanks
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to the non stationarity of the model, using the Gaussian mu-
tual information still allows to achieve separation. Since
the Kullback-Leibler divergence between the two Gaussian
densities of zero mean and covariance matrices� and� is� �� +� �, the normalized Gaussian mutual information be-
tween the vectors (12) equals

	
� � ��� 	 off

��� ���� � �where� ���
denotes the covariance matrix of

� ���
. In practice,

matrix
� ���

is unknown; a sensible approach is to replace it
by some non parametric kernel estimator:

�� ��� � � ���	  � �!�� �� �� �� �� �
� ���	  � �!�� �
where

 
is a positive kernel function and� is a window

width parameter. The separation procedure then consists of
minimizing

	
� � ��� 	 off

�� �� ����
 � with respect to� . But

as
�� ���

should vary slowly with
�
, one may approximate the

above criterion by

�� � � �
�

��
�� 	 off

�� �� ��� 	� �� � � (13)

with � being some integer not exceeding
�

. The role of� is only to reduce the computation cost. There is little to
gain by taking large�, since then the successive matrices�� ��� 	� � would be very similar.

2.4. Discussion

Connections. It is not a coincidence that the above ap-
proaches lead to similar separating objectives. This is be-
cause the expectation of (2) is (up to a constant) a Kullback-
Leibler divergence while the criterion (13) originates from a
related Kullback-Leibler divergence. One can also compare
these approaches on the basis of the corresponding estimat-
ing equations. The minima of�� � are easily shown to be
solution of

�
�

��
��	

����� ��� 	� ������ ��� 	� �
� � � � 
 � �� � 
 � (14)

where, with
���

denoting the�-th component of
��� , we set:����� ��� � � ���	  � �!�� � ��� �� � ��� �� �� ���	  � �!�� � �

These equations are quite similar to (4), except that
�� ����� ���

and, "� ��� are replaced by local averages of
����

and of
� "�

around the time point
�

and that the time average in (4) is
sparser, using a time step of

� 	� instead of
�
.

Super efficiency. An interesting feature in the noise free
non stationary setting is that there is room for ‘super effi-
ciency’, that is, for estimating the mixing matrix with an er-
ror which decreases faster than

�	��
. Assume that the�-th

source is silent over a given interval	 and the other sources
are not, then there exists a vector
 � such that

� � ��� � �
for all

� � 	 . Since this vector must be orthogonal to all
columns of

�
but the�-th column, it is proportional to the�-

th row of
�!	

. Therefore this row can be determined with-
out error from a finite number of samples. Summarizing
the data in the interval	 by the sample covariance matrix�� �

preserves the possibility of error free because the ma-
trix

�� �
although subjected to estimation errors always has

its null space spanned by
 � and this is all that matters for
finding the�-th row of

�!	
without error.

In practice, a situation allowing super efficiency is un-
likely to occur (for one thing, some noise is always present).
But it is a guarantee of statistical effectiveness that a crite-
rion yields super efficient estimates whenever such a possi-
bility exists. This is the case of criterion (11).

3. ALGORITHMS

3.1. Block algorithm

The block Gaussian likelihood criterion (11) can be effi-
ciently minimized thanks a novel joint approximate diago-
nalization algorithm which is now briefly described (see [9]
for more details). Given positive matrices

�� 	
, . . . ,

�� � and
a set� 	, . . . , �� of positive weights, it computes a matrix� minimizing � ���	 ��off

�� �� ��
 �. It works similarly to
the classic Jacobi method by making successive transforma-
tions on each pair of rows of� , but the transformations here
arenot constrained to be orthogonal. Explicitly, let� � � and�� �

be any two distinct rows of� . The algorithm changes� into a new matrix with these rows given by
� � ��� � � � 
� � ��� � � � � �� 
� � ��� � � �
(15)

the other rows being unchanged. The
� � � matrix

� ��
can

be chosen such that the criterion is sufficiently decreased.
The procedure is then repeated with another pair of rows.
The processing of all the� �� � ��	�

pairs is called a
sweep. The algorithm consists in repeated sweeps until con-
vergence is reached. Matrix

� ��
in (15) is computed as� �� � �

� # � � � �� �� �� � 
 � � ���� � � � (16)

with the following definitions (which assume� ���	 �� � �
;

otherwise the weights must be renormalized)

� �� � ��
��	 �� �� �� ��
 ����� �� ��
 ���

� � �� � ��
��	 �� �� �� ��
 �� ��� �� ��
 ���

�


� ���� � � � 
� �� �
� � � � �!	 
� ���� � � �

(17)
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3.2. On-line algorithms

a. Simple stochastic gradient.This algorithm is based on
the relative gradient (3) of the likelihood criterion (2). The
separating matrix� ��� is updated upon reception of a new
sample

� ���
according to

�� �� # �� � �� ��� � �� ��� �� ��� (18)

where
�

is a small positive constant and

� ��� � � !" ��� �� ��� �� ���
 � �
with

�� ��� � � ���� ��� �
Here

� " ���
is the diagonal matrix with diagonal element�, "	 ���, . . . , �, "� ���� being some parametric estimates of, "� ���.

For instance

�, "� ��� � �, "� �� � �� # � � �� "� ��� � �, "� �� � ���
(19)

where
�

is a small positive learning step, which must be
significantly greater than

�
since the estimated separating

matrix
�� should be nearly constant in a large range of time

in which the source variances can vary significantly. This
is the most straightforward algorithm but it can be signifi-
cantly enhanced as follows.

b. On-line Newton-like technique. Consider an expo-
nentially weighted relative gradient matrix�� � �� � similar
to (3):

�� � �� � � �� �� � �� � ���!�  !" �� ��� �� �� �� �
 �
 � �
(20)

computed at time
�

based on the past samples. As before,�
is a small positive parameter and

 " �� � is the diagonal
matrix with diagonal elements, "	 �� �, . . . , , "� �� �, assumed
known for the moment. Our plan is to solve�� � � �� ���� � �
assuming that this equation has been solved at time

� � �
.

Similarly to (18), we write the solution at time
�

as a relative
variation

�� ��� � �� �� � �� � �� ��� �� �� � �� �
(21)

A first order expansion shows that, if�� �!	 �� � � �
, then

�� � �� � ��� � � � � !" ����� ���� ���
�
 � �� � ��

���� �� � �� � � ��!�  !" �� �� ��� " �� � �

where we drop the terms of order
�"

and we approximate�� �� �� �� �
� � by
 " �� �. With this expansion, the off

diagonal term of the matrix equation�� � �� ���� � �
yields

�� � # � �� �� �� � �� � ���!� , "� �� �
, "� �� � � ��� ��� ��� ���

, "� ���
�

(22)

for
� 
 � �� � 
 � . Here,

� ��
denotes the

�� � � � entry
of

� ���
and we have set

��� ��� � �� �� � ��� �����
. We do

not consider the equations for� � �
: they only control the

scales of the recovered sources, but such a control is not
required. Using an on-line estimator for, "� ���, we obtain
this algorithm:

1. Compute
�� ��� � � �� � ��� ���, update�, "� ��� by (19)

and �� �� ��� by

�� �� ��� � �� �� �� � �� # � ��, "� ���	 �, "� ��� � �� �� �� � ���

2. Update
�� ��� according to (21) where the diagonal of

matrix
� ���

is set to zero and its off diagonal ele-
ments are the solutions of (22)i.e.
� �� ����� � ��� � � 
 �� �� ��� �

� �� � � ��� �!
	 
 ��� ��� ��� ���	 �, "� ������ ��� ��� ���	 �, "� ��� �

(23)

As before, the parameter
�
, should be much smaller than

�
.

c. On-line versions of batch algorithms.The block Gaus-
sian approach can be easily turned into a block on-line al-
gorithm. The data stream is subdivided into data blocks of a
given length,� say. For the

�
-th data block, one computes

the sample covariance matrix
�� � similarly to (5). The�

most recent covariance matrices are kept in memory and, af-
ter block

�
has become available, one performs the joint ap-

proximate diagonalization of the matrices
�� �, . . . ,

�� �� 	!�
to obtain a separating matrix. This approach may seem
computationally demanding but it is not the case because,
in the on line context, it is sensible to perform only asin-
glesweep of the joint diagonalization algorithm after a new
data block is received.

Likewise, the Gaussian mutual information approach of
section 2.3 gives rise to a similar and somewhat more flex-
ible on-line algorithm. The matrices

�� � can now be eval-
uated at any time point as a local average. This is best
done by applying a low-pass filter to the matrix sequence� ���� ���


which outputspositive matrices, such as the ex-
ponential filter. The separating matrix� ��� is then obtained
by jointly approximately diagonalizing the matrices

�� ���
,�� �� �

�
�
, . . . ,

�� �� #
�

�
�� �. Here the role of� is to re-

duce the number of matrices to be diagonalized. As before,
only one sweep of the joint approximate diagonalization al-
gorithm is performed.

4. NUMERICAL EXPERIMENTS

On-line algorithms. We illustrate the improved behavior
of the Newton-like algorithm over the standard relative gra-
dient approach. We use synthetic source signals:

�� ��� �
� � ���	 � ��� where

	 � �
�
is a Gaussian i.i.d. sequence and
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Figure 1: Convergence of the� coefficients of the global
system� ���� for a � � �

source case. Top: the ‘regu-
lar’ relative gradient technique. Bottom: the Newton-like
technique.

� � ��� is a ‘slowly varying’ amplitude. These signals are
mixed by a

� � �
matrix. Figure 1 shows the convergence

of the � coefficients
�� ���� ��� of the global system: the

top panel is for the ‘regular’ relative gradient algorithm (18)
with the diagonal of the relative gradient� ��� set to

�
; the

bottom panel is for the Newton-like algorithm (23). We
have used the same signals, the same parameters (

� � ��!"
and

� � �	��
) and the same starting point. The signifi-

cantly faster convergence of the Newton-like algorithm is
clearly visible.

Block on-line algorithms. Figure 2 shows the online ver-
sion of the joint diagonalization algorithm separating a syn-
thetic mixture of 3 speech waveforms (we use a block length
of �

� ���
samples (

��
ms) and� � ��

matrices to be
jointly diagonalized). The� coefficients of the global sys-
tem �� are displayed versus the number of blocks. The
convergence is reached after about

��
blocks, that is even

before the memory is full.
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Figure 2: Convergence for the on-line joint diagonalizer.

5. DISCUSSION

Connections. The efficient approaches considered in this
paper —the joint diagonalization algorithm of section 3.1
and the Newton-like algorithm of section 3.2— bear some
resemblance: in both cases, a key step is the transforma-
tion of the gradient� �� into a ‘rectified gradient’

� ��
(com-

pare eq. (17) and (23) and the related updating rules). Here,
the underlying mechanism can be recognized as the classic
Newton technique in which the gradient is left multiplied by
the inverse of the Hessian for it to point in the best (in a cer-
tain sense) direction. It is likely that the ‘natural gradient’
approach of Amari [1] would result in similar algorithms.
We note however that the on-line algorithm takes its partic-
ular simple form thanks to an approximation which is only
valid when the model holds even though the algorithm still
behaves well if this is not the case.

About non stationarity. Another line of comments regards
the notion of non stationarity used in this paper. In essence,
the source properties which make the algorithms work are
source independence and slowly varying variance profiles.
In full rigor, the latest is not related to the well defined no-
tion of stationarity. Indeed, considered the case where the
�-th source signal is

�� ��� � � � ���	 � ��� with
	 � ���

is an
i.i.d. sequence and�

� ���
a slowly varyingstationarypro-

cess. Strictly speaking,
�� ���

is stationary even though vi-
sual inspection of a

�
sample realization

�� ��� � � � � � �� �� �
shows a waveform which is ‘psychologically non station-
ary’. Linear mixtures of such stationary sequences can ac-
tually be successfully separated by our algorithms. Con-
versely, it is easy to construct non stationary source pro-
cesses with constant variance, which would defeat our al-
gorithms. In summary, it would be more accurate to de-
scribe our algorithms as applying to independent sources
with ‘slow’ amplitude modulation.
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Non stationarity and non Gaussianity. A final comment
regards a connection between non stationarity and non Gaus-
sianity. For simplicity, consider again the model

�� ��� �
� � ���	 � ��� above. If the time index is ignored, as is done in
‘classic’ non Gaussian source separation techniques, then

�
successive samples of

�� ���
are (implicitly) considered as

�
realizations of an i.i.d. sequence and the sample distribution
will be strongly non Gaussian (even if

	 � ���
are Gaussian)

if the amplitude�
� ���

varies significantly over
�� � � �

.
Another direct connection to non Gaussian technique is

as follows. If we do not assume that the variance profiles
are smoothly varying, then each variance, "� ��� is a free pa-
rameter. In this case, the ML estimator of, "� ��� would be�� "� ���

which is certainly not very engaging. A Bayesian es-
timate can be obtained by assigning a prior distribution to
,� ��� and estimating it as the mode or as the mean of its
posterior distribution given

��� ���
. Using an inverse gamma

prior, the regularized variance estimate simply is

�, "� ��� �
�� "� ��� # 	 �, "�� # 	 �

where
	 �

and, "� are free hyper parameters (to be interpreted
as

	 �
extra data points with sample variance, "� [6]). In this

case, the estimating equation� � �
becomes�

� ��
� � ��� ���� ��� ��� � � �� � �

(24)

where
�

is the non-linear function
� �� � � � �	��� �

�	��� 
 	� . In

other words, we end up with the exact same type of estimat-
ing equations that is obtained in i.i.d. (stationary) non Gaus-
sian modeling! The simplest choices:

	 � � �
and,� � �

yield
� �� � � "�

�	� 	 , which is minus the log derivative of the
Cauchy density. In other words, solving eq. (24) amounts to
using a model of i.i.d Cauchy sources.

Relation to previous works. Matsuokaet al. [7] consider
an objective function which is essentially identical to ours
but do not relate it to mutual information or maximum like-
lihood and do not propose an efficient algorithm for its opti-
mization. Souloumiac [11] and Tsatsanis [13] consider the
case of two distinct stationary regimes and actually perform
a joint diagonalization of the two corresponding covariance
matrices. The diagonalization is exact but this approach is
limited to a very simple non stationary scenario.

Conclusions.Mixtures of independent sources can be sep-
arated by exploiting their non stationarity. We have pre-
sented criteria and algorithms for this task which are ef-
ficient numerically (simple implementations, fast conver-
gence) as well as statistically (potential super-efficiency).
Future investigation will address the issue of jointly exploit-
ing both non stationarity and non Gaussianity and will in-
clude the study of the asymptotic performance.
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