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ABSTRACT spectra [10, 12, 2] and when sources are non stationary pro-

cesses [11, 13, 7, 8, 4]. In this paper, we derive objective
functions from a simple non stationary model and introduce
algorithms for their optimization, leading to very efficten
separation techniques for non stationary sources.

Most ICA algorithms are based on a model of station-
ary sources. This paper considers exploiting the (pogsible
non-stationarity of the sources to achieve separation.nie i
troduce two objective functions based on the likelihood and
on mutual information in a simple Gaussian non stationary
model and we show how they can be optimized, off-line 2. OBJECTIVE FUNCTIONS
or on-line, by simple yet remarkably efficient algorithms
(oneis based on a novel joint diagonalization proceduee, th
other on a Newton-like technique). The paper also includes
(limited) numerical experiments and a discussion contrast
ing non-Gaussian and non-stationary models.

Using a simple non stationary model, we derive in this sec-
tion two objective functions based on the maximum likeli-
hood and minimum mutual information principles. In order
to exploit non stationarity, we shall make the simplest dis-
tributional assumptions compatible with it: the sources ar
temporally independent and are Gaussian with a time de-
1. INTRODUCTION pendent variance. We must stress that this is onkogk-
ing assumptionn order to derive objective functions. By

The aim of this paper is to develop a blind source separa-making the independence assumption, we simply have cho-
tion procedure adapted to source signals with time varying sen not to exploit the time dependence of the source signals
intensity (such as speech signals). For simplicity, welshal and by making the Gaussian assumption, we have chosen

restrict ourselves to the simplest mixture model: to base the our procedures on second order statistics only.
However, our algorithms are applicable even for colored
X(t) = AS(t) 1) non Gaussian sources (see section 4 for instance).
whereX(t) = [X1(t) --- Xg(t)]T is the vector of obser- . .
vations (at timeg), A is a fixed unknowr x K invertible 2.1. Maximum likelihood

matrix andS(t) = [S1(t) --- Sk(t)]* is the vector of  The maximum likelihood (ML) objective is more conve-

source sequences ahdlenotes the transpose. The goal is niently handled by considering the negative of the normal-

to reconstruct the sourcék (t) basedonly on the assump-  ized log probability density of the data $€t1), ..., X (T),

tion of their mutual independence which we denote by’'y,;,. Under the Gaussian temporally
Most of the approaches to blind source separation areindependent model:

based (explicitly or not) on a model where, for eachsS;(¢)}

is a sequence of independently and identically distributed

(i.i.d) variables (see [3] for a review of this approach). In

this case, the blind identification & is possible only if 1

at most one of the sources has a Gaussian (marginal) dis- + 3 log det[272?(2)] + log|det A|  (2)

tribution. In contrast, if the source sequences are ndt,i.i.

it is possible to blindly identifyA even for Gaussian pro-  where tr denotes the tracé~T stands for(A—1)T (for

cesses. This is the case when each source sequence is a sthort) and:?(t) is the covariance matrix &(t), which is

tionary (possibly Gaussian) process with non proportional diagonal with diagonal element$ (¢), ...,0%(t).

T
Cur = % 3 %tr[zﬂ(t)A*lX(t)X(t)TA*T]
t=1
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The variation ofC)ysr. with respect toA is better ex-
pressed by computing its relative gradient, that is Ahe K
matrix denoteds, such thaCy,, (A +A€) = Cyrn(A)+
tr(ETG) + o(||€]). One finds

3)

whereS(t) = A !'X(t). The stationary points (with re-
spect to variations o) of the likelihood are characterized
by G = 0. The off diagonal elements of this matrix equa-
tion are:

T
Y580/ =0 (1<i#ji<K) @
t=1

S;(t) being thei-th component 08(t). These equations

denotes the Kullback-Leibler divergence between two zero
meanK -variate normal densities with covariance matrices
R, andR, respectively. It is known thabD{R,|Ry} > 0

with equality if and only ifR, = Ry and thus is a legiti-
mate measure of deviation between positive matrices. Fur-
ther, forR, of the formAX?AT, we haveD{R|R;} =
D{A'R;A T|=?} and therefore

L
1 R
Cur =5 > wD{A'"R;A " |2}} + Constant (8)
=1

For any positiveR and any positive diagon&, the diver-
genceD{R|X} can be decomposed as:

D{R/Z} = D{R|diagR} + D{diadR|S}  (9)

where dia@® denotes the diagonal matrix with the same di-
agonal aR. Let us then define

express some form of non-correlation between the recon-

structed sources. The diagonal conditions merely state tha

the normalized reconstructed sourcﬁg;éai must have unit
sample variance, thus determining the “scale factoAin
In most practical situations, the variance profidést)

off(R) = D{R|diagR}, (10)

which measures deviation from diagonality since it is non
negative and can be zero only if it argument is diagonal. Us-

are not known in advance and must also be estimated from"d (9), the likelihood criterion (8) is seen to be minimized
the data. The standard ML approach is to postulate a parafor a fixed value ofA whenXj = diagA~'R;A™") and

metric model for these profiles. In a blind context, however,

a non parametric approach is to be preferred: we simply es-

timateo?(t) as a smoothed version 68(t). Note thatthe
estimate ob?(t) needs not be consistemgcause the decor-
relation conditionE[S;(t)S;(t)/a2(t)] = 0, for which (4)

the attained minimum is

L
Cip = woff(AT'R;A~T) + Constant (1)
=1

is an empirical version, holds for zero mean independent't is very striking that the ‘block-Gaussian’ likelihood-di

sources, even if?(-) is not the true variance profile.

2.2. Block Gaussian likelihood

In this section, we consider a ‘block Gaussian’ model in
which the interva[0, T'] may be divided intd consecutive
subintervalsTy, ..., Ty, such thaw} (t) = o7, fort € Tj,
foralli =1,..., K. Define the matrices
N 1
R; = AX?AT Ri=—) XO)X@®)" (5
’ AT, l#nz<)() (5)

teT)

whereX; is the diagonal matrix with diagonal elements,
..+, 0%, and#T; denotes the number of elementsHf
Then the normalized log likelihood (2) can be expressed as

L
1 .
CuL = 3 § w; D{R,|R; } + Constant (6)

=1

wherew; = #T;/T is the proportion of data points in the
l-th subinterval and

D{R,|Ry} = tr(R; 'R,) — logdet(R; 'R,) — K (7)
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rectly leads to an objective function which is a criterion of
joint diagonalization. The idea of joint approximate diago
nalization has already been used for source separatiom unde
different hypothesis: non Gaussian sources in [5], colored
processes in [2]. In these contributions, however, the mea-
sure of joint diagonality was a simple quadratic criterion,
not directly related to the likelihood objective and more-
over is optimized under an orthogonality constraint which
requires prior whitening of the observations.

2.3. Gaussian mutual information

We turn to a different objective: finding a transformation
matrix B which minimizes of the mutual information be-
tween the random vectors

[(BX)r(1) ---

Rather than trying to estimate the actual mutual informa-
tion, we shall consider instead the Gaussian mutual infor-
mation, defined in the same way as the ordinary mutual in-
formation but with respect to some hypothetical Gaussian
random vectors which have the same covariance structure
as the random vectors of interest. As we shall see, thanks

BX) ()", k=1,....,K (12)



to the non stationarity of the model, using the Gaussian mu-source is silent over a given intervAland the other sources
tual information still allows to achieve separation. Since are not, then there exists a vectgrsuch thab] X(t) = 0

the Kullback-Leibler divergence between the two Gaussianfor all ¢ € 7. Since this vector must be orthogonal to all
densities of zero mean and covariance matrResdQ is columns ofA but thei-th column, it is proportional to the
D{P|Q}, the normalized Gaussian mutual information be- th row of A—!. Therefore this row can be determined with-
tween the vectors (12) eQU#SEL off[BR(t)BT]Where out error from a finite number of samples. Summarizing
R(t) denotes the covariance matrix Xf(¢). In practice, tbe data in the interval” by the sample covariance matrix
matrix R(¢) is unknown; a sensible approach is to replace it Ry preserves the possibility of error free because the ma-

by some non parametric kernel estimator: trix R although subjected to estimation errors always has
- its null space spanned lky; and this is all that matters for
R(t) _ D=t ( 5)X(r)X ()" finding thes-th row of A—! without error.
Zf Lk(SE) In practice, a situation allowing super efficiency is un-

) N ] . ) likely to occur (for one thing, some noise is always present)
wherek is a positive kernel function and/ is a window Byt it is a guarantee of statistical effectiveness that @cri
width parameter, The separation procedure then consists ofjo yields super efficient estimates whenever such a possi-
minimizing 7 ¥°,_, off[BR(#)B™] with respect tdB. But bility exists. This is the case of criterion (11).
asR(t) should vary slowly witlt, one may approximate the

above criterion by 3. ALGORITHMS

L
Cur = % Z off[BR(IT/L)B”] (13) 3.1. Block algorithm

=1 The block Gaussian likelihood criterion (11) can be effi-

with L being some integer not exceedifiy The role of ciently minimized thanks a novel joint approximate diago-
L is only to reduce the computation cost. There is little to nalization algorithm which is now briefly described (see [9]

gain by taking largel, since then the successive matrices for more details). Given positive matric®s, ..., Rz and
R(IT/L) would be very similar. a setws, ..., wr, of positive weights, it computes a matrix

B minimizing Zlel w;off(BR;BT). It works similarly to
2.4. Discussion the classic Jacobi method by making successive transforma-

tions on each pair of rows @, but the transformations here
Connections. It is not a coincidence that the above ap- arenotconstrained to be orthogonal. Explicitly, [B;. and
proaches lead to similar separating objectives. This is be-B;. be any two distinct rows aB. The algorithm changes
cause the expectation of (2) is (up to a constant) a Kullback-B into a new matrix with these rows given by
Leibler divergence while the criterion (13) originatestfra
related Kullback-Leibler divergence. One can also compare [BZ] — [Bi' ] - Ty [Bi' ] , (15)
these approaches on the basis of the corresponding estimat- B;. B;. B;.
ing equations. The minima df,,; are easily shown to be

) the other rows being unchanged. The 2 matrix T;; can
solution of

be chosen such that the criterion is sufficiently decreased.
. The procedure is then repeated with another pair of rows.
EZ l\]iL =0, 1<i#j<K (14)  The processing of all thé& (K — 1)/2 pairs is called a

' ) sweep The algorithm consists in repeated sweeps until con-

where, with$; denoting the-th component oBX, we set; o 9eNce 1S reached. Matri;; in (15) is computed as

. T t—7\ Q. & - 2 0 hi ]
SiS;(t) = ZT:lzkj(TMizfgisj = T =1 dhijhji [ i 03] (4o
T=1 M

These equations are quite similar to (4), except$hé)S;(t) ~ With the following definitions (which assunje,_, w; = 1;

ando?(t) are replaced by local averages$fS; and of 52 otherwise the weights must be renormalized)

around the time point and that the time average in (4) is I A T

sparser, using a time step’df L instead ofl. o (BR,B");; _ (BR;B jj
Gij Z 1 ~ T ,  Wij = Z W ——=——~ T

Super efficiency. An interesting feature in the noise free = (BR:BY)j (BR/BT);;

non stationary setting is that there is room for ‘super effi- 1
ciency’, that is, for estimating the mixing matrix with an er [hij] - [Wz’j 1 ] [gij] ) (17)
ror which decreases faster thih/T. Assume that thé-th hji L wji 9ji
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3.2. On-line algorithms

a. Simple stochastic gradient.This algorithm is based on
the relative gradient (3) of the likelihood criterion (2h&
separating matriBB(t) is updated upon reception of a new
sampleX (t) according to

B(t +1) = B(t) - A\G(1)B(?) (18)
wherel is a small positive constant and
GHt) =2 2)S®)SH)T — I with S(t) = B(t)X(t).

Here 332(t) is the diagonal matrix with diagonal element
6%(t), ...,6%(t)] being some parametric estimates§ft).

For mstance
(t) =67t — 1)+ p [S(t) — 67(t — 1)]

wherep is a small positive learning step, which must be
significantly greater than since the estimated separating
matrix B should be nearly constant in a large range of time
in which the source variances can vary significantly. This
is the most straightforward algorithm but it can be signifi-
cantly enhanced as follows.

&%

(19)

b. On-line Newton-like technique. Consider an expo-
nentially weighted relative gradient matr®;(B) similar
to (3):

A)t_TE_

2(rBX(n)X(r)"BT -1

=> A0
7<t
B (20)
computed at time& based on the past samples. As before,
X is a small positive parameter ai¥f(7) is the diagonal
matrix with diagonal elements?(7), ..., 0% (T ) assumed
known for the moment. Our plan is to sol@; (B(t)) = 0
assuming that this equation has been solved at timd.
Similarly to (18), we write the solution at timeas a relative
variation
B(t) =B(t—1) —

AH(H)B(t - 1).

A first order expansion shows thatGf;_, (B) = 0, then

(21)

G;(B - MHB) x A[Z2(t)BX ()X ()BT — 1) — AHT
A A= N)TTE T ()H(E) B (1),
<t

where we drop the terms of ordaf and we approximate
BX (7)X(7)TB* by £*(r). With this expansion, the off
diagonal term of the matrix equati@®; [B(t)] = 0 yields

() _ (1
™) )

; Si()S;(t
o} oi(t

g

/\)t—‘r

h]‘i + hij Z A1 (22)

<t
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for1 < i # j < K. Here, h;; denotes thei, j) entry

of H(t) and we have sef;(t) = [B(t — 1)X(¢)];. We do

not consider the equations fbr= j: they only control the
scales of the recovered sources, but such a control is not
required. Using an on-line estimator fof(t), we obtain

this algorithm;

1. ComputeS(t) =
andd)ij (t) by

@ij () = @i (t — 1) + A[65 (1) /67 (¢)

B(t —1)X(t), updatesz(t) by (19)

— Wit = 1)]

2. UpdateB(t) according to (21) where the diagonal of
matrix H(¢) is set to zero and its off diagonal ele-
ments are the solutions of (22¢.

- ol T

55(8)Si(t) /75 (
As before, the parametar should be much smaller than

1
@ji (t)

&; (t)
t)

Wi;(t)
1
(23)

c. On-line versions of batch algorithms.The block Gaus-
sian approach can be easily turned into a block on-line al-
gorithm. The data stream is subdivided into data blocks of a
given length;n say. For thd-th data block, one computes
the sample covariance matri; similarly to (5). TheL
most recent covariance matrices are keptin memory and, af-
ter blockl has become available, one performs the joint ap-
proximate diagonalization of the matnch Rl+1 L

to obtain a separating matrix. This approach may seem
computationally demanding but it is not the case because,
in the on line context, it is sensible to perform onlgia-

gle sweep of the joint diagonalization algorithm after a new
data block is received.

Likewise, the Gaussian mutual information approach of
section 2.3 gives rise to a similar and somewhat more flex-
ible on-line algorithm. The matriceR; can now be eval-
uated at any time point as a local average. This is best
done by applying a low-pass filter to the matrix sequence
X ()X (t)T which outputsositive matricessuch as the ex-
ponential filter. The separating matiB(t) is then obtained
by jointly apprOX|mater diagonalizing the matricBg(t),
R(t—m), ...,R(t+m—mL). Here the role ofn is to re-
duce the number of matrices to be diagonalized. As before,
only one sweep of the joint approximate diagonalization al-
gorithm is performed.

4. NUMERICAL EXPERIMENTS

On-line algorithms. We illustrate the improved behavior
of the Newton-like algorithm over the standard relative-gra
dient approach. We use synthetic source sign§jét) =

a;(t)n;(t) wheren;(-) is a Gaussian i.i.d. sequence and
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Figure 1. Convergence of the coefficients of the global
systemB(t)A for a K = 3 source case. Top: the ‘regu-
lar’ relative gradient technique. Bottom: the Newton-like
technique.

a;(t) is a ‘slowly varying’ amplitude. These signals are
mixed by a3 x 3 matrix. Figure 1 shows the convergence
of the 9 coefficients(B(t)A);; of the global system: the
top panel is for the ‘regular’ relative gradient algorithb8]
with the diagonal of the relative gradie6t(t) set to0; the
bottom panel is for the Newton-like algorithm (23). We
have used the same signals, the same parampterd (2
and A = p/20) and the same starting point. The signifi-
cantly faster convergence of the Newton-like algorithm is
clearly visible.

Block on-line algorithms. Figure 2 shows the online ver-
sion of the joint diagonalization algorithm separating a-sy
thetic mixture of 3 speech waveforms (we use a block length
of m = 320 samples 40 ms) andL = 12 matrices to be
jointly diagonalized). Thé coefficients of the global sys-
tem BA are displayed versus the number of blocks. The
convergence is reached after abauitblocks, that is even
before the memory is full.
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Figure 2: Convergence for the on-line joint diagonalizer.

5. DISCUSSION

Connections. The efficient approaches considered in this
paper —the joint diagonalization algorithm of section 3.1
and the Newton-like algorithm of section 3.2— bear some
resemblance: in both cases, a key step is the transforma-
tion of the gradieny;; into a ‘rectified gradienth;; (com-

pare eq. (17) and (23) and the related updating rules). Here,
the underlying mechanism can be recognized as the classic
Newton technique in which the gradient is left multiplied by
the inverse of the Hessian for it to point in the best (in a cer-
tain sense) direction. It is likely that the ‘natural grattie
approach of Amari [1] would result in similar algorithms.
We note however that the on-line algorithm takes its partic-
ular simple form thanks to an approximation which is only
valid when the model holds even though the algorithm still
behaves well if this is not the case.

About non stationarity. Another line of comments regards
the notion of non stationarity used in this paper. In essence
the source properties which make the algorithms work are
source independence and slowly varying variance profiles.
In full rigor, the latest is not related to the well defined no-
tion of stationarity. Indeed, considered the case where the
i-th source signal is5;(t) = a;(t)n;(t) with n;(t) is an
i.i.d. sequence and;(t) a slowly varyingstationarypro-
cess. Strictly speakingf;(t) is stationary even though vi-
sual inspection of & sample realizatiors;(1), ..., S;(T)
shows a waveform which is ‘psychologically non station-
ary’. Linear mixtures of such stationary sequences can ac-
tually be successfully separated by our algorithms. Con-
versely, it is easy to construct non stationary source pro-
cesses with constant variance, which would defeat our al-
gorithms. In summary, it would be more accurate to de-
scribe our algorithms as applying to independent sources
with ‘slow’ amplitude modulation.



Non stationarity and non Gaussianity. A final comment

6. REFERENCES

regards a connection between non stationarity and non Gaus-

sianity. For simplicity, consider again the modg(t) =
a;(t)n;(t) above. If the time index is ignored, as is done in
‘classic’ non Gaussian source separation techniques;then
successive samples 8f(t) are (implicitly) considered &8
realizations of an i.i.d. sequence and the sample disioibbut
will be strongly non Gaussian (evenvif(t) are Gaussian)

if the amplitudeu; (t) varies significantly ovefl, 7.

Another direct connection to non Gaussian technique is
as follows. If we do not assume that the variance profiles
are smoothly varying, then each varianggt) is a free pa-
rameter. In this case, the ML estimatora«f(¢) would be
S2(t) which is certainly not very engaging. A Bayesian es-
timate can be obtained by assigning a prior distribution to
o;(t) and estimating it as the mode or as the mean of its
posterior distribution givenﬁ‘i(t). Using an inverse gamma
prior, the regularized variance estimate simply is

~

Szz (t) + ngag
N 1+mng
whereng andos are free hyper parameters (to be interpreted

asng extra data points with sample variangg[6]). In this
case, the estimating equatiGh= 0 becomes

7 Z P[Si(1)]S;(t) — 6 =0 (24)
where is the non-linear function)(y) = Z%i—xg)g n
0

other words, we end up with the exact same type of estimat-
ing equations that is obtained in i.i.d. (stationary) nom&a
sian modeling| The simplest choicesg = 1 andog = 1
yieldy(y) = y2+1 , which is minus the log derivative of the
Cauchy density. In other words, solving eq. (24) amounts to
using a model of i.i.d Cauchy sources.

Relation to previous works. Matsuokaet al. [7] consider

an objective function which is essentially identical to ur
but do not relate it to mutual information or maximum like-
lihood and do not propose an efficient algorithm for its opti-
mization. Souloumiac [11] and Tsatsanis [13] consider the
case of two distinct stationary regimes and actually penfor

a joint diagonalization of the two corresponding covar@nc
matrices. The diagonalization is exact but this approach is
limited to a very simple non stationary scenario.

Conclusions. Mixtures of independent sources can be sep-
arated by exploiting their non stationarity. We have pre-

sented criteria and algorithms for this task which are ef- [13]

ficient numerically (simple implementations, fast conver-
gence) as well as statistically (potential super-efficjgnc
Future investigation will address the issue of jointly @ipl
ing both non stationarity and non Gaussianity and will in-
clude the study of the asymptotic performance.
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