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Abstract

A novel method is defined to reconstruct the
dynamic attractor by multidimensional embed-
ding of observations of a dynamic, non-linear
process. Takens' embedding theory is combined
with independent component analysis to trans-
form the embedding to a vector space of statisti-
cally independent vectors (state variables). The
method of embedding was successfully tested,
using various embedding strategies on data
generated by a non-linear process in a chemical
reactor as well atmospheric NO..

Background

Embedding of observations in phase space is
central to the analysis of non-linear dynamic
process systems and the treatment of one-
dimensional systems in this way is well-esta-
blished in non-linear system identification [1].
However, identification of dynamic systems
based on multi-dimensional observations has
not been sufficiently formalised in terms of
embedding theory, despite the practical
importance of these types of systems. One
cannot always predict the time evolution of a
system state from a single observed variable
[2]. For example, the Lorenz system [3] has
three state variables, x y z but x= f(x,y),

while z= f(x,y,z), thus one cannot properly
predict z only from x or even (x,y)-observations.

Cao et al. [2] proposed embedding all compo-
nents of the multi-dimensional observations
using an optimal Takens embedding for each
component, by minimising the average predic-
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tion error of a nearest neighbour, locally con-
stant predictor. Unfortunately Cao et al. [2] did
not indicate how to optimise the embedding lag,
which is crucial in the reconstruction of a
representative attractor on realistic systems,
especially if noise is present in the observations.
Individual embedding of each observation could
lead to significant statistical dependence be-
tween some of the embedded (lag) variables,
resulting in an attractor that is not optimally
reconstructed from the observations.

In this paper we therefore propose a novel
method to embed multidimensional observa-
tions in chemical process systems that avoids
both linear approximations in finding embed-
ding dimensions and potentially sub-optimal
embedding lags. With this approach, each com-
ponent is treated as a one-dimensional time-
series and embedded individually to generate a
subspace. These subspaces are consequently
combined to form a first approximation of the
attractor in RN =[R™ , R"2,....R"M . Finally,
the lag variables are decorrelated to optimise
the structure of the attractor. This result in a
properly reconstructed dynamic attractor based
on the observation space with optimally
decorrelated state variables.

Methodology

Let Y=[Y1,Y2,Y3,---,YN]T be the array of p-
dimensional observations, where each Y; = [y,
Yi2, Vi3, ...yip] for i 1, 2, 3,..., N.
Multidimensional embedding of Y, using



Takens’ embedding [4], results in the
embedding matrix X, where each element,
Xij :|:yi+kj(mjl),j yi+k/-(m/-—2)j,j RN y,-,]}
i=b....N,j=1...

b, = max[k,(m, )|~ k,(m, = 1) +1

with k;, the embedding lag and m;, the
embedding dimension for each observation Y;.
In this investigation, the embedding lag was
determined by the average mutual information
statistic [5] and the embedding dimension by
the false nearest neighbours algorithm [6].
Possible statistical dependencies among lag
variables are removed by optimal projection of
X of the observations, as follows:

S=WX (2)

where S is the optimal projection of the original
embedding and W the separating matrix. The
dimension of S may be lower than that of X.
Thus one may achieve optimal projection,
reduction of dimensionality, as well as
independence of the embedding variables.

Applying Hyvirinen's method [7] to find W,
one has to maximise the negentropy J; of X,
which is equivalent to minimising the mutual
information among components of X, under the
constraint of decorrelation of the components,
that is:

M
maximizez Jg (w,. ) wrt. W;,

3)
under the constraint,

E{w'w'j} = 8k @)
where,

Jo(w) = [E{G(W'X)} - E{GV)}]® 5)

with G(-) some sufficiently smooth, even, so-
called contrast function that estimates the
probability density function of an independent
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component, ¢ some insignificant constant, and v
a standardised Gaussian variable. Each vector
w; , is a row of matrix W. The matrix S
represents the attractor of the dynamic system.

Case study 1: Modelling of non-isothermal
CSTR reaction

We first demonstrate the embedding method in
a case study of a non-linear exothermal reaction
process (A—B), that runs in a non-isothermal
Continuously-Stirred Tank Reactor (CSTR) [8].
The process can be described in terms of the
following set of differential equations:

ddCtA = %(CAf —Cy )— koC a CXP(— %)
dTr _
O oy 1)+ Aﬁg];oCA explifr)
* //))CCC;,Iifc e {l—exp(— chcpc ﬂ(ch _T)

where Cy is effluent concentration; 7, reaction
temperature, g., coolant flow rate; g, feed flow
rate; Cay, feed concentration; Tf, feed tempera-
ture; Ty, coolant inlet temperature. Table 1
defines the remaining model parameters, as well
as the nominal operating conditions and initial
conditions.

Using various embedding strategies, four
different parameterisations of the process
dynamics were performed and used to predict
the effluent concentration one step ahead. These
were: (1) the trivial embedding of effluent
concentration and reaction temperature; (2)
embedding of the effluent concentration only;
(3) a multidimensional embedding of effluent
concentration and reaction temperature, not
optimised by independent component analysis;
and (4) the same multidimensional embedding
as in (3), but optimised by independent
component analysis.

For the settings in Table I, the authors solved
the set of equations (6), using a 5th order Runge
Kutta numerical method over 1000 simulated



seconds. This gave 4705 points, which were re-
sampled with constant sampling period of 0.1 s
to give 10000 two-dimensional observations in
effluent concentration and reaction temperature.

Table I Parameters for nominal CSTR
operating conditions [8].
q 100 [L min™']
Car 1 [mol L]
T; 350 [K]
Ter 350 [K]
\Y% 100 [L]
hA 7x10° [cal min" K]
ko 7.2x10" [min™]
E/R 9.95x10° [K]
-AH 2x10° [cal mol]
P, Pe 1000 [g L]
Cp, Cpe 1 [cal g'1 K'l]
Qe 103.41 [L min™']
T 440.2 [K]
Ca 8.36x107 [mol L]

According to the trivial embedding strategy of
the first parameterisation, an embedding lag,
k=1, and dimension, m=1, were used to
embed Ca and 7. This means the observed
process states, Ca and T , were used direct to
predict Ca one step ahead from the current
observation. According to the embedding strate-
gy of parameterisation (2), Ca only was embed-
ded. average mutual information calculations
indicated an embedding lag, k = 6, and false
nearest neighbours calculations suggested an
optimal embedding dimension, m = 4. After
some trial and error by trying several embed-
dings of different lags to predict Ca, it appeared
that the optimal embedding lag was k = 1.
Consequently, this lag was used throughout the
rest of the investigation.
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For parameterisations (3) and (4), the first step
of the proposed multidimensional embedding
strategy was to embed the individual observa-
tion components, Ca and 7. average mutual
information and false nearest neighbours
calculations were performed for Ca and T
individually. An embedding lag, & 1 and
embedding dimension, m = 4 were used for the
embedding of both Cs and 7. Combining the
subspaces that resulted from individual embed-
ding of C, and T, gave an R*-embedding space.
For parameterisation (3), the combined embed-
ding space was used direct to predict C one
step ahead. On the other hand, for parameteri-
sation (4), Hyvirinen's method [7] with a
contrast function of the form G(s) = (1/a)log
cosh(as) and a some constant, was used to
obtain an optimal projection of the embedding
space.

For all parameterisations, prediction of Cs was
done by using a multilayer perceptron neural
network with a single hidden layer consisting of
15 hyperbolic tangent nodes and a single-node
linear output layer. The size of the hidden layer
was determined by iterative training and testing
of networks using progressively larger numbers
of nodes in the hidden layer. The parameters of
the network were estimated with the Leven-
berg-Marquardt algorithm on the first 8000
observations, tested against observations 8001
to 9000 and finally validated once only against
observations 9001 to 10000. The Rz—statistic,

y—y

was selected as fitness

criterion, where y is the observation and ¥y, the

prediction of y; n, the number of observations;
and s°, the sample variance of the observations.

The R® results for the various parameterisations
are shown in Table II, while figure 1 shows the
results for parameterisation (4). It is clear from
Table II that the multidimensional embedding
strategy proposed in this paper is the best of the
parameterisations investigated for this process
system. Parameterisation (4) scored the highest
R? = 0.975 of all. Parameterisation (3) fared



about the same as (2), while (1), using the
trivial embedding, scored the worst. The
improvement of parameterisation (4) over each
of the other parameterisations was statistically
significant in each case, based on a two-tailed
hypothesis test on the Fisher transformation of

r=vR.

Case study 2: Modelling of air pollution in
Cape Town metropole

We next selected air pollution in the Cape
Town metropolitan area in South Africa as a
basis for the second case study. A data set was
kindly provided by the Cape Town Metropo-
litan Scientific Services. The data set contained
8664 records of synchronised, hourly mean con-
centrations of NO, NO,, ambient temperature
and solar radiation for the city centre of Cape
Town, observed during 1996.

Classification of the NO, data, using a surrogate
data method [9,10], showed the data to be near-
ly random. Noise filtering was not performed.
However, outliers were removed by construct-
ing a convex hull around the full variable space

0.085

consisting of [Xno2, Xno, Xgs] and removing the
hull. A total of 452 outliers were so removed.

NO, concentration (Xyo2) was chosen as the
dependent variable with the aim to make accep-
table one-step predictions in terms of NO con-
centration (Xyo) and solar radiation (Xgs). The
first 6000 records were selected for fitting a
non-linear model. A test set of records 6001 to
7000 was used for the optimisation of model
order. Final models were validated on records
7001 to 8000.

Parameterisation of the system was investigated
in terms of two alternative embedding strategies
and associated model structures. The first
strategy implied embedding all observation
components using optimal individual embed-
dings summarised in Table III. The individual
embeddings were combined as A € R and
separated as S;=W ;A by ICA with the power-3
contrast function. Consequently, the following
model was constructed:

S1(1)—>Xno2 (t+1) (7
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Figure 1 Prediction of concentration, Ca, based on parameterisation (4), using a multilayer
perceptron neural network. The dashed line is the prediction.
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Table I  R? statistic for prediction of Cy , for various parameterisations of the process.
Parameterisation  State space Optimally R?
dimension projected
Parameterisation (1) 2 no 0.908
Parameterisation (2) 4 no 0.963
Parameterisation (3) 8 no 0.965
Parameterisation (4) 8 yes 0.975
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Figure 2 Prediction of atmospheric NO, concentration (dashed line) in validation data set,
using a multi-layer perceptron network with parameterisation strategy 1.

In accordance with the second embedding stra-
tegy, no variables were embedded, resulting in
the following model:

[Xno XEs]—Xno2 (1+1) )

Multi-layer perceptron model structures with
single hidden layers, consisting of bipolar sig-
moidal nodes, were selected in all cases. In
addition, a linear output layer was used in each
case. The network parameters were estimated
by using the Levenberg-Marquardt algorithm.

Model order was increased iteratively from 2 to
16 hidden nodes and the R’-statistic calculated
for the prediction of Xyp, in the test set. The
optimal model order was found to be 8 hidden
nodes for both the embedding strategies.

Prediction of Xno> from the validation data set,
using parameterisation strategy 1, resulted in an
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R’ of 0.794, while strategy 2 only managed an
R* of 0.737. As with the first case study, the
improved performance of the first strategy was
shown to be statistically significant.

Conclusions

Based on the case studies discussed above, as
well as other experiments not reported here, we
can conclude that the proposed parameterisation
technique of multivariate embedding, using
independent component analysis, can make a
significant contribution to the modelling of
multivariate dynamic systems.



Table III Embedding parameters for air
pollution data: strategy 1

| NO, NO E,
m | 5 5 7
k

| 9 14 9
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